
Computational Physics

Prof. Paul Eugenio
Department of Physics
Florida State University

Jan 17, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

Python Programming Basics

Computational Physics

Prof. Paul Eugenio
Department of Physics
Florida State University

Jan 17, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

Python Programming Basics

Announcements

Exercise 0 due end of day
Friday

Announcements

Exercise 0 due end of day
Friday

Arithmetic in Python
In most places where you can use a single variable in Python
you can also use a mathematical expression
print(height + offset)

Basic mathematical operations
x + y # addition
x - y # subtraction
x * y # multiplication
x / y # division‡

x**y # raising x to the power y
x // y # integer division: example 5//3 returns 1
x % y # integer modulo remainder: example 5%3 returns 2

‡ requires “from __future__ import division”

Arithmetic in Python
In most places where you can use a single variable in Python
you can also use a mathematical expression
print(height + offset)

Basic mathematical operations
x + y # addition
x - y # subtraction
x * y # multiplication
x / y # division‡

x**y # raising x to the power y
x // y # integer division: example 5//3 returns 1
x % y # integer modulo remainder: example 5%3 returns 2

‡ requires “from __future__ import division”

Easy Readable Expressions
Several mathematical operations can be combined together to
make a more complicated expression along with the use of
parentheses () to dictate the order of mathematical operations

length = (x-x0)*(x-x0) + (y-y0)**2 + (z-z0)**2

YES:
i = i + 1
i += 1
x = x*2 – 1
hypo2 = x*x + y*y
c = (a+b) * (a-b)
xSquared = x**2

NO:
i=i+1
i +=1
x = x * 2 – 1
hypo2 = x * x+y * y
c = (a +b) * (a- b)
xSquared=x ** 2

 Add spaces between the parts of a mathematical expression to make it
easier to read.

 When different priorities are used, add a space around the operators with
the lowest priority(ies). Never use more than one space, and always have
the same amount of whitespace on both sides of a binary operator.

Easy Readable Expressions
Several mathematical operations can be combined together to
make a more complicated expression along with the use of
parentheses () to dictate the order of mathematical operations

length = (x-x0)*(x-x0) + (y-y0)**2 + (z-z0)**2

YES:
i = i + 1
i += 1
x = x*2 – 1
hypo2 = x*x + y*y
c = (a+b) * (a-b)
xSquared = x**2

NO:
i=i+1
i +=1
x = x * 2 – 1
hypo2 = x * x+y * y
c = (a +b) * (a- b)
xSquared=x ** 2

 Add spaces between the parts of a mathematical expression to make it
easier to read.

 When different priorities are used, add a space around the operators with
the lowest priority(ies). Never use more than one space, and always have
the same amount of whitespace on both sides of a binary operator.

Arithmetic
Tricks and Short Cuts

 x += 1 # add 1 to x, same as x = x + 1
 x -= 4 # subtract 4 from x, same as x = x - 4
 x *= -2.6 # x = x * -2.6
 x /= 5*y # x = x / (5*y)
 x //= 3.4 # x = int(x / 3.4)

Multiple Assignments in a Single Statement

 x, y = 1, 2.5
 x, y = 2*x*y+1, (x+y)/3

It is important to note that the whole right-hand side of the equation is
calculated by the computer before assigning the left-hand values

NICE!

Arithmetic
Tricks and Short Cuts

 x += 1 # add 1 to x, same as x = x + 1
 x -= 4 # subtract 4 from x, same as x = x - 4
 x *= -2.6 # x = x * -2.6
 x /= 5*y # x = x / (5*y)
 x //= 3.4 # x = int(x / 3.4)

Multiple Assignments in a Single Statement

 x, y = 1, 2.5
 x, y = 2*x*y+1, (x+y)/3

It is important to note that the whole right-hand side of the equation is
calculated by the computer before assigning the left-hand values

NICE!

Example: Multiple Assignments
Sequential Assignments
x = 1 # value: x = 1
y = 1 # values: X = 1 & y = 1

x = 2*y + 1 # values: x = 3 & y = 1
y = 2*x + 1 # values: x = 3 & y = 7

Be Careful What You Want May Not Be What You Get

Simultaneous Assignments
x, y = 1, 1 # values: x = 1 & y = 1

x,y = 2*y + 1, 2*x +1 # values: x = 3 & y = 3

Example: Multiple Assignments
Sequential Assignments
x = 1 # value: x = 1
y = 1 # values: X = 1 & y = 1

x = 2*y + 1 # values: x = 3 & y = 1
y = 2*x + 1 # values: x = 3 & y = 7

Be Careful What You Want May Not Be What You Get

Simultaneous Assignments
x, y = 1, 1 # values: x = 1 & y = 1

x,y = 2*y + 1, 2*x +1 # values: x = 3 & y = 3

Functions, Packages, and
Modules

Python comes with facilities for performing many operations, from
basic arithmetic to complex calculations, visualizations, and
operations. These facilities are included in modules and packages(a
collection of modules).

In order to use these facilities, one must import the function or
module into the program.

Standard Mathematical Functions are provided in the math module.

log() # natural logarithm
log10() # log base 10
exp() # exponential
sin(), cos(), tan() # trig functions(radians)
asin(), acos(), atan() # inverse trig funct.
sinh(), cosh(), tanh() # hyperbolic trig funct.
sqrt() # positive square root

plus values for π and e and many more functions

Functions, Packages, and
Modules

Python comes with facilities for performing many operations, from
basic arithmetic to complex calculations, visualizations, and
operations. These facilities are included in modules and packages(a
collection of modules).

In order to use these facilities, one must import the function or
module into the program.

Standard Mathematical Functions are provided in the math module.

log() # natural logarithm
log10() # log base 10
exp() # exponential
sin(), cos(), tan() # trig functions(radians)
asin(), acos(), atan() # inverse trig funct.
sinh(), cosh(), tanh() # hyperbolic trig funct.
sqrt() # positive square root

plus values for π and e and many more functions

math – Mathematical functions
Using interactive python for help
hpc-login 434% python
Python 2.7.5
Type "help", "copyright", "credits" or "license" for more information.

>>> help("math")
Help on module math:
NAME
 math
FILE
 /opt/python27/anaconda/lib/python2.7/lib-dynload/math.so
MODULE DOCS
 http://docs.python.org/library/math
DESCRIPTION
 This module is always available. It provides access to the
 mathematical functions defined by the C standard.
FUNCTIONS
 acos(...)
 acos(x)

 Return the arc cosine (measured in radians) of x.

 acosh(...)

 Return the hyperbolic arc cosine (measured in radians) of x.

 asin(...)
 asin(x)

 Return the arc sine (measured in radians) of x.

math – Mathematical functions
Using interactive python for help
hpc-login 434% python
Python 2.7.5
Type "help", "copyright", "credits" or "license" for more information.

>>> help("math")
Help on module math:
NAME
 math
FILE
 /opt/python27/anaconda/lib/python2.7/lib-dynload/math.so
MODULE DOCS
 http://docs.python.org/library/math
DESCRIPTION
 This module is always available. It provides access to the
 mathematical functions defined by the C standard.
FUNCTIONS
 acos(...)
 acos(x)

 Return the arc cosine (measured in radians) of x.

 acosh(...)

 Return the hyperbolic arc cosine (measured in radians) of x.

 asin(...)
 asin(x)

 Return the arc sine (measured in radians) of x.

Importing Math Functions
Importing a Module
 import math

 math.sin(1.57) # returns 0.9999996..
 math.sin(math.pi/2) # returns 1.0
 math.sin(math.degrees(45)) # returns 0.707107..
 math.degrees(math.asin(1/math.sqrt(2))) # equals 45

Importing Functions from a Module
 from math import sin, asin, pi, degrees, sqrt

 sin(1.57) # returns 0.9999996..
 sin(pi/2) # returns 1.0
 sin(degrees(45)) # returns 0.707107..
 degrees(asin(1/sqrt(2))) # equals 45

avoid using: “from math import *” (import all functions) as it can cause unknown behavior

Importing Math Functions
Importing a Module
 import math

 math.sin(1.57) # returns 0.9999996..
 math.sin(math.pi/2) # returns 1.0
 math.sin(math.degrees(45)) # returns 0.707107..
 math.degrees(math.asin(1/math.sqrt(2))) # equals 45

Importing Functions from a Module
 from math import sin, asin, pi, degrees, sqrt

 sin(1.57) # returns 0.9999996..
 sin(pi/2) # returns 1.0
 sin(degrees(45)) # returns 0.707107..
 degrees(asin(1/sqrt(2))) # equals 45

avoid using: “from math import *” (import all functions) as it can cause unknown behavior

Avoid import *
Import All Functions From a Module
 from math import * # a quick and dirty way to import

 sin(1.57)
 sin(pi/2)

Importing Functions over Functions
 from math import *
 from numpy import * # NumPy is the fundamental package for
 # scientific computing with Python.

 sin(1.57) # which sin()?
 sin(pi/2) # math or numpy?

It's Better to Import Modules and Scope Functions
 import math as m
 import numpy as np

 m.sin(1.57)
 np.sin(1.57)
 np.sin([np.pi,np.pi/2]) # returns: array([1.22464680e-16, 1.00e+00])

Avoid import *
Import All Functions From a Module
 from math import * # a quick and dirty way to import

 sin(1.57)
 sin(pi/2)

Importing Functions over Functions
 from math import *
 from numpy import * # NumPy is the fundamental package for
 # scientific computing with Python.

 sin(1.57) # which sin()?
 sin(pi/2) # math or numpy?

It's Better to Import Modules and Scope Functions
 import math as m
 import numpy as np

 m.sin(1.57)
 np.sin(1.57)
 np.sin([np.pi,np.pi/2]) # returns: array([1.22464680e-16, 1.00e+00])

A ball dropped from a tower
A ball is dropped from a tower of height h with initial velocity zero. Write a program that
asks the user to enter the height of the tower in meters and then calculates and prints the
time the ball takes until it hits the ground, ignoring air resistance. Use your program to
calculate the time for a ball dropped from a 100 m high tower.

A ball dropped from a tower
A ball is dropped from a tower of height h with initial velocity zero. Write a program that
asks the user to enter the height of the tower in meters and then calculates and prints the
time the ball takes until it hits the ground, ignoring air resistance. Use your program to
calculate the time for a ball dropped from a 100 m high tower.

A ball dropped from a tower

 #! /usr/bin/env python

 # ball_drop.py is program which calculates the time for a
 # ball to drop from a height to the ground. It asks the
 # user to enter a value for height (in meters) and prints
 # the results to the screen.
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 17, 2019

 # program header code
 from __future__ import division, print_function
 import math as m

 #
 # main body of program
 #
 g = 9.81 # acceleration due to gravity at the Earth's surface (m/s**2)

 height = float(raw_input(“Enter the height of the tower (in meters): “))

 # distance = a*t**2/2
 time = m.sqrt(2*height/g)

 print(“The ball takes“, time, “seconds to hit the ground from a height of”,
 height,”meters.”)

 #! /usr/bin/env python

 # ball_drop.py is program which calculates the time for a
 # ball to drop from a height to the ground. It asks the
 # user to enter a value for height (in meters) and prints
 # the results to the screen.
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 17, 2019

 # program header code
 from __future__ import division, print_function
 import math as m

 #
 # main body of program
 #
 g = 9.81 # acceleration due to gravity at the Earth's surface (m/s**2)

 height = float(raw_input(“Enter the height of the tower (in meters): “))

 # distance = a*t**2/2
 time = m.sqrt(2*height/g)

 print(“The ball takes“, time, “seconds to hit the ground from a height of”,
 height,”meters.”)

A ball dropped from a tower

 #! /usr/bin/env python

 # ball_drop.py is program which calculates the time for a
 # ball to drop from a height to the ground. It asks the
 # user to enter a value for height (in meters) and prints
 # the results to the screen.
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 17, 2019

 # program header code
 from __future__ import division, print_function
 import math as m

 #
 # main body of program
 #
 g = 9.81 # acceleration due to gravity at the Earth's surface (m/s**2)

 height = float(raw_input(“Enter the height of the tower (in meters): “))

 # distance = a*t**2/2
 time = m.sqrt(2*height/g)

 print(“The ball takes“, time, “seconds to hit the ground from a height of”,
 height,”meters.”)

 #! /usr/bin/env python

 # ball_drop.py is program which calculates the time for a
 # ball to drop from a height to the ground. It asks the
 # user to enter a value for height (in meters) and prints
 # the results to the screen.
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 17, 2019

 # program header code
 from __future__ import division, print_function
 import math as m

 #
 # main body of program
 #
 g = 9.81 # acceleration due to gravity at the Earth's surface (m/s**2)

 height = float(raw_input(“Enter the height of the tower (in meters): “))

 # distance = a*t**2/2
 time = m.sqrt(2*height/g)

 print(“The ball takes“, time, “seconds to hit the ground from a height of”,
 height,”meters.”)

A ball dropped from a tower
A ball is dropped from a tower of height h with initial velocity zero. Write a program that
asks the user to enter the height of the tower in meters and then calculates and prints the
time the ball takes until it hits the ground, ignoring air resistance. Use your program to
calculate the time for a ball dropped from 100 m high tower.

hpc-login 480% nedit ball_drop.py &

hpc-login 480% chmod +x ball_drop.py

hpc-login 481% ball_drop.py (or ./ball_drop.py)

Enter the height of the tower (in meters): 100
The ball takes 4.515 seconds to hit the ground from a height of 100.0 meters.

hpc-login 482%

A ball dropped from a tower
A ball is dropped from a tower of height h with initial velocity zero. Write a program that
asks the user to enter the height of the tower in meters and then calculates and prints the
time the ball takes until it hits the ground, ignoring air resistance. Use your program to
calculate the time for a ball dropped from 100 m high tower.

hpc-login 480% nedit ball_drop.py &

hpc-login 480% chmod +x ball_drop.py

hpc-login 481% ball_drop.py (or ./ball_drop.py)

Enter the height of the tower (in meters): 100
The ball takes 4.515 seconds to hit the ground from a height of 100.0 meters.

hpc-login 482%

Polar to Cartesian Coordinates
Write a program to perform the inverse operation to that of Example 2.2. That is, ask the
user for the Cartesian coordinates x, y of a point in two-dimensional space, and calculate
and print the corresponding polar coordinates, with the angle θ given in degrees.

x = r cos(θ)
y = r sin(θ)

r = sqrt(x*x + y*y)
θ = atan(y/x)

The atan() math function
is limited to +90o to -90o

see python: help(“math”)
atan2(...)
 atan2(y, x)

 Return the arc tangent (measured in radians) of y/x.
 Unlike atan(y/x), the signs of both x and y are considered.

θ

Polar to Cartesian Coordinates
Write a program to perform the inverse operation to that of Example 2.2. That is, ask the
user for the Cartesian coordinates x, y of a point in two-dimensional space, and calculate
and print the corresponding polar coordinates, with the angle θ given in degrees.

x = r cos(θ)
y = r sin(θ)

r = sqrt(x*x + y*y)
θ = atan(y/x)

The atan() math function
is limited to +90o to -90o

see python: help(“math”)
atan2(...)
 atan2(y, x)

 Return the arc tangent (measured in radians) of y/x.
 Unlike atan(y/x), the signs of both x and y are considered.

θ

Polar to Cartesian Coordinates
 #! /usr/bin/env python

 # cartesian2polar.py is program which calculates the 2D radius and
 # polar angle given the cartesian coordinates. The results are printed
 # to the screen.
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 17, 2019

 # program header code
 from __future__ import division, print_function
 import math as m

 # main body of program

 # get input values
 x = float(raw_input("Enter the x coordinate: "))
 y = float(raw_input("Enter the y coordinate: "))

 # transform values from cartesian to polar
 r = m.sqrt(x*x + y*y)
 phi = m.atan2(y, x)

 print("The polar radius is", r, ", and the polar angle is",
 m.degrees(phi), "degrees.")

 #! /usr/bin/env python

 # cartesian2polar.py is program which calculates the 2D radius and
 # polar angle given the cartesian coordinates. The results are printed
 # to the screen.
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 17, 2019

 # program header code
 from __future__ import division, print_function
 import math as m

 # main body of program

 # get input values
 x = float(raw_input("Enter the x coordinate: "))
 y = float(raw_input("Enter the y coordinate: "))

 # transform values from cartesian to polar
 r = m.sqrt(x*x + y*y)
 phi = m.atan2(y, x)

 print("The polar radius is", r, ", and the polar angle is",
 m.degrees(phi), "degrees.")

Polar to Cartesian Coordinates
 #! /usr/bin/env python

 # cartesian2polar.py is program which calculates the 2D radius and
 # polar angle given the cartesian coordinates. The results are printed
 # to the screen.
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 17, 2019

 # program header code
 from __future__ import division, print_function
 import math as m

 # main body of program

 # get input values
 x = float(raw_input("Enter the x coordinate: "))
 y = float(raw_input("Enter the y coordinate: "))

 # transform values from cartesian to polar
 r = m.sqrt(x*x + y*y)
 phi = m.atan2(y, x)

 print("The polar radius is", r, ", and the polar angle is",
 m.degrees(phi), "degrees.")

 #! /usr/bin/env python

 # cartesian2polar.py is program which calculates the 2D radius and
 # polar angle given the cartesian coordinates. The results are printed
 # to the screen.
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 17, 2019

 # program header code
 from __future__ import division, print_function
 import math as m

 # main body of program

 # get input values
 x = float(raw_input("Enter the x coordinate: "))
 y = float(raw_input("Enter the y coordinate: "))

 # transform values from cartesian to polar
 r = m.sqrt(x*x + y*y)
 phi = m.atan2(y, x)

 print("The polar radius is", r, ", and the polar angle is",
 m.degrees(phi), "degrees.")

Polar to Cartesian Coordinates
Write a program to perform the inverse operation to that of Example 2.2. That is, ask the
user for the Cartesian coordinates x, y of a point in two-dimensional space, and calculate
and print the corresponding polar coordinates, with the angle θ given in degrees.

hpc-login 480% nedit cartesian2polar.py &

hpc-login 480% chmod +x cartesian2polar.py

hpc-login 481% cartesian2polar.py
Enter the x coordinate: 2
Enter the y coordinate: 2
The polar radius is 2.82842712475 and the polar angle is 45.0 degrees.

hpc-login 482%

Polar to Cartesian Coordinates
Write a program to perform the inverse operation to that of Example 2.2. That is, ask the
user for the Cartesian coordinates x, y of a point in two-dimensional space, and calculate
and print the corresponding polar coordinates, with the angle θ given in degrees.

hpc-login 480% nedit cartesian2polar.py &

hpc-login 480% chmod +x cartesian2polar.py

hpc-login 481% cartesian2polar.py
Enter the x coordinate: 2
Enter the y coordinate: 2
The polar radius is 2.82842712475 and the polar angle is 45.0 degrees.

hpc-login 482%

This Week’s Exercise

Python Basics
Exercise set #1

DUE DATE: January 25

This Week’s Exercise

Python Basics
Exercise set #1

DUE DATE: January 25

Let's get workingLet's get working

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

