
Computational Physics

Jan 31, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

eugenio@fsu.edu

User Defined Modules

Computational Physics

Jan 31, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

eugenio@fsu.edu

User Defined Modules

pydoc
Documentation generator and online

help system
pydoc numpy.random.random

pydoc
Documentation generator and online

help system
pydoc numpy.random.random

Why modules
 Sometimes you want to reuse a function or

several functions from an old program in a new
program.

One could simply copy and paste the old code into the
new program.

 The problem with this is that over time you
could end up with many copies of the same
code

if you fix or improve part of the code in one version, you
will have to update all copies

 Or you will end up with multiple versions
 some useful, some less useful, and possible some which

are buggy or faulty

Why modules
 Sometimes you want to reuse a function or

several functions from an old program in a new
program.

One could simply copy and paste the old code into the
new program.

 The problem with this is that over time you
could end up with many copies of the same
code

if you fix or improve part of the code in one version, you
will have to update all copies

 Or you will end up with multiple versions
 some useful, some less useful, and possible some which

are buggy or faulty

Making Modules
Golden RuleGolden Rule

Have one and only one version of a piece of code

This is easy to implement if we create a module containing
the code we want to reuse.

import mystuff

value = mystuff.myfunction(10)

Making Modules
Golden RuleGolden Rule

Have one and only one version of a piece of code

This is easy to implement if we create a module containing
the code we want to reuse.

import mystuff

value = mystuff.myfunction(10)

Example: lobbs_number()
#! /usr/bin/env python

def lobbs_number(m, n):
 """
 Lobb numbers form a natural generalization

of the Catalan numbers.

 Lobb's Numbers L_n,n = (2m+1)/(M+n+1) Bionomial(2n, n)
 """
 return binomial(2*n, m+n)* (2*m+1) // (m+n+1)

We want to make this function available in a module named mystuff

import mystuff as my
my.lobbs_number(m, n)

So how do we create the mystuff module?

function docstring
Example: lobbs_number()

#! /usr/bin/env python

def lobbs_number(m, n):
 """
 Lobb numbers form a natural generalization

of the Catalan numbers.

 Lobb's Numbers L_n,n = (2m+1)/(M+n+1) Bionomial(2n, n)
 """
 return binomial(2*n, m+n)* (2*m+1) // (m+n+1)

We want to make this function available in a module named mystuff

import mystuff as my
my.lobbs_number(m, n)

So how do we create the mystuff module?

function docstring

Collecting functions in a
module

 Simply create a new source file and copy all of
the code into this file.

 Save the file with the module name along with
the standard “.py” file extension.

In our case, the filename mystuff.py implies a
module with the name mystuff.

Collecting functions in a
module

 Simply create a new source file and copy all of
the code into this file.

 Save the file with the module name along with
the standard “.py” file extension.

In our case, the filename mystuff.py implies a
module with the name mystuff.

Using functions in a module

import mystuff as my
lobbs_1_3 = my.lobbs_number(1, 3)

But Python needs to now about the module in order to use it.

Using functions in a module

import mystuff as my
lobbs_1_3 = my.lobbs_number(1, 3)

But Python needs to now about the module in order to use it.

How to make Python find your
module

 The program which imports you module(s) will
work fine if it is located in the same directory
as your module

How to make Python find your
module

 The program which imports you module(s) will
work fine if it is located in the same directory
as your module

How to make Python find your
module

 The program which imports you module(s) will
work fine if it is located in the same directory
as your module

 However if you move your program to another
directory, running the program will give an error.

hpc-login 515% lobbs.py
Traceback (most recent call last):
 File "lobbs.py", line 18, in <module>
 import mystuff as my
ImportError: No module named mystuff

How to make Python find your
module

 The program which imports you module(s) will
work fine if it is located in the same directory
as your module

 However if you move your program to another
directory, running the program will give an error.

hpc-login 515% lobbs.py
Traceback (most recent call last):
 File "lobbs.py", line 18, in <module>
 import mystuff as my
ImportError: No module named mystuff

How to make Python find your
module

A better solution is to store your module(s) in
your Python search path

How to make Python find your
module

A better solution is to store your module(s) in
your Python search path

How to make Python find your
module

 A better solution is to store your module(s) in your
Python search path

 Create a dir/ for storing your python modules

mkdir $HOME/python/mymodules/

 Place your module(s) in this directory

Set the PYTHONPATH environmental variable
cshell command:

setenv PYTHONPATH "${HOME}/python/mymodules:./mymodules"
bash command:

export PYTHONPATH=$HOME/python/mymodules/:./mymodulesAdd the above path definition to your .cshrc (or .bashrc) file
so that $PYTHONPATH is defined every time you log in.

How to make Python find your
module

 A better solution is to store your module(s) in your
Python search path

 Create a dir/ for storing your python modules

mkdir $HOME/python/mymodules/

 Place your module(s) in this directory

Set the PYTHONPATH environmental variable
cshell command:

setenv PYTHONPATH "${HOME}/python/mymodules:./mymodules"
bash command:

export PYTHONPATH=$HOME/python/mymodules/:./mymodulesAdd the above path definition to your .cshrc (or .bashrc) file
so that $PYTHONPATH is defined every time you log in.

How to make Python find your
module

Set the PYTHONPATH environmental variable

cshell command:
setenv PYTHONPATH "${HOME}/python/mymodules"

bash command:
export PYTHONPATH=$HOME/python/mymodules/

Add the above path definition to your .cshrc (or .bashrc) file
so that $PYTHONPATH is defined every time you log in.

hpc-login-25 % emacs ~/.cshrc &
do it!

How to make Python find your
module

Set the PYTHONPATH environmental variable

cshell command:
setenv PYTHONPATH "${HOME}/python/mymodules"

bash command:
export PYTHONPATH=$HOME/python/mymodules/

Add the above path definition to your .cshrc (or .bashrc) file
so that $PYTHONPATH is defined every time you log in.

hpc-login-25 % emacs ~/.cshrc &
do it!

Doc strings in modules

"""
 Module MyStuff is a collection of useful functions which are
 user defined, stored locally at $HOME/python/mymodules/mystuff.py
 where the mymodules directory has been added to the $PYTHONPATH
 environment.

 Symbols:

 'n' is positive integer index

Paul Eugenio
Florida State University
Department of Physics
Jan 2019

"""

Always include a useful doc string at the beginning of the module.

header docstring + function docstring

Doc strings in modules

"""
 Module MyStuff is a collection of useful functions which are
 user defined, stored locally at $HOME/python/mymodules/mystuff.py
 where the mymodules directory has been added to the $PYTHONPATH
 environment.

 Symbols:

 'n' is positive integer index

Paul Eugenio
Florida State University
Department of Physics
Jan 2019

"""

Always include a useful doc string at the beginning of the module.

header docstring + function docstring

Documentation from Doc Strings

hpc-login 515% python
 ...
>>> help("mystuff")

You can also run pydoc
on the module to see the
documentation of the new
module

hpc-login 515% pydoc mystuff
 ...
 ...
 ...

WoW!!

Documentation from Doc Strings

hpc-login 515% python
 ...
>>> help("mystuff")

You can also run pydoc
on the module to see the
documentation of the new
module

hpc-login 515% pydoc mystuff
 ...
 ...
 ...

WoW!!

Test block
 During import, the module file is fully executed

 The module should have function definitions and
should not have any open statements

It is desirable to have some test or verification code in
the module

Test block
 During import, the module file is fully executed

 The module should have function definitions and
should not have any open statements

It is desirable to have some test or verification code in
the module

Test block
 During import, the module file is fully executed

 The module should have function definitions and
should not have any open statements

It is desirable to have some test or verification code in
the module

Python allows the file to act both as a module
and as a main program

 To seamlessly have both functionality the main
program statements should be in a test block

if __name__ == '__main__':

 <block of statements>

Test block
 During import, the module file is fully executed

 The module should have function definitions and
should not have any open statements

It is desirable to have some test or verification code in
the module

Python allows the file to act both as a module
and as a main program

 To seamlessly have both functionality the main
program statements should be in a test block

if __name__ == '__main__':

 <block of statements>

Test block
test functions
def test_functions():
 """
 Routines to test module functions. To execute test of function run
 module as python program along with command line argument "test"
 example: "mystuff test"
 """
 # test lobb_number function
 if(lobb_number(1, 3) == 9):
 print("Module is Good")
 else:
 print("WARNING!!\n lobb_number() function failed test\n DO NOT USE!!")

TEST BLOCK
The test block only executes if the module is run as a main program
and if the word "test" is given on the command line.

if __name__ == '__main__':
 if len(sys.argv) == 2 and sys.argv[1] == 'test':
 test_functions()

import sys

hpc-login 515% mystuff.py test
 Module is Good

Test block
test functions
def test_functions():
 """
 Routines to test module functions. To execute test of function run
 module as python program along with command line argument "test"
 example: "mystuff test"
 """
 # test lobb_number function
 if(lobb_number(1, 3) == 9):
 print("Module is Good")
 else:
 print("WARNING!!\n lobb_number() function failed test\n DO NOT USE!!")

TEST BLOCK
The test block only executes if the module is run as a main program
and if the word "test" is given on the command line.

if __name__ == '__main__':
 if len(sys.argv) == 2 and sys.argv[1] == 'test':
 test_functions()

import sys

hpc-login 515% mystuff.py test
 Module is Good

Example: User Defined Module
#! /usr/bin/env python
Generate Lobb's Triangle
this program uses a user defined module mystuff
#
Paul Eugenio
PHZ4151C
Jan 31, 2019

from __future__ import division, print_function
import mystuff as my
import sys

#set triangle size
if len(sys.argv) == 2:
 size = int(sys.argv[1])
else:
 size = 5

print out a triangle of Lobb's Numbers
for n in range(size):

for m in range(n+1):
print(my.lobb_number(m, n), end=”\t”)

print()

See examples: mystuff.py & lobbs.py
Example: User Defined Module

#! /usr/bin/env python
Generate Lobb's Triangle
this program uses a user defined module mystuff
#
Paul Eugenio
PHZ4151C
Jan 31, 2019

from __future__ import division, print_function
import mystuff as my
import sys

#set triangle size
if len(sys.argv) == 2:
 size = int(sys.argv[1])
else:
 size = 5

print out a triangle of Lobb's Numbers
for n in range(size):

for m in range(n+1):
print(my.lobb_number(m, n), end=”\t”)

print()

See examples: mystuff.py & lobbs.py

We will soon be covering
numerical integration

#! /usr/bin/env python

def trapezoidal(fun, a, b, N):
…

def simpson(fun, a, b, N):
…

def adapatrap(fun, a, b, N, accuracy):
…

def adapasimp(fun, a, b, N, accuracy):
…

def mcintegrate(func, dim, limit, N=100):
…

You will be required to make your own functions available in a module

import myintegrate as myint
myint.trapezoidal(f, 0, 1, 100)

We will soon be covering
numerical integration

#! /usr/bin/env python

def trapezoidal(fun, a, b, N):
…

def simpson(fun, a, b, N):
…

def adapatrap(fun, a, b, N, accuracy):
…

def adapasimp(fun, a, b, N, accuracy):
…

def mcintegrate(func, dim, limit, N=100):
…

You will be required to make your own functions available in a module

import myintegrate as myint
myint.trapezoidal(f, 0, 1, 100)

Doc strings
from modules

hpc-login 515% python
 ...
>>> help("myintegration")

You can also run pydoc
on the module to see the
documentation of the new
module

hpc-login 515% pydoc
myintegration
 ...
 ...
 ...

WoW!!

Doc strings
from modules

hpc-login 515% python
 ...
>>> help("myintegration")

You can also run pydoc
on the module to see the
documentation of the new
module

hpc-login 515% pydoc
myintegration
 ...
 ...
 ...

WoW!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

