Computational Physics

User Defined Modules

Jan 31, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

cugenio(@fsu.edu

ydoc

Documentation generator and online
help system

pydoc numpy.random.random

ogin.rec.fsu.edu -l eugenio numpy.random.randam -bash

Help on built-in function random sample in numpy.random:

numpy . random. random = random sample(...) method of mtrand.RandomState instance
random sample(size=None)

Return random floats in the half-open interval [0.0, 1.0).

Results are from the "continuous uniform"” distribution over the
stated interval. To sample :math: Unif[a, b), b > a~ multiply
the output of “random sample” by ~“(b-a)” and add “a"::

(b = a) * random sample() + a

Parameters

gize : int or tuple of ints, optional
Output shape. If the given shape is, £.9., (m, n, k) ~, then
""m* n * k" samples are drawn. Default is Mone, in which case a
gingle value is returned.

Returns

out : float or ndarray of floats
Array of random floats of shape "size ™ (unless
case a single float is returned).

“gize=None ", in which

»>> np.random.random sample()

0.47108547995356098

>>> type(np.random.random sample(]))

<type 'float'>

»>> np.random.random sample((5,))

array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by=-two array of random numbers from [=5, 0):

Why modules

¢ Sometimes you want to reuse a function or
several functions from an old program in a new

program.
¢0One could simply copy and paste the old code into the
new program.

¢ The problem with this is that over time you
could end up with many copies of the same

code
¢if you fix or improve part of the code in one version, you
will have to update all copies

¢ Or you will end up with multiple versions
¢ some useful, some less useful, and possible some which
are buggy or faulty

Making Modules

Golden Rule

Have one and only one version of a piece of code

This 1s easy to implement 1f we create a module containing
the code we want to reuse.

import mystuff

value = mystuff.myfunction(10)

Example: lobbs number()

function docstring

#! /usr/bin/env python
def lobbs number(m, n):

Lobb numbers form a natural generalization
of the Catalan numbers.

Lobb's Numbers L n,n = (2m+l)/(M+n+l) Bionomial(2n, n)

return binomial(2*n, m+n)* (2*m+1l) // (m+n+1)

We want to make this function available in a module named mystuf £

import mystuff as my
my.lobbs number(m, n)

So how do we create the mystuf £ module?

Collecting functions in a
module

¢ Simply create a new source file and copy all of
the code into this file.

¢ Save the file with the module name along with
the standard “.py” file extension.

In our case, the filename mystuff.py implies a
module with the name mystuff.

Using functions in a module

import mystuff as my
lobbs 1 3 = my.lobbs number(l, 3)

But Python needs to now about the module in order to use it.

How to make Python find your
module

¢ The program which imports you module(s) will
work fine if it is located in the same directory
as your module

How to make Python find your
module

¢ The program which imports you module(s) will
work fine if it is located in the same directory

as your module
¢ However if you move your program to another
directory, running the program will give an error.

hpc-login 515% lobbs.py
Traceback (most recent call last):
File "lobbs.py", line 18, in <module>
import mystuff as my
ImportError: No module named mystuff

How to make Python find your
module

A better solution is to store your module(s) in
your Python search path

How to make Python find your
module

A better solution is to store your module(s) in your
Python search path

¢ Create a dir/ for storing your python modules
mkdir SHOME/python/mymodules/

¢ Place your module(s) in this directory

¢ Set the PYTHONPATH environmental variable

¢ cshell command:
setenv PYTHONPATH "${HOME}/python/mymodules:./mymodules"
¢ bash command:

Add th@RBoVE PN QLT HEME @Y POuP CoRYES(v"BESHETD) file
so that SPYTHONPATH is defined every time you log in.

How to make Python find your
module

Set the PYTHONPATH environmental variable

¢ cshell command:
setenv PYTHONPATH "${HOME}/python/mymodules”

¢ bash command:
export PYTHONPATH=$HOME/python/mymodules/

Add the above path definition to your .cshrc (or .bashrc) file
so that SPYTHONPATH is defined every time you log in.

hpc-login-25 % emacs ~/.cshrc &
T doit!

Doc strings in modules

Always include a useful doc string at the beginning of the module.

Module MyStuff is a collection of useful functions which are
user defined, stored locally at S$HOME/python/mymodules/mystuff.py

where the mymodules directory has been added to the SPYTHONPATH
environment.

Symbols:

is positive integer index
Paul Eugenio

Florida State University
Department of Physics

Jan 2019

header docstring + function docstring

Documentation from Doc Strings

ogin.rcc.fsu.edu -l eugenio -bash -bash
Help on module mystuff:

W ()W W M apatue

FILE
fgpfs/home/eugenio/python/mymodules /mystuff.py

hpc-login 515% python

DESCRIPTION

e o o / Module MyStuff is a collection of useful functions which are
n n user defined, stored locally at SHOME/python/mymodules/mystuff.py
>>> he lp(mYSthf) where the mymodules directory has been added to the $PYTHONPATH
environment .

Symbols:

'm' is positive integer
'n' is a positive integet such that n >= m >=

You can also run pydoc paul Eugenio

Florida State University

on the mOdule tO See the g:ga;‘ETgnt of Physics
documentation of the new FuNCTIONS

binomial (n, k)
Binomial coefficient (n k) = nl/f(kl(n=-k)!

module
factorial(...)
/ factorial (x) -> Integral

hpc—login 515% deOC mystuff Find x!. Raise a ValueError if x is negative or non-integral.

lobb_number(m, n)
Lobb numbers form a natural generalization of the Catalan numbers,

Test block

¢ During import, the module file is fully executed
¢ The module should have function definitions and
should not have any open statements
¢|t is desirable to have some test or verification code in
the module

Test block

¢ During import, the module file is fully executed
¢ The module should have function definitions and
should not have any open statements
¢|t is desirable to have some test or verification code in
the module

¢ Python allows the file to act both as a module

and as a main program
¢ To seamlessly have both functionality the main
program statements should be in a test block

if name == main :

<block of statements>

Test block

test functions
def test functions():

Routines to test module functions. To execute test of function run
module as python program along with command line argument "test"

example: "mystuff test”

mmnn

test lobb number function
if(lobb number(l, 3) == 9):
print("Module is Good")

else:
print ("WARNING! !\n lobb number() function failed test\n DO NOT USE!!"

TEST BLOCK
The test block only executes if the module is run as a main program

and if the word "test" is given on the command line.

if name __main_': 1mp0rt SYS
if len(sys.argv) == 2 and sys.argv[l] "test':
test functions()

hpc-login 515% mystuff.py test
Module is Good

Example: User Defined Module

See examples: mystuff.py & lobbs.py

! /usr/bin/env python
Generate Lobb's Triangle
this program uses a user defined module mystuff

Paul Eugenio
PHZ4151C
Jan 31, 2019

from future import division, print function
import mystuff as my
import sys

#set triangle size
if len(sys.argv) ==

size = int(sys.argv[l])
else:

size = 5

print out a triangle of Lobb's Numbers
for n in range(size):
for m in range(n+1l):
print(my.lobb number(m, n), end="\t")
print()

We will soon be covering
numerical integration

#! /usr/bin/env python

def trapezoidal(fun, a, b, N):
def simpson(fun, a, b, N):
def adapatrap(fun, a, b, N, accuracy):

def adapasimp(fun, a, b, N, accuracy):

def mcintegrate(func, dim, limit, N=100):

You will be required to make your own functions available in a module

import myintegrate as myint
myint.trapezoidal(f, 0, 1, 100)

Help on module integrate:

[|
oc strings -
integrate - Module for caleoulating integrals numerically.

FILE

fro m m o d I e s /panfs/storage.local/physics/home/eugenio/python/exercises/ex5/integrate.py
u DESCRIPTION

Symbols:

‘ ‘ Series integration (one dimensional)
0 °o® "fun' is a user defined 1D function
'a' and 'b' are lower and upper integration limits

'H' is the number of steps used in the series integration
'accuracy’ is the desired accurecy for adaptive integration.

hpc-login 515% python

Monte Carlo mean value integration (any dimensional)
'"fune' is a user define function of any dimension
'dim"' is the dimension of the integrand

>>> help("myintegration") "limit' i= a list of [a,b] integration limit values

'’ is the number of sampling points (default value = 100 points)

FUNCTIONS
adapasimp(fun, a, b, accuracy)
Adaptive intgration use Simpson's rule. This
method doubles the number of steps but
calculates next integral using the minimom number
terms.

You Can also run deoc adapatrap(fun, a, b, accuracy)

Adaptive intgration use trapazodial rule. This
method doubles the number of steps but

On the mOdule tO See the calculates next integral using the minimum number

terms .

documentation of the new o

Monte carlo mean-value integration of any dimension.

module Func is the user defined integrand funection

which has a list argument x containing dim values.

for example: sin(x*y) 18 f(x)= sin(x[0]*x[1])
i o
hpC logln 515 ° deOC Dim is the number of dimensions, limit is a list of [a,b]

myintegration values containg the intgration limits for all dimensions, and
M is the number of Monte carlo sampling points.
function returns [result, error]

gimpson(fun, a, b, H)
Integration by Simpson's rule using N steps

-.=D

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

