Computational Physics PHZ4151C

Numerical Derivatives

Prof. Paul Eugenio

Mar. 26, 2019

Numerical Differentiation

READ Discussions in

Chapter 5.10

Numerical Differentiation

- Often possible to find derivatives given an analytic expression for a function
-But this is not always the case. In some cases, numerical determination of the derivative is the only alternative
- Functions available only as a set of discrete data points
- Determination of a function from non-linear differential equation and some initial conditions
- But there are some significant practical problems with numerical derivatives...

Simple Derivatives

Limit-based determination: $\quad \frac{d f(x)}{d x}=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right]$

Another method of computing differences:

Forward Difference
$D_{h}^{+}(f(x))=\left\lfloor\frac{f(x+h)-f(x)}{h}\right\rfloor$

Backward Difference

$$
D_{h}^{-}(f(x))=\left\lfloor\frac{f(x)-f(x-h)}{h}\right]
$$

Forward and backward differences typically give about the same result with similar accuracy

Only a few special cases where one is preferred

- at a discontinuity
- at the boundary of bounded functions

Derivatives \& Errors

Taylor Series Expansion:

$$
\mathrm{O}\left(h^{2}\right)
$$

remaining term

$$
f(x+h)=f(x)+h \frac{d f(x)}{d x}+\frac{h^{2}}{2} \frac{d^{2} f(x)}{d x^{2}}+\ldots
$$

Forward Difference

$$
\left\lfloor\frac{f(x+h)-f(x)}{h}\right]=\frac{d f(x)}{d x}+O(h)
$$

approximation error

$$
\epsilon_{a}=\frac{h}{2}\left|f^{\prime \prime}(x)\right|
$$

This implies that making h smaller, reduces the total error (Not TRUE) Why?.......

Derivatives \& Errors

Taylor Series Expansion:

$$
\mathrm{O}\left(h^{2}\right)
$$

remaining term

$$
f(x+h)=f(x)+h \frac{d f(x)}{d x}+\frac{h^{2}}{2} \frac{d^{2} f(x)}{d x^{2}}+\ldots
$$

Forward Difference

$$
\left\lfloor\frac{f(x+h)-f(x)}{h}\right]=\frac{d f(x)}{d x}+O(h)
$$

approximation error

$$
\epsilon_{a}=\frac{h}{2}\left|f^{\prime \prime}(x)\right|
$$

This implies that making h smaller, reduces the total error (Not TRUE) Why? Round-off errors!

Forward Difference Error

$$
\begin{aligned}
& \epsilon=\epsilon_{c}+\epsilon_{a} \\
& \text { round-off error } \\
& \epsilon_{c}=\frac{2 \mathrm{c} f(x)}{h} \\
& \epsilon=\frac{2 \mathrm{c}|f(x)|}{h}+\frac{1}{2} h\left|f^{\prime \prime}(x)\right|
\end{aligned}
$$

Forward Difference Error

recall from numerical accuracy

$$
\begin{aligned}
x_{c} & =x_{\text {true }}(1 \pm c) \\
f_{c}(x) & =f(x) \pm c f(x) \\
D^{+}[f(x)] & =\frac{f(x+h)-f(x)}{h} \pm \frac{2 c f(x)}{h}
\end{aligned}
$$

Forward Difference Error

$$
\epsilon=\epsilon_{c}+\epsilon_{a}
$$

round-off error

$$
\epsilon_{c}=\frac{2 \mathrm{c} f(x)}{h}
$$

approximation error

$$
\epsilon_{a}=\frac{h}{2}\left|f^{\prime \prime}(x)\right|
$$

$$
\epsilon=\frac{2 \mathrm{c}|f(x)|}{h}+\frac{1}{2} h\left|f^{\prime \prime}(x)\right|
$$

setting $\frac{d \epsilon}{d h}=0$ to find the value of h which minimizes the error

$$
h_{\text {best }}=\sqrt{4 \mathrm{c}\left|\frac{f(x)}{f^{\prime \prime}(x)}\right|}
$$

recall from numerical accuracy

$$
\begin{aligned}
x_{c} & =x_{\text {true }}(1 \pm c) \\
f_{c}(x) & =f(x) \pm c f(x) \\
D^{+}[f(x)] & =\frac{f(x+h)-f(x)}{h} \pm \frac{2 \mathrm{c} f(x)}{h}
\end{aligned}
$$

Forward Difference Error

approximation error

$$
\epsilon_{a}=\frac{h}{2}\left|f^{\prime \prime}(x)\right|
$$

$$
\epsilon=\frac{2 \mathrm{c}|f(x)|}{h}+\frac{1}{2} h\left|f^{\prime \prime}(x)\right|
$$

setting $\quad \frac{d \epsilon}{d h}=0 \quad$ to find the value of h which minimizes the error

$$
h_{\text {best }}=\sqrt{4 \mathrm{c}\left|\frac{f(x)}{f^{\prime \prime}(x)}\right|}
$$

recall from numerical accuracy

$$
\begin{aligned}
x_{c} & =x_{\text {true }}(1 \pm c) \\
f_{c}(x) & =f(x) \pm c f(x) \\
D^{+}[f(x)] & =\frac{f(x+h)-f(x)}{h} \pm \frac{2 \mathrm{c} f(x)}{h}
\end{aligned}
$$

$$
\epsilon=h\left|f^{\prime \prime}(x)\right|=\sqrt{4 \mathrm{c}\left|f(x) f^{\prime \prime}(x)\right|}
$$

if $f(x) \& f^{\prime \prime}(x)$ are on the order 1 , we should choose a h on the order \sqrt{c} which is typically 10^{-8} for 64 bit operations

Central Difference

Limit-based determination:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right]
$$

Another method of computing differences:

$$
D_{h}^{c}(f(x))=\left[\frac{f(x+h / 2)-f(x-h / 2)}{h}\right]
$$

The Central Difference is overall more accurate

Central Difference Error

Taylor expansion:

$$
\begin{aligned}
f(x+h / 2) & =f(x)+(h / 2) f^{\prime}(x)+\frac{(h / 2)^{2}}{2} f^{\prime \prime}(x)+\frac{(h / 2)^{3}}{6} f^{\prime \prime \prime}(x)+\ldots \\
-\quad f(x-h / 2) & =f(x)+(-h / 2) f^{\prime}(x)+\frac{(h / 2)^{2}}{2} f^{\prime \prime}(x)+\frac{(-h / 2)^{3}}{6} f^{\prime \prime \prime}(x)+\ldots
\end{aligned}
$$

$$
f(x+h / 2)-f(x-h / 2)=h f^{\prime}(x)+\frac{h^{3}}{24} f^{\prime \prime \prime}(x)+\ldots
$$

Central Difference Error

Taylor expansion:

$$
\begin{gathered}
f(x+h / 2)=f(x)+(h / 2) f^{\prime}(x)+\frac{(h / 2)^{2}}{2} f^{\prime \prime}(x)+\frac{(h / 2)^{3}}{6} f^{\prime \prime \prime}(x)+\ldots \\
-\quad f(x-h / 2)=f(x)+(-h / 2) f^{\prime}(x)+\frac{(h / 2)^{2}}{2} f^{\prime \prime}(x)+\frac{(-h / 2)^{3}}{6} f^{\prime \prime \prime}(x)+\ldots
\end{gathered}
$$

$$
f(x+h / 2)-f(x-h / 2)=h f^{\prime}(x)+\frac{h^{3}}{24} f^{\prime \prime \prime}(x)+\ldots
$$

Central Difference

$$
\left[\frac{f(x+h / 2)-f(x-h / 2)}{h}\right]=\frac{d f(x)}{d x}+O\left(h^{2}\right)
$$

truncation error term is of order in h^{2}

Central Difference Error

round-off error
$\epsilon_{c}=\frac{2 \mathrm{c} f(x)}{h}$

$$
\epsilon=\epsilon_{c}+\epsilon_{a}
$$

$$
\epsilon=\frac{2 \mathrm{c}|f(x)|}{h}+\frac{1}{24} h^{2}\left|f^{\prime \prime \prime}(x)\right|
$$

approximation error

$$
\epsilon_{a}=\frac{h^{2}}{24}\left|f^{\prime \prime \prime}(x)\right|
$$

Central Difference Error

round-off error

$$
\epsilon=\epsilon_{c}+\epsilon_{a}
$$

approximation error

$$
\epsilon_{c}=\frac{2 \mathrm{c} f(x)}{h}
$$

$$
\epsilon_{a}=\frac{h^{2}}{24}\left|f^{\prime \prime \prime}(x)\right|
$$

$$
\epsilon=\frac{2 \mathrm{c}|f(x)|}{h}+\frac{1}{24} h^{2}\left|f^{\prime \prime \prime}(x)\right|
$$

setting $\quad \frac{d \epsilon}{d h}=0 \quad$ to find the value of h which minimizes the error

$$
h_{\text {best }}=|24 \mathrm{c}| \frac{f(x)}{f^{\prime \prime \prime}(x)}| |^{1 / 3}
$$

$$
\epsilon=\frac{1}{8} h^{2}\left|f^{\prime \prime \prime}(x)\right|=\left(24 \mathrm{c}\left|f(x) f^{\prime \prime \prime}(x)\right|\right)^{1 / 3}
$$

if $f(x) \& f f^{\prime \prime \prime}(x)$ are on the order 1 , we should choose a h on the order of 10^{-5}
but the error will be on the order of 10^{-10}

Central Difference Example

$$
\begin{gathered}
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{3} \sin (\mathbf{5 x}) \\
D_{h}^{c}[f(x)]=\frac{d f(x)}{d x}+O\left(h^{2}\right)
\end{gathered}
$$

$$
\text { return } x * * 3 * n p \cdot \sin (5 * x)
$$

def dFdx_numerical(func, $x, h=1 e-5)$:
""" Nonerical derivative using Central Difference """ return (func $(x+0.5 * h)$ - func $(x-0.5 * h)) / h$
def dFdx(x):
""" Analytic derivative """" return $3 * x * * 2 * n p \cdot \sin (5 * x)+5 * x * * 3 * \cos (5 * x)$

centralDiff.py

$f^{\prime}(x)=3 x^{2} \sin (5 \mathrm{x})+5 \mathrm{x}^{3} \cos (5 \mathrm{x})$

Second Derivatives

calculate by applying the first-derivative formulas twice

$$
f^{\prime}(x+h / 2) \simeq \frac{f(x+h)-f(x)}{h} \quad f^{\prime}(x-h / 2) \simeq \frac{f(x)-f(x-h)}{h}
$$

Second Derivatives

calculate by applying the first-derivative formulas twice

$$
f^{\prime}(x+h / 2) \simeq \frac{f(x+h)-f(x)}{h} \quad f^{\prime}(x-h / 2) \simeq \frac{f(x)-f(x-h)}{h}
$$

The central difference for the second-derivative:

$$
\begin{aligned}
& f^{\prime \prime}(x) \simeq \frac{f^{\prime}(x+h / 2)-f^{\prime}(x-h / 2)}{h} \\
&=\frac{[f(x+h)-f(x)] / h-[f(x)-f(x-h)] / h}{h} \\
&=\frac{2^{\text {nd }} \text { Central Difference }}{h^{2}} \\
&=h)-2 \mathrm{f}(x)+f(x-h) \\
&
\end{aligned}
$$

$2^{\text {nd }}$ Central Difference Error

From the Taylor expansion:

$$
\begin{aligned}
f(x+h) & =f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)+\frac{1}{6} h^{3} f^{\prime \prime \prime}(x)+\frac{1}{24} f^{\prime \prime \prime \prime}(x)+\ldots \\
+\quad f(x-h) & =f(x)-h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)-\frac{1}{6} h^{3} f^{\prime \prime \prime}(x)+\frac{1}{24} f^{\prime \prime \prime \prime}(x)+\ldots
\end{aligned}
$$

$$
f(x+\Delta x / 2)-f(x-\Delta x / 2)=\Delta x f^{\prime}(x)+\frac{\Delta x^{3}}{24} f^{\prime \prime \prime}(x)+\ldots
$$

$2^{\text {nd }}$ Central Difference

$$
\left[\frac{f(x+h)-2 \mathrm{f}(x)+f(x-h)}{h^{2}}\right]=f^{\prime \prime}(x)-\frac{1}{12} h^{2} f^{\prime \prime \prime \prime}(x)+\ldots
$$

truncation error term is of order in h^{2}

$2^{\text {nd }}$ Central Difference Error

$$
\begin{aligned}
& \text { round-off error } \\
& \epsilon_{c}=\frac{4 \mathrm{c} f(x)}{h^{2}}
\end{aligned}
$$

$$
\epsilon=\epsilon_{c}+\epsilon_{a}
$$

approximation error

$$
\epsilon_{a}=\frac{h^{2}}{12}\left|f^{\prime \prime \prime \prime}(x)\right|
$$

$$
\epsilon=\frac{4 \mathrm{c}|f(x)|}{h^{2}}+\frac{1}{12} h^{2}\left|f^{\prime \prime \prime \prime}(x)\right|
$$

$$
\text { setting } \quad \frac{d \epsilon}{d h}=0 \quad \text { to find the value of } h \text { which minimizes the error }
$$

$$
h_{\text {best }}=\langle 48 \mathrm{c}| \frac{f(x)}{f^{\prime \prime \prime \prime}(x)}| |^{1 / 4}
$$

$$
\epsilon=\frac{1}{6} h^{2}\left|f^{\prime \prime \prime \prime}(x)\right|=\left|\frac{4}{3} c\right| f(x) f^{\prime \prime \prime \prime}(x)| |^{1 / 2}
$$

if $f(x) \& f^{\prime \prime \prime}(x)$ are on the order 1 , for an error on the order of 10^{-8} one should choose h to be on the order of 10^{-4}

This Week's exercise

Radioactive Decays

$$
\begin{gathered}
\frac{d N(t)}{d t}=\frac{-N(t)}{\tau} \\
\text { Set } \frac{d N(t)}{d t}=D_{h}^{+}(N(t))=\frac{N(t+h)-N(t)}{h}
\end{gathered}
$$

and solve for the incremental equation

$$
\begin{aligned}
& \frac{N(t+h)-N(t)}{h}=-\frac{N(t)}{\tau} \\
& N(t+h)=N(t)-\frac{h}{\tau} N(t)
\end{aligned}
$$

$$
N_{i+1}=N_{i}\left(1-\frac{h}{\tau}\right)
$$

incremental equation

Let's get working

