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Numerical Differentiation
Often possible to find derivatives given 

an analytic expression for a function
But this is not always the case.  In some 

cases, numerical determination of the 
derivative is the only alternative
 Functions available only as a set of discrete data 

points

 Determination of a function from non-linear 
differential equation and some initial conditions

But there are some significant practical 
problems with numerical derivatives...
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Simple Derivatives
df  x 

dx
= limh0 [ f xh− f x 

h ]

Dh
-  f x=[ f x − f  x−h

h ]
Backward Difference

Dh
+ f x =[ f  xh− f  x

h ]
Forward Difference

Another method of computing differences:

Limit-based determination:

Forward and backward differences typically give about the same 
result with similar accuracy 

Only a few special cases where one is preferred
●  at a discontinuity
●  at the boundary of bounded functions
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O(h2)
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term

Derivatives  & Errors

[ f xh− f x 
h ] = d f x

dx
 O h

Forward Difference

Taylor Series Expansion:

 approximation error 

f xh= f x h d f x
dx


h2

2
d 2 f x

dx2 ...

ϵ a = h
2
|f ''(x )|

This implies that making h smaller, reduces the total error (Not TRUE) 
Why?....... Round-off errors! 

O(h2)
remaining
term

Derivatives  & Errors

[ f xh− f x 
h ] = d f x

dx
 O h

Forward Difference

Taylor Series Expansion:

 approximation error 

f xh= f x h d f x
dx


h2

2
d 2 f x

dx2 ...

ϵ a = h
2
|f ''(x )|

This implies that making h smaller, reduces the total error (Not TRUE) 
Why?....... Round-off errors! 



O(h2)
remaining
term

Derivatives  & Errors

[ f xh− f x 
h ] = d f x

dx
 O h

Forward Difference

Taylor Series Expansion:

 approximation error 

f xh= f x h d f x
dx


h2

2
d 2 f x

dx2 ...

a = h
2
∣ f ''  x∣

This implies that making h smaller, reduces the total error (Not TRUE) 
Why?....... Round-off errors! 

O(h2)
remaining
term

Derivatives  & Errors

[ f xh− f x 
h ] = d f x

dx
 O h

Forward Difference

Taylor Series Expansion:

 approximation error 

f xh= f x h d f x
dx


h2

2
d 2 f x

dx2 ...

a = h
2
∣ f ''  x∣

This implies that making h smaller, reduces the total error (Not TRUE) 
Why?....... Round-off errors! 



Forward Difference Error

a =
h
2
∣ f '' x ∣

 = ca

round-off error approximation error

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
1

2
h∣ f ''  x∣

Forward Difference Error

a =
h
2
∣ f '' x ∣

 = ca

round-off error approximation error

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
1

2
h∣ f ''  x∣



Forward Difference Error

a =
h
2
∣ f '' x ∣

 = ca

round-off error approximation error

xc = x true1 ± c

f c x  = f  x ± c f x 

D+[ f x ] = f  xh− f  x
h

± 2c f  x
h

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
1

2
h∣ f ''  x∣

recall from numerical accuracy

Forward Difference Error

a =
h
2
∣ f '' x ∣

 = ca

round-off error approximation error

xc = x true1 ± c

f c x  = f  x ± c f x 

D+[ f x ] = f  xh− f  x
h

± 2c f  x
h

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
1

2
h∣ f ''  x∣

recall from numerical accuracy



Forward Difference Error

a =
h
2
∣ f '' x ∣

 = ca

round-off error approximation error

xc = x true1 ± c

f c x  = f  x ± c f x 

D+[ f x ] = f  xh− f  x
h

± 2c f  x
h

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
1

2
h∣ f ''  x∣

d 
dh

=0setting                     to find the value of  h  which minimizes the error

recall from numerical accuracy

hbest = 4c∣ f x 
f ''  x∣

Forward Difference Error

a =
h
2
∣ f '' x ∣

 = ca

round-off error approximation error

xc = x true1 ± c

f c x  = f  x ± c f x 

D+[ f x ] = f  xh− f  x
h

± 2c f  x
h

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
1

2
h∣ f ''  x∣

d 
dh

=0setting                     to find the value of  h  which minimizes the error

recall from numerical accuracy

hbest = 4c∣ f x 
f ''  x∣



Forward Difference Error

a =
h
2
∣ f '' x ∣

 = ca

round-off error approximation error

xc = x true1 ± c

f c x  = f  x ± c f x 

D+[ f x ] = f  xh− f  x
h

± 2c f  x
h

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
1

2
h∣ f ''  x∣

d 
dh

=0setting                     to find the value of  h  which minimizes the error

 = h∣ f ''  x∣ = 4c∣ f x  f ''  x ∣

if f(x) & f''(x) are on the order 1, 
we should choose a h on the order 
which is typically  10-8 for 64bit operations

recall from numerical accuracy

hbest = 4c∣ f x 
f ''  x∣

c

Forward Difference Error

a =
h
2
∣ f '' x ∣

 = ca

round-off error approximation error

xc = x true1 ± c

f c x  = f  x ± c f x 

D+[ f x ] = f  xh− f  x
h

± 2c f  x
h

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
1

2
h∣ f ''  x∣

d 
dh

=0setting                     to find the value of  h  which minimizes the error

 = h∣ f ''  x∣ = 4c∣ f x  f ''  x ∣

if f(x) & f''(x) are on the order 1, 
we should choose a h on the order 
which is typically  10-8 for 64bit operations

recall from numerical accuracy

hbest = 4c∣ f x 
f ''  x∣

c



Central Difference

df x 
dx

= limh0 [ f xh− f x
h ]

Dh
c  f x=[ f xh /2− f x−h /2

h ]
Central Difference

Another method of computing differences:

Limit-based determination:

The Central Difference is overall more accurate

Central Difference

df x 
dx

= limh0 [ f xh− f x
h ]

Dh
c  f x=[ f xh /2− f x−h /2

h ]
Central Difference

Another method of computing differences:

Limit-based determination:

The Central Difference is overall more accurate



Central Difference Error
Taylor expansion:

f xh /2= f x h /2 f '  x 
h /22

2
f ' '  x 

h /23

6
f ' ' '  x ...

f x−h/2= f  x −h /2 f '  x 
h /22

2
f ' ' x 

−h/23

6
f ' ' ' x ...

f  xh/2− f x−h/2 = h f '  x 
h3

24
f ' ' ' x ...

Central Difference Error
Taylor expansion:

f xh /2= f x h /2 f '  x 
h /22

2
f ' '  x 

h /23

6
f ' ' '  x ...

f x−h/2= f  x −h /2 f '  x 
h /22

2
f ' ' x 

−h/23

6
f ' ' ' x ...

f  xh/2− f x−h/2 = h f '  x 
h3

24
f ' ' ' x ...



Central Difference Error

[ f xh /2− f x−h /2
h ] = d f x 

dx
 O h2

Central Difference

Taylor expansion:

 truncation error term is 
           of order in h2

f (x+h /2)=f (x)+(h /2) f ' (x)+(h /2)2

2
f ' ' (x)+

(h /2)3

6
f ' ' ' (x )+ ...

f x−h/2= f  x −h /2 f '  x 
h /22

2
f ' ' x 

−h/23

6
f ' ' ' x ...

f  xh/2− f x−h/2 = h f '  x 
h3

24
f ' ' ' x ...

Central Difference Error

[ f xh /2− f x−h /2
h ] = d f x 

dx
 O h2

Central Difference

Taylor expansion:

 truncation error term is 
           of order in h2

f (x+h /2)=f (x)+(h /2) f ' (x)+(h /2)2

2
f ' ' (x)+

(h /2)3

6
f ' ' ' (x )+ ...

f x−h/2= f  x −h /2 f '  x 
h /22

2
f ' ' x 

−h/23

6
f ' ' ' x ...

f  xh/2− f x−h/2 = h f '  x 
h3

24
f ' ' ' x ...



Central Difference Error

a =
h2

24
∣ f ''' x ∣

 = ca

round-off error approximation error

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
 1

24
h2∣ f ''' x ∣

Central Difference Error

a =
h2

24
∣ f ''' x ∣

 = ca

round-off error approximation error

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
 1

24
h2∣ f ''' x ∣



Central Difference Error

a =
h2

24
∣ f ''' x ∣

 = ca

round-off error approximation error

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
 1

24
h2∣ f ''' x ∣

d 
dh

=0setting                     to find the value of  h  which minimizes the error

 = 1
8

h2∣ f '''  x∣ = 24c∣ f  x  f '''  x ∣1/3

if f(x) & f '''(x) are on the order 1, we should choose a h on the order of 10-5 
but the error will be on the order of 10-10

hbest = 24c∣ f x 
f '''  x∣

1/3

Central Difference Error

a =
h2

24
∣ f ''' x ∣

 = ca

round-off error approximation error

c =
2c f  x 

h
 = 2c∣ f  x ∣

h
 1

24
h2∣ f ''' x ∣

d 
dh

=0setting                     to find the value of  h  which minimizes the error

 = 1
8

h2∣ f '''  x∣ = 24c∣ f  x  f '''  x ∣1/3

if f(x) & f '''(x) are on the order 1, we should choose a h on the order of 10-5 
but the error will be on the order of 10-10

hbest = 24c∣ f x 
f '''  x∣

1/3



Central Difference Example
f x  = x 3 sin 5x 

f '  x=2  = −40.09114

def F(x):
    return x**3 * np.sin(5*x)

def dFdx_numerical(func, x, h=1e-5):
“”” Numerical derivative using Central Difference “””

    return (func(x+0.5*h) - func(x-0.5*h)) / h
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    “”” Analytic derivative “””
    return  3*x**2 * np.sin(5*x) + 5*x**3 * cos(5*x)
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This Week's exercise

dN t 
dt

=−N t 


Radioactive Decays

Set dN (t)
dt

= Dh
+(N (t )) =

N (t+h)−N (t )
h

N th = N t − h


N t 

and solve for the incremental equation

N i1=N i 1− h
 

 incremental equation

N (t+h)−N (t)
h

= −
N (t)

τ

initial conditions
at t(0):

N(t=0) = 100%
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