Outline:

• The COMPASS experiment:
• Diffractive dissociation into 3π final states
• First look into 3π neutral mode
 • Event selection
 • First PWA fits, main waves
The COMPASS experiment

COmmon Muon Proton Apparatus for Structure and Spectroscopy
(~270 physicists, 25 institutes, 12 countries)

a) Nucleon spin structure:
- **polarised muon beam** (160 GeV/c \(\mu^+\))
 - data taken 2002-04, 2006/07

b) Nucleon & meson spectroscopy:
- Diffractive production
- Central production
- Primakoff
- **Hadron beams** (190 GeV/c \(\pi^-, K^-\))

The COMPASS experiment

COmmon Muon P roton A pparatus for S tructure and S pectroscopy
(~270 physicists, 25 institutes, 12 countries)

a) Nucleon spin structure:
- polarised muon beam (160 GeV/c μ^+)
 - data taken 2002-04, 2006/07
 - see 3D

b) Nucleon & meson spectroscopy:
- Diffractive production
- Central production
- Primakoff
 - Hadron beams (190 GeV/c π^-,K^-)

[hep-ex/0703049, NIM A 577, 455 (2007)]
COMPASS Hadron spectroscopy

- study of J^{PC} exotic mesons
- t-channel Reggeon Exchange
- forwards kinematics, target stays intact

Light meson sector (< 2.2 GeV/c2):
- exotics $J^{PC} = 1^{+-}$
 - $\pi_1(1400)$: VES, E852, Crystal Barrel
 - $\pi_1(1600)$: E852, VES

... still controversial \rightarrow COMPASS

Also: photo-production, e.g.
$\mu + p \rightarrow \mu + p_{\text{slow}} + X^0$

- large rapidity gap between p_{slow}, h_{fast}, X
- possible source of glueballs
Diffraction:
- study of J^{PC} exotic mesons
- t-channel Reggeon Exchange
- forwards kinematics, target stays intact

Diffractive pion dissociation:
- incoming π^- excited to resonance X^-
- X^- decays into final state, e.g. $(3\pi)^-$:
 $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$ (charged mode)

Light meson sector (< 2.2 GeV/c^2):
- exotics $J^{PC} = 1^{--}$
 - $\pi_1(1400)$: VES, E852, Crystal Barrel
 - $\pi_1(1600)$: E852, VES

... still controversial \rightarrow COMPASS
COMPASS Hadron spectroscopy

-- Diffractive pion dissociation

Diffraction:
- study of J^{PC} exotic mesons
- t-channel Reggeon Exchange
- forwards kinematics, target stays intact

Diffr. pion dissociation:
- incoming π^- excited to resonance X^-
- X^- decays into final state, e.g. $(3\pi)^-$:
 $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$ (charged mode)

Light meson sector (< 2.2 GeV/c2):
- exotics $J^{PC} = 1^{--}$
 - $\pi_1(1400)$: VES, E852, Crystal Barrel
 - $\pi_1(1600)$: E852, VES

... still controversial \rightarrow COMPASS

Submitted to Phys.Rev.Lett:

J^{PC} exotic $\pi_1(1600)$ evidence in 2004 data (Pb):

$\left(1660 \pm 10^{+42}_{-64} \ 269 \pm 21^{+42}_{-64} \right)$

![Graph showing mass distribution of $\pi\pi\pi^+$ system](image)
COMPASS Hadron spectroscopy
-- Diffractive pion dissociation

Diffraction:
- study of J^{PC} exotic mesons
- t-channel Reggeon Exchange
- forwards kinematics, target stays intact

Diffr. pion dissociation:
- incoming π^- excited to resonance X^-
- X^- decays into final state, e.g. $(3\pi)^-$:
 $$\pi^- p \longrightarrow \pi^- \pi^+ \pi^- p \text{ (charged mode)}$$

Light meson sector ($< 2.2 \text{ GeV/c}^2$):
- exotics $J^{PC} = 1^{--}$
 - $\pi_1(1400)$: VES, E852, Crystal Barrel
 - $\pi_1(1600)$: E852, VES
 - *still controversial* → COMPASS

Submitted to Phys.Rev.Let:
J^{PC} exotic $\pi_1(1600)$ evidence in 2004 data (Pb):

$$1660 \pm 10_{-64}^{+0} \quad 269 \pm 21_{-64}^{+42}$$

Diagram:
- Target $\rightarrow X^- \rightarrow \pi^-, \pi^+, \pi^-$
- Recoil

Frank Nerling
Diffractive pion production at COMPASS
01/12/2009
COMPASS Hadron spectroscopy

-- Diffractive pion dissociation

Diffraction:
- study of J^{PC} exotic mesons
- t-channel Reggeon Exchange
- forwards kinematics, target stays intact

Diffr. pion dissociation:
- incoming π^- excited to resonance X^-
- X^- decays into final state, e.g. $(3\pi)^-$:
 - $\pi^- p \rightarrow \pi^-\pi^+\pi^- p$ (charged mode)
 - $\pi^- p \rightarrow \pi^-\pi^0\pi^0 p$ (neutral mode)

Submitted to Phys.Rev.Lett:
J^{PC} exotic $\pi_1(1600)$ evidence in 2004 data (Pb):
\[
(1660 \pm 10^{+0}_{-64}, \ 269 \pm 21^{+42}_{-64})
\]

Light meson sector ($< 2.2 \text{ GeV/c}^2$):
- exotics $J^{PC} = 1^{--}$
- $\pi_1(1400)$: VES, E852, Crystal Barrel
- $\pi_1(1600)$: E852, VES

... still controversial \rightarrow COMPASS

Analysis of 2008 data started (p-target)
- **Simultaneous observation in neutral mode**
 \rightarrow independent measurement (*same apparatus*)
 \Rightarrow important cross check (*understand acceptance*)

1st look into neutral mode (*main waves, isospin sym.*)
all COMPASS trackers:
SciFi, Si, MM, GEM, DC, Straw, MWPC.

+Upgraded trackers close to beam:
ColdSilicons, PixelGEMs → Plenary

0.4m liquid H₂ target

π⁻,Κ⁻ Recoil detector (RPD) to trigger on reactions inside target

ECAL1 (2° ≤ θγ ≤ 12°)

ECAL2 (0.4° ≤ θγ ≤ 2°)

Electromagnetic calorimeters

CEDARS Beam particle PID

p’ (e.g. π° π°, ηη final states)
COMPASS spectrometer: Hadron setup 2008/09

ToF measurement: ~350ns

Diffractive Trigger = BT ∧ RPD ∧ !Veto

Recoil detector (RPD) to trigger on reactions inside target

Target full/empty ratio 14:1

COMPASS 2008
COMPASS spectrometer: Hadron setup 2008/09

Recoil detector (RPD) to trigger on reactions inside target

0.4m liquid H₂ target

Electromagnetic calorimeters:
- ECAL1 (2° ≤ θγ ≤ 12°)
- ECAL2 (0.4° ≤ θγ ≤ 2°)

All COMPASS trackers: SciFi, Si, MM, GEM, DC, Straw, MWPC

Shashlik counter

radhard GAMS

GAMS (ECAL1+2)

ECAL2:
- rad. hard shashlik counter
- 10bit SADC → 12bit MSADC
- DSP → timing info

Electromagnetic calorimeters
COMPASS spectrometer: Hadron setup 2008/09

COMPASS spectrometer: Hadron setup 2008/09

π⁻, Κ⁻

Recoil detector (RPD) to trigger on reactions inside target

0.4m liquid H₂ target

Electromagnetic calorimeters

ECAL1 (2° ≤ θγ ≤ 12°)

ECAL2 (0.4° ≤ θγ ≤ 2°)

all COMPASS trackers: SciFi, Si, MM, GEM, DC, Straw, MWPC

+ ColdSilicons, PixelGEMs

CEDARS Beam particle PID

Setting for Kaon separation in 2008

CEDARS Beam particle PID

01/12/2009
Event selection: $\pi^−p \rightarrow \pi^−\pi^0\pi^0 p$

\sim10% of 2008 data

<table>
<thead>
<tr>
<th>Type of cut applied</th>
<th>Nb of events</th>
<th>Remaining [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>All events</td>
<td>6.98800×10^8</td>
<td>100.00</td>
</tr>
<tr>
<td>DT0</td>
<td>5.07415×10^8</td>
<td>72.61</td>
</tr>
<tr>
<td>NbPV\equiv1</td>
<td>4.02453×10^8</td>
<td>57.59</td>
</tr>
<tr>
<td>NbOutPar\equiv1</td>
<td>2.25624×10^8</td>
<td>32.29</td>
</tr>
<tr>
<td>TargetCut</td>
<td>1.80785×10^8</td>
<td>25.87</td>
</tr>
<tr>
<td>ChargeSum</td>
<td>1.76766×10^8</td>
<td>25.30</td>
</tr>
<tr>
<td>$N_\gamma = 4$</td>
<td>9.75743×10^6</td>
<td>1.40</td>
</tr>
<tr>
<td>$2\pi^0$ within $m_{\pi^0}(PDG) \pm 20$MeV</td>
<td>9.15084×10^5</td>
<td>0.13</td>
</tr>
<tr>
<td>exactly one $2\pi^0$ combination within $m_{\pi^0}(PDG) \pm 20$MeV</td>
<td>8.99705×10^5</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 1: Remaining statistics after cuts - Preselection.

<table>
<thead>
<tr>
<th>Type of cut applied</th>
<th>Nb of events</th>
<th>Remaining [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>All events - preselected</td>
<td>8.99705×10^5</td>
<td>100.00</td>
</tr>
<tr>
<td>$E_{\pi^−} < 185$GeV/c2</td>
<td>8.20096×10^5</td>
<td>91.15</td>
</tr>
<tr>
<td>RPDtracks\equiv1 & $p_{recoil} > 250$MeV</td>
<td>5.85308×10^5</td>
<td>65.06</td>
</tr>
<tr>
<td>$\Delta\Phi < 0.2$</td>
<td>3.95250×10^5</td>
<td>43.93</td>
</tr>
<tr>
<td>Tightened cut on π^0 mass $(m_{\pi^0}(PDG) \pm 16$MeV</td>
<td>3.25001×10^5</td>
<td>36.12</td>
</tr>
<tr>
<td>Exclusivity ± 6 GeV</td>
<td>2.41406×10^5</td>
<td>26.83</td>
</tr>
<tr>
<td>CEDAR Veto on Kaons</td>
<td>2.39511×10^5</td>
<td>26.62</td>
</tr>
</tbody>
</table>

Table 2: Remaining statistics after further cuts applied on preselected events, cf. Tab.1 - Final Selection.
Event selection: $\pi^- p \rightarrow \pi^- \pi^0 \pi^0 p$

~10% of 2008 data

<table>
<thead>
<tr>
<th>Type of cut applied</th>
<th>Nb of events</th>
<th>Remaining [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>All events</td>
<td>6.98800×10^8</td>
<td>100.00</td>
</tr>
<tr>
<td>DT0</td>
<td>5.07415×10^8</td>
<td>72.61</td>
</tr>
<tr>
<td>NbPV==1</td>
<td>4.02453×10^8</td>
<td>57.59</td>
</tr>
<tr>
<td>NbOutPar==1</td>
<td>2.25624×10^8</td>
<td>32.29</td>
</tr>
<tr>
<td>TargetCut</td>
<td>1.80785×10^8</td>
<td>25.87</td>
</tr>
<tr>
<td>ChargeSum</td>
<td>1.76766×10^8</td>
<td>25.30</td>
</tr>
<tr>
<td>$N_{\gamma} = 4$</td>
<td>9.75743×10^6</td>
<td>1.40</td>
</tr>
<tr>
<td>$2\pi^0$ within m_{π^0} (PDG) ± 20 MeV</td>
<td>9.15084×10^5</td>
<td>0.13</td>
</tr>
<tr>
<td>exactly one $2\pi^0$ combination within m_{π^0} (PDG) ± 20 MeV</td>
<td>8.99705×10^5</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 1: Remaining statistics after cuts - Preselection.

<table>
<thead>
<tr>
<th>Type of cut applied</th>
<th>Nb of events</th>
<th>Remaining [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>All events - preselected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_{\pi^-} < 185\text{GeV/c}^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPDtracks==1 && $p_{\text{recoil}} > 250$ MeV</td>
<td>3.95250 $\times 10^6$</td>
<td>43.93</td>
</tr>
<tr>
<td>$\Delta\Phi < 0.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tightened cut on π^0 mass (m_{π^0} (PDG) ± 16 MeV)</td>
<td>3.25001 $\times 10^5$</td>
<td>36.12</td>
</tr>
<tr>
<td>Exclusivity ± 6 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEDAR Veto on Kaons</td>
<td>2.39511 $\times 10^5$</td>
<td>26.62</td>
</tr>
</tbody>
</table>

Table 2: Remaining statistics after further cuts applied on preselected events, cf. Tab.1 - Final Selection.

Main cuts for exclusive events: => *in terms of sigma (± 2\sigma)*
All & Preselected gg pairs, circular cut on PDG π^0 mass

$2\pi^0$ evt := exactly 4 clusters, exactly one $2\pi^0$ combi within PDG +/- 20 MeV
$\Delta \Phi$ (RPD-Spectro) vs. E_{beam}

COMPASS 2008
(10% of 2008 data)
$\pi p \rightarrow \pi \pi p$
no acceptance correction

COMPASS 2008
(10% of 2008 data)
$\pi p \rightarrow \pi \pi p$
no acceptance correction

PRELIMINARY
ΔΦ (RPD-Spectro) vs. E_{beam}

-0.2 rad

+6 GeV

Frank Nerling

Diffractive pion production at COMPASS

01/12/2009
Preselected gg pairs, circular cut on PDG π^0 mass

After final cuts on $\Delta \Phi$ and exclusivity

$2\pi^0$ evt := exactly 4 clusters, exactly one $2\pi^0$ combi within PDG +/- 20 MeV
Exclusivity w/wo $\Delta \Phi$ (RPD-Spectro) cut

![Graph showing a peak in calculated beam energy with a label for events and no acceptance correction.]

COMPASS 2008
(10% of 2008 data)

$\bar{\pi}p \rightarrow \pi^0\pi^0p$

no acceptance correction

PRELIMINARY
t' distribution

COMPASS 2008
(10% of 2008 data)

πp → π^0 π^0 p

no acceptance correction

events

10^4

10^3

10^2

10^1

10

momentum transfer t' [GeV/c^2]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

PRELIMINARY
Mass spectrum of $\pi^-\pi^0\pi^0$ final state

COMPASS 2008
(10% of 2008 data)

$\pi p \rightarrow \pi\pi^0\pi^0$
no acceptance correction
Mass spectrum of both $\pi^-\pi^0$ systems & the $\pi^0\pi^0$ system
Dalitz plots: a_2 & π_2 region

\begin{align*}
\text{COMPASS 2008} \\
(10\% \text{ of 2008 data}) \\
\pi p \rightarrow \pi^0 \pi^0 p \\
\text{no acceptance correction}
\end{align*}

\begin{align*}
\text{mass squared of } \pi^0 \text{ system [GeV}^2/{c^2}] \\
fabs(m_{3\pi} - 1.67) \leq 0.100 \text{ GeV}/c^2
\end{align*}
PWA using isobar model

X decay described using isobar model:
- Intermediate di-pion resonance (isobar)
 - Spin S and rel. orbital angular momentum L w.r.t bachelor π^-
 - $L+S$ couple to J
- Partial waves: $J^{PC} M^\epsilon$ [isobar] L

PWA:
- **program**: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- **Isobars**: $(\pi\pi)_S$ [broad $f_0(600)+f_0(1370)$], $f_0(980)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$
- **No acceptance correction yet** (assumed flat)

Mass independent PWA: (40MeV/c2 bins, same waveset as used for 2004 data)

$$
\sigma_{\text{indep}}(\tau, m, t') = \sum_{\epsilon=\pm1} \sum_{r=1}^{N_r} \sum_i T^\epsilon_{ir} f_i^\epsilon(t') \psi_i^\epsilon(\tau, m) / \sqrt{\int |\psi_i^\epsilon(\tau', m)|^2 d\tau'}
$$
- Production amplitudes $T^\epsilon_{ir} \rightarrow$ extended maximum likelihood fit
- Decay amplitudes $\psi_i^\epsilon(\tau, m)$ (Zemach tensors, D functions)
PWA using isobar model

PWA:
- **program:** Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- **Isobars:** $(\pi\pi)_S$ [broad $f_0(600)+f_0(1370)$], $f_0(980)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$
- **No acceptance correction yet** (assumed flat)

Assumptions:
- **factorisation** of beam & target vertex, no final state interactions
- l^G conserved at beam vertex (π^- beam: $l^G = 1^-$)
- **Scattering on nucleons:** helicity flip & non-flip amps at target vertex (*rank2*)
- **Using reflectivity basis** in Gottfried Jackson frame (at high CM energies: reflectivity $\varepsilon =$ naturality of R)

Isospin symmetry: neutral / charge mode
- isobar decaying into $f_2 \pi$: $1/2$ intensity expected
- isobar decaying into $\rho \pi$: $1/1$ intensity expected
First PWA fits – normalisation to a2

COMPASS 2008

mass Indep PWA
(42 waves)

no acceptance correction

PRELIMINARY
First PWA fits – check intensities a_1 to $\rho\pi$
First PWA fits – check intensities
\(\pi_2 \rightarrow f_2 \pi \)
First PWA fits – check intensities
a_1 to $\rho \pi$
a1/a2 mass region - neutral
(1.22 - 1.38 GeV/c²)

a1/a2 mass region - charged
(1.22 - 1.38 GeV/c²)
Conclusions & outlook

- COMPASS spectrometer well suited for Hadron Spectroscopy
 → Data taken with hadron beams on p target in 2008 & 09

- COMPASS measures Neutral & Charged channels

- First results on 3π final state -- neutral mode (diffr. dissociation)
 + Evt selection & 1st PWA fits (mass independent)
 + First look promising: mass spectra, main waves, isospin symmetry
 => Important cross-checks & independent confirmation of any new state observed

- Statistics less than charged mode
 → event selection presently limited to (exactly) 4γ events
 → will improve (allowing 5th => gain ~20%)
 → Ecals reconstruction under redevelopment

- Next steps:
 - Further development of Ecals reconstruction → MSADC info, DSP etc
 - Increase statistics, acceptance corrections, extend waveset, …
Backup
First PWA fits on $\pi^+\pi^-\pi^0$

Theoretical expectation: neutral / charge mode
- isobar decay into $f2\pi$: 1/2 intensity expected
- isobar decay into $\rho\pi$: 1/1 intensity expected

Examples, (J^{PC}) M^E [isobar] L notation:
- $a2$: (2++)1+ rho pi D
 - a) $a2 \rightarrow \rho^+\pi^-$
 - $\pi^-\pi^+$
 - $\pi^-\pi^++\pi^-$
 - b) $a2 \rightarrow \rho^-\pi^0$
 - $\pi^0\pi^-$
 - $\pi^-\pi^0\pi^0$
- $\pi2$:
 - i) (2+)0+ f2 pi S: $\pi2 \rightarrow f2\pi^-$
 - $\text{BR}(\pi^0\pi^+) / \text{BR}(\pi^-\pi^+)=1/3 / 2/3=1/2$
 - ii) (2+)0+ rho pi F
 - a) $\pi2 \rightarrow \rho^-\pi^0$
 - $\pi^-\pi^0$
 - b) $\pi2 \rightarrow \rho^+\pi^-$
 - $\pi^+\pi^-$

$\pi2$ intensity expected (neutral/charged): 1/2
(plus reduced acc. \Rightarrow eff x eff for neutrals)

$\pi2$ intensity expected (neutral/charged): 1
First PWA fits on $\pi^-\pi^0\pi^0$

Theoretical expectation: neutral / charge mode
- isobar decay into f2 π: 1/2 intensity expected
- isobar decay into $\rho\pi$: 1/1 intensity expected

Examples, General:
- a2: (2++)1+ $\rho\pi$
 - a) a2 $\rightarrow \rho^-\pi^0\pi^+$
 - b) a2 $\rightarrow \rho^-\pi^0\pi^-

Calculated / checked:
- BR = $N(\pi^-\pi^0\pi^0)/N(\pi^-\pi^+\pi^-)$
 - BR(0-+ f0(1400) π S) = 0.26 (at 1.3 GeV)
 - BR(0-+ f0(980) π S) = 0.44 (at 1.8 GeV)
 - BR(2-+ f2(1270) π S) = 0.50 (at 1.67 GeV = π^2 mass)

General: Branching not only from Clebsch-Gordon coeff., but also from Bose-Symmetrisation w bachelor π
- \Rightarrow IsospinSym. holds for isobars going to $\rho\pi$ (same effect)
- \Rightarrow "-" needs to be modified, BR may differ

π^2:
- (2-)0+ $\rho\pi$
 - a) π^2 $\rightarrow \rho^-\pi^0$ $\rightarrow \pi^-\pi^0$
 - b) π^2 $\rightarrow \rho^0\pi^-$ $\rightarrow \pi^+\pi^-$

π^2 intensity expected (neutral/charged): 1
Decay angles in G.J. frame
Full PhaseSpace Generated Prediction

Gottfried-Jackson frame:
• rest frame of resonance X
• z parallel to beam axis
• y normal to production plane

„PREDICT“:
• fit waveset to data
• fitted decay amplitudes used to calculate decay angles
• under assumption of uniform acceptance
• normalised per mass bin to data
Cut on energy of π^- (plot after RPDcut)
(elastic events and background from e.g. pile-up)

$E_{\pi^-} < 185$ GeV
Waveset used for the PWA

<table>
<thead>
<tr>
<th>$J^{PC} M^c$</th>
<th>L</th>
<th>Isobar π</th>
<th>Threshold (GeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^{-+}0^+$</td>
<td>S</td>
<td>$f_0(980)\pi$</td>
<td>1.25</td>
</tr>
<tr>
<td>$0^{-+}0^+$</td>
<td>S</td>
<td>$(\pi\pi)\pi$</td>
<td>-</td>
</tr>
<tr>
<td>$0^{-+}0^+$</td>
<td>P</td>
<td>$\rho\pi$</td>
<td>-</td>
</tr>
<tr>
<td>$1^{++}1^+$</td>
<td>P</td>
<td>$\rho\pi$</td>
<td>-</td>
</tr>
<tr>
<td>$1^{++}0^+$</td>
<td>S</td>
<td>$\rho\pi$</td>
<td>-</td>
</tr>
<tr>
<td>$1^{++}0^+$</td>
<td>P</td>
<td>$f_2\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$1^{++}0^+$</td>
<td>P</td>
<td>$(\pi\pi)_s\pi$</td>
<td>0.94</td>
</tr>
<tr>
<td>$1^{++}1^+$</td>
<td>D</td>
<td>$\rho\pi$</td>
<td>1.30</td>
</tr>
<tr>
<td>$1^{++}1^+$</td>
<td>S</td>
<td>$\rho\pi$</td>
<td>-</td>
</tr>
<tr>
<td>$1^{++}1^+$</td>
<td>P</td>
<td>$f_2\pi$</td>
<td>1.40</td>
</tr>
<tr>
<td>$1^{++}1^+$</td>
<td>P</td>
<td>$(\pi\pi)_s\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$1^{++}1^+$</td>
<td>D</td>
<td>$\rho\pi$</td>
<td>1.40</td>
</tr>
<tr>
<td>$2^{-+}0^+$</td>
<td>S</td>
<td>$f_2\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$2^{-+}0^+$</td>
<td>P</td>
<td>$\rho\pi$</td>
<td>0.80</td>
</tr>
<tr>
<td>$2^{-+}0^+$</td>
<td>D</td>
<td>$(\pi\pi)_s\pi$</td>
<td>0.80</td>
</tr>
<tr>
<td>$2^{-+}0^+$</td>
<td>D</td>
<td>$f_2\pi$</td>
<td>1.50</td>
</tr>
<tr>
<td>$2^{-+}1^+$</td>
<td>F</td>
<td>$\rho\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$2^{-+}1^+$</td>
<td>S</td>
<td>$f_2\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$2^{-+}1^+$</td>
<td>P</td>
<td>$\rho\pi$</td>
<td>0.80</td>
</tr>
<tr>
<td>$2^{-+}1^+$</td>
<td>D</td>
<td>$(\pi\pi)_s\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$2^{-+}1^+$</td>
<td>D</td>
<td>$f_2\pi$</td>
<td>1.50</td>
</tr>
<tr>
<td>$2^{-+}1^+$</td>
<td>F</td>
<td>$\rho\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$2^{++}1^+$</td>
<td>P</td>
<td>$f_2\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$2^{++}1^+$</td>
<td>D</td>
<td>$\rho\pi$</td>
<td>-</td>
</tr>
<tr>
<td>$3^{++}0^+$</td>
<td>S</td>
<td>$\rho_3\pi$</td>
<td>1.76</td>
</tr>
<tr>
<td>$3^{++}0^+$</td>
<td>P</td>
<td>$f_2\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$3^{++}0^+$</td>
<td>D</td>
<td>$\rho\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$3^{++}1^+$</td>
<td>S</td>
<td>$\rho_3\pi$</td>
<td>1.76</td>
</tr>
<tr>
<td>$3^{++}1^+$</td>
<td>P</td>
<td>$f_2\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$3^{++}1^+$</td>
<td>D</td>
<td>$\rho\pi$</td>
<td>1.50</td>
</tr>
<tr>
<td>$4^{++}0^+$</td>
<td>F</td>
<td>$\rho\pi$</td>
<td>1.00</td>
</tr>
<tr>
<td>$4^{++}1^+$</td>
<td>F</td>
<td>$\rho\pi$</td>
<td>1.20</td>
</tr>
<tr>
<td>$4^{++}1^+$</td>
<td>F</td>
<td>$f_2\pi$</td>
<td>1.60</td>
</tr>
<tr>
<td>$4^{++}1^+$</td>
<td>G</td>
<td>$\rho\pi$</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Table 5: List of the 42 waves used for the mass independent PWA.
Mass spectrum of $\pi^-\pi^0\pi^0$ final state

COMPASS 2008
(10% of 2008 data)

$\bar{\pi}p \rightarrow \pi^0\pi^0p$
no acceptance correction

COMPASS 2008
$\pi p \rightarrow \pi\pi\pi^+p$
$0.1 \text{ GeV}^2/c^2 < t^* < 1.0 \text{ GeV}^2/c^2$
w/o acceptance correction

(21% of 2008 data)
Mesons and Spin Exotic States

Constituent quark model
• color neutral qqbar systems
• Quantum numbers $I^G J^{PC}$
• $P = (-1)^{L+1}$, $C = (-1)^{L+S}$, $G = (-1)^{I+L+1}$
• J^{PC} multiplets: 0^{++}, 0^{--}, 1^{--}, 1^{+-}, 1^{++}, 2^{++}, ...
• Forbidden: 0^{--}, 0^{+-}, 1^{--}, 2^{+-}, 3^{--}, ...

QCD: Additional color-neutral objects
• Tetraquarks (qqbar)(qqbar)
• Hybrids (qqbar)g
• Glueballs gg

Spin Exotic States
• J^{PC} forbidden \rightarrow no simple qqbar state
• No mixing with quark model states