Study of $\pi^- p \rightarrow \pi^- \eta(\eta) p$ at 190 GeV with the COMPASS experiment

T. Schlüter, I. Uman
on behalf of the COMPASS collaboration

Ludwig-Maximilians-Universität
Munich

XIII International Conference on Hadron Spectroscopy, Tallahassee, FL, USA
Nov.29 - Dec. 04, 2009
Agenda

- Exotic $\pi(1400)$ observations.
- Lightest scalar nonet and beyond.
Agenda

• Exotic $\pi(1400)$ observations.
• Lightest scalar nonet and beyond.
• COMPASS Detector description.
• η reconstruction.
Agenda

- Exotic $\pi(1400)$ observations.
- Lightest scalar nonet and beyond.
- COMPASS Detector description.
- η reconstruction.
- Selection and preliminary statistics of $\pi^- p \rightarrow \pi^- \eta p$
- Selection and preliminary statistics of $\pi^- p \rightarrow \pi^- \eta\eta p$
• Exotic $\pi(1400)$ observations.
• Lightest scalar nonet and beyond.
• COMPASS Detector description.
• η reconstruction.
• Selection and preliminary statistics of $\pi^- p \rightarrow \pi^- \eta p$
• Selection and preliminary statistics of $\pi^- p \rightarrow \pi^- \eta\eta p$
• A first glimpse of $f_0(1500) \rightarrow \eta\eta$
Agenda

- Exotic $\pi(1400)$ observations.
- Lightest scalar nonet and beyond.
- COMPASS Detector description.
- η reconstruction.
- Selection and preliminary statistics of $\pi^- p \rightarrow \pi^- \eta p$
- Selection and preliminary statistics of $\pi^- p \rightarrow \pi^- \eta\eta p$
- A first glimpse of $f_0(1500) \rightarrow \eta\eta$
- PWA description and comparison with standard formalisms.
Agenda

- Exotic $\pi(1400)$ observations.
- Lightest scalar nonet and beyond.
- COMPASS Detector description.
- η reconstruction.
- Selection and preliminary statistics of $\pi^- p \rightarrow \pi^- \eta p$
- Selection and preliminary statistics of $\pi^- p \rightarrow \pi^- \eta \eta p$
- A first glimpse of $f_0(1500) \rightarrow \eta \eta$
- PWA description and comparison with standard formalisms.
- Conclusion and outlook.
Exotic $\pi(1400)$

Seen by E852 exp. in $\pi^- p \to \eta \pi^- p$ at 18 GeV/c (publ. in 1997) and by CBAR exp. in $\bar{p}d \to \pi^- \pi^0 \eta p_{spectator}$ (publ. in 1998).
Exotic $\pi(1400)$

Seen by E852 exp. in $\pi^- p \to \eta \pi^- p$ at 18 GeV/c (publ. in 1997) and by CBAR exp. in $\bar{p}d \to \pi^- \pi^0 \eta \text{spectator}$ (publ. in 1998).

Questioned by Dzierba et al. in 2003 in $\pi^- p \to \eta \pi^0 n$ at 18 GeV/c.
Seen by **E852** exp. in $\pi^- p \rightarrow \eta\pi^- p$ at 18 GeV/c (publ. in 1997) and by **CBAR** exp. in $\bar{p}d \rightarrow \pi^0 \eta p_{spectator}$ (publ. in 1998).

Questioned by **Dzierba et al.** in 2003 in $\pi^- p \rightarrow \eta\pi^0 n$ at 18 GeV/c.

Confirmed again by **E852** in 2007 in $\pi^- p \rightarrow \eta\pi^0 n$ at 18 GeV/c, but with a lower mass ($M = 1257 \pm 20 \pm 25$ MeV).
Hypothetical lightest scalar nonets configurations and beyond

Hypo 1 for 0^{++} Nonet

Hypo 2 for 0^{++} Nonet

$K^*_0(1430)$ $K^{*+}_0(1430)$

$K^{*-}_0(1430)$ $\bar{K}^*_0(1430)$

$a_0^-(980)$ $a_0^+(980)$

$f_0(1370)$ $f_0(980)$

i_z S

$K^*_0(1430)$ $K^{*+}_0(1430)$

$K^{*-}_0(1430)$ $\bar{K}^*_0(1430)$

$a_0^-(1450)$ $a_0^+(1450)$

$f_j(1710)$ $f_0(1370)$

i_z S
Hypothetical lightest scalar nonets configurations and beyond

Hypo 1 for 0^{++} Nonet

Hypo 2 for 0^{++} Nonet

Hypo 3: $f_0(1500)$ supernumerary and therefore may be a glueball
Hypothetical lightest scalar nonets configurations and beyond

Hypo 1 for 0^{++} Nonet

Hypo 2 for 0^{++} Nonet

Hypo 3: $f_0(1500)$ supernumerary and therefore may be a glueball

Hypo 4: $a_0(980), f_0(980)$ cusps or members of a tetraquark nonet.
Hypothetical lightest scalar nonets configurations and beyond

Hypo 1 for 0^{++} Nonet

Hypo 2 for 0^{++} Nonet

Hypo 3: $f_0(1500)$ supernumerary and therefore may be a glueball

Hypo 4: $a_0(980), f_0(980)$ cusps or members of a tetraquark nonet.

Hypo 5: $f_0(1370), f_0(1500), f_0(1710)$ are the result of the mixing of the glueball (and a tetraquark) with ordinary mesons.
Hypothetical lightest scalar nonets configurations and beyond

Hypo 1 for 0^{++} Nonet

Hypo 2 for 0^{++} Nonet

Hypo 3: $f_0(1500)$ supernumerary and therefore may be a glueball

Hypo 4: $a_0(980), f_0(980)$ cusps or members of a tetraquark nonet.

Hypo 5: $f_0(1370), f_0(1500), f_0(1710)$ are the result of the mixing of the glueball (and a tetraquark) with ordinary mesons.

Mixing scheme is based mainly on the results of WA102 experiment.

COMPASS goal in centrally produced data is to confirm and improve the observation of WA102:

measure the decay branching widths in $K\bar{K}, \pi\pi, \eta\eta', 4\pi, \eta'\eta', ...$
Hypothetical lightest scalar nonets configurations and beyond

Hypo 1 for 0^{++} Nonet

Hypo 2 for 0^{++} Nonet

Hypo 3: $f_0(1500)$ supernumerary and therefore may be a glueball

Hypo 4: $a_0(980), f_0(980)$ cusps or members of a tetraquark nonet.

Hypo 5: $f_0(1370), f_0(1500), f_0(1710)$ are the result of the mixing of the glueball (and a tetraquark) with ordinary mesons.

Mixing scheme is based mainly on the results of WA102 experiment.

COMPASS goal in centrally produced data is to confirm and improve the observation of WA102:

measure the decay branching widths in $K\bar{K}, \pi\pi, \eta\eta, 4\pi, \eta'\eta', ...$

$\pi^- p \to \pi^- \eta p$ very selective: $X \to \eta\eta$ has $I(J^{PC}) = 0(0^{++}, 2^{++}, 4^{++}, ...)$
COMPASS setup and detector description

- Two arm spectrometer
- Tracking: Straw, Drift chambers, MicroMegas, PixelGEM, Recoil Proton Detector
- Calorimetry: ECAL1 (2006), ECAL2, HCAL1, HCAL2, Sandwich Veto
- Cherenkov: CEDAR, RICH
Electromagnetic Calorimeters

ECAL1
- 11.1 m downstream, low energetic photon detection, $L \times H$: 3.97 × 2.86 m2
- 1500 channels:
 - OLGA: 302 cells, 14.3 × 14.3 cm2
 - MAINZ: 572 cells, 7.5 × 7.5 cm2
 - GAMS: 608 cells, 3.8 × 3.8 cm2

ECAL2
- 33.2 downstream, high energetic photon detection, $L \times H$: 2.45 × 1.94 m2
- 3068 channels:
 - peripheral area: GAMS lead glass blocks 3.8 × 3.8 cm2
 - central area: new ~ 900 radiation hard SHASHLYK modules 3.8 × 3.8 cm2
- New ADC (2008) with 32 sample converters
Pre-selection of exclusive events

- Trigger dedicated to diffractive and "central" reactions.
- Loop to all primary vertexes.
- Interaction in the target: \(-69 < z_{\text{vertex}} < -29\) cm and \(r_{\text{vertex}} < 1.5\) cm.
- 1 outgoing negative track with \(E_{\text{track}} < 180\) GeV.
- 2 and 4 good clusters in ECAL1 and in ECAL2 for the 2\(\gamma\) and 4\(\gamma\) channels, respectively:
Pre-selection of exclusive events

- Trigger dedicated to diffractive and "central" reactions.
- Loop to all primary vertexes.
- Interaction in the target: $-69 < z_{\text{vertex}} < -29$ cm and $r_{\text{vertex}} < 1.5$ cm.
- 1 outgoing negative track with $E_{\text{track}} < 180$ GeV.
- 2 and 4 good clusters in ECAL1 and in ECAL2 for the 2γ and 4γ channels, respectively:
 - not pointed by a track.
 - noise suppression.
 - $E_{\text{clus min}} > 1$ GeV in ECAL1 and $E_{\text{clus min}} > 4$ GeV in ECAL2.
 - in time with the beam: $-3 < t_{\text{cluster}} - t_{\text{beam}} < 5$ ns.
Pre-selection of exclusive events

- Trigger dedicated to diffractive and "central" reactions.
- Loop to all primary vertexes.
- Interaction in the target: $-69 < z_{\text{vertex}} < -29$ cm and $r_{\text{vertex}} < 1.5$ cm.
- 1 outgoing negative track with $E_{\text{track}} < 180$ GeV.
- 2 and 4 good clusters in ECAL1 and in ECAL2 for the 2\gamma and 4\gamma channels, respectively:
 - not pointed by a track.
 - noise suppression.
 - $E_{\text{clus min}} > 1$ GeV in ECAL1 and $E_{\text{clus min}} > 4$ GeV in ECAL2.
 - in time with the beam: $-3 < t_{\text{cluster}} - t_{\text{beam}} < 5$ ns.
- Correction of the photons momenta assuming they originate from the primary vertex.
- Correlation with RPD: $-0.3 < \phi_{\pi^- n\gamma} - \phi_p < 0.3$ rad.
- Energy balance: $180 < E_{\pi^- n\gamma} < 200$ GeV assuming the track to be a pion.
- $\pi^0, \eta \rightarrow \gamma_1 \gamma_2$: 1 combination.
 - $\pi_1^0, \eta_1 \rightarrow \gamma_i \gamma_j, \pi_2^0, \eta_2 \rightarrow \gamma_k \gamma_m$: 3 combinations.
Vertex distributions

COMPASS 2008 data
42% of 2008 DATA

π⁻ p → π⁻ p + anything

π⁻ p → π⁻ p + neutrals only

π⁻ p → π⁻ p + anything

1 outgoing track only

π⁻ p → π⁻ p + neutrals

≥ 1 outgoing tracks

T. Schlüter, I. Uman
Study of \(\pi^- p \rightarrow \pi^- \eta(\eta)p \) at 190 GeV
Recoil Proton Detector and exclusivity cuts

COMPASS preliminary 42% of 2008 DATA

\[\pi^- p \rightarrow \pi^- 4\gamma p \]

COMPASS preliminary 42% of 2008 DATA

\[\pi^- 4\gamma p \rightarrow \pi^- \eta p \]
\(\eta \) and two-body \(\eta \pi^- \) invariant masses in the \(2\gamma \) channel

\[m_{\gamma \gamma} \text{[GeV]} \]

- 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
- 2000 4000 6000 8000 10000 12000 14000 16000

\[\eta \text{-}\pi^\text{-} \text{m} \text{[GeV]} \]

- 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
- Entries/20 [MeV]
- 0 2000 4000 6000 8000 10000

\(\eta \) mass:
- \(m_\eta = 548.7 \pm 0.1 \text{ MeV} \)
- \(\sigma = 22.5 \pm 0.1 \text{ MeV} \)

\[\eta \pi^- \rightarrow \eta \pi^- \text{p} \]

COMPASS
- Preliminary
- 28% of 2008 DATA

\[\pi^- \text{p} \rightarrow \pi^- \eta \text{-} \text{p} \]

T. Schlüter, I. Uman
Study of \(\pi^- \text{p} \rightarrow \pi^- \eta(\eta) \text{p} \) at 190 GeV
η masses in the 4γ channel

COMPASS
42% of 2008 DATA

\(\pi^- p \rightarrow \pi^- \eta \eta p \)

\(m_\eta = 548.6 \pm 0.2 \text{ MeV} \)

\(\sigma = 23. \pm 0.2 \text{ MeV} \)
A preliminary sample of about 150K fitted $\pi^- p \rightarrow \pi^- \eta p$ events is used for the amplitude analysis.

Better statistics will be achieved with improved calorimeter calibration (2008 data) and additional LASER and LED calorimeter monitoring system (2009 DATA).
A preliminary sample of about 5K fitted $\pi^- p \to \eta\eta p$ events is used for the amplitude analysis.

- Comparable amount of data is available in $\pi^- p$ and in pp at 190 GeV in the 2009 run.
- Better statistics will be achieved with improved calorimeter calibration (2008 data) and additional LASER and LED calorimeter monitoring system (2009 DATA).
- The statistics will be further increased by using the mixed decay mode of one of both ηs in $\pi^+\pi^-\pi^0$.

Preliminary statistics of $\pi^- p \to \pi^- \eta\eta p$

<table>
<thead>
<tr>
<th>Condition</th>
<th>2008 Data (42%)</th>
<th>2009 Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of processed data</td>
<td>100.00%</td>
<td>73.78%</td>
</tr>
<tr>
<td>DT0 trigger</td>
<td></td>
<td>72.49%</td>
</tr>
<tr>
<td>Majority <6 for CEDAR1 and CEDAR2</td>
<td></td>
<td>66.91%</td>
</tr>
<tr>
<td>Primary vertex $<69 < z_{\text{vertex}} < -29$ cm</td>
<td></td>
<td>54.81%</td>
</tr>
<tr>
<td>$r_{\text{vertex}} < 1.5$ cm</td>
<td></td>
<td>53.36%</td>
</tr>
<tr>
<td>1 negative track</td>
<td></td>
<td>4.94%</td>
</tr>
<tr>
<td>4 good clusters</td>
<td></td>
<td>0.61%</td>
</tr>
<tr>
<td>$-0.3 < \phi_{\pi^-4\gamma} - \phi_p < 0.3$</td>
<td></td>
<td>0.21%</td>
</tr>
<tr>
<td>Exclusivity ($180 < E_{\pi^-4\gamma} < 200$ GeV)</td>
<td></td>
<td>0.10%</td>
</tr>
</tbody>
</table>

\[
\sqrt{(m_{\gamma_1\gamma_2} - m_{\pi^0})^2 + (m_{\gamma_3\gamma_4} - m_{\pi^0})^2} < 25 \text{ MeV} \quad 69.78\% \text{ of excl. events}
\]

\[
2\pi^0 \text{ 2C CL > 10\% (}\pi^0\text{ mass)} \quad 27.39\% \text{ of excl. events}
\]

\[
\sqrt{(m_{\gamma_1\gamma_2} - m_{\eta})^2 + (m_{\gamma_3\gamma_4} - m_{\eta})^2} < 25 \text{ MeV} \quad 0.17\% \text{ of excl. events}
\]

\[
2\eta \text{ 2C CL > 10\% (}\eta\text{ mass)} \quad 0.13\% \text{ of excl. events}
\]
Two and three-body inv. masses in the 4γ channel

- $\pi^0(1800)$, $\pi_2(1880)$
- $f_0(1500)$
- $a_1(980)$, $a_2^*(1320)$
Production mechanisms

At 190 GeV incoming beam energy two compelling mechanisms for the production process of a state X are possible:

- as a product of the decay of a diffractively produced state Y: \(\pi^- p \rightarrow Y p, Y \rightarrow \pi^- X, X \rightarrow \eta \eta \)
- centrally produced via Double Pomeron Exchange: \(\pi^- p \rightarrow \pi^-_{fast} X p, X \rightarrow \eta \eta \)

\(x_f \) and rapidities overlap: both processes have to be fitted simultaneously!
Amplitude Ansatz for the decay process

- Amplitude (isobar model):
 \[A_f^J = G_A e^{i\delta_A} F_J(q) \]
 \[Y_f^J(\alpha, \beta) \]
 \[m_0^2 - s - i m_0 \Gamma(m) \]

- Blatt-Weisskopf barrier factors
- Angular part: spherical harmonics, decay angles \(\alpha, \beta \) after "Wick rotations" (no D-functions needed).
- Relativistic Breit Wigner

\[\Gamma(m) = \Gamma_0 \left(\frac{m_0}{m}, \frac{q}{q_0}, \frac{F_J^2(q)}{F_J^2(q_0)} \right) \]

\[w(m, m_0, m_1) = \sum_\lambda \left[|A_{XJ}^J(m, m_0)|^2 + |A_{YJ'}^J(m, m_1)|^2 + 2 c_\lambda \Re(A_{XJ}^J(m, m_0) A_{YJ'}^J(m, m_1)) \right] \]
Amplitude Ansatz for the decay process

- **Amplitude (isobar model):**
 \[A_f^A = G_\lambda e^{i\delta_\lambda} F_J(q) \yn Y_J^\lambda(\alpha,\beta) \yn m_0^2 - s - im_0 \Gamma(m) \]

- **Blatt-Weisskopf barrier factors**
 - Angular part: spherical harmonics, decay angles \(\alpha, \beta \) after "Wick rotations" (no D-functions needed).
 - Relativistic Breit Wigner

- Mass of the two-body system
- Break-up momentum
- Intensity with two resonances with masses \(m_0 \) and \(m_1 \), spin \(J \) and \(J' \):
 \[w(m,m_0,m_1) = \sum_\lambda \left[|A_{XJ}^\lambda(m,m_0)|^2 + |A_{YJ'}^\lambda(m,m_1)|^2 + 2 \Re(A_{XJ}^\lambda(m,m_0)A_{YJ'}^\lambda(m,m_1)) \right] \]

T. Schlüter, I. Uman
Study of \(\pi^- p \rightarrow \pi^- \eta(\eta)p \) at 190 GeV
Amplitude Ansatz for the decay process

- Amplitude (isobar model):
 \[A_J^\lambda = G_\lambda e^{i\delta_\lambda} F_J(q) \]
 \[Y_J^\lambda(\alpha,\beta) \]
 \[m_0^2 - s - im_0\Gamma(m) \]

- Blatt-Weisskopf barrier factors

- Angular part: spherical harmonics, decay angles \(\alpha,\beta \) after "Wick rotations" (no D-functions needed).

- Relativistic Breit Wigner

\[w(m,m_0,m_1) = \sum_{J} |A_J^X(m,m_0)|^2 + |A_{J'}^X(m,m_1)|^2 + 2 \text{Re}(A_J^X(m,m_0)A_{J'}^X(m,m_1)) \]
Amplitude Ansatz for the decay process

- Amplitude (isobar model):
 \[A^\lambda J^f = G^\lambda e^{i\delta^\lambda} F_f(q) Y^\lambda_J(\alpha, \beta) \]
 \[m^2_0 - s - i m_0 \Gamma(m) \]

- Blatt-Weisskopf barrier factors

- Angular part: spherical harmonics, decay angles \(\alpha, \beta \) after "Wick rotations" (no D-functions needed).

- Relativistic Breit Wigner

- Resonance mass dependent width
 \[\Gamma(m) = \Gamma_0 \left(\frac{m_0}{m} \right)^2 \frac{q}{q_0} \left(\frac{F^2_f(q)}{F^2_f(q_0)} \right) \]

- Mass of the two-body system

- Break-up momentum

- Intensity with two resonances with masses \(m_0 \) and \(m_1 \), spin \(J \) and \(J' \):
 \[w(m, m_0, m_1) = \sum_{\lambda} \left[|A^\lambda_{XJ} (m, m_0)|^2 + |A^\lambda_{YJ'} (m, m_1)|^2 + 2 c_\lambda \Re(A^\lambda_{XJ} (m, m_0) A^\lambda_{YJ'} (m, m_1)) \right] \]
Amplitude Ansatz for the decay process

- Amplitude (isobar model):
 \[A^4_J = G_\lambda e^{i\delta_\lambda} F_J(q) \]
 \[Y^\lambda_J(\alpha, \beta) \]
 \[m_0^2 - s - im_0 \Gamma(m) \]

- Blatt-Weisskopf barrier factors
- Angular part: spherical harmonics, decay angles \(\alpha, \beta \) after "Wick rotations" (no D-functions needed).
- Relativistic Breit Wigner

- Resonance mass dependent width

\[\Gamma(m) = \Gamma_0 \left(\frac{m_0}{m} \frac{q}{q_0} \frac{F^2_J(q)}{F^2_J(q_0)} \right) \]

- Mass of the two-body system
- Break-up momentum

\[w(m, m_0, m_1) = \sum_\lambda \left(|A^4_{\lambda J}(m, m_0)|^2 + |A^4_{\lambda J'}(m, m_1)|^2 + 2 \Re(A^4_{\lambda J}(m, m_0)A^4_{\lambda J'}^*(m, m_1)) \right) \]
Amplitude Ansatz for the decay process

- Amplitude (isobar model):
 \[A^λ_J = G^λ e^{iδ^λ} F^J(q) \]
 \[Y^λ_J(α,β) \]
 \[m_0^2 - s - im_0Γ(m) \]

- Blatt-Weisskopf barrier factors
- Angular part: spherical harmonics, decay angles \(α, β \) after "Wick rotations" (no D-functions needed).
- Relativistic Breit Wigner
- Resonance mass dependent width
 \[Γ(m) = Γ_0 \left(\frac{m_0}{m} \frac{q}{q_0} \frac{F^2_0(q)}{F^2_0(q_0)} \right) \]

- Mass of the two-body system
- Break-up momentum

\[w(m, m_0, m_1) = \sum_4 \left[|A^4_J(m, m_0)|^2 + |A^4_J(m, m_1)|^2 + 2 |A^4_J(m, m_0)A^4_J(m, m_1)| \right] \]
Amplitude Ansatz for the decay process

- Amplitude (isobar model):

\[A_f^J = G_\lambda e^{i\delta_\lambda} F_J(q) \]

\[Y_J^\lambda(\alpha, \beta) \]

\[m_0^2 - s - im_0 \Gamma(m) \]

- Blatt-Weisskopf barrier factors
- Angular part: spherical harmonics, decay angles \(\alpha, \beta \) after "Wick rotations" (no D-functions needed).
- Relativistic Breit Wigner

- Resonance mass dependent width

\[\Gamma(m) = \Gamma_0 \left(\frac{m_0}{m} \frac{q}{q_0} \frac{F_J^2(q)}{F_J^2(q_0)} \right) \]

- Mass of the two-body system
- Break-up momentum

\[w(m, m_0, m_1) = \sum_\lambda |A_{X_f}^J(m, m_0)|^2 + |A_{Y_J'}^J(m, m_1)|^2 + 2 |\Re(A_{X_f}^J(m, m_0)A_{Y_J'}^J(m, m_1))| \]
Amplitude Ansatz for the decay process

- Amplitude (isobar model):
 \[A^\lambda_f = G^\lambda e^{i\delta^\lambda} F_f(q) Y^\lambda_f(\alpha, \beta) \]
 \[m_0^2 - s - im_0 \Gamma(m) \]

- Blatt-Weisskopf barrier factors
- Angular part: spherical harmonics, decay angles \(\alpha, \beta \) after "Wick rotations" (no D-functions needed).
- Relativistic Breit Wigner
- Resonance mass dependent width
 \[\Gamma(m) = \Gamma_0 \left(\frac{m_0}{m} \right)^{\frac{q}{q_0}} \left(\frac{F^2_f(q)}{F^2_f(q_0)} \right) \]
- Mass of the two-body system
- Break-up momentum

Intensity with two resonances with masses \(m_0 \) and \(m_1 \), spin \(J \) and \(J' \):
\[
 w(m, m_0, m_1) = \sum_\lambda |A^\lambda_X_f (m, m_0)|^2 + |A^\lambda_{Y_f'} (m, m_1)|^2 + 2 c_\lambda \Re(A^\lambda_X_f (m, m_0) A^{\dagger}_{Y_{f'}'} (m, m_1))
\]

T. Schlüter, I. Uman
Study of \(\pi^- p \rightarrow \pi^- \eta(\eta)p \) at 190 GeV
Amplitude Ansatz for the decay process

- Amplitude (isobar model):

\[A_j^\lambda = G_\lambda e^{i\delta_\lambda} F_J(q) Y_j^\lambda(\alpha, \beta) \]

\[m_0^2 - s - im_0 \Gamma(m) \]

- Blatt-Weisskopf barrier factors

- Angular part: spherical harmonics, decay angles \(\alpha, \beta \) after "Wick rotations" (no D-functions needed).

- Relativistic Breit Wigner

- Resonance mass dependent width

\[\Gamma(m) = \Gamma_0 \left(\frac{m_0}{m} \right) Q \left(\frac{q}{q_0} \right) \frac{F_J^2(q)}{F_J^2(q_0)} \]

- Mass of the two-body system

- Break-up momentum

- Intensity with two resonances with masses \(m_0 \) and \(m_1 \), spin \(J \) and \(J' \):

\[w(m, m_0, m_1) = \sum_\lambda \left| A_j^{\lambda, (m, m_0)} \right|^2 + \left| A_{J'}^{\lambda, (m, m_1)} \right|^2 + 2 c_\lambda \Re(A_j^{\lambda, (m, m_0)}A_{J'}^{\lambda, (m, m_1)}) \]

\(c_\lambda \) spin component along \(z \), \(-1 \leq c_\lambda \leq 1 \) degree of coherence.

T. Schlüter, I. Uman

Study of \(\pi^- p \rightarrow \pi^- \eta(\eta) p \) at 190 GeV
Amplitude Ansatz for the decay process

- Amplitude (isobar model):
 \[A_f^\lambda = G_\lambda e^{i\delta_\lambda} F_J(q) Y_J^\lambda(\alpha, \beta) \]
 \[m_0^2 - s - im_0 \Gamma(m) \]

- Blatt-Weisskopf barrier factors
- Angular part: spherical harmonics, decay angles \(\alpha, \beta \) after "Wick rotations" (no D-functions needed).
- Relativistic Breit Wigner
- Resonance mass dependent width
 \[\Gamma(m) = \Gamma_0 \left(\frac{m_0}{m} \right)^2 \left(\frac{q}{q_0} \right)^2 \frac{F_J^2(q)}{F_J^2(q_0)} \]

- Mass of the two-body system
- Break-up momentum

- Intensity with two resonances with masses \(m_0 \) and \(m_1 \), spin \(J \) and \(J' \):
 \[w(m, m_0, m_1) = \sum_{\lambda} \left[|A_{XJ}^\lambda (m, m_0)|^2 + |A_{YJ'}^{\lambda'} (m, m_1)|^2 + 2 \Re (A_{XJ}^\lambda (m, m_0) A_{YJ'}^{\lambda*} (m, m_1)) \right] \]

- \(\lambda \) spin component along \(z \), \(-1 \leq c_\lambda \leq 1\) degree of coherence

T. Schlüter, I. Uman
Study of \(\pi^- p \rightarrow \pi^- \eta(\eta)p \) at 190 GeV
Amplitude Ansatz for the decay process

- Amplitude (isobar model):
 \[A^J_{\lambda} = G_\lambda e^{i\delta_\lambda} F_J(q) Y^\lambda_J(\alpha, \beta) \]

- Blatt-Weisskopf barrier factors
- Angular part: spherical harmonics, decay angles α, β after "Wick rotations" (no D-functions needed).
- Relativistic Breit Wigner
- Resonance mass dependent width

\[\Gamma(m) = \Gamma_0 \left(\frac{m^2}{m_0^2} - s - i m_0 \Gamma(m) \right) \]

- Mass of the two-body system
- Break-up momentum

- Intensity with two resonances with masses m_0 and m_1, spin J and J':
 \[w(m, m_0, m_1) = \sum_\lambda |A^J_{XJ}(m, m_0)|^2 + |A^J_{YJ'}(m, m_1)|^2 + 2 c_\lambda \Re(A^J_{XJ}(m, m_0)A^{J*}_{YJ'}(m, m_1)) \]

- λ spin component along z, $-1 \leq c_\lambda \leq 1$ degree of coherence
Minimization of total intensity of the negative log-likelihood:

\[-\ln \mathcal{L} = \left(- \sum_{j=1}^{N} \ln w_j \right) + N \ln \left(\sum_{i=1}^{M} w_i \right)\]
Minimization and comparison with standard PWA

- Minimization of total intensity of the negative log-likelihood:
 \[-\ln L = (- \sum_{j=1}^{N} \ln w_j) + N \ln(\sum_{i=1}^{M} w_i)\]

- \(N\): number of data events
 \(M\): number of MC events
 Well established resonance parameters fixed at PDG values.
 \(G_\lambda, \delta_\lambda, c_\lambda\): free parameters of the fit
 With this definition, and for a fixed set of parameters, a reduction of \(\ln L\) by 0.5 is statistically significant and corresponds to one standard deviation in mass and width optimizations.
 A higher change in the \(\ln L\) is requested for unambiguous spin determination (\(\Delta \ln L > 10\)).
Minimization and comparison with standard PWA

- Minimization of total intensity of the negative log-likelihood:

 \[- \ln L = \left(- \sum_{j=1}^{N} \ln w_j \right) + N \ln \left(\sum_{i=1}^{M} w_i \right)\]

- \(N\): number of data events
 - \(M\): number of MC events
 - Well established resonance parameters fixed at PDG values.
 - \(G_{\lambda}, \delta_{\lambda}, c_{\lambda}\): free parameters of the fit

 With this definition, and for a fixed set of parameters, a reduction of \(\ln L\) by 0.5 is statistically significant and corresponds to one standard deviation in mass and width optimizations.

 A higher change in the \(\ln L\) is requested for unambiguous spin determination (\(\Delta \ln L > 10\)).

Main differences between this formalism and the standard PWA formalism used in the BNL E852 and WA102 experiments.

- Resonance rest frame after Wick rotation vs. Gottfried-Jackson reference frame
- Partial coherence vs. reflectivity basis with natural and unnatural-parity exchange
- Fitting procedure: unbinned log-likelihood fit vs. mass independent (binned) log-likelihood angular fit + mass fit
Minimization and comparison with standard PWA

- Minimization of total intensity of the negative log-likelihood:
 \[-\ln L = (- \sum_{j=1}^{N} \ln w_j) + N \ln(\sum_{i=1}^{M} w_i)\]

- \(N\): number of data events
 \(M\): number of MC events
 Well established resonance parameters fixed at PDG values.
 \(G, \delta, c\): free parameters of the fit
 With this definition, and for a fixed set of parameters, a reduction of \(\ln L\) by 0.5 is statistically significant and corresponds to one standard deviation in mass and width optimizations.
 A higher change in the \(\ln L\) is requested for unambiguous spin determination (\(\Delta \ln L > 10\)).

Main differences between this formalism and the standard PWA formalism used in the BNL E852 and WA102 experiments.

- Resonance rest frame after Wick rotation vs. Gottfried-Jackson reference frame
- Partial coherence vs. reflectivity basis with natural and unnatural-parity exchange
- Fitting procedure: unbinned log-likelihood fit vs. mass independent (binned) log-likelihood angular fit + mass fit

- Advantages:
 - high constraint fit with reduced number of non-mathematical ambiguities (useful for low statistics channel).
 - no discontinuity among different bins.
Minimization and comparison with standard PWA

- Minimization of total intensity of the negative log-likelihood:

\[-\ln L = (- \sum_{j=1}^{N} \ln w_j) + N \ln \left(\sum_{i=1}^{M} w_i \right)\]

- \(N\): number of data events
- \(M\): number of MC events

Well established resonance parameters fixed at PDG values.

\(G, \delta, c\): free parameters of the fit

With this definition, and for a fixed set of parameters, a reduction of \(\ln L\) by 0.5 is statistically significant and corresponds to one standard deviation in mass and width optimizations.

A higher change in the \(\ln L\) is requested for unambiguous spin determination (\(\Delta \ln L > 10\)).

Main differences between this formalism and the standard PWA formalism used in the BNL E852 and WA102 experiments.

- Resonance rest frame after Wick rotation vs. Gottfried-Jackson reference frame
- Partial coherence vs. reflectivity basis with natural and unnatural-parity exchange
- Fitting procedure: unbinned log-likelihood fit vs. mass independent (binned) log-likelihood angular fit + mass fit

Advantages:

- high constraint fit with reduced number of non-mathematical ambiguities (useful for low statistics channel).
- no discontinuity among different bins.

Disadvantages:

- Computing limitations (presently fast convergence only for < 100K events).
- Additional mass and width scans for all possible spin combination of all unknown resonances needed.
Conclusion and outlook

- COMPASS first results on neutral channels with ηs.
• COMPASS first results on neutral channels with ηs.
• A structure at 1.5 GeV which can be associated to $f_0(1500)$ has been observed.
Conclusion and outlook

- **COMPASS** first results on neutral channels with ηs.
- A structure at 1.5 GeV which can be associated to $f_0(1500)$ has been observed.
- An alternative amplitude analysis has been formulated as a crosscheck to the one used for the BNL E852 and CERN WA102 experiments.
Conclusion and outlook

- **COMPASS** first results on neutral channels with ηs.
- A structure at 1.5 GeV which can be associated to $f_0(1500)$ has been observed.
- An alternative amplitude analysis has been formulated as a crosscheck to the one used for the BNL E852 and CERN WA102 experiments.
- MC studies has shown the equivalence of this formalism with the one used by previous experiments.
Conclusion and outlook

- **COMPASS** first results on neutral channels with ηs.
- A structure at 1.5 GeV which can be associated to $f_0(1500)$ has been observed.
- An alternative amplitude analysis has been formulated as a crosscheck to the one used for the BNL E852 and CERN WA102 experiments.
- MC studies has shown the equivalence of this formalism with the one used by previous experiments.
- Amplitude analysis of $\pi^- p \rightarrow \pi^- \eta(\eta) p$ real data is in progress.
Conclusion and outlook

- **COMPASS** first results on neutral channels with ηs.
- A structure at 1.5 GeV which can be associated to $f_0(1500)$ has been observed.
- An alternative amplitude analysis has been formulated as a crosscheck to the one used for the BNL E852 and CERN WA102 experiments.
- MC studies has shown the equivalence of this formalism with the one used by previous experiments.
- Amplitude analysis of $\pi^- p \rightarrow \pi^- \eta(\eta)p$ real data is in progress.
- The rest of 2008 and all of the 2009 data will added to the final sample.
Simulation of the production of a diffractive X in $\pi^- p \rightarrow X p$ with $X \rightarrow \pi^- \eta$

- M_X uniformly from $m_\pi + m_\eta$ to 3.5 GeV
- t_X as e^{-bt} with $b = 6 \text{ GeV}^{-2}$ with $0 < t < 1 \text{ GeV}^2$. To take into account a resonance dependent production mechanism the shape of the t-distribution will be optimized from the data in different mass ranges around the resonance masses.
- $\phi_X(\phi_p)$ uniformly from 0 to 2π

$$1 - x_X = \frac{M_X^2 - m_{\pi^-}^2}{s}$$

$$p_{T,X}^2 = -t_X$$
Simulation of the production of a central X in $\pi^- p \rightarrow X p$ with $X \rightarrow \eta \eta$

- M_X uniformly from $2m_\eta$ to 3.5 GeV
- t_X as e^{-bt} with an average $b = 6$ GeV$^{-2}$ with $0 < t < 1$ GeV2. The optimization of a resonance dependent t-distribution will be obtained from the data.
- Flat rapidity distribution $-1 < y(X) < 1$
- $\phi_X(\phi_p)$ uniformly from 0 to 2π

\[M_X^2 = -x_{P_1} x_{P_2} s \]

$x_{P_2} = 1 - x_\pi$ on the π side, $x_{P_1} = x_p - 1$ on the p side

In the center of mass

\[x_p + x_\pi + x_X = 0 \]

\[x_X = M_T \frac{e^y - e^{-y}}{\sqrt{s}} = \frac{2M_T \sinh y_{cm}}{\sqrt{s}} \]

Solution:

\[x_{P_1} = \frac{M_T}{\sqrt{s}} \left[\pm \sqrt{\left(\frac{M_X}{M_T} \right)^2 + (\sinh y)^2 + \sinh y} \right] . \]
Definition of angles for a diffractive X in $\pi^- p \rightarrow \pi^- X p$, $X \rightarrow \pi^- \eta p$:

- The z axis is defined in the πp c.m. frame. The x, y axes are defined by the angle formed by the production plane and the decay plane.

- The Wick rotation by angles $-\phi$ and θ to the direction of flight of the diffractive X are followed by a Lorentz boost to the its rest frame (x', y', z') and by another rotation by $-\theta$ and $-\phi$ so that the direction of the new reference frame x'', y'', z'' correspond to one of x, y, z.

- α, β define the direction of one η in the rest frame of X after the Wick rotations. The effect of the Lorentz boost is to leave the η with final momenta different from those in the overall πp rest frame.

The angles α, β obtained in this reference frame after Wick rotations enter in the decay amplitude definition:

$$ A_j^\lambda = G_\lambda e^{i\delta_\lambda} F_j(q) \frac{Y_j^\lambda(\alpha, \beta)}{m_0^2 - s - im_0 \Gamma(m)} $$