Longitudinal Rescaling, Confinement and Soft Scattering

Peter Orland

Bernard M. Baruch College, The City University of New York, 17 Lexington Avenue, New York, NY 10010, U.S.A.
This talk is about ideas on confinement (starting about five years ago) and high-energy soft scattering (in the last few years).

1. The starting point was Mandelstam’s approach to confinement in the axial gauge.

2. 1+1-dimensional integrability and exact form factors are useful (and the techniques parallel some in condensed-matter physics).

3. Connection with decades-old ideas of Verlinde and Verlinde and by McLerran and Venugopalan (Color-Glass-Condensate) in which the gauge-field action is longitudinally rescaled.
Some papers...

1., 2. discuss (3+1)-dimensional collisions. The others concern confinement in 2+1 dimensions.

1. **Longitudinal Rescaling and High-Energy Effective Actions**, with Jing Xiao,

2. **Near-Integrability and Confinement for High-Energy Hadron-Hadron Collisions**,

3. **Composite Strings in (2+1)-Dimensional Anisotropic Weakly-Coupled Yang-Mills Theory**,

2 - P. Orland, Hadron 2009
4. Glueball Masses in (2+1)-Dimensional Anisotropic Weakly-Coupled Yang-Mills Theory,

5. String Tensions and Representations in Anisotropic 2+1-Dimensional Weakly-Coupled Yang-Mills Theory,

6. Integrable Models and Confinement in (2+1)-Dimensional Weakly-Coupled Yang-Mills Theory,

7. Lattice QCD_{2+1},

3 - P. Orland, Hadron 2009
Coupling Constant Renormalization

If the cut-off Λ is very large (say of order of the Planck mass) and the coupling is g we can integrate out some degrees of freedom to find an effective theory at some smaller cut-off $\tilde{\Lambda}$. In this effective theory, the coupling is \tilde{g}.

In perturbation theory: \[\frac{1}{\tilde{g}^2} = \frac{1}{g^2} - \frac{11C_N}{48\pi^2} \ln \frac{\Lambda}{\tilde{\Lambda}}. \]

For large $\tilde{\Lambda}$, perturbation theory is good, and the coupling \tilde{g}, is small. For small $\tilde{\Lambda}$, perturbation theory can no longer be trusted. It suggests, however, that the coupling \tilde{g} GROWS.

Effective strong-coupling theories have been used to try to understand hadron phenomenology. These include Hamiltonian lattice theories in the late 70’s and AdS/QCD approaches in the last ten years. These are models. They are not real QCD.

4 - P. Orland, Hadron 2009
Longitudinally rescaled QCD

Verlinde + Verlinde (’93), McLerran and Venugopalan (’94)

\[x^L = (x^0, x^3), \quad x^\perp = (x^1, x^2) \]

\[x^L \rightarrow \lambda x^L, \quad x^\perp \rightarrow x^\perp \]

The center-of-mass energy squared changes as \(s \rightarrow \lambda^{-2}s \). Since we wish to consider high energies, we take \(\lambda \ll 1 \).

Rescaled action:

\[
S = \frac{1}{2g_0^2} \int d^4x \, \text{Tr} \left(\sum_{j=1}^{2} F_{0j}^2 - \sum_{j=1}^{2} F_{j3}^2 + \lambda^{-2} F_{03}^2 - \lambda^2 F_{12}^2 \right),
\]

\[F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu]. \]
Hamiltonian:

\[H = \int d^3x \left[\frac{g_0^2}{2} \mathcal{E}_\perp^2 + \frac{1}{2g_0^2} \mathcal{B}_\perp^2 + \lambda^2 \left(\frac{g_0^2}{2} \mathcal{E}_3^2 + \frac{1}{2g_0^2} \mathcal{B}_3^2 \right) \right] \]

\[= H_0 + \lambda^2 H_1. \]

\[(\partial_\perp \cdot \mathcal{E}_\perp + \partial_3 \mathcal{E}_3 - \rho) \Psi_{\text{Physical}} = 0, \]

Gauge-invariant UV cut-off and \(\lambda \ll 1 \implies \text{mass gap and confinement.} \)

Furthermore \(\lambda = 0 \implies \text{integrability.} \)
We put this theory on a lattice. Then:

\(H_0 \) is a set of 1+1-dimensional SU(\(N \)) principal-chiral sigma models,

\[
\mathcal{L} = \frac{1}{2g_0^2} \int d^2 x \operatorname{Tr} \partial^\mu U^\dagger \partial_\mu U, \quad \mu = 0, 3,
\]

hence the \(\lambda \to 0 \) limit of the gauge theory, is completely integrable.

We can treat \(H_1 \) as an interaction Hamiltonian, provided

\[
\lambda^2 \ll g_0^{-3} \exp -\frac{4\pi}{g_0^2 N}.
\]
1+1-dimensional PC Sigma Model

Mass Spectrum: \(m_r = m_1 \frac{\sin(\pi r/N)}{\sin(\pi/N)} \), \(r = 1, \ldots, N - 1 \).

“Elementary” soliton-like particles (\(r = 1 \)) are color dipoles (like a quark-antiquark pair). Other (\(r > 1 \)) particles are bound states. The elementary antiparticle has \(r = N - 1 \).

\[(r=1) \text{ by } (r=1) \text{ S-matrix:} \]

\[\mathcal{S}_{11}(\theta) = \frac{\sin(\theta/2-\pi i/N)}{\sin(\theta/2+\pi i/N)} \mathcal{S}_{\text{CGN}}(\theta) \otimes \mathcal{S}_{\text{CGN}}(\theta), \]

where

\[\mathcal{S}_{\text{CGN}}(\theta) = \frac{\Gamma(i\theta/2\pi+1)\Gamma(-i\theta/2\pi-1/N)}{\Gamma(i\theta/2\pi+1-1/N)\Gamma(-i\theta/2\pi)}(1 - \frac{2\pi i}{N\theta}P). \]

Other S-matrix elements are found by fusion and crossing (\(\theta \rightarrow \pi i - \theta \)).

8 - P. Orland, Hadron 2009
Gauss Law + Mass Gap \implies Confinement

One coupling $g'' = g_0/\lambda$, is strong, so we haven’t proved confinement in (3+1)-dimensional QCD (\mathcal{B}_3 fluctuates wildly). In 2+1 dimensions, there is no g'', and confinement takes place at weak coupling.

Diffraction:

If $\lambda = 0$, particles move only longitudinally, not transversely, and scattering is only in the forward direction. As λ is increased, the diffraction peak broadens.

9 - P. Orland, Hadron 2009
The blue bullets are massive soliton-like excitations of transverse electric flux. The red lines are longitudinal electric flux. In meson and baryon states, flux terminates on a quarks.
$d = 2 + 1$ PHASE DIAGRAM

$g_0' = \lambda g_0$

CRITICAL POINT

SOLVABLE

CROSSOVER

STRONG COUPLING

Integrable Line

g_0

11 - P. Orland, Hadron 2009
Summary of Results: $d=2+1$ and (mostly) $N = 2$

Longitudinal string tension:

$$\sigma_L = \frac{3(g'_0)^4}{8K},$$

$$K = \frac{(g'_0)^2 a^2}{4} + \frac{1}{3m^2\pi^2} \left(\frac{g'_0}{g_0}\right)^4 \exp \left[-2 \int_0^\infty \frac{d\xi}{\xi} e^{-\xi \tanh^2 \frac{\xi}{2}}\right].$$

Transverse string tension:

$$\sigma_{\perp} = \frac{ma}{a} - \frac{2\sqrt{3}}{\pi} \frac{g'_0}{g_0^3 a^2}.$$

An exact form factor of the sigma model (Karowski, Weisz 1977) was used to find these string tension corrections.

12 - P. Orland, Hadron 2009
Summary of Results: \(d=2+1 \) and (mostly) \(N = 2 \)
(CONTINUED)

Low-lying mass spectrum:

\[
M_n = 2m_1 + \left[\epsilon_n^{1/3} - \frac{3(3-2\ln 2)\sigma_\perp}{4\pi m} \epsilon_n^{-1/3} \right]^2, \\
\epsilon_n = \frac{3\pi\sigma_\perp(n+\frac{1}{2})}{4m^{1/2}} + \left\{ \frac{3\pi\sigma_\perp}{4m^{1/2}(n+\frac{1}{2})} \right\}^2
+ \frac{1}{8} \left[\frac{3(3-2\ln 2)\sigma_\perp}{2\pi m} \right]^3 \right\}^{1/2}.
\]

\(k \)-string tensions (for \(N > 2 \)):

- **Casimir law** for longitudinal string tensions.
- **Sine law** for transverse string tensions.
The rescaling $x^L \rightarrow \lambda x^L$, is classical. How can we do a quantum rescaling?

This can be done by an anisotropic renormalization technique, in which longitudinal directions (x^0, x^3) are integrated out “more” than transverse directions (x^1, x^2).
Rescaling of field theory on a lattice with $\lambda = 1/2$. First, a Kadanoff transformation increases the longitudinal lattice spacing. The spacing is then restored to its original value by a longitudinal rescaling.

$$\mathcal{L}_{\text{eff}} = \frac{1}{4g_{\text{eff}}^2} \text{Tr} \left(F_{01}^2 + F_{02}^2 - F_{13}^2 - F_{23}^2 + \lambda^{-2+\frac{17C_N}{48\pi^2}g_0^2} F_{03}^2 - \lambda^{2+\frac{7C_N}{48\pi^2}g_0^2} F_{12}^2 \right) + \cdots .$$

$$\frac{1}{g_{\text{eff}}^2} = \frac{1}{g_0^2} - \frac{11C_N}{48\pi^2} \ln \frac{\Lambda}{\tilde{\Lambda}} - \frac{C_N \ln \tilde{b}}{64\pi^2} = \frac{1}{\tilde{g}_0^2} \tilde{b} - \frac{C_N}{64\pi^2} \tilde{g}_0^2 + \cdots .$$
Some Problems Under Investigation

In $2+1$ dimensions, we want to

BEAT THE CROSSOVER!

For the Z_2 (Ising) gauge theory, this has been done by Konik and Adamov. I am trying to solve this problem by redoing the renormalization, keeping finite parts. This would give a solution of the isotropic theory at weak dimensionless coupling.

Exact SU(N) sigma-model form factors are necessary, if the results are to be extended to $N = 3$ or even $N = \infty$.

In $3+1$ dimensions, we want the forward elastic scattering amplitude. We need the distribution of soliton-like particles in the transverse plane and in rapidity space.