Multiple Coherent Components in Relativistic Heavy-Ion Collisions

E. Ikonen

Metrology Research Institute, Aalto University and Centre for Metrology and Accreditation, P.O. Box 13000, FI-00076 Aalto, Finland

Abstract. A theory is presented for multiple coherent source components of partially coherent pion radiation produced by relativistic heavy-ion collisions. Results are given for the relative probabilities of emission of one, two, or three pions. Theoretical calculations on the relation between two- and three-pion correlators give some evidence, when compared with experimental data, for the existence of multiple coherent components in heavy-ion collisions.

Keywords: collision, pion correlation, coherence

PACS: 25.75.Gz, 42.50.Ar, 13.85.Hd

INTRODUCTION

The possibility of observing partial coherence in nuclear collisions has been discussed for over forty years [1, 2]. In principle, the effect could be demonstrated by the zero-momentum-difference intercept of the two-pion correlation function, when observing normalized values below two. However, such an experimental observation of partial coherence is demanding because of problems due to long-lived resonances and particle misidentification, making extrapolation of the data to the zero momentum difference a very challenging problem in practice.

A proposed solution to the particle misidentification problem is measurement of genuine correlations of three pions and normalization of the result by the genuine two-pion correlation function to the power 3/2 [3]. Long-lived resonances and particle misidentification then affect similarly both the numerator and denominator and thus the normalized three-particle correlator \(r_3 \) obtained in this way offers an unbiased estimate of partial coherence: a measured value of \(r_3/2 < 1 \) would provide the long-searched signature of partial coherence in the pion radiation from heavy-ion collisions. In fact, there already exist experimental data from which values \(r_3/2 < 1 \) have been extrapolated to zero momentum difference [4, 5, 6, 7]. However, the extrapolation method used in these analyses has been questioned with a conclusion that there is not yet evidence of partial coherence in heavy-ion collisions, but it might be obtained by three-pion correlations and proper analysis of either existing or future experimental data [8].

If the partial coherence in pion radiation will eventually be demonstrated, the source properties producing this radiation will become under study. This work contributes to the understanding of properties of such particle radiation. The conventional analysis, which assumes one coherent source current, is extended here to cover the case of multiple coherent source currents. There is no a priori reason why only one coherent component should exist. On the contrary, results on photon radiation in the research field of free-electron lasers, analogous to pion radiation in heavy-ion collisions, suggest the existence of multiple coherent components [9, 10, 11, 12]. Although the extension of the theory to multiple coherent source components is straightforward in principle, the analysis should carefully account a number of contributions and provide proper observables to reveal details of the searched coherence effects [13]. Finally, it should be emphasized that tentative application of the developed theory, assuming that the extrapolation biases of Ref. [8] are negligible, suggests existence of multiple coherent source components in partially coherent pion radiation.

MULTIPLE COHERENT COMPONENTS

Emission of photons from a synchrotron radiation source provides an example of a collision process with known interactions between the colliding constituents consisting of a bunch of electrons and a spatially varying magnetic field. Transverse acceleration of the electrons causes a source current producing an emitted radiation field which can be coupled back to the motion of the electrons by self-amplified spontaneous emission. The free-electron laser (FEL) is operated according to that scheme, where it has been shown by theoretical calculations that a definite number \(N \)
of independent processes takes place as given by the ratio of the electron-bunch length to the electron-cooperation length [9]. As predicted, the measured spectra of single FEL pulses contain approximately \(N \) peaks, although their positions and intensities vary \([11, 12]\). Furthermore, it has been shown that the latter finding is a general property of pulsed radiation which is not depending on laser operation \([14]\).

For the analysis of the radiation source with multiple coherent components it is assumed that the source current is described by \([10]\)

\[
J(x) = \sum_{j=1}^{N} n_j J_0(x-x_j) + \sum_{j=1}^{N'} n'_j J'_0(x-x_j), \tag{1}
\]

where the first term consists of \(N \) independent elementary processes of \(n_j \) \((j = 1, 2, \ldots, N)\) particles radiating coherently. The second term with primed symbols describes incoherent radiation from \(N' \) elementary processes of single radiating particles. The elementary source currents \(J_0 \left[J'_0 \right] \) are localized around the space-time points \(x_j \left[x'_j \right] \) with a characteristic probability distribution \(\rho(x_j) \left[\rho'(x'_j) \right] \) for coherent [incoherent] processes. Equation (1) is the simplest starting point of the analysis of heavy-ion collisions with all the relevant features, but more structure can be built in the current terms if the Wigner phase-space density \(S(x,p) \) or single-shot spectral properties are of interest.

In analogy with photon correlation experiments, probabilities \(P_1(p_1), P_2(p_1,p_2), \) and \(P_3(p_1,p_2,p_3) \) describe emission of one, two, and three pions or photons with momenta \(p_i \) \((i = 1, 2, 3)\) \([2, 10, 15]\). Their explicit form is calculated by averaging products of the four-dimensional Fourier transforms \(\tilde{J}_0(p) \). \(\tilde{E}_0(p) \) of the elementary source currents over the distributions of the source coordinates \(x_j, x'_j \), the number of independent processes \(N,N' \), and the intensities \(n_j^2 \). For the sake of completeness, the results are reproduced here for the lowest order probabilities \([13]\):

\[
P_1(p) = \left\langle \sum_{j=1}^{N} n_j^2 \right\rangle |\tilde{J}_0(p)|^2 + \langle N' \rangle |\tilde{E}_0(p)|^2, \tag{2}
\]

where the averages over \(N, N' \), and \(n_j^2 \) are denoted by \(\langle \ldots \rangle \), and

\[
P_2(p_1,p_2) = P_1(p_1)P_1(p_2) + \left\langle \sum_{j_1,j_2 \neq j_1} n_j^2 n_{j_1}^2 n_{j_2}^2 \right\rangle |\tilde{J}_0(p_1)|^2 |\tilde{J}_0(p_2)|^2 \rho(q_{12})^2 + \left\langle \sum_{j=1}^{N} n_j^2 \right\rangle \langle N' \rangle \tilde{J}_0(p_1)\tilde{J}_0(p_2)^* \tilde{J}_0^*(p_1)\tilde{J}_0^*(p_2) \rho(q_{12}) \rho'(q_{12}) + c.c. \}

\[
+ \langle N'^2 \rangle \tilde{E}_0(p_1)\tilde{E}_0(p_2)^* \tilde{E}_0^*(p_1)\tilde{E}_0^*(p_2)^* \rho(q_{12})^2 \rho'(q_{12})^2 + c.c., \tag{3}
\]

where \(\rho(q_{12}) = \int d^4 x_j \exp(i q_{12} x_j) \rho(x_j) \), \(q_{12} = p_1 - p_2 \) and \(+c.c. \) stands for complex conjugate of the term inside the braces. The corresponding equation for the three-particle probability is

\[
P_3(p_1,p_2,p_3) = P_1(p_1)P_1(p_2)P_1(p_3) + \left\langle \sum_{j_1,j_2 \neq j_1} \sum_{j_3 \neq j_1,j_2} n_j^2 n_{j_1}^2 n_{j_2}^2 \right\rangle |\tilde{J}_0(p_1)|^2 |\tilde{J}_0(p_2)|^2 |\tilde{J}_0(p_3)|^2 \rho(q_{12}) \rho(q_{23}) \rho(q_{31}) + c.c. \}

\[
+ \left\langle \sum_{j=1}^{N} n_j^2 \right\rangle \langle N' \rangle |\tilde{J}_0(p_1)|^2 |\tilde{J}_0(p_2)|^2 |\tilde{J}_0(p_3)|^2 \rho(q_{12}) \rho(q_{23}) \rho(q_{31}) + c.c. \}

\[
+ \left\langle \sum_{j} n_j^2 \right\rangle \langle N'^2 \rangle |\tilde{J}_0(p_1)|^2 |\tilde{J}_0(p_2)|^2 |\tilde{J}_0(p_3)|^2 \rho(q_{12}) \rho(q_{23}) \rho(q_{31}) + c.c. \}

\[
+ \langle N'^3 \rangle |\tilde{J}_0(p_1)|^2 |\tilde{J}_0(p_2)|^2 |\tilde{J}_0(p_3)|^2 \rho(q_{12}) \rho(q_{23}) \rho(q_{31}) + c.c., \tag{4}
\]

where \(+c.c. \) stands for two cyclically permuted terms \((p_1 \rightarrow p_2, p_2 \rightarrow p_3, p_3 \rightarrow p_1) + (p_1 \rightarrow p_3, p_2 \rightarrow p_1, p_3 \rightarrow p_2)\) inside the braces. Equation (4) has been simplified as in deriving Eq. (3) where all contributions related to the coherent part were kept and the incoherent part was approximated by \(\langle N'^2 \rangle = \langle N'(N' - 1) \rangle = \langle N' \rangle^2 \).

NORMALIZED TWO- AND THREE-PION CORRELATORS

The zero-momentum-difference intercept of the two-pion correlation function is obtained as the two-pion correlator \(R_2(p,p) = [P_2(p,p) - P_1(p)^2] / P_1(p)^2 \), where the contribution of random single-pion events \(P_1(p)^2 \) is removed from
FIGURE 1. Relation between $r_3/2$ and $R_2(p,p)$ for different numbers N of coherent source components (solid lines) and data from S+Pb [4] and Au+Au [7] collisions. Parameter $R_2(p,p)$ is the zero-momentum-difference intercept of the two-pion correlation function. In the normalized three-pion correlator $r_3/2$, the effects of long-lived resonances, particle misidentification, and experimental binning are cancelled [3]. The result with a single coherent component, used in the analysis by Adams et al. [7], is shown by the curve labeled $N = 1$. Experimental data from S+Pb collisions are in agreement with the curve $N = 2$ [13].

$R_2(p,p)$ to account only for the genuine two-pion effects. Similarly the normalized three-pion correlator is given by $r_3 = R_3(p,p,p)/[R_2(p,p)]^{3/2}$, where the contributions by single- and two-pion events are removed in $R_3(p,p,p)$ [3]. The latter contributions consist of the two first lines of Eq. (4). If the distribution of the number of coherent processes is sufficiently narrow, it can be assumed that $N \simeq \langle N \rangle$ is a fixed integer. Then [13]

$$r_3/2 = \left\{3R_2(p,p) - 2 + 2[1 - R_2(p,p)]^{3/2}/\sqrt{N}\right\}/[R_2(p,p)]^{3/2}$$

(5)

gives the quantitative relation between the normalized three-pion correlator and the two-pion correlator.

The two-pion correlator $R_2(p,p)$ can not be obtained directly from two-pion correlation measurements, since biasing by long-lived resonances, particle misidentification, experimental binning effects, and final-state interactions reduces the experimentally observed two-pion correlation. Nevertheless, the experimental two-pion correlations provide important information on the available parameter space by giving a lower limit for the value of $R_2(p,p)$ as shown in Fig. 1. The upper part of the vertical uncertainty bars of the data points extends up to the value $R_2(p,p) = 1$ due to the uncertainty related to the above-mentioned biasing effects. In the normalized three-pion correlator $r_3/2$, the effects of long-lived resonances, particle misidentification, and experimental binning are cancelled [3]. Finally, state interactions are the most problematic effect in reliable experimental determination of $r_3/2$. Here theoretical calculations have to be used to estimate the correction. The correction adds some uncertainty to the experimental results, but meaningful data can still be obtained from three-pion correlation measurements [7]. If the normalized three-pion correlator $r_3/2$ and the number of coherent processes are known, Eq. (5) can be used to determine the value of $R_2(p,p)$, as shown in Fig. 1.

CONCLUDING REMARKS

Possible existence of partial coherence in pion radiation produced by relativistic heavy-ion collisions is an interesting research question, which can be tackled using the principles of the analysis presented in this contribution. By the analogy of the FEL operation, it can be expected that the partial coherence, if eventually observed, is related to multiple coherent source currents in the heavy-ion collision volume. Furthermore, a tentative analysis of the presently available experimental data supports the existence of multiple coherent components in some heavy-ion collisions. For more
quantitative results of such a situation, a careful extrapolation method of the experimental data to zero momentum difference should be developed and the theoretical analysis might be improved in such a way that a suitable average of the fixed N curves of Fig. 1 is taken.

ACKNOWLEDGMENTS

I thank Maksim Shpak for help in preparing Fig. 1. This study was supported by the Academy of Finland under grant no. 129971.

REFERENCES