Rare Λ_b decays in a quark model

Lonnie J. Mott

ljm04h@fsu.edu

Florida State University
Outline

• Introduction
• Form Factors
• Results
 Decay Rates
 Forward-Backward Asymmetry
• Conclusions
• Current and Future Work
Introduction

No experimental data for rare $\Lambda_b \rightarrow \Lambda^{(*)}$ decays.
Introduction

No experimental data for rare $\Lambda_b \rightarrow \Lambda^{(*)}$ decays.

Searches to begin at LHCb.
Introduction

No experimental data for rare $\Lambda_b \rightarrow \Lambda^{(*)}$ decays.

Searches to begin at LHCb.

800 events expected for dileptonic decays to ground state Λ.
Introduction

For the transition $b \to s \ell^+ \ell^-$ the effective Hamiltonian is

$$\mathcal{H}_{\text{eff}} = \frac{G_F \alpha_{em}}{\sqrt{2} 4\pi} V_{tb} V_{ts}^*[2i \frac{m_b}{q^2} C_7(m_b) \bar{s} \sigma^{\mu \nu} q_\nu (1 + \gamma_5) b \bar{\ell} \gamma_\mu \ell
+C_9(m_b) \bar{s} \gamma^\mu (1 - \gamma_5) b \bar{\ell} \gamma_\mu \ell + C_{10}(m_b) \bar{s} \gamma^\mu (1 - \gamma_5) b \bar{\ell} \gamma_\mu \gamma_5 \ell]$$
For the transition $b \rightarrow s \ell^+ \ell^-$ the effective Hamiltonian is

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \frac{\alpha_{\text{em}}}{4\pi} V_{tb} V_{ts}^* [2i \frac{m_b}{q^2} C_7(m_b) \bar{s}\sigma^{\mu\nu} q_\nu (1 + \gamma_5) b \bar{\ell} \gamma_\mu \ell + C_9(m_b) \bar{s}\gamma^\mu (1 - \gamma_5) b \bar{\ell} \gamma_\mu \gamma_5 \ell + C_{10}(m_b) \bar{s}\gamma^\mu (1 - \gamma_5) b \bar{\ell} \gamma_\mu \gamma_5 \ell]$$

To include long distance contributions from charmonium resonances, replace C_9 with

$$C_9^{\text{eff}} = C_9 + Y_{LD}(q^2)$$
Introduction

For the transition $b \rightarrow s \ell^+ \ell^-$ the effective Hamiltonian is

$$H_{\text{eff}} = \frac{G_F \alpha_{\text{em}}}{\sqrt{2} \frac{\alpha}{4\pi}} V_{tb} V_{ts}^{*} \left[2i \frac{m_b}{q^2} C_7(m_b) \bar{s} \sigma^{\mu \nu} q_\nu (1 + \gamma_5) b \bar{\ell} \gamma_{\mu} \ell
ight] + C_9(m_b) \bar{s} \gamma^{\mu} (1 - \gamma_5) b \bar{\ell} \gamma_{\mu} \ell + C_{10}(m_b) \bar{s} \gamma^{\mu} (1 - \gamma_5) b \bar{\ell} \gamma_{\mu} \gamma_5 \ell$$

To include long distance contributions from charmonium resonances, replace C_9 with

$$C_9^{\text{eff}} = C_9 + Y_{LD}(q^2)$$

Y_{LD} contains a Breit-Wigner term.
Form Factors

Vector current:

\[
\langle \Lambda | \bar{s} \gamma^\mu b | \Lambda_b \rangle = \bar{u}(p_\Lambda, s_\Lambda) \left[F_1(q^2) \gamma^\mu + F_2(q^2) \frac{p_{\Lambda b}^\mu}{m_{\Lambda b}}
ight. \\
\left. + F_3(q^2) \frac{p_{\Lambda}^\mu}{m_{\Lambda}} \right] u(p_{\Lambda b}, s_{\Lambda b})
\]
Form Factors

Vector current:

\[
\langle \Lambda | \bar{s} \gamma^\mu b | \Lambda_b \rangle = \bar{u}(p_\Lambda, s_\Lambda) \left[F_1(q^2) \gamma^\mu + F_2(q^2) \frac{p^\mu_{\Lambda b}}{m_{\Lambda b}} \right. \\
\left. + F_3(q^2) \frac{p^\mu_\Lambda}{m_\Lambda} \right] u(p_{\Lambda b}, s_{\Lambda b})
\]

Axial vector current:

\[
\langle \Lambda | \bar{s} \gamma^\mu \gamma_5 b | \Lambda_b \rangle = \bar{u}(p_\Lambda, s_\Lambda) \left[G_1(q^2) \gamma^\mu + G_2(q^2) \frac{p^\mu_{\Lambda b}}{m_{\Lambda b}} \right. \\
\left. + G_3(q^2) \frac{p^\mu_\Lambda}{m_\Lambda} \right] \gamma_5 u(p_{\Lambda b}, s_{\Lambda b})
\]
Form Factors

Tensor current:

$$\langle \Lambda | \bar{s}\sigma^{\mu\nu}b | \Lambda_b \rangle = \bar{u}(p_{\Lambda}, s_{\Lambda}) \left[H_1(q^2)\sigma^{\mu\nu}
+ H_2(q^2)(p_{\Lambda_b}^\mu \gamma^\nu - p_{\Lambda_b}^\nu \gamma^\mu)/m_{\Lambda_b}
+ H_3(q^2)(p_{\Lambda}^\mu \gamma^\nu - p_{\Lambda}^\nu \gamma^\mu)/m_{\Lambda}
+ H_4(q^2)(p_{\Lambda_b}^\mu p_{\Lambda}^\nu - p_{\Lambda_b}^\nu p_{\Lambda}^\mu)/(m_{\Lambda_b}m_{\Lambda}) \right] u(p_{\Lambda_b}, s_{\Lambda_b})$$
Form Factors \(J^\pi_\Lambda = 1/2^+ \)
Results

\[p_{\Lambda_b} \rightarrow l^- + p_\Lambda \]

\[\theta \]
Results

\[q = p_{\Lambda_b} - p_{\Lambda}, \]

\[\hat{s} = \frac{q^2}{m_{\Lambda_b}^2}, \]
Decay rates $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
Decay rates $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$
Decay rates $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
Decay rates

Branching ratios for $\Lambda_b \to \Lambda \mu^+ \mu^-$ in units of 10^{-6}

<table>
<thead>
<tr>
<th>J^π_Λ</th>
<th>This work</th>
<th>Aslam et al</th>
<th>Wang et al</th>
<th>Chen et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2$^+$</td>
<td>4.4</td>
<td>5.9</td>
<td>6.1</td>
<td>2.1 (QCDSR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2 (PM)</td>
</tr>
<tr>
<td>1/2$^+_1$</td>
<td>0.067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2$^-$</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2$^-$</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2$^+$</td>
<td>0.095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2$^+$</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decay rates

Branching ratios for $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ in units of 10^{-6}

<table>
<thead>
<tr>
<th>J^π_Λ</th>
<th>This work</th>
<th>Aslam et al</th>
<th>Wang et al</th>
<th>Chen et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2^+$</td>
<td>64</td>
<td>39</td>
<td>46</td>
<td>53 (QCDSR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36 (PM)</td>
</tr>
<tr>
<td>$1/2_1^+$</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1/2^-$</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3/2^-$</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3/2^+$</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5/2^+$</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Forward-Backward asymmetry

\[\mathbf{p}_{\Lambda_b^+} \rightarrow \mathbf{l}^- + \mathbf{p}_\Lambda \]

\[\cos \theta \]
Forward-Backward asymmetry

$$A_{FB}(\hat{s}) = \frac{\int_{0}^{1} d\hat{z} \frac{d^2\Gamma}{d\hat{s}d\hat{z}}}{d\Gamma/d\hat{s}} - \frac{\int_{-1}^{0} d\hat{z} \frac{d^2\Gamma}{d\hat{s}d\hat{z}}}{d\Gamma/d\hat{s}}; \hat{z} = \cos \theta$$
Forward-Backward asymmetry $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
Forward-Backward asymmetry $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

![Graph showing differential asymmetry vs. s parameter]

Differential asymmetry

- $1/2^+$
- $1/2_1^+$
- $1/2^-$
- $3/2^+$
- $3/2_1^+$
- $5/2^+$

Rare Λ_b decays in a quark model – p. 16
Conclusions

Charmonium resonances greatly influence the integrated rates in the dimuon decays.
Conclusions

Charmonium resonances greatly influence the integrated rates in the dimuon decays.

Decays to the $3/2^-$ state become almost as strong as decays to the ground state.
Current and Future Work

Numerical computation of form factors.
Current and Future Work

Numerical computation of form factors.

Lepton polarization asymmetries.
Current and Future Work

- Numerical computation of form factors.
- Lepton polarization asymmetries.
- Baryon polarization asymmetries.
Current and Future Work

Numerical computation of form factors.

Lepton polarization asymmetries.

Baryon polarization asymmetries.

Radiative decays.