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The problem of exotic hadrons

«Why are there no strongly bound 
exotic states…, like those of two 
quarks and two antiquarks or four
quarks and one antiquark?»        

H.J. Lipkin (1973)
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Why may we think that exotic 
hadrons do exist?

Experimental status

Summary of Lepton-Photon2005:
«The Θ-pentaquark is not in good health, 
but it is still alive.»

V. Burkert



Why may we think that exotic 
hadrons do exist?

Theoretical reasons
• No general arguments against exotics!
• QCD suggests no veto for exotic hadrons
• Any hadron may be viewed as a multi-quark 

system (e.g., in hard processes). Why could 
not it have exotic quantum numbers?



Why may we think that exotic 
hadrons do exist?

Theoretical reasons (cont.)

• Calculations in various approaches,               
as a rule, provide exotic states,                               
though with properties strongly model-dependent             
(bag model, soliton model, sum rules, lattice, ...)

• Complex angular momenta (CAM) may 
suggest one more (indirect) argument for 
existence of exotic hadrons  



CAM  and exotics
Preliminaries

Take a  2 → 2  process 
(begin, for simplicity, with no spins).

The amplitude A has 2 independent variables
(e.g., W - c.m. energy,  θ - c.m. angle), 
or 3 invariant variables 
(s=W 2, t ~ z=cosθ , u ~ -z ;  s+t+u=const).

Decompose A(s, z) in z into partial waves.
Physical partial-wave amplitudes  fl(s) have        
integer values of the orbital momentum  l .



Assumptions :
► Amplitudes fl(s) admit unambiguous analytical 

continuation in l from integer physical points.

Fulfilled, if the amplitude A(s, z) satisfies dispersion relation (DR)
in the momentum transfers t, u

(Gribov-Froissart formula, 1961). 
DR provides sufficient condition for the continuation .

Necessary conditions are essentially weaker .
DR’s are not formally proved 

(neither in general QFT,  nor in QCD),

but are widely used in phenomenology of strong interactions.



Assumptions :
► There are no massless hadrons

(and no massless exchanges).

Ensures a finite range of interactions 
and threshold behavior  ~ k2l for elastic amplitudes   fl(s)
at physical (integer)  l  and  s → sth

( ( k → 0 ; k  is the c.m. relative momentum)) .           

GF formula  (where it is applicable)
provides the same behavior for continued  fl(s) .



For physical amplitudes the elastic unitarity condition is 

fl(s) - fl
*(s) = 2ik fl(s) fl

*(s) .

For continued amplitudes  fl(s) it takes the form

fl(s) - [ fl*(s)]* = 2ik fl(s) [ fl*(s) ]* ,

inconsistent with the k2l -behavior at Re l < -1/2
(the left-hand side terms ~ |k|2Re l , 

the right-hand side ~ |k|4Re l +1 ) .

The problem was first presented
and solved by Gribov and Pomeranchuk (1962) .



Near threshold, reggeons condense to the point  l = -1/2 ,
and invalidate the k2l-behavior at  Re l < -1/2 .  

With R being the effective interaction radius,  
the condensing trajectories are

ln(s) ≈ - 1/2 + 2 iπ n/ln(-k2R2), 
k2 → 0,     n = ± 1, ± 2, …, ± ∞ .  

When accounting for spins, the orbital momentum l
changes by the total angular momentum j .  

The threshold condensation of reggeons still exists, 
with the same structure,
but shifted limiting point  (Azimov, 1962)

- 1/2 → - 1/2 + σ1 + σ2  .
Thus, there are infinite number of reggeons.



Schematic structure of the threshold condensation 
of reggeons, as seen for the non-relativistic Yukawa
potential

(Azimov, Anselm, and Shekhter, 1963)



Reggeon trajectories solve an equation of the form

F(j, s) = 0 .

Every pole of the partial-wave amplitude may be 
considered in two ways:

• either as the reggeon, i.e., the pole in j , with        
position (and residue) dependent on energy s ,

• or as the energy-plane pole in s , with position  
 (and residue) dependent on angular momentum j .

one-to-one correspondence
between reggeons and energy-plane poles



Infinite number of reggeons
⇓

Infinite number of energy-plane poles

There is an infinite “reservoir” of poles .

Bound state is a pole at the physical sheet of the energy 
plane. 

Resonance is a pole near the physical region of the 
energy plane .

Main part of energy-plane poles are “hidden”
at far Riemann sheets of the energy plane .



Investigation of the non-relativistic Yukawa potential
e -µ r/r shows that the reggeons producing  the
Gribov-Pomeranchuk condensation, on one side, 
and bound-state (or resonance) poles, on the other,
have the same nature .

They come from the same “reservoir” and,  moreover,
may be interchanged .

(Azimov, Anselm, and Shekhter, 1963)
The limiting transition µ → 0 visualizes 

the infinite set of Yukawa poles 
as the infinite set of Coulomb levels .



Gribov-Pomeranchuk threshold condensations are
independent of quantum numbers. 

Therefore, the strong interaction S-matrix should 
contain infinite number of energy-plane poles 
with any quantum numbers,         

both exotic and non-exotic.

The necessary condition for existence of exotics, 
existence of exotic energy-plane poles, 

is satisfied. 

It is now a problem of more detailed dynamics, 
which of the poles may appear near the physical
region, to reveal bound states or resonances.  



Note :  CAM are used here differently from 
traditional usage.

• Usually: begin in the t-channel, construct    
t-channel  partial-wave amplitudes, continue 
them in j, then obtain result (high-energy
asymptotics) for the crossed s-channel.

• Here: begin in the s-channel, construct       
s-channel partial-wave amplitudes, continue 
them in j, then obtain result (energy-plane 
poles) for the same s-channel.



Summary

• Under familiar assumption of analyticity,
hadronic amplitudes have infinite number   
of energy-plane poles with any quantum   
numbers, both exotic and non-exotic. 

• Can one constrain dynamics so, 
 that no exotic pole may approach 
 the physical region?



Conclusion

«…either these states will 
be  found by experimentalists 
or our confined, quark-gluon 
theory of hadrons is as yet lacking
in some fundamental ingredient...»     

R.L. Jaffe,  K. Johnson (1976)
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