Θ^+ Search in CLAS $\gamma d \rightarrow p K^0 K^-(p)$

Nathan Baltzell David Tedeschi University of South Carolina Funded by NSF Grant #0244982

for the CLAS Collaboration

Outline

- Motivation
- The Experiment
- Analysis
- Simulation of Backgrounds

Motivation: $\gamma d \rightarrow \Theta^+ K^-(p) \rightarrow p K^0 K^-(p)$

- A search for Θ^+ photoproduction on the neutron.
- An exclusive measurement with no FSI required.
- pK^0 strangeness is well defined, S = +1.
- Should agree with the $\Theta^+ \rightarrow nK^+$ analysis of the same data.

$\gamma d \rightarrow p K^0 K^-(p)$ Background Processes

- Hyperon Resonances: $\gamma n \rightarrow Y^* K^0$

- Meson Resonances: $\gamma n \rightarrow Mp$

- Both exist in our data, and it is important to understand the background in this analysis.

The Experiment

- Data acquired Spring 2004 in Hall B at TJNAF.
- Tagged Bremsstrahlung photon beam.
 - 3.6 GeV endpoint.
- 24 cm liquid deuterium target; 0.163 g/cm³.
- CLAS large acceptance spectrometer.
- 50 pb⁻¹ luminosity; 9.7 trillion triggers.

Analysis: Identifying $\gamma d \rightarrow pK_sK(p)$

- Measure $p\pi^+\pi^-K^-$ 4-vectors in CLAS, γ in tagger.
- Kinematic Fitting:
 - 1C Reject K– π misidentification.
 - 2C Identify $K_{c} \rightarrow \pi^{+}\pi^{-}$ and missing Proton.
- "Spectator nucleon": missing momentum < 100 MeV/c.
- $\Lambda(1520)$ can be cut from the pK⁻ invariant mass spectrum.

Analysis: Identifying $\gamma d \rightarrow pK_sK(p)$ Yield $\simeq 22,000$

Simulation with Resonances

- 3-body phasespace + Fermi smearing for spectator.
- Adding the relativistic, complex Breit-Wigner amplitudes:
 - $\gamma n \rightarrow Y^* K^0$ hyperons
 - $\Lambda(1520), \Lambda(1690), \Lambda(1820), \Sigma(1775), \Sigma(1670).$
 - $\gamma n \rightarrow Mp$ mesons
 - $a_0(980), a_2(1320), \rho_3(1690)$
 - Comparing our data with these simulated resonances in various kinematic distributions helps to understand our data.

pK⁻ Invariant Mass Spectra

$\Lambda(1520)$ and higher mass hyperons.

K⁰K⁻ Invariant Mass Spectra

Contributions from $a_0(980)$ and $a_2(1320)$.

Particle Momenta

Proton and K⁻ momenta distributions have characteristics of meson and hyperon production.

 $\cos(\theta^{hel})$

- Before drawing conclusions and releasing results in this pentaquark search, it is important to understand the background.
- MC model resonant mesons and hyperons fits the data well.
- In future: unbinned log-likelihood fit of the resonant amplitudes.
- Possibility to measure $\gamma n \rightarrow {}^{0}\Lambda(1520)$ cross section.

 $\gamma n \rightarrow K^0 \wedge (1520)$

Missing ProtonMomentum $\gamma d \rightarrow p K^0 K^-(p)$

K⁻ Angular Coverage 2 torus field settings

Reconstructed Mass Resolution

- : Data / Simulation
 - **Proton:** 9.0 / 7.5 MeV/c²
 - K^0 : 4.0 / 3.5 MeV/c²

pK Invariant Mass $\gamma n \rightarrow Y^* K^0$

K⁰K⁻ Invariant Mass

<u>C</u>EBAF <u>Large</u> <u>A</u>cceptance</u> <u>S</u>pectrometer

Mecking et al., Nucl. Inst. Meth., A 503 (2003) 513.