Recent BES results from J/ψ decays

Zijin Guo University of Hawaii (Representing BES Collaboration)

INTERNATIONAL WORKSHOP ON THE PHYSICS OF EXCITED BARYONS NSTAR 05

12 - 15 October 2005, Tallahassee, Florida USA

OUTLINE

- Introduction
- Multi-quark search and study
- Study of the excited baryon states
- $J/\psi \rightarrow p\bar{p}, \Lambda\bar{\Lambda}, \text{ and } \Sigma^0 \bar{\Sigma^0}$
- Summary

INTRODUCTION

The Beijing Electron Positron Collider (BEPC)

L ~ 5 ×10³⁰ /cm²·s at J/ ψ peak E_{cm}~ 2-5 GeV

A unique e^+e^- machine in the τ -charm energy region since 1989 – until now.

BESII Detector

World J/ ψ and ψ (25) Samples ($\times 10^{6}$)

Introduction to PWA

• construct amplitude A_i for i-th possible partial wave

$$A_{i} = A_{prod}^{i} \cdot P_{X}^{i} \cdot BW_{X}^{i} \cdot A_{decay}^{i}$$

differential cross section is

$$\frac{d\sigma}{d\Phi} = \left|\sum_{i} A_{i}\right|^{2} + A_{bg}$$

- likelihood function $\ln L = \sum_{i=1}^{N} \ln(\frac{d\sigma}{d\Phi} / \sigma)$
- maximum likelihood method

MULTI-QUARK SEARCH

Hadrons consist of 2 or 3 quarks :

Naive Quark Model :

New forms of hadrons:

• Multi-quark states : Number of quarks ≥ 4 ,

for instance, pentaquark

- Hybrids : qqqg, qqqg...
- Glueballs : gg, ggg ...

Multi-quark states, glueballs and hybrids have been searched for experimentally for a very long time, but none is established.

New Observation of X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^{+} \pi^{-}$ at BESII

X(1860) from BES has large BR to pp

• BES measured:

 $BR(J/\psi \to \gamma X(1860)) \bullet BR(X(1860) \to p\overline{p}) \sim 7 \times 10^{-5}$

• For a 0⁻⁺ meson:

 $BR(J/\psi \to \gamma X(1860)) \sim 0.5 - 2 \times 10^{-3}$

• So we would have:

$$BR(X(1860) \rightarrow p\overline{p}) \sim 4 - 14\%$$

(This BR to $p\bar{p}$ might be the largest among all PDG particles)

Considering that decaying into $p\overline{p}$ is only from the tail of X(1860) and the phase space is very small, such a BR indicates X(1860) has large coupling to $p\overline{p}$!

pp bound state (baryonium)?

There is lots & lots of literature about this possibility

deuteron:

attractive nuclear force

loosely bound 3-q 3-q color singlets with $M_d = 2m_p - \epsilon$

baryonium:

loosely bound 3-q 3-q color singlets with $M_b = 2m_p - \delta$?

Observations of this structure in other decay modes are desirable.

BES: X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

X(1835) same as X(1860)?

 X(1835) mass is consistent with the mass of the S-wave resonance X(1860) indicated by the pp mass threshold enhancement.

Its width is 1.9σ higher than the upper limit of the width obtained from $p\overline{p}$ mass threshold enhancement.

- On the other hand, if the FSI effect is included in the fit of the pp mass spectrum, the width of the resonance near pp mass threshold will become larger.
- It is likely to be a pp bound state since it dominantly decays to pp when its mass is above pp mass threshold.
- However, other possible interpretations of the X(1835) are not excluded.

$J/\psi \rightarrow pK^{-}\overline{\Lambda} + c.c.$

Observation of an anomalous enhancement near the threshold of $p\overline{\Lambda}$ mass spectrum at BES II

 $\Gamma = 90 \pm 35 \pm 9 \text{ MeV/c}^2$

Phys. Rev. Lett. 93, 112002 (2004)

Possible Interpretations

- FSI? Theoretical calculations are needed.
- Conventional K* or a multi-quark resonance?
 - Finding other decay modes $K\pi$, $K\pi\pi$ etc. would help to understand its nature.
 - We are now studying

 $J/\psi \rightarrow KK\pi$, $KK\pi\pi$

Observation of a strong enhancement near the threshold of K-A mass spectrum at BES II

- A strong enhancement is observed near the mass threshold of $M_{K\overline{\Lambda}}$ at BES II.
- Preliminary PWA with various combinations of possible N* and Λ^* in the fits —— the structure N_x^* has:

Mass 1500~1650 MeV/c²

Width 70~110 MeV/c²

J^P favors 1/2⁻

 \rightarrow consistent with N*(1535) (or it is a new N_X*?)

Most importantly:

Large BR($J/\psi \rightarrow pN_X^*$) BR($N_X^* \rightarrow K\Lambda$) ~ 2 X 10⁻⁴ suggests N_X^* has strong coupling to KA. could be a KA molecular state (5-quark system).

Search for $\Theta^+(1540)$ pentaquark at BESII

Upper limits @ 90% C.L. BR ($\psi(2S) \rightarrow \Theta \ \overline{\Theta} \rightarrow (K_S p)(K^- n) + (K_S \overline{p})(K^+ n)) < 0.84 \times 10^{-5}$ BR ($J/\psi \rightarrow \Theta \ \overline{\Theta} \rightarrow (K_S p)(K^- n) + (K_S \overline{p})(K^+ n)) < 1.1 \times 10^{-5}$ Phys. Rev. D 70, 012004 (2004)

Upper limits @ 90% C.L.

$$\begin{split} \mathcal{B}(\psi(2S) &\to \Theta K^- \bar{n} \to K^0_S p K^- \bar{n}) < 1.0 \times 10^{-5} \\ \mathcal{B}(\psi(2S) \to \bar{\Theta} K^+ n \to K^0_S \bar{p} \bar{K}^+ n) < 2.6 \times 10^{-5} \\ \mathcal{B}(\psi(2S) \to K^0_S p \bar{\Theta} \to K^0_S p K^- \bar{n}) < 0.60 \times 10^{-5} \\ \mathcal{B}(\psi(2S) \to K^0_S \bar{p} \Theta \to K^0_S \bar{p} K^+ n) < 0.70 \times 10^{-5} \\ \mathcal{B}(J/\psi \to \Theta K^- \bar{n} \to K^0_S p K^- \bar{n}) < 2.1 \times 10^{-5} \\ \mathcal{B}(J/\psi \to \bar{\Theta} K^+ n \to K^0_S \bar{p} \bar{K}^+ n) < 5.6 \times 10^{-5} \\ \mathcal{B}(J/\psi \to K^0_S p \bar{\Theta} \to K^0_S \bar{p} K^- \bar{n}) < 1.1 \times 10^{-5} \\ \mathcal{B}(J/\psi \to K^0_S \bar{p} \Theta \to K^0_S \bar{p} K^+ n) < 1.6 \times 10^{-5} \end{split}$$

EXCITED BARYON STATES

- Probe the internal structure of light quark baryons
- > Search for missing baryons predicted by quark model
- Obtain a better understanding of the strong interaction force in the non-perturbative regime

• N*(1440) first radial excitation

M = 1345-1470, $\Gamma = 160-450 \text{ MeV/c}^2$

- N*(1535) first L=1 excitation
 M = 1495-1555, Γ = 90-250 MeV/c²
- Missing N* resonances
 Hybrid (qqqg), 3-quark, diquark-q

Baryon spectroscopy at BES@BEPC

For $J/\psi \rightarrow N\overline{N}\pi$ and $J/\psi \rightarrow N\overline{N}\pi\pi$, $N\pi$ and $N\pi\pi$ systems are limited to be pure isospin 1/2.

Missing N* with small couplings to $\pi N \& \gamma N$, but large coupling to gggN: $\Psi \rightarrow pp\eta$, $pp\varpi$, $pp\eta'$, $pp\phi$, $p\Lambda K$, $p\Sigma K$,...

Not only N*, but also: $\Lambda^*, \Sigma^*, \Xi^* \Psi \rightarrow \Xi \Lambda K, \Xi \Sigma K, ...$

Less allowed spins due to threshold effect, hence less overlap effects.

Evidence for two new N* peaks

• Fitting formula

$$\frac{q^{2l+1}k}{(M^2 - M_0^2) + M_0^2\Gamma_0^2}$$

- *k* : momentum of *n q* : proton momentum in
 - M_x frame

> Possible new N* resonance $M = 2065 \pm 3^{+15}_{-30} MeV/c^2$ $\Gamma = 175 \pm 12 \pm 40 MeV/c^2$

> preliminary PWA favors 3/2+

hep-ex/0405030

MASS AND KA COUPLING OF N*(1535)

B.C. Liu and B.S. Zou, nucl-th/0503069

 $\Gamma_{N^*}(s) = \Gamma_{N^*}^0 \left[0.8\rho_{\pi N}(s) + 2.1\rho_{\eta N}(s) + 3.5\rho_{\Lambda K}(s) \right] \qquad M_{N^*} \approx 1400 MeV$ $\Gamma_{N^*}^0 = 270 MeV$

$\psi(2S) \rightarrow p\bar{p}\pi^0(\eta)$

For N* study,

- studied in earlier J/ ψ decays at BES
- Decay into $p\overline{p}\pi^{0}(\eta)$ is dominated by two-body via an excited state of the nucleon

$\psi(2S) \rightarrow pp\pi^0(\eta)$

$$Q_{p\bar{p}\pi^{0}} = \frac{\mathcal{B}(\psi' \to p\bar{p}\pi^{0})}{\mathcal{B}(J/\psi \to p\bar{p}\pi^{0})} = (12.1\pm1.9)\%$$
$$Q_{p\bar{p}\eta} = \frac{\mathcal{B}(\psi' \to p\bar{p}\eta)}{\mathcal{B}(J/\psi \to p\bar{p}\eta)} = (2.8\pm0.7)\%$$

Phys.Rev.D71:072006,2005

$J/\psi \rightarrow p\overline{p}\pi^0$ from BESII data

BESII 58M (preliminary)

PWA is being performed

$J/\psi \rightarrow p\bar{p}\omega$ from BESII data

PWA is being performed

$J/\psi \rightarrow p\bar{p}, \Lambda\bar{\Lambda}, \text{ and } \Sigma^0 \bar{\Sigma}^0$

The angular distribution of two baryon final states can be written as: $\frac{dN}{dcos\theta_B} \propto 1 + \alpha \ cos^2\theta_B$

 $\theta_{\rm B}$ is the angle between the baryon direction and the positron beam direction.

α predicted by different models from first-order QCD

α	pp-bar	ΛΛ-bar	$\Sigma^0\Sigma^0$ -bar
Model [1]	0.46	0.32	0.31
Model [2]	0.69, 0.70	0.51	0.43

[1] M. Claudson, S.L. Glashow, M.B.Wise, Phys. ReV. D25, 1345 (1982)
[2] C. Carimalo, Int. J. Mod. Phys. A2, 249 (1987)

$J/\psi \rightarrow pp$ -bar (Phys. Lett. B591 (2004) 42-48)

- The Br is within one σ of PDG value.
- Angular distribution is in good agreement with prediction [2].

0.69, 0.70

 $J/\psi \rightarrow \Lambda\Lambda$ -bar and $\Sigma^0\Sigma^0$ -bar

Energy distribution of $\Lambda\Lambda$ **-bar for** $J/\psi \rightarrow \Lambda\Lambda$ **-bar** + X

• A clear peak centered at the J/ ψ mass from the decay J/ $\psi \rightarrow \Lambda\Lambda$ -bar is observed. $[\Lambda \rightarrow p\pi]$

• The enhancement centered at 2.9 GeV is mostly due to the decay $J/\psi \rightarrow \Sigma^0 \Sigma^0$ -bar, where Σ^0 decays to $\Lambda \gamma$.

• The α value for $J/\psi \rightarrow \Lambda\Lambda$ -bar is consistent with the previous measurements.

• The α value for $J/\psi \rightarrow \Sigma^0 \Sigma^0$ -bar is negative, which agrees with that of BESI while conflicts with the theoretical expectation.

SUMMARY

Using BESII's 58 million J/ ψ (&14M ψ (2S)) events

- New Observation of X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$.
- Observation of an anomalous enhancements near the threshold of pA in J/ψ → pK⁻A; and evidence of N_X* was observed near KA mass threshold, suggesting a resonant or bound state.
- No pentaquark state $\theta(1540)$ seen.
- N(2065) observed in $J/\psi \rightarrow p\bar{n}\pi^{-}$, favors 3/2+.
- Measurement on $\psi(2S) \rightarrow p\overline{p}\pi^0(\eta)$ reported, and some enhancements are observed.
- Precise measurements of $J/\psi \rightarrow p\overline{p}$, $\Lambda\overline{\Lambda}$, and $\Sigma^0\overline{\Sigma}^0$.