Coupled-channel fit to pionnucleon elastic and eta production data

W.J. Briscoe R.A. Arndt, I.I. Strakovsky, R.L.Workman GWU

Contents

- Motivation
- New $\pi^- p \rightarrow \eta n$ data
- Effect on amplitudes
- ηn couplings
- ηn scattering length
- Conclusion

Motivation

- ηn channel vital for determination of S₁₁(1535) and D₁₃(1520) couplings
- Interference with (small) D_{13} signal is visible in (γ, η) and (π, η) data
- ηn SL determinations have a wide range (particularly for Re)
- New data (E909 and E913/914) are now available

New BNL $\pi^- p \rightarrow \eta n$ data

E909:	$34 d\sigma/d\Omega$	$16 \sigma^{tot}$	T=559 – 639 MeV
Eta Spe	ectrometer		$\theta = 26 - 154^{\circ}$
E913/E	<mark>2914:</mark> 84 dσ/dΩ	2	T=561 – 620 MeV
Crystal	Ball		$\theta = 23 - 157^{o}$

E909

913/914

Total Xsection for $\pi^-p \rightarrow \eta n$

dσ/dΩ for $\pi^- p \rightarrow \eta_{\mu}$ (un-norm plots)

Data: E909, E913/E914 Slns: G380, Giessen multi-ch, PNPI multi-ch

Resonance widths (MeV) and BRs

Res	Solution	Γπ	Γη	$\Gamma\pi\Delta$	ΓρΝ	Γη / Γt
N(1535)	Fit A	30 ± 2	45 ± 3	15 ± 1		0.50
	Fit B	32 ± 3	45 ± 4	16 ± 1		0.48
	Fit C	39 ± 3	67 ± 4	9 ± 2		0.58
	Fit D	42 ± 6	70 ± 10	11 ± 2		0.57
N(1520)	Fit A	68 ± 1	0.12 ± 0.03	19 ± 5	19±5	0.0012
	Fit B	68 ± 1	0.17 ± 0.12	19±6	19 ± 6	0.0016
	Fit C	67 ± 1	0.08 ± 0.03	14 ± 4	24 ± 4	0.0008
	Fit D	67 ± 1	0.09 ± 0.07	14 ± 5	24 ± 5	0.0009

Fit A,C (include Xball) Fit B,D (no Xball)

S₁₁(1535): Γη > Γπ D₁₃(1520): Γη/Γt ~0.0008 – 0.0016

> **D**₁₃ [Mainz (γ, η)]: $\Gamma \eta / \Gamma t = 0.0008 \pm 0.0001$ **D**₁₃ [Giessen multi-ch]: $\Gamma \eta / \Gamma t = 0.0023 \pm 0.0004$

Optical Theorem

The optical theorem leads to

$$ImA_{\eta N} = p_{\eta}/4\pi \ \sigma(\eta n)^{tot}$$

$$= p_{\eta}/4\pi \ [\sigma(\eta n \rightarrow \pi N) + \sigma(\eta n \rightarrow 2\pi N) + \sigma(\eta n \rightarrow 2\pi N)]$$

$$+ \sigma(\eta n \rightarrow \eta N)]$$

$$= 3p_{\pi}/8\pi p_{\eta}^{2}\sigma(\pi^{-}p \rightarrow \eta n)$$

$$+ p_{\eta}/4\pi \ [\sigma(\eta n \rightarrow 2\pi N) + \sigma(\eta n \rightarrow \eta N)]$$

As a result, we have ImA_{ηN} $\ge 3p_{\pi}/8\pi p_{\eta}\sigma(\pi^-p \rightarrow \eta n)$

Using a linear fit, the recent **E909** threshold data give $1/p_{\eta} \sigma(\pi^- p \rightarrow \eta n) = 15.2 \pm 0.8 \ \mu b/MeV$

 $ImA_{\eta N} \ge 0.172 \pm 0.009 \text{ fm}$

Optical Theorem

ηn Scattering Length Overview

Α _{ηN}	(fm)	Ref	A _{ηN} (f	m)	Ref
-0.15	+10.22	Birbrair96	0.550	+10.300	Sauermann95
0.20	+ i0.26	Kaiser97	0.56	+ i0.22	Birbrair96
	\geq i0.24(2)	Binnie73	0.577	+ i0.216	Feuster98
0.25	+ i0.16	Bennhold91	0.621(40)	+ i0.306(34)	Abaev96
0.27	+ i0.22	Bhalerao85	0.68	+ i0.24	Kaiser95
0.28	+ i0.19	Bhalerao85	0.734(26)	+ i0.269(19)	Batinic98
≤ 0.30		Grishina00	0.75(4)	+ i0.27(3)	Green97
0.32	+ i0.25	Ramon00	≥ 0.75		Rakityansky01
0.404(1	117)+ i0.343(58)	Batinic95	0.75	+ i0.27	Fix02
0.41	+ i0.26	Gasparyan03	0.772(5)	+ i0.217(3)	Nieves01
0.42	+ i0.34	Sibirtsev02	0.83	+ i0.35	Tuan65
0.42	+ i0.32	Krehl00	0.87	+ i0.27	Green99
0.46(9)	+i0.18(3)	Briscoe02	0.876(47)	+ i0.274(39)	Batikic95
0.476	+ i0.279	Faldt95	0.886(47)	+ i0.274(39)	Batinic95
0.476	+ i0.279	Tiator94	0.91(6)	+i0.27(2)	Green05
0.487	+ i0.171	Feuster98	0.91(3)	+ i0.29(4)	Batinic95a
0.51	+ i0.21	Sauermann95	0.968	+ i0.281	Batinic95
0.52	+ i0.25	Willis97	0.980	+ i0.37	Arima92
0.54	+ i0.49	Krippa01	0.991	+ i0.347	Penner02
0.55(20	0) +i0.30	Wilkin93	1.05	+ i0.27	Green99

(1.03 - 1.14) + i(0.31 - 0.41) fm (K-matrix fit)

Conclusion

Results with new $\pi^- p \rightarrow \eta n$ data consistent with other recent determinations:

• $D_{13} \rightarrow \eta n$ coupling spans previous range of values

Progress:

We are using the extracted πN and ηN amplitudes in analysis of (γ , η) data