Hyperon production in photonuclear reactions on proton: $K^0 \Sigma^+$ channel

R. Castelijns^{1,2}, J. Bacelar¹, H. Löhner¹, J. Messchendorp¹, S. Shende¹

1 KVI Groningen, The Netherlands 2 now at Forschungszentrum Jülich, Germany

for the CB-ELSA / TAPS Collaboration

Univ. Basel, Switzerland Univ. Bochum, Germany Univ. Bonn, Germany Univ. Dresden, Germany

Univ. Erlangen, Germany Petersburg NPI Gatchina, Russia Univ. Giessen, Germany KVI Groningen, The Netherlands

N-star, 12-10-2005

outline

- motivation
- the setup at ELSA (Bonn)
- results on $K^0 \Sigma^+$ production
- comparison to theory
- conclusion

Σ hyperon production

SAPHIR and ABBHHM data

Coupled channels calculations require better data in $K^0 \Sigma^+$ channel

Σ hyperon production

New SAPHIR and CLAS data

SAPHIR:

New analysis
Improved error bars
Higher energies
50 % lower due to better
background subtraction

CLAS:

Similar in quality
Differential cross sections need to be extracted due to limited acceptance

Experimental setup

CB and TAPS photon spectrometers

Unique setup: two photon spectrometers cover almost 4π solid angle

N-star, 12-10-2005

Channel of interest

neutral decay

We are investigating: $\gamma p \longrightarrow K^{0} \Sigma^{+}$ $50\% (K_{s})$ $50\% (K_{s})$

This requires:

•Photon spectrometer

•High granularity

•High acceptance

•CB/TAPS acceptance is 95%

photons	80% of 4 π	90% of 4 π
1 photon	80%	90%
2 photons	64%	81%
3 photons	51%	72%
4 photons	41%	65%
5 photons	32%	59%
6 photons	26%	53%

Kinematical fitting

Improving the resolution

In a kinematical fit the measured values are varied, to minimize certain constraints:

Conservation of energy (1) Conservation of momentum (3) Pion invariant mass (3)

Unknowns: Proton energy (punch through)

6 times overdetermined

Confidence level cut at 10 % Background not altered

The $\pi^0 \pi^0 \pi^0$ channel

Selecting the data

Channel of interest :

 $\gamma + p \rightarrow K^0 \Sigma^+ \rightarrow 3\pi^0 + p \rightarrow 6\gamma + p$

Background:

 $\gamma + p \rightarrow \eta + p \rightarrow 3\pi^0 + p \rightarrow 6\gamma + p$ $\gamma + p \rightarrow 3\pi^0 + p \rightarrow 6\gamma + p$ combinatorics ...

The η channel is used for normalisation

Identifying $K^0_{\ S}$ and Σ^+

The invariant mass spectra

•Cut on the $p\pi^0$ invariant mass around the $\Sigma^{\scriptscriptstyle +}$ mass (1189 MeV)

• Kaon invariant mass resolution 10 MeV (σ)

N-star, 12-10-2005

Background subtraction

- Background subtraction using polynomial
- Integration of the subtracted signal

Acceptance

angular distributions in bins of photon energy

- Using phasespace MC
- Acceptance is shown for K⁰ channel and the normalisation channel (η)
- The acceptance for K⁰ is flat
 - due to decay of the K^0 and Σ^+
- Covers full angular range
 - no extrapolation

Acceptance

angular distributions in bins of photon energy

- Using phasespace MC
- Acceptance is shown for K⁰ channel and the normalisation channel (η)
- The acceptance for K⁰ is flat
 - due to decay of the K^0 and Σ^+
- Covers full angular range
 - no extrapolation

Normalisation using η channel

- Comparison to CB data (2002)
 V. Crede et al., PRL 94, 012004, (2005).
- good agreement
- acceptance well understood

Normalisation using η channel

- Comparison to
 V. Crede et al.,
 PRL 94, 012004,
 (2005).
- good agreement over entire energy range
- acceptance well understood

The photon flux

- Obtained flux follows: 1/E form with polynomial modification
- Agrees with online flux estimate, obtained using scalers

Differential cross section

Differential cross sections

- The differential cross sections agree with the SAPHIR result except at forward angles
- The CBELSA / TAPS result is flatter for the lower energies

Excitation function

comparison to SAPHIR and CLAS

- The excitation function is slightly above the CLAS result
- The excitation function lies below the SAPHIR result at around 1.8 GeV
- Due to disagreement in the forward angles

Recoil polarisation

- Σ^+ is self analyzing
- Polarisation defined by the number of protons emitted above and below the reaction plane
- Recoil polarisation agrees with the new SAPHIR results
 - finer binning

N-star, 12-10-2005

Comparison to K-matrix calculations

Differential cross sections

- Comparison between the data and K-matrix calculation by Usov and Scholten (dashed)
 - using all known resonances
 - using coupled channels approach
 - Including additional $P_{13}(1830)$ describes the data better (solid)
 - More details in talk ofO.Scholten

Excitation function

• The excitation function shows the difference between the different model inputs more clearly

Recoil polarisation

- Polarisation observables are also calculated within the Kmatrix framework
- Sensitivity of recoil polarisation data does not allow to discriminate between the different model inputs

Summary & outlook

Summary:

•Photoproduction cross sections and recoil polarisations of $K^0\Sigma^+$ channel have been obtained using neutral decay mode

•Results agree with new Saphir analysis and Jlab results

•The K-matrix calculations of Usov and Scholten reproduce the measured data significantly better when an additional P_{13} is included at 1830 MeV

Outlook:

- •Analysis of the data taken with a polarized beam
- •Analysis of the data taken with a deuteron target
 - to obtain information on the hyperon-nucleon interaction

Pull distributions of the fit

- Pull distributions compared to Gaussian:
 - sigma = 1
 - mean = 0
- Systematic errors under control

Confidence level distribution

- Important: confidence
 level
 distribution
 for **η** and K⁰
 are the same
- Calibration
 relative to **n**

Effect of thresholds on differential cross sections

Acceptance holes for η

Recoil polarisation determination

- Reaction plane defined by kaon and sigma
- Recoil polarisation determined by counting the number of times the proton is emitted above (N1) or below the plan (N2)
- $P = (N1 N2)/(\alpha(N1 + N2))$
- $\alpha = 0.980 (PDG)$

N-star, 12-10-2005