Strangeness Production on the Neutron via the Reaction

$$
\gamma \mathrm{n}(\mathrm{p}) \rightarrow \mathbf{K}^{+} \Sigma^{-}(\mathbf{p})
$$

- motivation
- experiment
- K+ identification, kinematic corrections
- inclusive/exclusive analysis
- background studies
- acceptance/efficiency
- unfolding the Σ cross section

Jörn Langheinrich

Strangeness Photoproduction

Isospin Channels:

$$
\begin{aligned}
& \gamma \mathrm{p} \rightarrow \mathrm{~K}^{+} \Lambda \\
& \gamma \mathrm{p} \rightarrow \mathrm{~K}^{+} \Sigma^{\circ} \\
& \gamma_{\mathrm{n}} \rightarrow \mathrm{~K}^{+} \Sigma^{-} \\
& \\
& \gamma \mathrm{n} \rightarrow \mathrm{~K}^{\circ} \Lambda \\
& \gamma_{\mathrm{n}} \rightarrow \mathrm{~K}^{\circ} \Sigma^{\circ} \\
& \gamma_{\mathrm{p}} \rightarrow \mathrm{~K}^{\circ} \Sigma^{+}
\end{aligned}
$$

F.X. Lee, T. Mart, C. Bennhold, L.E. Wright nucl-th/9907119 1999

g2a experiment

Beam energy E_{0} : 2.5 GeV
Photon energy: 20\%-95\% of E_{0} (tagged region)
Trigger: tagger + 1 charged (or 2 neutral)
Torus current: 87% pos. outbending
Beam current: $10-13 \mathrm{nA}$ 10^{-4} radiator
Events recorded: over 2 * $\mathbf{1 0}^{9}$

This Analysis:
Ana Lima
Jörn Langheinrich USC

Sponsor:
Barry Berman
Contributions:
Bernhard Mecking
Henry Juengst
Ioana Niculescu
Ulrike Thoma
All nice people doing g2 cooking, calibration, and shifts

\mathbf{K}^{+}Mass Resolution

$\mathrm{p}_{\mathrm{K}^{+}}=1.515$ [GeV]

K ${ }^{+}$Mass Peak / Resolution

\mathbf{K}^{+}Time-of-Flight Correction

Φ [deg]

\mathbf{K}^{+}Time-of-Flight Correction

Φ [deg]

... consider fiducial cuts

Inclusive or Exclusive analysis?

$\sum^{=}$missing mass

-High Acceptance

- Flat Acceptance
- High θ, E γ coverage
- Model independent simulation
- Background easy to understand

$\Sigma^{-} \rightarrow \pi \mathbf{n}$

- Separation of Σ^{-}
- Stand alone analysis
- High mass resolution
- Fermi motion correction
- Low background

Let's do both!

Ana Lima Jörn Langheinrich

Gabriel Niculescu

Missing Mass Calculation

$$
M_{X}=\sqrt{M_{N}{ }^{2}+M_{K}{ }^{2}-2 M_{N} E_{K}+2 E_{\gamma}\left(M_{N}-E_{K}+p_{K} \cos \theta\right)}
$$

Assuming Nucleon Target

Other Assumptions

Missing mass vs Kaon mass

Divide missing mass distribution into bins Fit K+ mass distribution in each bin

Check fit quality!

Hyperon structure in background

miss. mass $\left(1.362<E_{\gamma}<1.462 \quad 0.7<\cos \theta_{K}^{*}<0.8\right.$

K $^{+}$Acceptance / CM System

Kaon momentum

$E_{\Gamma}[\mathrm{GeV}]$

K^{+}Efficiency / Lab System

MC-simulation using isobar model [T.Mart] as event generator

Strategy: unfolding Σ^{0} / Σ^{-}

Smear Λ, Σ^{0} photoproduction cross section measured off proton target [McNabb, Schumacher] by Fermi motion.

Apply phenomenological fit (Legendre Polynom) to get Σ^{0} / Λ ratio

Use this ratio and our measured Λ cross section off deuteron target to calculate Σ^{0} cross section

Subtract calculated Σ^{0} cross section from our measured $\Sigma_{\text {Total }}$

Differential Cross Section

Differential Cross Section

Our Analysis
Cross Section off Proton [McNabb, Schumacher]
After Sigma0 Subtraction

Differential Cross Section

Our Analysis
Cross Section off Proton [McNabb, Schumacher]
After Sigma0 Subtraction

Differential Cross Section

Our Analysis
Cross Section off Proton [McNabb, Schumacher]
After Sigma0 Subtraction

Differential Cross Section

Our Analysis
Cross Section off Proton [McNabb, Schumacher]
After Sigma0 Subtraction

Differential Cross Section

Our Analysis
Cross Section off Proton [McNabb, Schumacher] After Sigma0 Subtraction

W dependence of results

Σ^{-}after Σ° subtraction
Results from exclusive analysis
Kaon MAID

W dependence of results

Σ^{-}after Σ° subtraction
Results from exclusive analysis
Kaon MAID

W dependence of results

Σ^{-}after Σ° subtraction
Results from exclusive analysis
Kaon MAID

W dependence of results

Σ^{-}after Σ° subtraction
Results from exclusive analysis
Kaon MAID

W dependence of results

Σ^{-}after Σ° subtraction
Results from exclusive analysis
Kaon MAID

Summary

Accomplished:

Robust, model independent analysis
Good/fair reproduction of Λ cross section Surprising result for Σ cross section
Σ cross section lower than expected $\cos \Theta$ structure: minimum at 0.45

To do:
Compare exclusive and inclusive Discuss systematic errors

Your suggestion goes here
Analysis review process

