Strangeness Production on the Neutron via the Reaction γ n (p) \rightarrow K⁺ Σ ⁻ (p)

- motivation
- experiment
- K+ identification, kinematic corrections
- inclusive/exclusive analysis
- background studies
- acceptance/efficiency
- unfolding the Σ cross section

Jörn Langheinrich

NSTAR 2005

Strangeness Photoproduction

Isospin Channels:

$$\gamma p \rightarrow K^+ \Lambda$$
 $\gamma p \rightarrow K^+ \Sigma^{\circ}$
 $\gamma n \rightarrow K^+ \Sigma^{-}$

$$\gamma n \rightarrow K^{\circ} \Lambda$$
 $\gamma n \rightarrow K^{\circ} \Sigma^{\circ}$
 $\gamma p \rightarrow K^{\circ} \Sigma^{+}$

F.X. Lee, T. Mart, C. Bennhold, L.E. Wright nucl-th/9907119 1999

CEBAF Large Acceptance Spectrometer

g2a experiment

Beam energy E₀: 2.5 GeV

Photon energy: 20% - 95% of E₀ (tagged region)

Trigger: tagger + 1 charged (or 2 neutral)

Torus current: 87 % pos. outbending

Beam current: 10-13 nA 10⁻⁴ radiator

Events recorded: Over 2 * 109

This Analysis:

Ana Lima GWU Jörn Langheinrich USC

Sponsor:

Barry Berman

Contributions:

Bernhard Mecking Henry Juengst Ioana Niculescu Ulrike Thoma

All nice people doing g2 cooking, calibration, and shifts

K⁺ Mass Resolution

K⁺ Mass Peak / Resolution

K⁺ Time-of-Flight Correction

K⁺ Time-of-Flight Correction

 Φ [deg]

... consider fiducial cuts

Inclusive or Exclusive analysis?

High Acceptance

- Flat Acceptance
- High θ, Eγ coverage
- Model independent simulation
- Background easy to understand

Σ $\rightarrow \pi n$

- Separation of Σ
- Stand alone analysis
- High mass resolution
- Fermi motion correction
- Low background

Let's do both!

Ana Lima Jörn Langheinrich **Ioana Niculescu Gabriel Niculescu**

Missing Mass Calculation

$$M_X = \sqrt{M_N^2 + M_K^2 - 2M_N E_K + 2E_y(M_N - E_K + p_K \cos \theta)}$$

Mx from ($\gamma p \rightarrow K^+ + X$) all E, Run 20941

Assuming Nucleon Target

Other Assumptions

Missing mass vs Kaon mass

Divide missing mass distribution into bins Fit K+ mass distribution in each bin

Hyperon structure in background

K⁺ Acceptance / CM System

K⁺ Efficiency / Lab System

Strategy: unfolding Σ^0/Σ^-

Smear Λ , Σ^0 photoproduction cross section measured off proton target [McNabb, Schumacher] by Fermi motion.

Apply phenomenological fit (Legendre Polynom) to get Σ^0 / Λ ratio

Use this ratio and our measured Λ cross section off deuteron target to calculate Σ^0 cross section

Subtract calculated Σ^{0} cross section from our measured Σ_{TOTAL}

Our Analysis

Our Analysis

Our Analysis

Our Analysis

Our Analysis

 Σ - after Σ ° subtraction

Results from exclusive analysis

 Σ - after Σ ° subtraction

Results from exclusive analysis

 Σ - after Σ ° subtraction

Results from exclusive analysis

 Σ - after Σ ° subtraction

Results from exclusive analysis

 Σ - after Σ ° subtraction

Results from exclusive analysis

Summary

Accomplished:

Robust, model independent analysis Good/fair reproduction of Λ cross section Surprising result for Σ^{-} cross section Σ^{-} cross section lower than expected $\cos \Theta$ structure: minimum at 0.45

To do:

Compare exclusive and inclusive Discuss systematic errors

Your suggestion goes here

Analysis review process