
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCE

THE PHOTOPRODUCTION OF STRANGENESS IN γP → ΛK+π+π− WITH CLAS AT

JEFFERSON LAB

By

HUSSEIN AL GHOUL

A Dissertation submitted to the
Department of Physics

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

2016

Copyright c© 2016 Hussein Al Ghoul. All Rights Reserved.



Hussein Al Ghoul defended this dissertation on April 12, 2016.
The members of the supervisory committee were:

Paul Eugenio

Professor Directing Dissertation

James Justus

University Representative

Volker Crede

Committee Member

Simon Capstick

Committee Member

Alexander Ostrovidov

Committee Member

Horst Wahl

Committee Member

The Graduate School has verified and approved the above-named committee members, and
certifies that the dissertation has been approved in accordance with university requirements.

ii



To my family

iii



ACKNOWLEDGMENTS

.

The quote above is an Arabic proverb and it translates to: ”There is no virtue higher

than humility, and there is no honor higher than knowledge”.

My journey in graduate school started in the summer of 2010 when I left Lebanon to the

United States. As I waved goodbye to my family, my father took me to the side and told me to

remember the quote above. It has since never left my mind. Over five years later, I now find

myself finishing up my thesis, cleaning out my desk, and getting ready to say goodbye to my

wonderful family at the physics department here at FSU, without whom none of this could have

been possible. From family to friends and teachers, this journey would have not been successful

without you. I thank you.

This work was by no means a one man’s job. There is a number of people who have

contributed and helped in the execution of the analysis and have offered much appreciated

insight and assistance. A special thank you to the scientists and graduate students in the g12

run group for their feedback and comments. From the very first stages of this analysis, the

group, initially led my Dennis Weygand, were very helpful with their productive feedback and

encouragement. To Johann, MK, Rafael and Will for being very helpful and providing me with

the necessary tools to perform this analysis successfully. Also a big thank you to the GlueX

collaboration members for guiding me during my stay at Jefferson lab. I would have been much

less productive without the assistance of Mark Ito, Beni Zihlmann, Michael Staib, and other

members of the Hall D staff and engineers. Constructing the Time of Flight was the most

thrilling and fulfilling thing I’ve done in graduate school, and it would have not been such a

rewarding experience without the help and guidance of the GlueX collaboration members and

their patience with me. I would also like to thank members of the hadronic physics group at

FSU especially Dr. Alexander Ostrovidov, Mukesh, and Aristeidis, for giving me advice and

allowing me to annoy them with my questions. Also thank you to Dr. Volker Crede for his input

on my research, and his students Priya, Chris and Zulkaida for our numerous physics discussions

and casual office talks.

iv



All the things I learned in graduate school were the fruit of my relationship with my advisor

Dr. Paul Eugenio. He is a wonderful teacher who puts his students’ interest in front of his,

thus making sure they get all the help they need. Paul, you have been very generous with your

time and funding, giving me advice when I would ask for help and sending me to numerous

conferences and workshops. Your company has extensively benefited me on an academic level

and a personal level. I will be the researcher I strive to become one day because of your guidance

and support. Thank you.

To my parents, Amenah and Mohammad. The two most influential people in my life. They

sacrificed a lot so my siblings and I would become the people we are right now. Through all

the hardships that we went through as a family, they always provided a warm home for me

to grow into the man I am right now. Dad, you invested a lot into my future and I can not

thank you enough. You told me multiple times that the one thing no one can take away from

us is knowledge, and today I wholeheartedly believe that I have made you proud. I wouldn’t

be the man I am right now without your constant support and love. Mom, your unconditional

and limitless love for me is what keeps me going. Your pride in me will always be my greatest

reward.

To my sister Zahra, thank you for making the first few years in graduate school easier for me

and for giving me advice on how to proceed. I owe my success to your constant encouragement

and belief in me. I keep looking up to you and I strive to become the scientist and teacher that

you are right now. You are not just my sister, but also my friend and teacher.

To my siblings Zeinab, Hassan, fatima and Iman, thank you for the numerous joyful phone

calls and skype sessions over the weekends. You made sure I did not feel the distance between

us by always talking to me and letting me know that you are there for me.

To my new family, the Wakils, Bassam, Gwyn and Brandon, thank you for taking me in

as a member of your family. You have given me a home away from home, and have been in

every step of my journey in graduate school. I am grateful to have met you and I strive to keep

making you proud of me.

Last but not least, a big thank you to my wonderful wife, Samantha, without whom I would

not have gotten so far. Samantha, you are the reason I am here right now. I am so thankful

that we have found each other. Your ambitious and hard working nature is inspirational and it

is you who inspires every decision I make. I love you.

v



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 INTRODUCTION 1
1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Constituent Quark Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Strange Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Also In This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 EXPERIMENTAL SETUP 22
2.1 The CEBAF Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Hall B Photon Tagger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Experimental Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 The CLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Start Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Superconducting Toroidal Magnet . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Drift Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Time of Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.5 C̆erenkov Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.6 Event Trigger and Data Acquisition . . . . . . . . . . . . . . . . . . . . . 34
2.4.7 Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 DATA ANALYSIS 39
3.1 Exclusive γp→ pK+π+π−[π−] Event Selection . . . . . . . . . . . . . . . . . . 39

3.1.1 Kinematic Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Event Vertex and Timing Cuts . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 Beta Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.4 Beam Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.5 Kinematic Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Final Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Λ→ pπ− Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Baryon Background Reduction . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3 Eliminating Particle Misidentification . . . . . . . . . . . . . . . . . . . . 53
3.2.4 Momentum Transfer Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Features of the Final γp→ ΛK+π+π− Sample . . . . . . . . . . . . . . . . . . . 59

vi



4 PARTIAL WAVE ANALYSIS FORMALISM 64
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Decay Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Production Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 PARTIAL WAVE ANALYSIS PROCEDURE AND RESULTS 77
5.1 Experimental Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Fitting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 The FSU PWA Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Preparation of the γp→ ΛK+π+π− Dataset . . . . . . . . . . . . . . . . 89
5.2.3 Minimization of The Likelihood Function and Error Estimation . . . . . 89
5.2.4 Wave Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.5 Fit Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.1 The Total Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2 1+S Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.3 1−P Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.4 2+D Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.5 2−S Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.6 Predicted Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 SUMMARY 118

Appendix

A EXTENDED PWA RESULTS 120
A.1 PWA Fit with 0−S waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.1.1 1+S Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.1.2 1−P Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.1.3 2+D Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1.4 Predicted Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.2 PWA Fit with 50 MeV Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2.1 1+S Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.2.2 1−P Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.3 2+D Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.4 Predicted Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B THE GLUEX EXPERIMENT 134
B.1 The 12 GeV Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.2 The GlueX Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.3 The Time of Flight Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C DETACHED VERTEX SIMULATION 142

D THE K-MATRIX FORMALISM 145

E WIGNER-D FUNCTIONS 149

vii



F CLEBSCH-GORDAN COEFFICIENTS 151

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

viii



LIST OF TABLES

1.1 Parameters in the standard model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The quantum numbers of light quarks. . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The quantum numbers of light quarks. . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 A compilation of all the strange mesons with masses between 1 GeV and 2 GeV as
reported by Reference[16]. States in red are ones that have been observed
in photoproduction experiments. The significantly high volume of states that
still await confirmation is noticeable . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 A summary of the event counts before and after each cut used to select the final
sample γp→ ΛK+π+π− events for PWA. . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 The full set of isobars considered to contribute to the invariant mass distributions
of K+π− and π+π− subsystems. Isobars that were present in our data, and were
essential for the success of the PWA, are marked in red. . . . . . . . . . . . . . . . 94

5.2 The full set of waves expected to contribute in the partial wave analysis. Waves in
red correspond to the ones that we included in the final fit where the best results
were obtained. The check marks indicate the region where a wave is included in
the partial wave analysis. Keep in mind that except for the flat background, every
wave has two reflectivities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Summary of the resonant structures observed in the partial waves, along with any
possible states that could account for them. . . . . . . . . . . . . . . . . . . . . . . 119

A.1 The full set of waves included in this partial wave analysis. The check marks
indicate the region where a wave is included in the partial wave analysis. Keep in
mind that except for the flat background, every wave has two reflectivities. . . . . 120

A.2 The full set of waves included in this partial wave analysis. The check marks
indicate the region where a wave is included in the partial wave analysis. Keep in
mind that except for the flat background, every wave has two reflectivities. . . . . 127

ix



LIST OF FIGURES

1.1 An infographic of the standard model of particle physics, including the recently
discovered Higgs boson. (Courtesy of CERN Webfest) . . . . . . . . . . . . . . . . 2

1.2 Experimentally measured values of the coupling αs from various experiments con-
firming the theoretically expected behavior at high energies. [16] . . . . . . . . . . 7

1.3 An illustration of the quark antiquark pair in a potential. The quark has a spin
~s1 and the antiquark has a spin ~s2 and they couple together with an angular
momentum ~l. Image source [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Illustration of the SU(3) spectrum of JP = 1− mesons. . . . . . . . . . . . . . . . . 16

1.5 Illustration of the SU(3) spectrum of JP = 1− exotic mesons. . . . . . . . . . . . . 16

1.6 Features of the K−π+π− system produced via diffractive dissociation of kaons in
K−p→ pK−π+π− at COMPASS. [12] . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Features of aK−π+π− produced in hypercharge exchange reaction π−p→ ΛK+π−π0

using the CERN 2 m hydrogen bubble chamber. [29] . . . . . . . . . . . . . . . . . 19

1.8 A Feynman Diagram illustrating the isobar model interpretation of a γp→ ΛK+π+π−

decay. The incoming photon interacts with the proton, which in turn leaves as a
Λ that later decays to a pπ−, then by exchanging a K+ with the meson vertex, a
resonance X is peripherally produced. X then decays to an isobar Y and a bachelor
particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 An aerial view of Jefferson Lab. Image source [36] . . . . . . . . . . . . . . . . . . 22

2.2 Schematic CEBAF accelerator overview, including modifications for the 12 GeV
update. Image source [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 A cross section view of Superconducting Radio Frequency (SRF) Niobium cavities.
The Standing waves are tuned so that each bunch of electrons will get a continuous
accelerating electric force when it passes through the cavities. Image source [36] . 24

2.4 Side view of the Hall B photon tagger. Electrons bent into the focal plane by the
dipole magnet, pass through the E-counters where their energies are measured,
then through the t-counters where their timing is measured. Image source [39] . . 26

2.5 A schematic diagram of the g12 target. Image source [41] . . . . . . . . . . . . . . 26

2.6 Three dimensional computer rendering of CLAS. Image source [36] . . . . . . . . . 27

2.7 Computer rendering of the start counter. Image source [36] . . . . . . . . . . . . . 28

2.8 An illustration of CLAS’s superconducting toroidal magnet. Image source [42] . . 29

x



2.9 (A) Contours of the magnetic field generated by the torus in the mid plane between
two coils. (B) Magnetic field vectors for the CLAS torus transverse to the beam in
a plane centered on the target. Image source [36] . . . . . . . . . . . . . . . . . . . 30

2.10 A cross sectional cut through the CLAS detector showing the position of different
regions of the DC. Dashed lines outline the position of the toroidal magnet. Image
source [43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 A schematic of a section of the drift chambers showing two superlayers. The sense
wires are positioned in the center and the field wires are positioned at each corner of
the cell. The arrow depicts the track of a charged particle as it passes through the
drift chambers, and the shadowed hexagons represent the hit cells. Image source [43] 32

2.12 The time of flight detector subsystem used in each CLAS sector. The four panels
are made of 57 scintillator paddles of different lengths . Image source [36] . . . . . 33

2.13 Computer rendering of the C̆erenkov counter showing its position relative to the
R2 drift chamber and th Torus magnet. Image source [36] . . . . . . . . . . . . . . 34

2.14 A schematic of one of the fixtures of the six C̆erenkov modules showing the path of
the C̆erenkov light from an electron track. The light is first reflected off the surface
of an elliptical mirror which in turn reflects it onto a hyperbolic mirror that finally
collects the light into a photomultiplier tube. Image source [36] . . . . . . . . . . . 35

2.15 Illustrated are three distinct coincidence trigger criteria. ECPinner and ECPtotal
represent a photon signal above threshold for the inner layer of the EC and entire
EC respectively. ECPinner and ECPtotal represent an electron signal above thresh-
old for the inner layer of the EC and entire EC respectively. ST0,1,2,3 are the four
TDC signals for the start counter. Image source [42] . . . . . . . . . . . . . . . . . 36

2.16 The path of a charged particle going through a magnetic field. When the radius of
curvature is large when compared with the sagitta, the radius of curvature can be
approximated by r ≈ l2

2s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.17 β of every track in run 56855 as a function of track momentum. Image source [43] 38

3.1 The z and r distributions of pK+π+π−[π−] events. The blue region indicates the
selected events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The z and r distributions of pK+π+π−[X] events. The green region indicates the
selected events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 The difference in start counter time to the RF-corrected tagger vertex time of
pK+π+π−[π−] events. The green region indicates the selected events. . . . . . . . 44

3.4 The beta distribution of pi+ for all events. The darker blue region indicates the
selected events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 The beam profile of the pK+π+π−[X] events. The brown area indicates the selected
events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xi



3.6 The missing mass squared off (pK+π+π−) distribution. The region between the two
red lines indicates the fitted events. The dark gray region in Figure (b) represents
the selected events. The shaded areas in Figures (c) and (d) represent the selected
fitted events and the discarded fitted events respectively. . . . . . . . . . . . . . . 47

3.7 The pulls of the kinemtatic fit related to the momenta of the particles. They are
centered close to zero and have a sigma close to 1. . . . . . . . . . . . . . . . . . 49

3.8 The invariant masses of (pπ−) and (p[π−]) systems. Peaks around 1.1 GeV/c2 are
clear indications of Λ baryons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 The 2 dimensional plot of the invariant masses of (pπ−) and (p[π−]) (a), The
invariant mass distribution of the (pπ−π−) system (b). Events in bright blue in
(b), correspond to the sample enclosed in the yellow box in (a). . . . . . . . . . . . 51

3.10 The invariant mass of (pπ−) versus the invariant mass of (pπ−). Events enclosed
inside the red boxes correspond to the Λ selection. . . . . . . . . . . . . . . . . . . 51

3.11 The invariant mass of K+π+π− (a), K+π− (b), and π+π− (c) for the exclusive
γp→ ΛKπ+π− sample following the Λ selection. . . . . . . . . . . . . . . . . . . . 52

3.12 The invariant mass of Λπ+ versus the invariant mass of K+π−. . . . . . . . . . . . 53

3.13 The invariant mass of Λπ+. The area in brown corresponds to selected events. . . 54

3.14 The invariant mass of K+π+π− (a), K+π− (b), and π+π− (c) for the exclusive
γp→ ΛKπ+π− sample following the sigma elimination cut. . . . . . . . . . . . . . 55

3.15 An illustration of the relation between momentum and PID. The momenta of pro-
ton, π and K (x-axis) are plotted against their respective β’s (y-axis). . . . . . . . 56

3.16 A two dimensional plot of the mass of π+π− as a function of the momenta of kaons.
The Ks is clearly more prominent in the higher momentum region. . . . . . . . . . 56

3.17 The invariant mass of K+π+π− (a), K+π− (b), and π+π− (c) for the exclusive
γp→ ΛKπ+π− sample following the K momentum cut. . . . . . . . . . . . . . . . 57

3.18 The momentum transfer t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.19 Exponential fits for the t’ distribution over the full Kππ mass range (a), in the
low mass region between 1 and 1.6 GeV (b), and in the high mass region between
1.6 and 2.2 GeV (c). the values of the slopes are -0.5763, -0. 6076, and -0.5415
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.20 Features of the data: the invariant mass ofK+π− in (a), π+π− in (b), andK+π+π−

in (c) for various t’ selections. The final event sample uses the t’ cut shown in blue. 61

3.21 The invariant mass of the final K+π+π− sample used in the partial wave analysis
(a), and the dalitz plot of this selected sample (b). . . . . . . . . . . . . . . . . . . 62

xii



3.22 Dalitz distributions for the low Kππ mass region (top), and high mass region
bottom. Green regions on the left correspond to events used in the Dalitz plots
on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 A Feynman Diagram illustrating the isobar model interpretation of a γp→ ΛK+π+π−

decay. The incoming photon exchanges a K+ with the proton, which in turn leaves
as a Λ that later decays to a pπ−, and peripherally produces a resonance X. X then
decays to an isobar Y and a bachelor particle which could be either a π+ or a K+.
The isobar then decays to π+π− or K+π−. . . . . . . . . . . . . . . . . . . . . . . 66

4.2 The definition of the Gottfried-Jackson reference frame (blue) and the Helicity
reference frame (red) used in the calculation of decay amplitudes. . . . . . . . . . 67

4.3 The variation of the decay amplitude of the 1+D, ρK+ as a function of the invariant
mass of the K+π+π− system for accepted Monte Carlo events (left) and raw
Monte Carlo events (right). The blue lines correspond to the positive reflectivity
1+D, ρK+ wave, while the red lines corresponds to the negative reflectivity of the
same wave. Notice that the decay amplitudes of both reflectivities on the right are
almost identical making it hard to distinguish them in this plot. . . . . . . . . . . 73

5.1 The momentum transfer |t| (a) and the excess momentum transfer |t′| (b) for the
raw Monte Carlo sample. Both distributions are fitted to an exponential function
thus yielding slopes of 0.615 and 0.679 for the accepted and raw Monte Carlo
samples respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Dalitz distributions for the low Kππ mass region (top), and high mass region
bottom for the raw Monte Carlo dataset. Green regions on the left correspond to
events used in the Dalitz plots on the right. . . . . . . . . . . . . . . . . . . . . . . 80

5.3 The CLAS acceptance for the γp → ΛK+π+π− events as a function of K+π+π−

mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 The momentum transfer |t| distribution of the data (a) and of the accepted Monte
Carlo (b). The slopes are in approximate agreement at 0.554 for data and 0.558
for the accepted Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Dalitz distributions for the low Kππ mass region (top), and high mass region
bottom for the accepted Monte Carlo dataset. Green regions on the left correspond
to events used in the Dalitz plots on the right. . . . . . . . . . . . . . . . . . . . . 82

5.6 The Gottfreid-Jackson angles for the data and Monte Carlo Samples. The flat blue
distribution is the cosθGJ of (π+π−) in (b) and (K+π−) in (d) for the raw Monte
Carlo sample, while the green distributions are the cosθGJ of (π+π−) in (b) and
(K+π−) in (d) for the accepted Monte Carlo. . . . . . . . . . . . . . . . . . . . . 83

5.7 The Gottfreid-Jackson angles for the data and Monte Carlo Samples. The flat blue
distribution is the φGJ of (π+π−) in (b) and (K+π−) in (d) for the raw Monte Carlo
sample, while the green distributions are the φGJ of (π+π−) in (b) and (K+π−)
in (d) for the accepted Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . 84

xiii



5.8 The (φlab, θlab) angular distributions of all detected particles for both the data and
the accepted Monte Carlo events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.9 The (φlab, θlab) angular distributions of all detected particles for both the data
(right) and the accepted Monte Carlo (left) events, plotted as so to reflect the
geometry of the CLAS detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 The values of the likelihood function at its minimum for each bin in the fit we are
presenting. The red point indicates the location of the bin which we used in our
tracking process. A total of hundred fits were performed in that bin to determine
the minimum of the likelihood function. . . . . . . . . . . . . . . . . . . . . . . . 100

5.11 The acceptance corrected total intensity of all the partial waves in the fit. To
determine the total intensity, the coherent sum of all the partial waves is calculated.101

5.12 The acceptance corrected total intensity of all 1+S waves included in this fit.
This intensity includes the coherent sum of amplitudes of 1+S wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.13 The acceptance corrected total intensities 1+S waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.14 The acceptance corrected intensities of the 1+S with a relativistic Breit-Wigner
fit of the low mass structure in 1+S,K∗(892)π+ (a) and a K-matrix fit of both
structures in 1+S, ρ(770)K+ (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.15 The acceptance corrected total intensity of all 1−P waves included in this fit.
This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.16 The acceptance corrected total intensities 1−P waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.17 The acceptance corrected total intensity of all 1−P waves included in this fit.
This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.18 The acceptance corrected total intensity of all 2+D waves included in this fit.
This intensity includes the coherent sum of amplitudes of 2+D wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.19 The acceptance corrected total intensities 2+D waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.20 The acceptance corrected intensity of the 2+DK?(892)π+ wave fitted with a mass-
dependent relativistic Breit-Wigner and a second degree polynomial. . . . . . . . . 111

5.21 The acceptance corrected total intensity of all 2−S waves included in this fit.
This intensity includes the coherent sum of amplitudes of 2−S wave decaying to a
f2(1270)K+ or a K?

2 (1432)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xiv



5.22 The acceptance corrected total intensities 2+D waves decaying to K?
2 (1430)π+ (a)

and f2(1430)K+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.23 The acceptance corrected intensity of the 2−SK?
2 (1430)π+ wave fitted with a mass-

dependent relativistic Breit-Wigner and a second degree polynomial. . . . . . . . . 114

5.24 Features of the fitted data events (blue) and the predicted distributions (red points)
for the γp→ ΛK+π+π− sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.25 The measured (blue) and predicted (red points) angular distributions in the Gottfried-
Jackson frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.26 The measured (blue) and predicted (red points) angular distributions in the Helicity
frame. The angular distributions of the K+π− system were determined using the
K+ as a spectator, and those of the π+π+ system were determined using the π+

as a spectator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1 The acceptance corrected total intensity of all 1+S waves included in this fit.
This intensity includes the coherent sum of amplitudes of 1+S wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 The acceptance corrected total intensities 1+S waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.3 The acceptance corrected total intensity of all 1−P waves included in this fit.
This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.4 The acceptance corrected total intensities 1−P waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.5 The acceptance corrected total intensity of all 1−P waves included in this fit.
This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.6 The acceptance corrected total intensities 2+D waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.7 Features of the fitted data events (blue) and the predicted distributions (red points)
for the γp→ ΛK+π+π− sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.8 The measured (blue) and predicted (red points) angular distributions in the Gottfried-
Jackson frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.9 The measured (blue) and predicted (red points) angular distributions in the Helicity
frame. The angular distributions of the K+π− system were determined using the
K+ as a spectator, and those of the π+π+ system were determined using the π+

as a spectator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.10 The acceptance corrected total intensity of all 1+S waves included in this fit.

xv



This intensity includes the coherent sum of amplitudes of 1+S wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.11 The acceptance corrected total intensities 1+S waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.12 The acceptance corrected total intensity of all 1−P waves included in this fit.
This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.13 The acceptance corrected total intensities 1−P waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.14 The acceptance corrected total intensity of all 1−P waves included in this fit.
This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.15 The acceptance corrected total intensities 2+D waves decaying to ρ(770)K+ (a)
and K∗(892)π+(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.16 Features of the fitted data events (blue) and the predicted distributions (red points)
for the γp→ ΛK+π+π− sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.17 The measured (blue) and predicted (red points) angular distributions in the Gottfried-
Jackson frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.18 The measured (blue) and predicted (red points) angular distributions in the Helicity
frame. The angular distributions of the K+π− system were determined using the
K+ as a spectator, and those of the π+π+ system were determined using the π+

as a spectator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.1 Schematic CEBAF accelerator overview, including modifications for the 12 GeV
update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2 Schematic CEBAF accelerator overview, including modifications for the 12 GeV
update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.3 Schematic of a layer of the Time of Flight detector. Blue colored bars represent the
full width - full length modules. The green colored bars represent the half width
modules, and the red colored bars represent the half length modules. The white
box in the middle represents the beam hole. . . . . . . . . . . . . . . . . . . . . . . 139

B.4 An illustration of the different steps of polishing that the light guides had to go
through. Several sand papers were used in the process, leading to the shades
variation observed above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.5 The method used to attach PMT to light guides is illustrated in this photo. After
the Silicon RTV was applied, the PMT/Light guide joint was held together using
the device shown in this photo. Constant pressure had to be applied to the joint
to ensure best results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xvi



B.6 The completed time of flight proudly fashioned in garnet and gold (FSU’s official
colors), as it gloriously resides in its final position. . . . . . . . . . . . . . . . . . . 141

C.1 Distributions of the distance between the Λ vertex and the event vertex for the
Data sample (a) and the accepted Monte Carlo sample (b). . . . . . . . . . . . . . 144

F.1 The Clebsch-Gordan coefficients table with the Wigner-d functions and the spher-
ical harmonics Y m

l . Image source [16]. . . . . . . . . . . . . . . . . . . . . . . . . . 152

xvii



LIST OF ACRONYMS

ADC Analog to digital converter.

CC C̆herenkov counter.
CEBAF Continuous Electron Beam Accelerator Facility.
CLAS CEBAF Large Acceptance Spectrometer.
CM Center of Mass.
CODA CEBAF Online Data Acquisition.
A1C Event reconstruction software used by the CLAS collaboration.
CQM Constituent Quark Model.
DAQ Data Acquisition System.
DC Drift Chambers.
EC Electromagnetic Calorimeters.
g12 The code name of the experiment used in this analysis.
GEANT Simulation software used to describe the passage of elementary particles

through matter.
GENR8 An event generator used to generate phase space events.
CERN European Organization for Nuclear Research.
GJ The Gottried-Jackson frame.
GPP A utility used in CLAS simulations to simulate data resolutions and efficien-

cies.
GSIM A GEANT based package that simulates the geometry of CLAS.
JLAB Jefferson Laboratory.
LINAC Linear accelerator.
LQCD Lattice Quantum Chromodynamics.
MC Monte Carlo simulations.
MINUIT Numerical minimization utility developed by CERN.
PDG Particle data group.
PID Particle Identification.
PMT Photo multiplier tube.
PWA Partial Wave Analysis.
QCD Quantum Chromodynamics.
QED Quantum Electrodynamics.
RF Radio Frequency.
ST Start Counter.
TOF Time of Flight detector.

xviii



ABSTRACT

The available information about strange excited mesons is limited and most of the observed

states have been reported but not confirmed. While the low mass region (1.0 - 1.5 GeV) has

been extensively studied in the past and states such as the K1(1270), K1(1400), and K*(1410)

have been confirmed by a handful of experiments, little is known about the spin-parity struc-

ture of resonances in the higher Kππ mass region (1.5-2.0 GeV). Past experiments have used

hadron beams to gain access to the Kππ system, and have provided extensive information about

strange states that made mapping their spectrum possible. Except for the K*(892), none of the

excited strange states has been photoproduced before. We perform a partial wave analysis on a

photoproduced K+π+π− system produced off a Λ baryon using the CLAS detector at Jefferson

Lab. Using a photon beam incident of a liquid hydrogen target, we are able to reconstruct

16K events of the γp → ΛK+π+π− topology. Results from initial data selection confirmed

the dominance of two decay modes for a Kππ resonance: the K?(892)π and the ρ(770)K+. A

PWA was carried out in the helicity formalism using the reflectivity basis in the isobar model

to parametrize the decay amplitudes of the resonances. Resonating structures are found in the

1+S wave primarily coupling to K?π+ with a mass of 1.35 GeV/c2 and to ρ(770)K+ with a

lower mass structure around 1.33 GeV/c2 and a higher mass resonance around 1.73 GeV/c2.

The 1−P also exhibited a significant resonating behavior with a mass of 1.43 GeV/c2 coupling

primarily to the K?(892)π+ decay mode. Also observed, an enhancement around 1.49 GeV/c2 in

the 2+D wave strongly coupling to K?
2 (1430)π+, and an enhancement in the 2−S wave around

1.76 GeV/c2 coupling primarily to K?
2 (1430)π+.
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CHAPTER 1

INTRODUCTION

The evolution of particle physics, as a field that studies the fundamental properties of matter,

has been an ongoing process for the past hundred years. The rise of quantum mechanics and

the birth of Einstein’s special relativity laid down the foundation for a better understanding

of the fundamental forces that govern the subatomic world, starting with atomic physics and

Rutherford’s planetary model of the atom. On a quest to understand the basic structure of

the atom, following the discovery that an atom consists of electrons and protons, Rutherford

devised an experiment in 1911 to study the ”plum pudding” model suggested by J.J. Thomson.

In this model, the electrons and protons were suggested to uniformly mix throughout the atom.

Rutherford theorized that if Thomson’s model would be correct, only if the mass of the atom

was spread throughout the atom’s structure. In his experiment, high velocity alpha particles

were bombarded on a thin film of gold atoms. Rutherford observed that while most of the alpha

particles went through the film, some were deflected backwards. He then went on to discard

Thomson’s model, reasoning that the only way alpha particles would deflect backwards is if the

mass of the atom is concentrated in a nucleus. He then developed the planetary model [13],

where the protons are located in the nucleus with electrons orbitng around the nucleus in a

planetary form.

Less than three years later, Niels Bohr improved on Rutherford’s model suggesting that

electrons orbit around the nucleus in stable ”stationary” orbits. He also theorized that each

orbit had an its own energy associated with it, and that light is emitted when an electron jumps

from a higher to a lower orbit, and is absorbed when going in the opposite direction. While

Bohr’s model was able to explain the hydrogen atom spectrum, it failed for heavier atoms. The

final atomic model was yet to be discovered. In 1932, James Chadwick discovered the neutron

[14], a particle similar in mass to a proton but is uncharged. Shortly after this discovery,

Heisenberg proposed the proton-neutron model for the nucleus, in which the proton and the

neutron constitute the nucleus thus deeming Rutherford’s proposal of ”proton-electron” pair

incorrect. The neutron and the proton were then considered manifestations of the same state,

the nucleon.
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Figure 1.1: An infographic of the standard model of particle physics, including the
recently discovered Higgs boson. (Courtesy of CERN Webfest)

.

Rutherford’s discovery raised the question about the nature of the force that binds the

protons and neutrons together. Being neutral, the neutron could not electro-statically bind to

the protons. In 1934, Hideki Yukawa predicted the existence of a new force that binds the

nucleons together mediated by the exchange of a new particle [7]. This new force was called the

strong force of interaction. Yukawa’s mediating particle was discovered in 1947 [15][11]. During

the same year, an unidentified neutral ”V” particle, to be later named the K0, was discovered

in a cloud chamber by Rochester and Butler in Manchester, England [23]. These events marked

the start of modern particle physics, and for the next 70 years, physicists were able to identify

a large spectrum of particles and provide concise information about their physical and quantum

mechanical properties.
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1.1 The Standard Model

The standard model is considered the framework that explains how the basic building blocks

of matter interact. According to the standard model, everything in the universe is made of

fundamental particles, governed by three fundamental forces. Developed in the early 1970s,

it has been astonishingly successful at explaining almost all experimental results while also

providing predictions of a wide variety of phenomena. So far, our understanding of the universe

has relied on four fundamental forces: gravitational force, electromagnetic force, the weak force

and the strong force. These forces have different strengths and work over different ranges. The

gravitational force has an infinite range and is considered the weakest among these forces. The

electromagnetic is stronger than gravity, but has an infinite range. The weak and strong forces

dominate the subatomic world, working at very small ranges. The strong force is the strongest

of all four fundamental interactions.

The weak, strong, and electromagnetic forces result from the exchange of force-carriers,

called bosons. The strong force, for instance, is carried by a boson called the ”gluon”, the weak

force is mediated by the ”W” and ”Z” bosons, while the electromagnetic force is carried by the

photon. According to the standard model, the most fundamental building blocks of matter are

the quarks. Quarks interact via the strong force by exchanging gluons. Similar to Leptons, they

are spin-1/2 particles, also known as fermions, and obey Pauli’s exclusion principle. In other

words, quarks, like other fermions, cannot occupy the same space at the same time (quantum

mechanically speaking, no two fermion can be described by the same quantum numbers). The

standard model is thus divided into three sections: quarks, leptons, and bosons. Quarks, like

leptons, come in pairs. Quarks are grouped up and down, charm and strange, and top and

bottom. These quarks are proposed to carry a special kind of charge called the color charge.

The color charge can be either red, green, or blue. The electron, muon, and tau each have

an associated low mass, uncharged particle called a neutrino. Like protons and neutrinos, the

electron is a stable particle and is present in almost all matter. The tau and muon, on the other

hand, are unstable and are found in decay processes. The bosons, which we’ve already described

as force carriers, are spin-1 particles. The strong force carriers, the gluons, can interact with

themselves, since they carry the color charge that they couple to. The photons, on the other

hand, cannot interact with other photons, since their electromagnetic charge is zero. Figure 1.1

shows the three sections of the standard model and the properties of the particles in it, including
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Table 1.1: Parameters in the standard model.

Parameters Number Comments

Masses of Quarks
6 u, d, s (light)

c, b (heavy)

t=175 ±6 GeV

Masses of Leptons
6 e, µ, τ

Mνe,νµ,ντ

Mass of W± 1 80.3 GeV

Mass of Z 1 91.2 GeV

Mass of Gluons, photons 0 (Gauge Symmetry)

Mass of Higgs 1 125.09±0.21 GeV

Coupling αs 1 ≈ 1 for energies ≤ 1 GeV

Coupling αEM 1 1/137 (=1/128.9 at MZ)

Coupling GF 1 10−5 GeV −2

Weak Mixing Angles 3 θ1, θ2, θ3

CP Violating Phase 1 δ

Strong CP Parameter 1 Θ

the most recently discovered Higgs Boson [34].

1.2 Quantum Chromodynamics

Quantum chromodynamics, familiarly called QCD, is a gauge field theory that describes

the strong interactions of colored quarks and gluons, and is the SU(3) component of the

SU(3)×SU(2)×U(1) standard model of particle physics. In a way, QCD is viewed an expansion

of Quantum Electrodynamics (QED), having three different kinds of charge, labeled by ”color”,

whereas QED has only one kind of charge. The color charge of QCD is analogous to the electric

charge of QED. It is thus not related to any physical properties of the quarks and gluons. Addi-
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tionally, the color charges are conserved in all physical processes, and are carried by the gluon.

The parity conserving, time-inversion invariant, QCD Lagrangian has the form [1]

LQCD = −1

4
(F iµν)2 + ψ̄(iγµDµ −mq)ψ (1.1)

where ψ is the quark field and ψ̄ = ψ†γ0 is the anti-quark field. The fermionic part in Equa-

tion 1.1 is the covariant Dirac operator M = iγµDµ −mq with the quark mass mq. The field

strength, F iµν , is defined as

F iµν = ∂µA
i
µ − ∂νAνi + gf ijkAjµA

k
ν (1.2)

where f ijk are the structure constants of the symmetry group. When comparing the field

strength in QCD to that in QED, one notices the extra gf ijkAjµAkν term. This term describes

the ability of the gluon to interact not only with quarks and antiquarks, but also with other

gluons.

When compared to QED, the response of gluons to color charge, as determined by the QCD

coupling constant, is much more vigorous than the response of photons to electric charge. The

gluons can also change the color charge into another. All possible color charges are allowed

yet this charge is always conserved. The gluons, therefore, are able to carry unbalanced color

charges. For instance, if a gluon can transform a blue charged quark into red, it must carry a red

charge and an anti-blue charge. This would seem to require the existence of 3×3 =9 different

color gluons, however the color-SU(3) singlet, that is suggested to respond equally to all charges,

is dropped from the set if we are to have a perfectly color-symmetric theory. This conclusion

was luckily validated by experiment. This profound property of gluons also suggests that they

are capable of interacting with each other, unlike the photons which are electrically neutral. A

famous consequence of this property is color confinement.

Confinement in QCD is the idea that the force between quarks does not decrease with

distance. The idea of confinement lies in forbidding the free propagation of color charges, instead

just keeping them inside the color neutral states (mesons and baryons). In practical terms, one

can imagine the quarks connected by a string. When the quarks move further away from each

other, the string stretches tight. This results in an increase in the gluonic field until the potential

reaches a pair production threshold thus favoring the production of a spontaneous pair than to
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continue separating the quarks. As a result, one can think of the inter-quark potential in QCD

as

V (r) = −4

3

αs(r)

r
+ kr (1.3)

where αs is the QCD running coupling, and k is the QCD string tension. The first term is

a Coulomb-like potential and the second is a confining potential. The Coulomb part is called

the Lüscher term [1] and plays a crucial theoretical role even if it is not very important in

heavy quark spectroscopy. Color confinement in QCD is true for low energy scales, where the

momentum transfer is low, but in the higher energy scale quarks acquire asymptotic freedom

and are well described by perturbation theory.

The discovery of asymptotic freedom by Gross, Wilczek, and Plitzer provided a very well

rounded explanation to the puzzling idea that even though quarks are confined inside colorless

hadrons, experimental results from various high energy electron-proton collisions found that

the interaction between the quarks at such energy is weak. Discovered by David Gross, Frank

Wilczek, and David Politzer in 1973, asymptotic freedom explained how the attraction between

quarks grows weaker as they approach each other, and conversely becomes stronger as they move

away from each other. Using perturbation theory, once higher-order corrections are added, the

strength of interaction between the quarks can be seen as highly dependent on the magnitude

of ”Q” the energy momentum transfer between the quarks. This strength can be expressed as

the coupling factor αs [2][3]

αs ≡
ḡ(q)2

4π
=

c

ln(q/Λ)
+ . . . . (1.4)

where c is calculable constant and Λ is the QCD mass scale. Figure 1.3 shows experimental

measures of the effective gauge coupling αs from high energy scattering experiments. While

perturbation theory seems to be generally reliable at high energies, its expansion starts to fall

apart as we move towards the other end of the energy scale. Two approaches were developed

to calculate strong forces and the dynamics of light bound systems at low energies: Chiral

perturbation theory and Lattice QCD.

Chiral perturbation theory is an effective field theory of QCD. In general, the basic idea of

effective field theory is to treat the light particles as relevant degrees of freedom, while the heavy
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Figure 1.2: Experimentally measured values of the coupling αs from various experi-
ments confirming the theoretically expected behavior at high energies. [16]

.

particles are reduced to static sources. The dynamics of effective field theory are described by an

effective Lagrangian which is essentially formulated in terms of light particles and incorporates

all important symmetries and symmetry-breaking patterns. Chiral perturbation theory makes

use of the fact that at low energies hadrons are the only relevant degrees of freedom due to

confinement. It is thus convenient in the low energy level to replace the QCD Lagrangian with

an effective Lagrangian that uses pion, kaons and other light mesons as effective degrees of

freedom. ChPT has been successful at calculating light meson mass, but is affected by the

broken symmetry due to the non-vanishing mass of the quarks [6]. For a more comprehensive

read on ChPT, refer to References [4][5].

Lattice QCD is a non-perturbative approach to carrying out QCD calculations. The pri-

mary goal of lattice QCD is to test whether quantum chromodynamics is the correct theory

for strong interactions. Generally speaking, QCD has been surprisingly successful at describing

large energy - large momentum transfer - processes, making it a reliable theory for strong inter-

actions. However, quantitative confirmation is still lacking. Perturbative approaches to QCD

in the low energy region (≤ 1 GeV) are problematic because the strong interaction coupling
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αs starts approaching 1. Thus, perturbation theory in αs becomes unreliable. Determining the

basic properties of quark bound states thus becomes extremely complicated. Lattice QCD was

introduced many years ago as a frame work to address the problems that QCD faces in the low

energy scale. Briefly speaking, LQCD is obtained by the quantization of the space-time dimen-

sions. In LQCD, the four-dimensional space-time continuum is replaced by a hyper-cubic lattice,

and the quark and gauge fields are restricted to the lattice points. Simulations of lattice QCD

have six unknown input parameters: the coupling αs and the masses of the up, down, strange,

charm, and bottom quarks (the top quark is eliminated from lattice simulations because it is too

short-lived to form bound states). Once these have been fixed in terms of six precisely measured

masses of hadrons, the properties of various other particles made up of these quarks and gluon

can be determined. Following recent improvements in computational technology, lattice studies

have become more popular, and have determined the static and dynamic properties of bound

quark systems more precisely [10].

1.3 The Constituent Quark Model

Our knowledge of mesons and our understanding of strong interactions have gone several

revisions ever since Yukawa introduced the pion to explain the interaction between nucleons.

Our current understanding of the strong force is inspired by what QCD offers, however we have

seen that at low energies, finding solutions for the QCD Lagrangian becomes more complicated

with color confinement. And even though QCD does provide a theory for strong interactions,

we know very little about the physical states of the theory. To a large extent, our knowledge

of hadron physics is based on phenomenological models, in particular the constituent quark

model (CQM). Introduced over 30 ago, the constituent quark model, with its phenomenological

structure, allows for describes color singlet hadrons as bound states of quark and antiquarks.

This model has been surprisingly successful at describing these hadrons as particle that are

made of valence quarks. However, while most QCD-motivated models offer insight on other

states predicted to exist by QCD that are not quark bound states, the quark model does not

possess such a property. More precisely, QCD predicts the existence of a broader spectrum

of states, ones that are made solely of gluons (glueballs), or states which have both constituent

quarks and excited gluonic degrees of freedom (hybrids). The constituent quark model, however,

has had the most success in describing the structure of hadrons.
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Hadrons are divided into two categories, mesons and baryons. Mesons were first introduced

by Yukawa when he postulated the existence of the pion as the exchange boson responsible

for the strong interaction between nucleons. Tens of years later, with high energy accelerator

experiments, a large pool of mesons and baryons appeared, thus leading to confusion among

particle physicists. In an important breakthrough, Gell-mann [8] and Zweig [9] postulated that

mesons and baryons were in fact composite objects. Initially only the up, down and strange

mesons were included in the model, but eventually the charm, top, and bottom quarks were

also included. In the CQM, mesons are made of a quark-antiquark pair, while the baryons were

made of three quarks. We will discuss how mesons and baryons are arranged in the constituent

quark model in what follows, but first we need to recall some of the quantum numbers that are

conserved in strong interaction

• Q Electric charge.

• B Baryon number.

• S strangeness.

• J Angular momentum.

• I Isospin.

• P Parity.

• C Charge conjugation.

• G G-parity.

These quantum numbers are used to construct various meson and baryon states in the

constituent quark model. Some of these numbers are carried by the light quarks themselves

(Table 1.2). Since the meson is made of a quark-antiquark pair, only two total spins are possible,

S = 0 or S = 1

S = 0
1√
2

(↑1↓2 − ↓1↑2)

S = 1
1√
2

(↑1↓2 + ↓1↑2)
(1.5)
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Table 1.2: The quantum numbers of light quarks.

Quark B Q J S I Iz

u 1
3

2
3

1
2 0 1

2 +1
2

d 1
3 −1

3
1
2 0 1

2 −1
2

s 1
3 −1

3
1
2 -1 0 0

where ↑1,2 and ↓1,2 represent the projection of the spin 1/2 in the z direction. The total spin is

determined using

~S = ~s1 + ~s2 → S = 0, 1 (1.6)

In addition to the total spin, we can have orbital angular momentum ~L between the qq̄ pair.

Then when combining this angular momentum with the total spin, we can determine the total

angular momentum ~J

~J = ~L+ ~S (1.7)

Following the spin coupling rules one obtains the possible magnitudes of the total angular

momentum ~J ,

|L− S| ≤ J ≤ |L + S| (1.8)

The magnitude J is one of the most essential quantum numbers used to classify meson and

baryon states. Using S, L, and J the states can be written in spectroscopic notation as 2S+1LJ.

The relative orbital angular momentum between the quark and antiquark can be zero or any

positive integer, its notation is letter based, using S for L = 0, and P for L = 1, and so on.

Using the information from table 1.2, we are able to use these quantum numbers to construct

various JPC quantum numbers for meson states.

Parity: The parity of the qq̄ system depends on the intrinsic parity of its constituents, as

well as the behavior of the wavefunction under inversion of axes. The wavefunction of this system

is separated into a radial component and an angular component represented by the spherical

Ylm functions.
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Figure 1.3: An illustration of the quark antiquark pair in a potential. The quark has
a spin ~s1 and the antiquark has a spin ~s2 and they couple together with an angular
momentum ~l. Image source [12]

.

ψ(~r) = R(r)Ylm(θ, φ) (1.9)

Mathematically, the parity is a reflection operator, and if the wavefunctions are eigenstates

of the parity, then

Pψ(~r) = ψ(−~r) = ηPψ(~r) (1.10)

Since applying the parity twice is supposed to give the original state back, the eigenvalues

of parity ηP can be ±1. While R is left unchanged, the parity operation transforms the angular

part into Ylm(π − θ, φ+ π), it can thus be shown that

Ylm(π − θ, φ+ π) = (−1)lYlm(θ, φ) (1.11)

Finally, since quarks are fermions, they have opposite intrinsic parity. This leads to the

parity of a meson becoming

P(qq̄) = (−1)L+1 (1.12)

Charge Conjugation: The charge conjugation, C, is responsible of interchanging a particle

with its antiparticle. By definition, only states which are their antiparticles are C-parity eigen-
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states. In a qq̄ system, the C-parity operation is carried out by inverting the coordinates as well

as inverting the spin projections. This reverses several properties of the particle such as charge

and magnetic moment. Clearly, in order for a particle to be an eigenstate of C-parity it needs

to be electrically neutral. For a qq̄ spin triplet state, the inversion of the spin projection makes

no contribution to the C-parity eigenvalue, but for a singlet state, a minus sign is encountered.

If we consider the π0 for example, the C-parity operator gives

C
∣∣π0
〉

= ηC
∣∣π0
〉

(1.13)

ηC in this case can be ±1. If we consider a meson built from a quark and it antiquark, the total

wavefunction including the spatial and spin factors is

ψ(~r,~s) = R(r)Ylm(θ, φ)χ(~s) (1.14)

The charge conjugation operator in this case replaces the quark with its antiquark, and

reverses the direction of ~r, thus leading to a factor of (−1)L+1. This operator also flips the spin

component, leading to a factor of (-1) for the S = 0 case and a factor of (+1) for the S = 1 case.

This translates to a factor of (−1)S+1, which when combined with the spatial factor gives,

C(qq̄) = (−1)L+S (1.15)

Clearly, charged particles are not eigenstates of C, given that the antiparticle of a positively

charged particle is its negative counterpart and vice versa. However, if we apply the C operator

followed by a rotation in isospin, then charged particles become eigenstates of this operator.

The G-parity operator is defined as

G = C exp[iπIy] (1.16)

where C is the C-parity of the neutral member of the isospin triplet and Iy is the y-component

of the isospin operator. The geigenvalues of G for a given state are

G(qq̄) = (−1)S+L+I (1.17)

Using these quantities, we can build several qq̄ states. We commonly combine them with

a standard notation of JPC. The combinations below represent states that are allowed by the

constituent standard model
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Table 1.3: The quantum numbers of light quarks.

State S L J P C JPC Mesons Name

1S0 0 0 0 - + 0−+ π η η’ K pseudoscalar
3S1 1 0 0 - - 1−− ρ ω φ K? vector

1P1 0 1 1 + - 1+− b1 h1 h′1’ K1 pseudo-vector
3P0 1 1 0 + + 0++ a0 f0 f ′0’ K?

0 scalar
3P1 1 1 1 + + 1++ a1 f1 f ′1’ K1 axial vector
3P2 1 1 2 + + 2++ a2 f2 f ′2’ K?

2 scalar

JPC
CQM = 0−+, 0++, 1−−, 1+−, 2−−, 2−+, 2++, 3−−, 3+−, 3−−, . . . (1.18)

Table 1.3 provides more details about these states and their nomenclature. However, as we

previously discussed, QCD predicts the existence of states that are not qq̄ bound states. As it

turns out, QCD predicts the existence of hybrid states (qq̄g states), glueballs (gg states), and

tetraquark states (qq̄qq̄ states). Commonly referred to as states with exotic quantum numbers,

the set below represents these states

JPC
non−CQM = 0−−, 0+−, 1−+, 2+−, 2−+, 3−+, . . . (1.19)

These latter states can not be described by a simple qq̄ model. They have been a prime

interest of the particle physics community for the past few years, leading to the development of

a number of experiments worldwide, including the experiment presented in this thesis. Exotic

states are not the topic of this thesis, however it is important to recall that while strange states

can not have exotic quantum numbers (no C-charge), strange companions of exotic unflavored

states are expected.

Isospin, Strangeness, and the Eightfold Way: The idea of isospin was introduced by

Heisenberg in 1936. He proposed the isospin as a new quantum number to denote the 2 possible

states of a nucleon as either a proton or a neutron. The nucleon, with isospin 1
2 , has 2I + 1 = 2

possible orientations in isospin space. The isospin vector ~I has three components denoted I1,

I2, and I3. In analogy to spin S, the third component of the isospin I3 distinguishes between

the proton and the neutron. The latter has an I3 = −1
2 , while the former has an I3 = +1

2 . The
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most convenient way to write the value of I and I3 for a given state is by using |I, I3〉. Then

the proton and the neutron are

proton

∣∣∣∣12 , 1

2

〉
neutron

∣∣∣∣12 ,−1

2

〉
(1.20)

In the quark model, isospin symmetry arises from the nearly identical masses of the up and

down quarks. The neutron, for example, can become a proton when one of the down quarks is

replaced by an up quark. Therefore, these quarks are also assigned I3 values, with the up having

I3 = +1
2 and the down quark having I3 = −1

2 . Note that, all the other heavier quarks have a

zero isospin. The charge of a state |I, I3〉 can be related to its isospin via

q = e(I3 +
1

2
) (1.21)

where e is the charge of an electron. Isospin symmetry can also be extended to other particle,

such as mesons. The isospin of qq̄ states could be 0 or 1 for unflavored states, and 1
2 for states

with a strange quark. For example, pions are qq̄ states that can be constructed by only using

the up and down quarks. Similar to the way spin-1/2 states are constructed, we can construct

3 pion isospin states from the combination of two isospin-1/2 quarks.

−ud̄ state :

∣∣∣∣12 , 1

2

〉
= |I = 1, I3 = 1〉 → π+

dū state :

∣∣∣∣−1

2
,−1

2

〉
= |I = 1, I3 = −1〉 → π−

uū− dd̄√
2

state :

∣∣1
2 ,−

1
2

〉
−
∣∣−1

2 ,
1
2

〉
√

2
= |I = 1, I3 = 0〉 → π0

(1.22)

The quantum number ”Strangeness” was first introduced by Gell-mann in the 1950’s as a

way to explain the strange behavior of newly discovered particles. Several particle accelerator

experiments at the time were observing a particle that seemed heavier than the nucleon and

pion. They were termed strange because they were produced in strong interactions yet decayed

weakly. Gell-mann suggested that this new quantum number is conserved in strong interaction

but it may not be conserved in weak interactions. He later proposed the existence of the strange

quark, a quark heavier than the up and down quarks and has a strangeness S = −1. Gell-mann
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then used this new quantum number to come up with a new scheme to arrange particles based

on their strangeness and their charges and he called it the ”Eightfold way”.

The eightfold way is a mathematical scheme derived from group theory. It was independently

developed by Murray Gell-mann and Yuval Ne’eman in 1961. At the time, a pool of meson had

been discovered, and their quark contents were being deduced their decay process. Using the

eightfold way, Gell-Mann arranged the mesons in the hexagon shown in Figure 1.4. The particles

on the top of the hexagon are the kaons (K), and both contain one strange antiquark, they thus

have a +1 strangeness. Going down the hexagon, one strange quark is added to the state, so

the particles on the middle row, called the rhos (ρ), phi (φ) and omega (ω), contain no strange

quarks. The particles on the bottom are the antiparticles of the mesons on the top row.

A down quark is replaced by an up quark when going across the hexagon from left to right.

The K?0 for instance, is made up of a down quark and a strange antiquark, it thus has the

composition (ds̄). To its right is the K?+ which has the composition us̄. The ρ− on the middle

row is a dū, the ρ0 in the center is a mixture of dd̄ and uū and the ρ− is a ud̄. The φ and the

ω, in the center of the hexagon, also contain mixtures of dd̄ and uū, as well as some ss̄, they

therefore have a zero strangeness.

The letter Q on the bottom denotes the charge of the meson. Using the charges of their

constituent quarks, shown in Table 1.2, and recalling that antiquarks have opposite charges to

their quarks, the charged of the mesons can be obtain by simply adding the charges of their

qq̄ constituents. The set of these 9 mesons is called a nonet, and mesons with similar JP(C)’s

belong to the same nonet. Therefore all the mesons that we know belong to nonets. This could

also be extended to states with exotic quantum numbers. Figure 1.5, shows the nonet for exotic

states with their strange companions. These strange states are expected to be produced with

the same mechanism that regular strange states are produced, they are therefore expected to

mix with regular qq̄ states.

1.4 Strange Mesons

The quark model has been surprisingly successful at explaining the existence of light mesons

in the mass region between 1 and 2 GeV/c2. It has provided a reliable framework for under-

standing light qq̄ states, including strange states. Although the leading qq̄ states have been

extensively studied and reported in the past, most of the non-leading qq̄ states still lack iden-

15



Figure 1.4: Illustration of the SU(3) spectrum of JP = 1− mesons.

.

Figure 1.5: Illustration of the SU(3) spectrum of JP = 1− exotic mesons.

.
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tification and confirmation, especially strange excited states. This limitation not only exhibits

serious implications on the quark model, but also affects the identification of non-qq̄ such as

glueballs and hybrid states that are predicted to mix well with ordinary states. Strange mesons

are an ideal place to study the properties of qq̄ states. The absence of glueballs and hybrid state

mixing makes the experimental situation less confusing. Additionally, the general dominance of

two decay modes allows access to numerous states with only two isobars.

The available information about strange excited mesons is limited and most of the observed

states have been reported but not confirmed. While the low mass region (1.0 - 1.5 GeV) has

been extensively studied in the past and states such as the K1(1270), K1(1400), and K*(1410)

have been confirmed by a handful of experiments [30][32][33][12], little is known about the spin-

parity structure of the higher Kππ mass region (1.5-2.0 GeV) [26]. The K(1630), for instance,

is still a mystery and its spin-parity structure is yet to be determined. Information about the

mass and the width of the K1(1650) is also limited, and this state requires further investigation.

Past experiments have used hadron beams to gain access to the Kππ system. Table 1.4 gives

an overview of our current mapping of the strange meson spectrum. The lack of confirmation

for a significant volume of states is noticeable especially in the higher mass region. Additionally,

there seems to be a tendency to combine states of the same spin-parity together in this region,

even when the masses and widths from various experiments differ significantly. This is noticed

with the K1(1650), having a reported mass of 1650 MeV from one experiment [25], and 1800

MeV from another [30].

Most of the data about excited strange mesons available today has been acquired by ex-

periments using either a pion of a kaon beam. Diffractive dissociation of kaon, in particular,

has provided significant results especially in the low mass region of the Kππ system. The most

recent results from a diffractive dissociation experiment are available in Reference [12]. Using

the COMPASS spectrometer at CERN, a kaon beam of energies up to 200 GeV/c was incident

on a liquid hydrogen target, producing a K−π+π− system off a recoil proton. A partial wave

analysis was performed on a data sample of around 270K events, resulting in the confirmation

of the K1(1270), K1(1400), and the K?
2 (1430), with a pool of other higher mass states. Another

example of kaon beam experiments comes from the ACCMOR collaboration, with a kaon beam

up to 63 GeV/c energies also incident on a liquid hydrogen, resulting in events in the order of

200K. A partial wave analysis extracted several states that still require confirmation. One of the

first conclusive measurements of strange mesons in a Kππ system was performed at the SLAC
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Table 1.4: A compilation of all the strange mesons with masses between 1 GeV and 2
GeV as reported by Reference[16]. States in red are ones that have been observed
in photoproduction experiments. The significantly high volume of states that still
await confirmation is noticeable .

JP Name Mass (GeV) Width (GeV) M, Γ in Kππ Note

0−
K 0.494 Stable ×

K(1460) 1.460 0.260 1.460 Γ 0.260 Needs Confirmation

K(1830) 1.830 0.250 × Needs Confirmation

0+ K?
0 (1430) 1.425 0.270 ×

K?
0 (1950) 1.945 0.201 × Needs Confirmation

1−
K?(892) 0.892 0.051 ×
K?(1410) 1.414 0.232 ×
K?(1680) 1.717 0.322 ×

1+
K1(1270) 1.272 0.090 1.270 Γ 0.090

K1(1400) 1.403 0.174 1.410 Γ 0.195

K1(1650) 1.650 0.150 1.800 Γ 0.250 Needs Confirmation

2−
K2(1580) 1.580 0.110 1.580 Γ 0.110 Needs Confirmation

K2(1770) 1.773 0.186 1.780 Γ 0.210

K2(1820) 1.816 0.276 1.840 Γ 0.230 needs confirmation

2+ K?
2 (1430) 1.426 0.099 1.421 Γ 0.100

K?
2 (1980) 1.973 0.373 × Needs Confirmation

3− K3(1780) 1.776 0.159 ×

accelerator with a 13 GeV/c kaon beam incident on liquid hydrogen target. A total of 72K

events were obtained and a partial wave analysis was performed leading to the first evidence for

the 1+ and 0− states [20]. Also from SLAC, the first observation of the K1(1410) and K1(1770)

states [31] using the LASS spectrometer, by performing a partial wave analysis on a sample of

7K K̄0π+π− events .Alternatively, pion beams have also been used to extract excited strange

states from a Kππ produced off a Λ [29]. Suffering from low statistics, the latter experiment
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Figure 1.6: Features of the K−π+π− system produced via diffractive dissociation of
kaons in K−p→ pK−π+π− at COMPASS. [12]

.

Figure 1.7: Features of a K−π+π− produced in hypercharge exchange reaction π−p→
ΛK+π−π0 using the CERN 2 m hydrogen bubble chamber. [29]

.
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Figure 1.8: A Feynman Diagram illustrating the isobar model interpretation of a γp→
ΛK+π+π− decay. The incoming photon interacts with the proton, which in turn leaves
as a Λ that later decays to a pπ−, then by exchanging a K+ with the meson vertex,
a resonance X is peripherally produced. X then decays to an isobar Y and a bachelor
particle.

.

only resulted in the observation of a the K1(1270) state around 1.3 GeV.

Results from the diffractive dissociation of kaons into Kππ have greatly contributed to the

mapping of the strange meson spectrum over the past 40 years. Photoproduction, on the other

hand, has never been used to study excited strange mesons. Except for the K*(892), none

of the excited strange states has been photoproduced before. A partial wave analysis of a

photoproduced Kππ system is performed for the first time in this thesis. The data was acquired

from the g12 experiment at Jefferson Lab using the CEBAF Large Acceptance Spectrometer

(CLAS). A beam of photons with energies up to 5.45 GeV was incident on a liquid hydrogen

target causing the production of about 16K γp → ΛK+π+π− events. A partial wave analysis

of the produced meson system, which will be presented in Chapter 5, showed clear evidence of

several excited strange states.

A peripherally produced Kππ system is guaranteed in photoproduction, mainly due to the

strangeness the Λ baryon forces onto the meson vertex. Additionally, choosing events with the

lowest possible momentum transfer ensures that the peripherally produced meson system is of

20



highest quality. The photoproduction picture in this analysis is as follows: a photon beam is

incident on a proton target, producing a Λ baryon. The Λ then exchanges a K+ with the meson

vertex thus producing a resonance that would later decay to K+π+π− final state. The three

body decay of the resonance is seen in the isobar model as a decay to an intermediate state

(isobar) and a bachelor particle. The isobar then decays to the other two final state particles

and a Kππ system is produced. Figure 1.8 show the Feynman diagrams that represent the

peripheral production of a Kππ system with the exchange of a K+. In these figures also, the

intermediate state where an isobar Y decays to either π+π− and a bachelor K+ or to K+π−

with a bachelor π+. Previous studies have shown that two decay modes dominate the decay

of most of the excited strange states, especially in the low mass region. We will show in this

analysis that our results were in fact consistent with these studies, indicating the dominance of

the ρ(770)K and K?π decay modes.

1.5 Also In This Document

In addition to the work on analyzing photoproduction data to study strange mesons and

perform the first partial wave analysis on a photoproduced Kππ system, the author of this

document took part in constructing the time of flight detector for the GlueX experiment at

Jefferson Lab. The project was a year long effort of a number of other graduate and under-

graduate students under the supervision of Dr. Paul Eugenio. All the components of the time

of flight detector were built at Florida State University, then transported to Jefferson Lab for

assembly. Component construction included the production of 84 2.5 m long scintillator modules

with two readout photomultiplier tubes on either end, and 8 1.1m long scintillator modules with

one readout photomultiplier tube attached to one end, as well as various miscellaneous frame

components. More information on this project can be found in appendix B.
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CHAPTER 2

EXPERIMENTAL SETUP

The dataset used in this analysis was obtained at the Thomas Jefferson National Acceler-

ator Facility (Jefferson lab), using a photon beam delivered by the Continuous Electron Beam

Accelerator Facility (CEBAF) into experimental hall B where the CEBAF Large Acceptance

Spectrometer (CLAS) is hosted. The CLAS detector is designed to take electroproduction data

directly, but can also take photoproduction data when an electron beam is dilevered to an e-

tagger (sitting upstream) which in turn generates a photon beam via bremsstrahlung radiation.

For the g12 run, physics events were generated using a circularily polarized photon beam in-

cident on an unpolarized liquid hydrogen target. A photon beam of energies up to 5.5 GeV

was delivered to hall B, resulting in about 26.2 billion triggers of different topologies. The g12

dataset is considered the world’s largest for meson photoproduction.

Figure 2.1: An aerial view of Jefferson Lab. Image source [36]
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Figure 2.2: Schematic CEBAF accelerator overview, including modifications for the 12
GeV update. Image source [37]

2.1 The CEBAF Accelerator

The Continuous Electron Beam Accelerator Facility (CEBAF) is Jefferson lab’s main research

facility. Constructed in the 1980’s, CEBAF was designed and built to explore the rules of

interaction between quarks in the confinement regime citemukesh:29. CEBAF was originally

designed to provide high quality, continuous-wave electron beam with up to 80% polarization,

energies up to 6 GeV, and currents up to 200 µA. It recently underwent a major upgrade

increasing beam energies to 12 GeV and adding a new hall where a new experiment (GLueX) is

currently taking place (Appendix B). CEBAF was the first accelerator facility in the world to

make use of superconducting niobium radio-frequency (SRF) cavities, Figure 2.3, thus providing

an acceleration gradient necessary for delivering high quality beam to three halls simultaneously.

The accelerator’s final shape, including the recent upgrades, is depicted in Figure 2.2. The large

scale design comprises two linear accelerators (linacs) connected by recirculation arcs at both

ends, reminiscent of a racetrack, as shown in Figure 2.2.
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Figure 2.3: A cross section view of Superconducting Radio Frequency (SRF) Niobium
cavities. The Standing waves are tuned so that each bunch of electrons will get a
continuous accelerating electric force when it passes through the cavities. Image source
[36]

Electrons are first produced inside the injector using a laser incident on a photo-cathode.

The incident laser beam strikes the photo-cathode and knocks electrons off as a result of the

photoelectric effect. The electric potential between the anode and the cathode then gives the

electron an initial acceleration of 100 kV [19]. Since CEBAF delivers beam simultaneously and

independently to three different halls, three different lasers set at different frequencies, are used.

Electrons leave the injector in bunches about 90 µm in length and separated by 667 picoseconds

in time. After every trip through the linac, electrons pass through sets of magnets that bend

them into the arcs according to their momenta. After every lap around the track, electron

bunches acquire roughly 1200 MeV of kinetic energy and travel up to five times inside the

accelerator before being delivered to the experimental halls. The beam switch-yard then takes

care of delivering these bunches into each experimental hall, resulting in beam bunches every

2.004 ns. Three experimental halls are located at the south end of the CEBAF site, and the

newly added hall D is located at the northern end as seen in Figure 2.2. Hall B is the smallest

hall and houses the CEBAF Large Acceptance Spectrometer, the detector used in this analysis.

2.2 Hall B Photon Tagger

In order to produce a real photon beam necessary for photoproduction experiments, Hall

B uses a tagging system or ”tagger” that converts the incoming electron beam into a photon

beam via bremsstrahlung radiation [21]. Electrons from the beam are incident on a very thin
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radiator sheet, typically made of gold or copper and anchored in the pathway of the beam, thus

passing through the Coulomb’s fields of the nuclei causing them to decelerate and ultimately

emit photons. Using a very thin radiator ensures that a single electron is correlated with a single

photon. A dipole magnet produces a 1.75 T uniform fields that bends the scattered electrons

downwards. A set of scintillators in the first layer detect the position of each scattered electron,

while scintillators in the second layer measure the timing. Since the mass of gold is much

higher than that of an electron, most of the momentum is transfered to the recoil electron and

a negligible amount is absorbed by the nucleus. The energy of a photon can thus be measured

with high precision via:

Eγ = Eie − Efe (2.1)

where Eγ is the energy of the bremsstrahlung photon, Eie is the energy of the electron from

the accelerator, and Efe is the energy of the electron after scattering through the radiator. After

their travel through the radiator, the recoil electrons and the bremsstrahlung photons continue

through a dipole ”tagger” magnet that filters out the electrons [22]. A constant current is

maintained across the magnet during the experiment for the photon tagging system to measure

the energies of recoil electrons and to a gain a coincidence signal for the CLAS detector. About

20-95% of the electron beam’s energy is tagged, corresponding to 1.14 to 5.45 GeV for the

incident 5.74 GeV electron beam energy of the g12 experiment.

Recoiled electrons are bent by this uniform-field dipole magnet onto a focal plane covered

by two arrays of scintillators as shown in Figure 2.4. The first layer consists of 384 overlapping

scintillator modules and is used to measure the energy of the scattered electrons, it is thus called

the ”E-Plane”. A counter’s main role is to register hits from recoiled electrons thus providing

the Data Acquisition System (DAQ) with information about the position of the electron, which

is sufficient to measure the energy. Below the E-Plane is another layer of scintillator modules,

61 in number, for measuring the timing of arrival of electrons bent into the focal plane, this is

called the ”t-plane”. Information provided by the tagger counters is essential for CLAS users.

Combining the tagger timing with times from particle tracks in CLAS gives the time of creation

of the photon responsible for the physics event. The created photons finally pass through a 6.4

mm collimator upstream from the target followed by a set of sweeping magnets. These magnets

bend any charged particles created by the photons hitting the collimator out of the beam’s path.
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Figure 2.4: Side view of the Hall B photon tagger. Electrons bent into the focal plane
by the dipole magnet, pass through the E-counters where their energies are measured,
then through the t-counters where their timing is measured. Image source [39]

Figure 2.5: A schematic diagram of the g12 target. Image source [41]

2.3 Experimental Target

A liquid hydrogen target, pictured in Figure 2.5, was used during the g12 run period. Built

at Jefferson lab and commissioned by another CLAS run group (g11), the target cell had a

cylindrical shape and was 40 cm in length and 4 cm in diameter. The cell’s walls and substructure
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Figure 2.6: Three dimensional computer rendering of CLAS. Image source [36]

were made of aluminum, while the beam window was made of Kapton. Kapton was chosen for

its superior performance under extreme temperatures and high levels of radiation. For the g12

run, the target was placed 90 cm upstream the detector to reduce the angular size of the forward

hole in the detector thus increasing the efficiency of events at small deflection angles.

2.4 The CLAS Detector

The CEBAF Large Acceptance Spectrometer, CLAS, is a multi-particle almost 4π spec-

trometer housed in Hall B at Jefferson Lab, Figure 2.6. Unlike detectors in other halls at

Jefferson Lab, the CLAS detector is capable of tracking particles produced in electron-proton

and photon-proton collisions over a large angular range [19]. The main components of the de-

tector are combined around a superconducting toroidal magnet, which consists of six coils that

divide the detection system into six sectors. Each sector consists of three separate Drift Cham-

bers (DC) regions to determine the trajectories and momenta of charged particles, scintillation

counters or Start Counter (SC) for time of flight and particle identification, Cerenkov Counters
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Figure 2.7: Computer rendering of the start counter. Image source [36]

(CC) for electron identification, and an Electromagnetic Calorimeter (EC) to identify showering

particles such as electrons and protons.

2.4.1 Start Counter

The first detector component the charged tracks encounter in CLAS is the multi-segmented

start counter surrounding the target cell, Figure 2.5. The start counter is made of 24 scintillator

paddles arranged in a hexagonal array [27]. The upstream ends of the SC are attached to

photomultiplier tubes while the downstream ends are bent inwards converging into a six-sided

cone, thus providing coverage at smaller angles in θ. The photomultiplier tubes provide TDC’s

and ADC’s with information about the timing of a hit and the energy deposited into a paddle.

The start counter also plays an important role in the trigger logic in coincidence with the tagger

readout and the time of flight read out. Most particles registering hits in the start counter will

ultimately register a hit in the time of flight detector thus providing necessary information to

calculate the velocity of a particle. In addition to its triggering and timing role, the SC helps

select the appropriate RF-beam bucket which leads to precise measurements of the photon-time,

hence a precise vertex time [27]. Since these measurements are made for every track, events with

multiple tracks give better timing estimates since they provide repeated measurements.

28



Figure 2.8: An illustration of CLAS’s superconducting toroidal magnet. Image source [42]

2.4.2 Superconducting Toroidal Magnet

The heart of the CLAS detector is the superconducting toroidal magnet. It generates the

magnetic field necessary to bend the trajectory of charged particles as they make their way

through the detector. It is composed of six superconducting coils arranged around the beamline

thus splitting the detector into six independent sectors [19]. Each coil is located in a separate

cryostat, and is about 5 m long and 2.5 m wide with a 60◦ separation in the azimuthal direction.

The magnet has the capacity to generate up to 3.5 T magnetic field and can support a 3861

A current [28]. The kidney shaped superconducting coils create a stronger field in the forward

angles of the detector than in backward angles. Since the field is in the azimuthal direction and

always transverse to the particle’s momentum, positively charged particles are bent away from

the beamline, while negatively charged particles are bent towards the beamline. Knowing the

strength of the field, one can determine the momentum of the particle using its trajectory from

the drift chambers.

For the g12 run. the magnet operated at a 1930 A current with a half-maximum field of

1.75 T [28]. Since higher magnetic fields tend to bend negatively charged tracks closer to the

beamline and thus closer to CLAS’s forward hole, a half-maximum field was chosen to reduce

this effect. Figure 2.8 depicts the shape of the torus magnet installed inside the CLAS detector.
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Figure 2.9: (A) Contours of the magnetic field generated by the torus in the mid plane
between two coils. (B) Magnetic field vectors for the CLAS torus transverse to the
beam in a plane centered on the target. Image source [36]

2.4.3 Drift Chambers

The drift chambers are used to determine the momenta of charged particles by tracking their

trajectories. The structure of the toroidal magnet divides the drift chambers into six sectors, each

of which is divided into three regions located at different distances from the target Figure 2.11.

Region 1 (R1) is the closest to the target falling between the beamline and the torus coil in a

Field-Free area. R1 is used to determine the initial direction of charged tracks. Region 2 (R2) is

located between the torus coils, in the high magnetic field area, and is used to detect tracks at

the point of maximum curvature to achieve good energy resolution. Region 3 (R3) falls outside

the coils, in a low magnetic field area, and is used to measure the final position of the track

before the time of flight counters, Cerenkov counters, and the electromagnetic calorimeters [28].

Each region has six separate chambers corresponding to the six layers of CLAS. Each chamber

contains one axial superlayer made of sense wires strung parallel to the magnetic field, and one

stereo superlayer with sense wires strung at an angle of 6◦ with respect to the axial wires [28].

The wires in these superlayers are arranged into a hexagonal pattern, with up to 192 sense wires

per layer. A layer of guard wires surround every superlayer to minimize edge effects. There are
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Figure 2.10: A cross sectional cut through the CLAS detector showing the position of
different regions of the DC. Dashed lines outline the position of the toroidal magnet.
Image source [43]

35148 hexagonal cells in total, capable of detecting particles of momenta greater than 0.2 GeV/c

and covering a polar angle range from 8◦ to 143◦.

As the charged particle travels through the drift chambers, it ionizes the gas molecules. The

field wires, supplied with negative voltage serve as a cathode, while the sense wires hold positive

charge and serve as the anode. Electrons from the ionized molecules make their way towards

the sense wires and create a secondary ionization with the gas molecules, thus increasing the

overall number of electrons and ions. Using the particle drift time information from the detected

signals, the hit positions of the initial charged particles can be found. The gas within the drift

chamber is a mixture of Ar and CO2, 90/10 by volume. The gas mixture supports drift velocities

of 4cm/µsec and operates at very high voltages. The track resolution for the drift chambers was

δP/P ≤ 0.5% for 1 GeV/c charged particles [28]. This resolution is enhanced at forward angles

where the magnetic field is stronger, and falls off with increasing polar angles.
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Figure 2.11: A schematic of a section of the drift chambers showing two superlayers.
The sense wires are positioned in the center and the field wires are positioned at each
corner of the cell. The arrow depicts the track of a charged particle as it passes through
the drift chambers, and the shadowed hexagons represent the hit cells. Image source
[43]

2.4.4 Time of Flight

The Time of Flight (TOF) subsystem is essential for particle identification. Because of their

fast response time, the Time of Flight counters can be used in conjunction with the start counter

to help define trigger criteria for event recording. Whenever a track passes through one of the

TOF paddles, a hit is registered and the time of arrival is determined. Having the trajectory

from the drift chambers and the timing information from both the start counter and the time

of flight, it is possible to explicitly determine the mass of a particle using:

m =
p
√

1− β2

β
(2.2)

where m is the mass of the charged particle, p is its momentum, and β is the velocity of

the particle when it hit the TOF paddle. Similar to other subsystems in CLAS, the Time of

Flight is divided into six sectors mounted behind the Cerenkov counters about 5 m away from
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Figure 2.12: The time of flight detector subsystem used in each CLAS sector. The four
panels are made of 57 scintillator paddles of different lengths . Image source [36]

the target [24]. Every sector in the TOF subsystem consists of 57 scintillator paddles divided

into 4 panels or 3 polar angle regions as depicted in Figure 2.12. The first 23 paddles are 15

cm in width and are instrumented with 2 inches photomultiplier tubes, and are responsible for

detecting particles with polar angles on the range of 8.6◦ to 45.9◦. Paddles 24 through 53 are 22

cm in width and are instrumented with 3 inches photomultiplier tubes, and cover polar angles

on the range of 45.9◦ to 131.4◦. The last four paddles are 15 cm in width and are instrumented

with 2 inches photomultiplier tubes, and cover polar angles on the range of 134.2◦ to 141.0◦. All

paddles are 5.08 cm thick and are made of BC-408 scintillating plastic and have photomultiplier

tubes attached to both ends to read the signal. The timing resolution of the TOF depends on

the length of the bar and averages to 140ps. This resolution provides a Pion/Proton separation

up to 2.5 GeV/c in momentum and a Pion/Kaon separation up to 1.5 GeV/c in momentum.

2.4.5 C̆erenkov Counter

The CLAS C̆erenkov counter are used for lepton/pion separation during particle identifica-

tion. The C̆erenkov counter is mounted around the third drift chamber region, and is segmented

into six identical modules as shown in Figure 2.13. These sectors are capable of detecting leptons

of polar angles on the range of 8◦ to 45◦. Each module is made of 18 light collecting fixtures,

with each fixtures accounting for a range of polar angle. A single fixture is made of two pairs of
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Figure 2.13: Computer rendering of the C̆erenkov counter showing its position relative
to the R2 drift chamber and th Torus magnet. Image source [36]

mirrors in opposing manner along the long axis of the CC module, Figure 2.14, and is filled with

a perfluorobutane (C4F10) gas medium with a 1.00153 index of refraction. Most light hadron,

scuh as pions, travel at lower velocities and will not leave any trails of C̆erenkov light in the CC.

Leptons on the other hand, being much lighter than Hadrons, will travel closer to the threshold

velocity thus emitting C̆erenkov radiation providing means to distinguish them from pions. The

C̆erenkov counter is specifically important for experiments with electron beam, and was not used

for the g12 run. For more information on the C̆erenkov counter consult reference [35]

2.4.6 Event Trigger and Data Acquisition

The CLAS data acquisition system uses a multi-layer suite of electronics to monitor the

performance of different subsystems and collect signals. The presence of a signal in a single

detector element is not necessarily an indication of a physics event. Some of these unwanted

signals originate from cosmic radiation passing through the detector elements, others are a

direct effect of electronics noise. To eliminate these background signals, a trigger system was

used to determine which sets of signals constitute a physics event to be recorded for further
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Figure 2.14: A schematic of one of the fixtures of the six C̆erenkov modules showing
the path of the C̆erenkov light from an electron track. The light is first reflected off the
surface of an elliptical mirror which in turn reflects it onto a hyperbolic mirror that
finally collects the light into a photomultiplier tube. Image source [36]

analysis. Once an event was triggered, the data acquisition system collected the signals from

all detector subsystems and cached them into disk. The recorded events were then copied to

Jlab’s tape-silo library for storage and further offline processing. The primary trigger required

a 100 ns coincidence between the tagger, ST and TOF, it also required two-track events have

high incident photon energy [68]. An example of the basic trigger logic used in data collection

for a single sector is shown in Figure 2.15. More information about the trigger configuration for

the g12 experiment can be found in reference [42][43].

The g12 trigger operated at a rate of 8 KHz thus recording events faster than any previous

CLAS experiment. As a consequence, the g12 experiment acquired the largest photoproduction

dataset to date totaling in 26 Billion triggers, about 126 TB in disk space, and averaging with

a luminosity of 68 pb−1 [42].

2.4.7 Event Reconstruction

Events written to the tape-silo library by the Data Acquisition System can not be analyzed

without getting reconstructed first. A program called ”a1c” was used to reconstruct tracks and

their subsequent particle identification by using information form the raw data on tape, this

procedure is called ”cooking”. Information recorded from various detector subsystems is con-

verted to readable form using ”a1c” via ”hit-based” tracking and ”time-based” tracking. Event
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Figure 2.15: Illustrated are three distinct coincidence trigger criteria. ECPinner and
ECPtotal represent a photon signal above threshold for the inner layer of the EC and
entire EC respectively. ECPinner and ECPtotal represent an electron signal above
threshold for the inner layer of the EC and entire EC respectively. ST0,1,2,3 are the
four TDC signals for the start counter. Image source [42]

reconstruction starts with a hit-based” tracking, during which the position of Drift Chamber

wires that registered a hit are acquired. Adjacent hits in each superlayer are then assembled

into clusters, and layers belonging to the same sector are linked together to produce track seg-

ments. Track segments from the three Drift Chamber regions are then combined to produce full

”hit-based” trajectories. The curvature of this track gives the magnitude of it’s momentum by,

p =
l2qB

8s
(2.3)

where p is the momentum of the track, q is the charge of the particle, l is the chord length,

B is the magnetic field strength and s is the sagitta length. Different components of Eq. 2.3 are

illustrated in Figure 2.16.

With trajectories now in hand, a ”time-based” tracking is performed to connect a ”hit-based”

track to the appropriate Time of Flight panel. This kind of tracking is essential to eliminate any

noise hits not associated with physical tracks. If a hit from the ”hit-based” tracking is matched

to a TOF panel, the time measurement from the TOF panel is used to set an upper limit to the
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Figure 2.16: The path of a charged particle going through a magnetic field. When the
radius of curvature is large when compared with the sagitta, the radius of curvature
can be approximated by r ≈ l2

2s .

time of the drift-chamber hits. Using this upper limit, Drift Chamber hits associated with the

track are checked for timing agreement, where each hit is required to be in increasing time order

as the track moves away from the target. Hits that do not satisfy this condition are disregarded.

With the bad hits now removed, the momentum of an individual track as well as the event

vertex can be measured.

The final reconstruction step is assigning the reconstructed track to a known hadronic state

based on its charge and mass. The mass of the track is calculated using Eq. 2.2, and the particle

identification PID is determined by the following criteria:

PID =


π±, if m < 0.3 GeV and q±
K±, if 0.35 < m < 0.65 GeV and q±
p±, if 0.8 < m < 1.2 GeV and q±
d, if 1.75 < m < 2.2 GeV

(2.4)

Tracks with masses falling outside the defined PID regions are not identified and are labeled

”unknown”. The CLAS detector provides a Pion/Kaon separation up to 2 GeV in momentum

and a Proton/Kaon separation up to 3 GeV as evident by Figure 2.17. These separation capa-

bilities are crucial for analyses where a Kaon is in the final state including this analysis. A series
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of cuts, outlined in Chapter 4, are performed to reduce the effect of the compromised PID at

higher momenta.

Figure 2.17: β of every track in run 56855 as a function of track momentum. Image
source [43]
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CHAPTER 3

DATA ANALYSIS

Event selection begins with establishing physically justified criteria to maximize the sample

and minimize contamination from other reactions. This criteria comprises a set of conditions

(cuts) that are based on our knowledge of the detector, the minimum production energy, and

the kinematics of the topology under study. The first step is to select events that yield the

production of 5 charged particles, or 4 charged particles with a missing particle. The missing

particle - chosen to be missed to enhance the acceptance of this topology - is later reconstructed

using the conversation of the four-momenta of the detected particles and the tagged photon

energy. This is followed by a series of corrections that take into account any loss in energy

and momentum a particle experiences as it travels through the detector. Kinematic fitting

is then performed to enhance the measured kinematics of the particles, by constraining their

energies and momenta to their known masses. A series of cuts is finally performed to reduce

physics background and prepare a final data set for partial wave analysis. Reducing the physics

background has a crucial role in the data selection due to its effect on the success of partial wave

analysis.

3.1 Exclusive γp→ pK+π+π−[π−] Event Selection

We begin our data analysis by selecting γp→ pK+π+π−[π−] events reconstructed from the

skimmed g12 dataset [47]. From the 24.8B triggered events, only events with one proton, one

possible K+, one π+, one or two π−’s are selected. A possible kaon is either a real kaon as

identified by the PART bank, or a high momentum pion (Pπ > 2.0 GeV). Events that pass

this criteria are then treated with a series of corrections to account for any loss of energy and

momenta. These corrections are not accounted for in the CLAS reconstruction software and are

applied independently.

3.1.1 Kinematic Corrections

Among the 24.8B triggered events produced in g12, about 24 million are selected. The

CLAS reconstruction software does not account for any momentum or energy loss inside the
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detector, therefore three independent packages are used to implement the energy and momentum

corrections. These packages account for any uncertainties in the measured magnetic field, any

change in the configuration of the target or the tagging magnet, and any errors in the track

reconstruction of the detected particles. Below is a detailed explanation of how these packages

work and what they correct for.

Energy Loss: During its trip inside the detector, a particle loses some of its energy and

momentum as it interacts with various components of CLAS [48]. To account for these losses,

a package called ”Eloss” is implemented in the event selection code. This package considers

the different materials a particle passes through as it travels from the target cell to the time of

flight detector. It takes the particle momentum as calculated using the magnetic field between

regions 1 and 3 in the drift chamber, and returns a corrected momentum using Bethe-Bloch

formula [52] to relate the material characteristics and path length to energy loss. Since track

reconstruction in CLAS uses information from the drift chambers, this correction can be quite

substantial especially for low momentum particles and runs where the start counter is installed.

Beam Energy Corrections: The ”BEC” package is used to correct for errors included in

the calculation of the photon beam four-momentum. These errors are associated with hysteric

behavior of the tagger magnet [50]. Any errors in the calculated bending magnetic field of the

tagger for incoming electrons, would eventually propagate to the calculated four-momentum of

the photon beam. This correction is essential for topologies with a missing particle, since the

missing four-momentum is calculated using the photon beam momentum and energy.

Momentum Correction: The ”Pcor” package is implemented in the event selection pro-

cess to correct the momenta of detected charged particles. As discussed in Chapter 2, track

reconstruction relies completely on the magnetic field map inside CLAS, which means that any

deviations in the magnetic field need to be considered [50]. Small deviations of the real field

from the provided mapped field to the reconstruction software usually arise due to our limited

knowledge of the imperfections of the real field in CLAS as well as the misalignment of the drift

chambers. The ”Pcor” package fixes the momenta of the charged particles hence enhancing our

knowledge of their track inside the detector.

The effect of these corrections on the momenta of different particles is illustrated in Fig-

ure 3.1. The mass dependence of these corrections can be clearly observed. Pions have up to

0.006 GeV correction in the lower momentum region. Protons have a correction up to 0.02 GeV

in the higher momentum region and a correction up to 0.08 GeV in the lower momentum region.
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Similarly, kaons require a correction up to 0.05 GeV in the lower momentum region, and up to

0.02 GeV in the higher momentum region.

3.1.2 Event Vertex and Timing Cuts

The target used for g12 was a 40 cm long, 4 cm in radius liquid hydrogen cell, placed 90 cm

upstream inside the detector to enhance forward angle acceptance. To determine the position

of the vertex of an event, reconstruction uses the distance of closest approach (DOCA) from

neighboring charged tracks to extrapolate them back to their intersection point inside the target

cell. This process can sometimes lead to badly reconstructed events due to equipment failures

and changes in detector configuration, causing the beam to shift off target, thus producing tracks

off the target cell walls and its support structure. To reduce the effect of this phenomenon, the

following selections are performed:

1. The reconstructed vertex radius (r =
√
x2 + y2) is selected to be < 2.5cm, taking into

account the 5mm tracking resolution of g12.

2. The z position of recosntructed vertex is selected to fall in the (-110,-70) cm range.

These selections ensure that the event vertex falls within the target cell and they eliminate

any vertex position reconstruction inefficiencies. The selected green events are then subjected

to vertex timing examination. In CLAS an event’s start timing, or vertex timing, is determined

using timing information from the accelerator and the start counter. The accelerator timing of

the incoming electron is the most accurate timing known for an event in CLAS and is referred

to as the RF time of the beam bucket. Once the timing of a scattering electron in the start

counter is determined, it can be extrapolated to get its original RF beam bucket. The produced

photon, therefore, acquires a time stamp that is later propagated to determine the event vertex

timing. For a given CLAS event, a number of photons are considered acceptable candidates

of the beam photon. Requiring that the incoming photon be close to the time-average of the

measured tracks enforces the selection of the best candidate. About 12% of g12 events have

more than two photons in the same beam bucket. However, most of these photons have different

energies. Therefore, the triggering photon can be determined by selecting the photon with the

highest energy in conjunction with its time proximity to the event vertex.
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(a) Corrections’ effect on π− momenta. (b) Corrections’ effects on π+ momenta.

(c) Corrections’ effects on K+ momenta. (d) Corrections’ effects on Proton momenta.

Figure 3.1: The z and r distributions of pK+π+π−[π−] events. The blue region indicates
the selected events.

An event’s vertex timing is determined by averaging over the start counter vertex timing for

every track in the event. Once the average time is determined, a triggering photon is selected

using the prescription described earlier. The difference between the timing determined by the

RF-corrected tagger (extrapolated accelerator time) and the start counter timing is then used

to select the proper vertex time. Only events with a timing difference within 1 ns are selected

as shown in Figure 3.3.

42



(a) The z vertex distribution

(b) The target cell radius

Figure 3.2: The z and r distributions of pK+π+π−[X] events. The green region indi-
cates the selected events.

3.1.3 Beta Cuts

As described in section 3.1.2, a significant number of CLAS events have more than one

photon in the same beam bucket. This is taken care of by selecting the photon with the highest

energy as the triggering photon. And while this method has high success rates, the wrong photon

is sometimes selected. Selection of the wrong photon yields an incorrect value for the vertex

start time, thus leading to ”unphysical” speed measurements of tracks in the event. Unphysical

speed measurements can be observed by examining the quantity β, which is determined using

timing information from the start counter and the time of flight subdetectors. The stop time and

position from the TOF are combined with the start time and position from the start counter to
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Figure 3.3: The difference in start counter time to the RF-corrected tagger vertex
time of pK+π+π−[π−] events. The green region indicates the selected events.

get the total flight time of a particle. This time, combined with the distance the particle travels

inside the detector, allows the determination of the speed of a charged track which gives β when

divided by the speed of light as shown in Equation 3.1.

β =
particle speed (v)

speed of light (c)
=

lTOF − lSC
c(tTOF − tSC)

(3.1)

where lTOF and lSC are the path lengths from the vertex to the time of flight and start counter

respectively, and tTOF and tSC are the respective hit times. Figure 3.4 shows the beta of π+

including the selected events. We seek to reduce this effect by selecting events with physical

betas while taking into account timing resolution. Therefore, only events with βπ+ ¡1.04 are

selected. The same selection is also performed for all the other tracks.

3.1.4 Beam Energy

The threshold photon beam energy required to produce the ΛK+π+π− final state can be

calculated using energy/momentum conservation. Assuming that the produced particles are at

rest, the threshold center-of-momentum energy to produce the final states is simply the sum

of all the rest masses of the final state particles. Therefore by applying energy/momentum

conservation laws to the four vectors of the initial and final state particles, we could determine

the minimum production energy using
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Figure 3.4: The beta distribution of pi+ for all events. The darker blue region indicates
the selected events.

Eγ =
m2
X +m2

r −m2
t + 2mXmr

2mt
(3.2)

where Eγ is the energy of the incident photon, mX is the rest mass of the produced meson, mr

is the rest mass of the recoil baryon, and mt is the rest mass of the target proton. To produce

a Λ with a 1.4 GeV meson in the K+π+π− system, photons with energies equal to or greater

than 2.9 GeV are required. Information about the threshold production energy is important for

making a beam selection, however it is not sufficient. The detector’s configuration during the g12

run also plays a major role. For g12, photoproduced events were collected for energies between

1.1 and 5.5 GeV with the primary trigger configured to collect data for events with E ≥ 4.4

GeV. We therefore select events with beam energies higher than 4.4 GeV in correspondence with

the detector configuration. Additionally, performing such a high beam energy cut enhances the

t-channel peripheral production of mesons and comfortably sits above the regime of s-channel

baryon production.

3.1.5 Kinematic Fitting

Kinematic fitting is a mathematical process that uses physical constraints, such as conserva-

tion of energy and momentum or vertex position to improve measured quantities. The fitter used

in this analysis was developed by Dustin Keller [53] for CLAS data. It uses the Least Squares
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Figure 3.5: The beam profile of the pK+π+π−[X] events. The brown area indicates
the selected events.

Fitting techniques in conjunction with the method of Lagrange Multipliers to enforce the energy-

momentum conservation, then performs a χ2 minimization using the measured quantities. To

kinematically fit the data in this analysis, the fitter is first provided with the kinematically

corrected four-momenta and an initial calculated covariance matrix . This matrix contains in-

formation about the kinematic variables of reconstructed tracks, however, it does not account

for multiple scattering errors and other energy losses. The fitter corrects for that by scaling

the matrix elements and adjusting the kinematic variables to fall within the allowed constraints

determined by the correlation matrix. A kinematic fit is generally categorized according to the

number of constraints and variables included in the fitting procedure. For a k measured con-

straints and j unknown variables, the effective number of constraining elements is (k-j) and the

fit is referred to as a ”(k-j)C” fit. For this analysis, the missing particle is hypothesized to be

a ”π−”. Therefore the three components of the missing particle momentum are treated as the

unmeasured variables, while the energy-momentum conservation of the channel provides four

measured constraints, categorizing the fit in hand as a ”1C”fit. To assess the quality of the fit,

the fitter returns two quantities: the pulls (Equation 3.3) and the χ2 distribution (Equation 3.4).

The pull for the initial value, ηi, and final value, ηf , of the measured quantities is

z =
ηi − ηf√
σ2
ηi − σ2

ηf

(3.3)
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(a) (b)

(c) (d)

Figure 3.6: The missing mass squared off (pK+π+π−) distribution. The region be-
tween the two red lines indicates the fitted events. The dark gray region in Figure (b)
represents the selected events. The shaded areas in Figures (c) and (d) represent the
selected fitted events and the discarded fitted events respectively.

where σ2
ηi and σ2

ηf are the corresponding covariance matrix elements for ηi and ηf respectively.

The pulls are expected to peak around 0 and to have a sigma close to 1. A significant devia-

tion from the width or the mean of the pull distribution is an indication of wrongly estimated

covariance matrix errors and scaling factors.

The confidence level, CL, is the integral of the χ2 probability density function, f(z, n), for n

degrees of freedom;
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CL =

∫ ∞
χ2

f(z, n)dz (3.4)

A confidence level that is generally flat is an indication of a good fit. Events described by the

hypothesis will result in a uniform distribution from 0 to 1, and those poorly described will

result in a sharp peak at zero.

To decide which events to be kinematically fitted, we look at the squared invariant mass of the

missing particleas shown Figure 3.6. The four-momentum of the missing particle, and the invari-

ant mass are reconstructed using the four-momenta of the detected particles (PK+PP Pπ+Pπ−)

and the tagged photon beam (Pγ), according to the formulas below:

PMiss = (Pγ + PTarget)− (PK+ + PP + Pπ+ + Pπ−) (3.5)

and

M2
Miss = |PµMiss.PMiss,µ| (3.6)

where MMiss is the invariant mass of the missing particle and PMiss is its four-momentum. The

fitter is provided with events whose invariant mass squared is between -0.18 GeV and 0.18 GeV.

This relatively large interval is arbitrarily chosen and takes the resolution of a pion into consider-

ation. The enhancement around 0.24 GeV is a K−, and corresponds to the γp→ pK+π+π−[K−]

channel. The final results for the pK+π+π−π− fit are summarized in Figure 3.6. The confidence

level is as expected, mostly flat with a peak around zero that represents the poorly reconstructed

events. The pulls in Figure 3.7 are centered around 0 and have a sigma close to 1, thus implying

the good quality of the fit. The brown region in Figure 3.6(c) indicates events selected with a

confidence level larger than 10%. The grey region in Figure 3.6(d) represents the discarded fitted

events. About 25% of the fitted events are selected for the exclusive pK+π+π−π− analysis.

3.2 Final Event Selection

The main purpose of this analysis is to analyze the exclusive pK+π+π−π− final state in

search for observable resonances in the K+π+π− system peripherally produced off a Λ baryon.
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(a) K+ momentum pull. (b) Proton momentum pull.

(c) π− momentum pull. (d) π+ momentum pull.

Figure 3.7: The pulls of the kinemtatic fit related to the momenta of the particles.
They are centered close to zero and have a sigma close to 1.

This is followed by performing a proper partial wave analysis to extract the dynamics and angular

contributions of different strange states from the K+π+π− final state. The success of the partial

wave analysis heavily depends on our ability to isolate signals and reduce background from the

meson system. In what follows, we discuss the different selections that were deemed essential to

reduce the background and enhance the peripheral production of a (Kππ) resonance.

3.2.1 Λ→ pπ− Selection

The Λ baryon in this analysis is identified through its dominant decay mode: pπ−. In the

exclusive pK+π+π−π−, one of the negatively charged pions is associated with the meson system,
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(a) The invariant mass of the (pπ−) system. (b) The invariant mass of the (pπ−Missing) system.

Figure 3.8: The invariant masses of (pπ−) and (p[π−]) systems. Peaks around 1.1
GeV/c2 are clear indications of Λ baryons.

while the other originates from the Λ decay. To thoroughly understand the origin of either pion,

we first examine the corresponding pπ− invariant mass spectra. Figure 3.8 clearly illustrates a Λ

peak in both invariant mass distributions. The difference in the peak width is due to the nature

of the resolution of the reconstructed missing pion. These two Λ peaks are clear indications that

either pion can originate from the baryon vertex. To select these Λ events, we examine the two-

dimensional plot of the pπ− and p[π−] invariant masses, as shown in Figure 3.10. The vertical

and horizontal narrow bands are representations of the Λ events. The area of overlap between

1-1.2 GeV constitute events where both pions overlap at small phase space. Such events could

indicate a possible resonance coupling to Λπ−. A sample of these events is chosen to examine the

(pπ−π−) system (Figure 3.9). The bright blue region represents the selected overlap area which

evidently corresponds to the Σ−(1385) baryon decaying to Λπ−. These events are thus excluded

from the final data selection, and only events enclosed inside the red boxes (Figure 3.10) are

selected. About 30% of the selected Λ’s decay to a proton and a detected π−.

Features of the selected events are shown in Figure 3.11. A peak in the lower (Kππ) mass

region is evident around 1.4 GeV. The large shoulder in the higher mass region, however, makes

it hard to observe any other possible peaks except for a relatively small enhancement around

1.75 GeV. A clear and sharp K∗(892) sitting on a relatively large background is observed around

0.9 GeV in the (K+π−) system, with a small enhancement in the higher mass region peaking
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(a) The invariant mass of (pπ−) versus the invariant
mass of (pπ−).

(b) The invariant mass distribution of (pπ−π−).

Figure 3.9: The 2 dimensional plot of the invariant masses of (pπ−) and (p[π−]) (a),
The invariant mass distribution of the (pπ−π−) system (b). Events in bright blue in
(b), correspond to the sample enclosed in the yellow box in (a).

Figure 3.10: The invariant mass of (pπ−) versus the invariant mass of (pπ−). Events
enclosed inside the red boxes correspond to the Λ selection.

around 1.4 GeV. The peaks around 0.5 GeV and 0.75 GeV in the (π+π−) system correspond to

Ks and ρ(770) respectively. The shoulder that the Ks sits on is due to reflections from K+π−.

The presence of this state is an indication that the PID’s of pions and kaons are compromised,
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(a) The invariant mass of (K+π+π−). (b) The invariant mass of (K+π−).

(c) The invariant mass of (π+π−).

Figure 3.11: The invariant mass of K+π+π− (a), K+π− (b), and π+π− (c) for the
exclusive γp→ ΛKπ+π− sample following the Λ selection.

this is due to limitations in the π/K separation in CLAS as discussed in section 2. Eliminating

this effect is essential for obtaining a clean and reliable sample that would later be used for

partial wave analysis.

3.2.2 Baryon Background Reduction

The main source of background in this analysis has been found to be baryonic in nature.

As discussed in section 3.2, Σ(1385)− was clearly present in the Λπ− invariant mass, and it

was eliminated by rejecting the area of overlap between the two Λ’s. This cut however did not

completely eliminate the baryonic background. A major contribution from the Σ(1385)+ was
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found in the invariant mass of Λπ+ as shown in Figure 3.13. This state corresponds to the

γp → Σ(1385)K∗(892) channel. A two dimensional plot (Figure 3.12) of the (Λπ+) and the

(K+π−) invariant masses, shows the correspondence between the two states in that channel. To

exclude this state, only events with a (Λπ+) invariant mass greater than 1.47 GeV are chosen

as shown in Figure 3.13.

Figure 3.12: The invariant mass of Λπ+ versus the invariant mass of K+π−.

The effect of this cut on the features of the data is illustrated in Figure 3.14. The enhance-

ment around 1.4 GeV in the K+π+π− invariant mass is now more prominent, with the shoulder

in the higher mass region relatively smaller. The small peak around 1.43 GeV in the K+π−

invariant mass was eliminated with the cut, and the background on which the K∗(892) sits on

is now less significant. The Ks and ρ in the π+π− invariant mass are still prominently present,

sitting on a relatively large background.

3.2.3 Eliminating Particle Misidentification

As we discussed in section 3.2, one of the major sources of background is the misidentification

of particles due to CLAS’s limited π/K separation capabilities. As a matter of fact, CLAS is

only capable of successfully separating pions from kaons up to 1.5 GeV momenta. Beyond this

point, PID is compromised and pions can hardly be distinguished from kaons. This analysis,

however, takes advantage of the strangeness enforcement in the meson vertex due to the recoil
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Figure 3.13: The invariant mass of Λπ+. The area in brown corresponds to selected events.

Λ in the baryon vertex. As a result of a good Λ selection from the initial data sample, the π/K

separation at this point is expected to be better in the high momentum region. To visualize the

relation between PID and momentum, a two dimensional plot of β of pions and kaons is plotted

as a function of their corresponding momenta as shown in Figure 3.15.

The bands in Figure 3.15 correspond to different particles. The difference in the shape is

due to the nature of the relationship between the β of the particle and its mass as evident by

equation 3.7 below:

β =
p

E
=

p√
m2 + p2

(3.7)

where p is the momentum of the particle and m is its mass. The separation momentum limit

between π and K can be clearly seen in Figure 3.15. PID is compromised when the momenta

of pions and kaons approach 1.9 GeV, making it hard to separate one from the other. As a

result, it is more likely that higher momentum kaons are mislabeled pions. Misidentification was

seen to severely affect the π+π− spectrum (Figure 3.16, as evident by the existence of a Ks. To

further investigate its origin, the mass of the π+π− system is plotted against the momentum

of kaons as shown in Figure 3.16. The Ks is clearly more prominent in the higher momentum

region as a result of particle of misidentification. To eliminate the effect of this phenomenon,
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(a) The invariant mass of (K+π+π−). (b) The invariant mass of (K+π−).

(c) The invariant mass of (π+π−).

Figure 3.14: The invariant mass of K+π+π− (a), K+π− (b), and π+π− (c) for the
exclusive γp→ ΛKπ+π− sample following the sigma elimination cut.

events with K momentum higher than 1.9 GeV are excluded from further analysis. The effect

of this cut on the features of the data are shown in Figure 3.17.

Figure 3.17b shows a decrease in the background under the K∗(892). Meanwhile the shoulder

around 1.4 GeV is still present indicating the possibility of a K∗2 (1430) in that region. The Ks

signal in the π+π− system is significantly reduced compared to its intensity in Figure 3.14c. The

low mass region in the K+π+π− system is not significantly affected by this cut, however the

higher mass shoulder is now more defined compared to Figure 3.14(a).
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Figure 3.15: An illustration of the relation between momentum and PID. The momenta
of proton, π and K (x-axis) are plotted against their respective β’s (y-axis).

Figure 3.16: A two dimensional plot of the mass of π+π− as a function of the momenta
of kaons. The Ks is clearly more prominent in the higher momentum region.

3.2.4 Momentum Transfer Cut

The last quantity to look at before finalizing data selection is the momentum transfer t.

Being one of the Mandelstam variables, t provides essential information about the nature of the
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(a) The invariant mass of (K+π+π−). (b) The invariant mass of (K+π−).

(c) The invariant mass of (π+π−).

Figure 3.17: The invariant mass of K+π+π− (a), K+π− (b), and π+π− (c) for the
exclusive γp→ ΛKπ+π− sample following the K momentum cut.

interaction between the beam and the target. The Mandelstam variables s, t and u are defined

as follows:

s = (pµγ + pµp )2 = (pµX + pµΛ)2

t = (pµγ − p
µ
X)2 = (pµp − p

µ
Λ)2

s = (pµγ − p
µ
Λ)2 = (pµp − p

µ
X)2

(3.8)

where
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• pµγ is the four-momentum of the beam

• pµp is the four-momentum of the target

• pµΛ is the four-momentum of the recoil Λ

• pµX is the four-momentum of the Kππ resonance

Figure 3.18 shows the distribution of the momentum transfer t for events that survived all

the previous cuts. The distribution is expected to fall exponentially according to Ae−bt for a

peripheral meson production [51]. In photoproduction, the peripheral production of a meson

occurs when the incident photon interacts with the cloud of virtual mesons around the nucleons

rather than directly with the nucleon, thus transferring little momentum to it. With higher

momentum transfer to the nucleon, it is more likely that this transfered momentum would

cause the excitation of the nucleon. For these reasons, it is important to keep the transfered

momentum to a minimum.

Figure 3.18: The momentum transfer t.

Instead of using the momentum transfer t for this selection, we use the quantity t’ defined

as
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t′ = t− tmin

tmin =

[
m2

Λ −m2
X −m2

p

2
√
s

]
−
(
pCMγ − pCMX

)2 (3.9)

t’ is the excess momentum transfer and tmin is the minimum momentum transfer required to

produce a resonance of mass mX with momentum pCMX in the center-of-mass frame. pCMγ is

the center-of-mass beam momentum, mΛ is the mass of the recoil Λ, and mp is the mass of

the target proton. The excess momentum transfer t’ is illustrated in Figure 3.22a. Similar to

t, it falls exponentially with a sharp cut off close to zero due to the CLAS acceptance. Since

tmin depends on the invariant mass of the resonance X in the Kππ system, the slope of t’ is

expected to vary within the different regions of the Kππ system and vice versa. In Figures 3.22b

and 3.22c, the t’ distribution is examined for two Kππ mass regions. Slightly steeper slopes are

observed in the low mass region compared to higher Kππ mass events. This slight difference is

irrelevant in peripheral production as only low momentum transfer events are chosen in order

to enforce the exchange of a K+ between the baryon vertex and the meson vertex.

To determine the effectiveness of limiting the excess momentum transfer on reducing the

background, the invariant masses of the Kπ, ππ, and Kππ systems are examined over a range

of cuts in t’. The results are presented in Figure 3.20. General features of the data remained

the same for different t’ cuts. Significant reductions in the background are observed specifically

in the K+π− system where the K∗ now sits on a relatively lower background. The same applies

to the π+π− system where a significant decrease in background events is observed. While

choosing a lower t’ cut could possibly result in further background reductions, limited statistics

dictated choosing the lowest t’ cut to be 0.6 GeV 2/c2. This range provides the analysis with a

considerable number of events to perform a successful partial wave analysis, and is low enough

to enhance the peripheral production of resonances in Kππ.

3.3 Features of the Final γp→ ΛK+π+π− Sample

With the background now reduced to acceptable levels, the final features of this K+π+π−

system can be examined for resonances. Of the 164,418 exclusive ΛK+π+π− events, 16,157

events survived our cuts, making this dataset the largest ΛK+π+π− photoproduction dataset

to date. A summary of the cuts and their corresponding selected number of events is presented

in Table 3.1.
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(a) The t’ distribution for the full Kππ mass range (b) The t’ distribution for the low Kππ mass range

(c) The t’ distribution for the high Kππ mass range

Figure 3.19: Exponential fits for the t’ distribution over the full Kππ mass range
(a), in the low mass region between 1 and 1.6 GeV (b), and in the high mass region
between 1.6 and 2.2 GeV (c). the values of the slopes are -0.5763, -0. 6076, and -0.5415
respectively.

Past Kaon beam experiments have reported two dominating decay modes in the Kππ system,

the ρK and K∗(892)π modes. The accepted K+π− mass spectrum (Figure3.20(a)) shows a

sharp K∗(892) sitting on a relatively low background with a small enhancement around 1.4

GeV equivalent to the K∗2 (1430). Figure 3.20(b) shows the accepted π+π− mass distribution

where a ρ(770) dominates sitting on a considerably high background, with a shoulder around

1.2 GeV assumed to be due to an f2(1270). The accepted K+π+π− mass distribution for this

final selection is presented in Figure 3.21(a). A considerable enhancement in the low mass
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(a) The t’ distribution for the full Kππ mass range (b) The t’ distribution for the low Kππ mass range

(c) The t’ distribution for the high Kππ mass range

Figure 3.20: Features of the data: the invariant mass of K+π− in (a), π+π− in (b),
and K+π+π− in (c) for various t’ selections. The final event sample uses the t’ cut
shown in blue.

region between 1.3 GeV and 1.5 GeV is evident, while the higher mass region does not exhibit

clear resonance behavior except for a shoulder around 1.8 GeV. The final K+π+π− sample

consisted of 16,157 events from 164K events of the ΛK+π+π− topology. With the background

reduction finalized, and the features of the data thoroughly examined, a partial wave analysis

was performed to extract resonance properties and understand the angular structure of the

dataset.
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Table 3.1: A summary of the event counts before and after each cut used to select the
final sample γp→ ΛK+π+π− events for PWA.

Description Selection Events In Events Out

Vertex within target length -110 < z < -70 cm 25,238,560 23,374,333

Vertex within target radius r < 2.5 cm 23,374,333 14,155,638

Physical β’s for all particles 0 < βπ,proton,K < 1.04 14,155,638 12,382,383

Event vertex timing |∆t| < 1.002 ns 12,382,383 11,137,129

High beam energy Eγ > 4.4 GeV 11,137,129 4,522,670

Kinfit MM2 range -0.18 < MM2 < 0.18 GeV 2 4,522,670 2,297,665

Confidence Level CL > 0.1 2,297,665 596,583

Combined Λ selection 1.096 < M(pπ−) < 1.136 GeV 596,583 160,007

Elimination of Σ+(1385) M(Λπ+) > 1.46 GeV 160,007 98,812

PID Selection PK+ < 1.9 GeV 98,812 64,045

Low momentum transfer (t’) t’ < 0.6 GeV 2 64,045 16,157

(a) The K+π+π− invariant mass with low range selec-
tion.

(b) The dalitz plot of K+π+π− for low mass events.

Figure 3.21: The invariant mass of the final K+π+π− sample used in the partial wave
analysis (a), and the dalitz plot of this selected sample (b).
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(a) The K+π+π− invariant mass with low range selec-
tion.

(b) The dalitz plot of K+π+π− for low mass events.

(c) The K+π+π− invariant mass with high range selec-
tion.

(d) The dalitz plot of K+π+π− for high mass events.

Figure 3.22: Dalitz distributions for the low Kππ mass region (top), and high mass
region bottom. Green regions on the left correspond to events used in the Dalitz plots
on the right.
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CHAPTER 4

PARTIAL WAVE ANALYSIS FORMALISM

The Kππ meson system in this analysis has demonstrated resonance behavior in the low

mass region, but did not provide definite identification of the state responsible for this peak.

As a matter of fact, it is virtually impossible to identify this state by simply examining the

invariant mass spectrum, as this mass region is populated with different known states such as

the K∗(1400), K1(1410), K∗0 (1430) and K∗2 (1430). Since all of these states are candidates for

the resonance enhancement around 1.4 GeV, a partial wave analysis is considered essential to

this analysis. In this Chapter, a detailed description of the partial wave analysis framework is

introduced.

4.1 Introduction

Partial wave analysis is a tool used to determine the contribution of different spin-parity

states to the observed intensity distribution. It provides a framework to extract the resonance

properties and understand the angular structure of the data sample in hand. It is essentially

used to parametrize the amplitude of a spectrum as a function of the angular distributions of

the decay products. We start examining the methodology of partial wave analysis by looking at

the cross section, a quantity that is used to describe the intensity of production of a particular

process; meaning a process with a higher cross section happens more often than a process with

lower cross section. The general form of the cross section σ is

σ =
n×AH2

2 × nγ × lt × ρt ×NA ×Acceptance
(4.1)

where n is the number of observed γp → ΛK+π+π− events, AH2 is the mass number of the

H2 atom, nγ is the total number of photons on target, lt is the length of the target, ρt is its

mass density, and NA is Avogadro’s number. While this quantity is useful for general analysis

purposes, providing the over-all cross section for a γp → ΛK+π+π− event to occur at all com-

binations of angles and momenta. A detailed analysis of the cross section requires normalizing
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this quantity to the available phase space for this reaction; that is, normalizing the unit cross

section dσ to the unit scattering angle dθ. This quantity is known as the differential cross section

dσ/dθ.

In the case of three final state mesons, the differential cross section tends to become more

complicated, thus dictating the use of a model to describe the decay of the unknown resonance.

We assume that the decay X → K+π+π−, illustrated in Figure 4.1, is well-described by the

isobar model [67], it thus follows either of the forms below

X → Y π+ → K+π−π+

X → Y K+ → π+π−K+ (4.2)

where the resonance Y is the intermediate state isobar. The Lorentz-invariant phase space for

this process is given by the form found in reference [69]

dρ ∝ dΩ∗ (pY dΩX dmX) (pb dΩY dmY ) (4.3)

where Ω∗ = (θ∗, φ∗) represents the polar and azimuthal angles of the resonance X of mass

mX in the center-of-mass frame; ΩX = (θX , φX) denotes the angles describing the orientation

of the momentum pY of the isobar of mass mY in the Kππ rest frame; ΩY = (θY , φY ) denotes

the angles corresponding to the momentum pb of the bachelor particle in the isobar’s helicity

rest frame.

A full description of the three body system requires five variables [69]. In this framework four

angles, Ω = (Θ,Φ) and ΩY = (θ, φ), and the isobar mass mY are chosen. The angles Ω = (Θ,Φ)

are the polar and azimuthal angles describing the isobar orientation ~p in the Gottfried-Jackson

frame (the resonance X rest frame), where the z-axis is chosen to be in the direction of the beam

in the X rest frame, ˆyGJ is defined as p̂γ x p̂X , the normal to the production plane, and ˆxGJ is

obtained by enforcing a right-handed coordinate system. Additionally, the angles ΩY = (θ, φ)

specify the orientation ~pb of one of the decay products of the isobar in the helicity frame (Isobar

Y rest frame), where the z-axis is defined as p̂Y before the boost into the Y rest frame, ŷH is

defined as ẑH x p̂γ , and then x̂H is obtained by again enforcing a right-handed coordinate system

with ŷH x ẑH . Both reference frames are illustrated in Figure 4.2. The Lorentz-invariant phase

space can now be written as
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Figure 4.1: A Feynman Diagram illustrating the isobar model interpretation of a γp→
ΛK+π+π− decay. The incoming photon exchanges a K+ with the proton, which in
turn leaves as a Λ that later decays to a pπ−, and peripherally produces a resonance
X. X then decays to an isobar Y and a bachelor particle which could be either a π+ or
a K+. The isobar then decays to π+π− or K+π−.

dρ ∝ dt dmX dτ (4.4)

where

• τ = {Ω,ΩY ,mX}

• dτ = dΩ dΩY dmY = dΦ dcosΘ dφ dcosθ dmY

• t = t0 - 4|pγ ||pX | sin2(θ∗/2)

Notice that the Ω∗ = (θ∗, φ∗) term has been replaced by the momentum transfer term. This

is due to the fact that the reaction is independent of φ∗, and can thus be integrated over. Then

using the definition of t, the θ∗ dependence can be related to the momentum transfer. The

differential cross-section can now be written as

dσ

dt dmX dτ
∝ |M|2pY pb (4.5)
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Figure 4.2: The definition of the Gottfried-Jackson reference frame (blue) and the
Helicity reference frame (red) used in the calculation of decay amplitudes.

where

|M|2 = I(τ), (4.6)

is the Lorentz-invariant transition amplitude. M serves as a connection between the intensity

distribution and the differential cross section. The purpose for this analysis is essentially to

parametrizeM as a function of the Lorentz-invariant phase space and analyze the data for each

bin given the corresponding momentum transfer t and the Kππ mass mX .

The transition amplitude M can be written in terms of the transition operator T̂ as follows

M = 〈out| T̂ |in〉 (4.7)

where ”out” represents the final state (K+π+π−Λ) and ”in” represents the initial state (γp).

The intensity distribution thus becomes

I(τ) =
∑
α

|M|2 =
∑
α

〈out| T̂ |in〉 (〈out| T̂ |in〉)∗ (4.8)

and more precisely,
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I(τ) =
∑
α

〈out| T̂ |in〉 〈in| T̂ † |out〉 (4.9)

the operator |in〉 〈in| is then replaced with the initial spin density matrix operator, ρ̂in,and the

intensity distribution becomes

I(τ) =
∑
α

〈out| T̂ ρinT̂ † |out〉 (4.10)

The index α in this case represents all the quantum numbers needed to specify a mesonic state

and its subsequent decay. These quantum numbers are

• J, the total angular momentum of X

• P, the parity of X

• M, the projection of J along the beam axis

• L, the angular momentum of the isobar Y and the bachelor particle (K+ or π+)

• I, the isospin of X

• S, the spin of X,

• λ, the helicity of the rest frame

Keeping our reaction in mind, the transition operator can be factorized into two parts: the

production operator and the decay operator, such that

I(τ) ∝
∑
α

〈out| T̂decayT̂productionT̂ †productionT̂
†
decay |out〉 (4.11)

notice that the spin density matrix operator was dropped. This is due to the fact that the

spin density matrix is block-diagonal in the case of an unpolarized photon beam. Inserting a

complete orthogonal set of states, |X〉 into Equation 4.11, we obtain:

I(τ) ∝
∑
α

∑
X,X′

〈out| T̂d |X〉 〈X| T̂pT̂ †p
∣∣X ′〉 〈X ′∣∣ T̂ †d |out〉 (4.12)

The set of states, |X〉, are called partial waves, that can be described by the set of quantum

number α. This set spans all the possible intermediate states, therefore, the experimental goal
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of finding the quantum numbers associated with the resonance is translated to measuring the

partial wave amplitudes. Equation 4.12 can then be rewritten in a more simplified form

I(τ) =
∑
k

∑
α,α′

Aα(τ)V k
α V

k∗
α′ A

∗
α′(τ) (4.13)

where k is the rank of the spin density matrix. The term 〈out| T̂d |X〉 is replaced by the decay

amplitude Aα(τ) for a given wave α. The decay amplitudes will be discussed in more details in

Section 4.2. Similarly, the term 〈X| T̂p |X ′〉 is replaced by the production amplitudes V k
α which

contain the hadronic QCD-based interaction that can not be calculated. More details about

the production amplitudes can be found in Section 4.3. A more detailed explanation of the

phenomenology of partial wave analysis can be obtained from reference [69].

4.2 Decay Amplitudes

The decay amplitudes for a resonance decaying into three or more particles can be calculated

using the isobar model. This model assumes a series of sequential decays. The resonance X

first decays to an intermediate unstable isobar and a stable bachelor particle, then the isobar

subsequently decays into other stable particles. We assume that there are no interactions between

the final state particles after they are produced through sequential decays and that all the final

state particles are spinless.

The decay amplitudes Aα(τ) are calculated in the helicity formalism in a frame-by-frame,

decay-by-decay fashion. In the isobar model, the decay amplitude contains information the

describe the angular nature of a JP state as well as the mass dependence of the isobar. The

decay amplitude can then be rewritten to include separate terms containing this information.

Aα(τ) thus becomes

Aα(τ) = Aα(ΩX ,ΩY )Aα(mY ) (4.14)

where ΩX denotes the angles describing the orientation of the momentum of the isobar in the

X rest frame, and ΩY denotes the angles describing the orientation of one of the decay particles

of the isobar in the helicity rest frame.
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The angular term of the decay amplitude can be described by the Wigner D-functions and

their corresponding d-functions. Aα(ΩX ,ΩY ), from reference [69], is defined as

Aα(ΩX ,ΩY ) = l̃s̃
∑
λ

DJ∗
MXλ

(φX , θX , φY )dJλ0(θY )C(l0sλ|Jλ) (4.15)

where the D-functions are defined as

DJ
MM ′(α, β, γ) = e−im

′αdJMM ′(β)e−iγ (4.16)

More information on Winger functions can be found in Appendix E. The symbols J and MX

represent the total angular momentum and its z projection. The symbols s and λ are the spin

and the helicity of the isobar, and C(l0sλ|Jλ) is the corresponding Clebsch-Gordon coefficient.

The quantum numbers J, S and L are defined as

J = LTotal + STotal

LTotal = LY + Lb

STotal = SY + Sb

(4.17)

The mass dependent term of the decay amplitude Aα(mY ), as defined by reference [69] is

Aα(mY ) = Fl(pX)Fs(pb)ψ(m) (4.18)

where ψ(m) is the fully relativistic Breit-Wigner distribution

ψ(m) =
m0Γ0

m2
0 −m2 − im0ΓY (m)

(4.19)

and

ΓY = Γ0
m0 pF

2
s (q)

mp0 F 2
0 (q0)

(4.20)

where q and q0 are the COM breakup momentum for a resonance of mass m and m0, respectively.

The functions Fl(p) are the Blatt-Weisskopf angular momentum barrier factors [60].

The parity conservation in this production process is taken into account by introducing the

reflectivity basis into the angular term of the decay amplitude. This basis change will bring the

density matrix into a block diagonal form. The reflectivity basis in reference [69] is defined by
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|εJPM〉 =
[
|JPM〉 − εP (−1)J−M |JP −M〉

]
θ(M) (4.21)

where P is the parity of the state |JPM〉 and

θ(M) =
1√
2
, M > 0

=
1

2
, M = 0

= 0 , M < 0

(4.22)

The reflectivity ε is here defined such that it coincides with the naturality η such that

ε = η = P (−1)J (4.23)

It should be noted that

|εJPM〉 = 0 for m = 0; if ε = P (−1)J (4.24)

Additionally, states of opposite reflectivities do not interfere, as they are in separate blocks

of the block-diagonal spin-density matrix. Rewriting Wigner D-functions in the reflectivity basis

yields

ε
DJP∗
MXλ

(φX , θX , φY ) = θ(M)
[
DJ∗
MXλ

(φX , θX , φY )− εP (−1)J−MDJ∗
−MXλ

(φX , θX , φY )] (4.25)

Since P = (−1)l+s+1 , the new form of the D-functions can be rearranged and Equation4.15

becomes

εAα(ΩX ,ΩY ) = l̃s̃
∑
λ

θ(M)
[
DJ∗
MXλ

− εP (−1)J−MDJ∗
−MXλ

]dJλ0(θY )C(l0sλ|Jλ)] (4.26)

The mass dependent term of the decay amplitude is unaffected by this change of axis, and

Equation 4.14 can be written as
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εAα(τ) = εAα(ΩX ,ΩY )Aα(mY ) (4.27)

The final form of the decay amplitudes can now be used and the values of ΩX , ΩY and mY

for each event can be determined using the four vectors of the final data sample. The decay

amplitudes are complex numbers and are expected to be different for every wave, even waves

with opposite reflectivites as seen in Equation 4.27.

An example of the dependence of the decay amplitude of 1+D, ρK+ on the invariant mass

of the Kππ sample is illustrated in Figure 4.3. To obtain the values on the y-axis, the diagonal

terms of the normalization integral of 1+D, ρK+ for the raw and accepted Monte Carlo samples

are determined. These terms are essentially the squared moduli of the decay amplitudes for every

wave normalized to the number of events in the sample. Once extracted from the normalization

integral in every bin, the squared modulus can be plotted against its corresponding Kππ mass.

The overall plot gives an idea about the phase space available for the chosen wave. As we

mentioned before, we expect the reflectivities of the same wave to have equal contributions,

which essentially means they would have similar decay amplitude variations in term of the Kππ

mass. Moreover, comparing the plot of the accepted Monte Carlo (left) to the plot of the raw

Monte Carlo (right), we are able to see the effect of acceptance on this wave. With the decay

amplitudes in hand, the fitter can now determine the production amplitudes, εkVα, using the

extended maximum likelihood method.

4.3 Production Amplitudes

Unlike the decay amplitudes which can be calculated directly from the data sample, the

production amplitudes, also complex numbers, are considered a weight on each partial decay

amplitude of the final mix and are parameters to be fit to the data, and depend on the rank of

the spin density matrix. The production amplitudes , εkVα, are generally a function of mX and

t, but we study the dependence in mX by performing a partial wave analysis in narrow bins

of mX . Then by performing a maximum likelihood fit, we extract the production amplitudes,

to later use them to study the contribution of the waves in the fit by studying their intensities

using
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Figure 4.3: The variation of the decay amplitude of the 1+D, ρK+ as a function of
the invariant mass of the K+π+π− system for accepted Monte Carlo events (left) and
raw Monte Carlo events (right). The blue lines correspond to the positive reflectivity
1+D, ρK+ wave, while the red lines corresponds to the negative reflectivity of the same
wave. Notice that the decay amplitudes of both reflectivities on the right are almost
identical making it hard to distinguish them in this plot.

I(τ) =
∑
k

∑
ε

∑
α,α′

εkV ∗α
εkVα

εA∗α(τ) εAα(τ) (4.28)

where ε denotes the eigenvalues of reflectivity, α is the set of the state’s quantum numbers,

and k is the rank of the spin density matrix εkραα′ . The spin density matrix contains all

the spin information available about a given quantum system. The diagonal elements give

the probabilities of different states, while the off-diagonal elements give information about the

interference between different states. The reflectivity basis diagonalizes the spin density matrix,

thus forcing opposite reflectivities to occupy different blocks. As a result, states with differing

reflectivities do not interfere with each other. The spin density matrix rank, usually referred

to using Roman numerals, depends on the exchanged particle between the baryon and meson

vertex. In most cases, the rank of the spin density matrix is simply one, for a pomeron exchange.

The spin density matrix is defined in terms of the production amplitudes as

εkραα′ =
∑
k

εkVα
εkV ∗α (4.29)

In what follows, we exhibit the form of the likelihood function used in our partial wave

analysis, as well as the normalization integrals for raw and accepted Monte Carlo events. The
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maximum likelihood method is a statistical procedure that can be used to match a parameterized

model to a sample of data. The likelihood function, defined by reference [69], for finding ”n”

events of a given bun with a finite acceptance is

L ∝
[
ñn

n!
e−ñ

] n∏
i

[
I(τi)∫

I(τ)η(τ) dτ

]
(4.30)

where η(τ) is the acceptance of the detector. In other words, it is the ability of the detector to

measure n number of events given their associated values of τ . The factors dependent on the

number of observed events can be reduced by applying the definition of the expectation value,

ñ =

∫
I(τ)dτ (4.31)

and the likelihood function can be then reduced to

L ∝
[ n∏

i

I(τi)

]
exp

[ ∫
I(τ)η(τ) dτ

]
(4.32)

then taking the log of the likelihood function,

logL ∝
n∑
i

log I(τi) −
∫
I(τ)η(τ) dτ (4.33)

The function I(τ) can be replaced by the form obtained in Equation 4.28. The acceptance

η(τ) can be determined by taking a sample of raw Monte Carlo events generated uniformly

according to the available Kππ phase space, and passing it through the detector simulation,

taking into account the detector’s inefficiencies and geometry. Events that survive the CLAS

simulation and reconstruction process are then used to determine the detector’s acceptance.

These events are referred to as accepted Monte Carlo events. Using the raw and accepted Monte

Carlo events, and their corresponding decay amplitudes, we can calculate the normalization

integrals according to the equations below

εkψrαα′ =
1

nr

nr∑
i

εAα(τi)
εA∗α(τi)

εkψaαα′ =
1

na

na∑
i

εAα(τi)
εA∗α(τi

(4.34)
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where εkψrαα′ are the normalization integrals of the raw Monte Carlo events and nr is their corre-

sponding number. Likewise, εkψaαα′ are the normalization integrals of the accepted Monte Carlo

events and na is their corresponding number. The production amplitude parameters are also

normalized via

V →
√
n

ηx
(4.35)

The final form of the log of the likelihood function in terms of the new parameters and the

normalization integrals is

logL =

n∑
i

log

[ ∑
kεα,α′

εkV ∗α
εkVα

εA∗α(τi)
εAα(τi)

]
− n

[ ∑
kεα,α′

εkV ∗α
εkVα

εkψaαα′

]
(4.36)

and the normalization condition is of the form

∑
αα′

VαV
∗
αψ

a
αα′ = 1 (4.37)

This normalization allows the fitted production amplitudes to independent of variations

among different bins. In other words, a set of fitted Vα’s in a given bin can be used as a starting

value for the neighboring bins. The final quantity we examine is the predicted number of events in

a given bin, also known as the event yield. This quantity is essential to examine the contribution

of a wave or a coalition of different waves. The event yield is proportional to the square of the

production amplitude and the raw normalization integrals. One can examine the event yield for

a single wave or a coherent sum of waves. To find this predicted number, acceptance is taken

into consideration by scaling the number of data to the inverse of the acceptance in a specific

bin, as it is illustrated below

N = nd
nr
na

∑
αα′

VαV
∗
α′
εψrαα′ (4.38)

where α is a set of all the quantum numbers that characterize a wave or a set of waves. By

plotting N as a function of the Kππ mass, we are granted access to features of waves and

their contributions to the overall mass spectrum. In general, resonances take the form of peaks

behaving as a relativistic Breit-Wigner amplitude. Once a peak is deemed significant enough, it

could be fitted to a Breit-Wigner distribution and its physical characteristics such as the mass
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and decay width can be determined. The phase difference can be used to determine whether this

peaks is a manifestation of a resonance or simply a leak from other waves. It should be noted

that for a partial wave analysis to be conclusive and successful, a large data set is required.

Typical partial wave analysis datasets include on the order of millions of events. This allows

access to more rigorous results especially when the meson system mass is binned very narrow

bins. It will be shown in the next chapter, that even though our dataset was was not large, a

partial wave analysis was carried out by binning the data in larger-than-usual sizes thus limiting

the ability to observe clean and significant phase motion between waves.

4.4 Summary

We have seen that the partial wave analysis can be a powerful tool to understand the dy-

namics of the data and to study the contribution of various states to the meson system under

study. The framework used for this partial wave analysis is done assuming that the data is

well-described by the isobar model in the helicity formalism using the reflectivity basis. Our

observed intensity distribution I(τ) is decomposed into a sum of independent prodution and

decay amplitudes,

I(τ) =
∑
k

∑
ε

∑
α,α′

εkV ∗α
εkVα

εA∗α(τ) εAα(τ) (4.39)

The decay amplitudes for each wave are calculated for each data event in the helicity formalism

in a frame-by-frame, decay-by-decay fashion. In the isobar model, the decay amplitude contains

information the describe the angular nature of a JP state as well as the mass dependence of

the isobar. The production amplitudes depend on the mass of the meson system mX and the

momentum transfer t and are determined by maximizing the likelihood function. The likelihood

function includes the production amplitudes, decay amplitudes, and normalization integrals and

has the following form

logL =

n∑
i

log

[ ∑
kεα,α′

εkV ∗α
εkVα

εA∗α(τi)
εAα(τi)

]
− n

[ ∑
kεα,α′

εkV ∗α
εkVα

εkψaαα′

]
(4.40)

The partial wave analysis procedure, including the set of waves, software tools, binning, and

background parameterization is covered in details in the following chapter.
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CHAPTER 5

PARTIAL WAVE ANALYSIS PROCEDURE AND

RESULTS

A partial wave analysis was performed on the selected K+π+π− events to extract the sig-

nificantly contributing waves from the spectrum. In this chapter, the specifics of the partial

wave analysis procedure are discussed in details, followed by results from a fit where the most

prominent waves are included. Further details related to wave selection, data binning, and fit

quality check will be also discussed.

5.1 Experimental Acceptance

The first step in the partial wave analysis procedure is determining the acceptance of the

CLAS detector which is essential for the normalization of the likelihood function. This is nec-

essary to ensure that the wave intensities resulting from a fit are due to physics and to accu-

rately represent the detector’s ability to see events in a kinematic region. To accomplish this,

γp→ ΛK+π+π− events are randomly and uniformly generated across the phase space accessible

by the K+π+π− system. In other words, the decay of X to K+π+π− is generated such that the

θ and φ of the isobar Y and the bachelor in the Gottfreid-Jackson frame are isotropic. The Λ

was generated with a mass of 1.115 GeV/c2 and a width of 10 KeV/c2 to match the pπ− mass

distribution of the data. We also implemented the detachment of the Λ vertex into our simula-

tion to ensure that the acceptance is simulated properly (More details on the vertex detachment

can be found in Appendix C). The mass of X was generated over the K+π+π− invariant mass

range from 1.0 to 2.2 GeV/c2 in 5 MeV/c2 wide bins containing events the would be enough to

yield accepted events that are 50 times the number of data events in every bin. It is qualitatively

important to generate Monte Carlo in narrow mass bins, narrower than the smallest practical

bin size for data, as it ensures our ability to normalize fits in a variety of bin sizes by merging

bins of Monte Carlo as well as reduce the effect of bin migration. Is is equally as important to

generate a large Monte Carlo dataset to minimize any statistical uncertainties in the fit results.

The latter effect can be seen in Figure 4.3 where the errors are seen to be higher towards the
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end of the K+π+π− mass where the number of generated events is substantially low compared

to other bins.

The simulated events are also generated with momentum transfer dependence. As we pre-

viously discussed in Section 3.2.4, our experimental data also had an exponential distribution

in t with a slope close to 0.55 GeV2/c4. This slope was shown to be constant across different

regions in the K+π+π− system when fitting the momentum transfer distribution over the same

range. As a result, the raw Monte Carlo events were generated with a t slope of 0.69 that

would later be reconstructed to be 0.56 after passing the generated events through the detector

simulation and smearing programs. The raw Monte Carlo dataset contained around 174 million

γp→ ΛK+π+π− events generated with a bremsstrahlung photon beam of energies between 4.4

and 5.45 GeV. The generated events were then fed to the detector simulation package, GSIM

(a GEANT based model of CLAS) [50], where the detector’s responses are simulated. GSIM

takes each particle’s information and generates a track of it inside the detector, thus providing

hits according to the detector efficiencies. Events that passed through GSIM were then passed

through GPP to smear the detector signals as so to match the resolution of the detectors used

to take data. Events were then run through the reconstruction package A1C to reconstruct the

simulated tracks. Further details about the different simulation packages and how to run them

can be found in reference [50]. The final accepted Monte Carlo dataset consisted of 774838

events after reconstruction and applying data selection cuts.

The slope of the fitted t distribution in Figure 5.1, is different from the slope that we input

into genr8 because it is modified by the available phase space. The input slope can be extracted

form the t’ distribution where this effect is corrected for. The raw Monte Carlo sample was

generated without angular dependence, in other words it was generated flat in the available

phase space. The absence of any angular dependence can be observed in Figure 5.2 where

features of the generated Monte Carlo events are illustrated. The uniformity of the phase space

can be seen in the Dalitz plots for different regions of the K+π+π−. Similarly, the uniformity

in the physics angles can be seen in Figures 5.6 and 5.7. Raw Monte Carlo events are used to

determine the raw normalization integrals. While these normalization integrals do not contribute

to the minimization of the likelihood function or the fit, they are essential to produce acceptance-

corrected intensity distributions.

The detector simulation and reconstruction software used to obtain the accepted Monte

Carlo sample is analogous to the CLAS simulation packages used in other experiments with a
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(a) The momentum transfer |t| of the raw MC. (b) The excess momentum transfer |t′| of the raw MC.

Figure 5.1: The momentum transfer |t| (a) and the excess momentum transfer |t′|
(b) for the raw Monte Carlo sample. Both distributions are fitted to an exponential
function thus yielding slopes of 0.615 and 0.679 for the accepted and raw Monte Carlo
samples respectively.

handful of tweaks. These variations include taking into account the repositioning of the target

cell for the g12 experiment, as well as accounting for any dead cells and paddles in various

sub-detectors. The latter is taken care of in the GPP package during the smearing of simulated

events after they passed through the GSIM package. It is of great importance to make sure that

the simulation packages simulate all efficiencies in the detector’s components properly. Luckily,

this could be checked by plotting the lab angles θ and φ against each other, then comparing

the distributions to those of the final data sample. These plots have been used in the past

to perform fiducial cuts based on the exclusion of events lying outside the regions where the

acceptance is optimal. Such cuts are not performed in this analysis as they were found to have

little to no effect on the partial wave analysis results. Fiducial regions can be seen in Figures 5.8

and 5.9. Regions where the acceptance is compromised in the accepted Monte Carlo plots is due

to simulated inefficiencies in various detector sectors. The presence of such gaps is an indication

of a simulation that best describes the data.

Features of the final accepted Monte Carlo sample are illustrated in Figure 5.5. Comparing

the Dalitz plots of Figure 5.5 to their equivalences in Figure 5.2, we can see the effect of ac-

ceptance on various regions of the K+π+π− invariant mass. This variation can be obtained by

simply dividing the number of accepted events in a certain K+π+π− mass bin by the number of
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(a) The K+π+π− invariant mass with low range selec-
tion.

(b) The dalitz plot of K+π+π− for low mass events.

(c) The K+π+π− invariant mass with high range selec-
tion.

(d) The dalitz plot of K+π+π− for high mass events.

Figure 5.2: Dalitz distributions for the low Kππ mass region (top), and high mass
region bottom for the raw Monte Carlo dataset. Green regions on the left correspond
to events used in the Dalitz plots on the right.

raw events in the respective raw mass bin. In other words, in every 50 MeV/c2 bin we determine

Acceptance =
Number of Accepted Monte Carlo Events

Number of Raw Monte Carlo Events
(5.1)

The acceptance is represented in Figure 5.3. The acceptance varies relatively smoothly over

the K+π+π− mass as it increases from 0.0005 in the low mass region to 0.0043 in the higher

mass region. The effect of acceptance can be also seen when comparing the momentum transfer

distributions for the raw and accepted Monte Carlo events. Accepted Monte Carlo events are
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Figure 5.3: The CLAS acceptance for the γp → ΛK+π+π− events as a function of
K+π+π− mass.

(a) The momentum transfer |t| distribution of the data. (b) The momentum transfer |t| distribution of the ac-
cepted MC.

Figure 5.4: The momentum transfer |t| distribution of the data (a) and of the accepted
Monte Carlo (b). The slopes are in approximate agreement at 0.554 for data and 0.558
for the accepted Monte Carlo.

used to calculate the accepted normalization integrals that go into the Likelihood function. They

are essential in the sense that they provide information about the phase space available for each

wave, in addition to their crucial role in the minimization of the likelihood function.
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(a) The K+π+π− invariant mass with low range selec-
tion.

(b) The dalitz plot of K+π+π− for low mass events.

(c) The K+π+π− invariant mass with high range selec-
tion.

(d) The dalitz plot of K+π+π− for high mass events.

Figure 5.5: Dalitz distributions for the low Kππ mass region (top), and high mass
region bottom for the accepted Monte Carlo dataset. Green regions on the left corre-
spond to events used in the Dalitz plots on the right.
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(a) cosθGJ of π+π− for data events. (b) cosθGJ of π+π− for MC events.

(c) cosθGJ of K+π− for data events. (d) cosθGJ of K+π− for MC events.

Figure 5.6: The Gottfreid-Jackson angles for the data and Monte Carlo Samples. The
flat blue distribution is the cosθGJ of (π+π−) in (b) and (K+π−) in (d) for the raw
Monte Carlo sample, while the green distributions are the cosθGJ of (π+π−) in (b)
and (K+π−) in (d) for the accepted Monte Carlo.
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(a) φGJ of π+π− for data events. (b) φGJ of π+π− for MC events.

(c) φGJ of K+π− for data events. (d) φGJ of K+π− for MC events.

Figure 5.7: The Gottfreid-Jackson angles for the data and Monte Carlo Samples. The
flat blue distribution is the φGJ of (π+π−) in (b) and (K+π−) in (d) for the raw Monte
Carlo sample, while the green distributions are the φGJ of (π+π−) in (b) and (K+π−)
in (d) for the accepted Monte Carlo.
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(a) The data (φlab, θlab) distribution of K+. (b) The accepted (φlab, θlab) distribution of K+.

(c) The data (φlab, θlab) distribution of π+. (d) The accepted (φlab, θlab) distribution of π+.

(e) The data (φlab, θlab) distribution of π−. (f) The accepted (φlab, θlab) distribution of π−.

Figure 5.8: The (φlab, θlab) angular distributions of all detected particles for both the
data and the accepted Monte Carlo events.
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(a) The data (φlab, θlab) distribution of K+. (b) The accepted (φlab, θlab) distribution of K+.

(c) The data (φlab, θlab) distribution of π+. (d) The accepted (φlab, θlab) distribution of π+.

(e) The data (φlab, θlab) distribution of π−. (f) The accepted (φlab, θlab) distribution of π−.

Figure 5.9: The (φlab, θlab) angular distributions of all detected particles for both the
data (right) and the accepted Monte Carlo (left) events, plotted as so to reflect the
geometry of the CLAS detector.
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5.2 Fitting Procedure

In this section we discuss the details of the PWA fitting procedure including the PWA package

we used, the preparation of the dataset and our binning choice, minimization of the likelihood

function and the software used, intensity errors estimation, the criteria for selecting waves to

include in the fit, and our fit quality check methods.

5.2.1 The FSU PWA Toolkit

The PWA software toolkit used in this analysis is analogous to the PWA package developed

at Brookhaven for the ”E852” experiment. The programs in this kit were designed by Dr. Paul

Eugenio using object-oriented methods to produce objects that would later be implemented

using C++. The toolkit consists of a range of programs, each utilized to perform a specific

task, that can be executed using a shell-based script developed by the user. Using this kit, a

partial wave analysis can be performed by executing four major programs: sliceGamp, gamp,

pwaInts, and pwaFit. This kit relies on the user to create the necessary directories and soft

links to insure reliable communication between its programs. A Graphical User Interface was

developed by the author to facilitate and speed up this procedure.

The partial wave analysis starts by supplying the sliceGamp package with a data file contain-

ing a set of events in a gamp format [63]. This data file is essentially an ascii file that includes

the four vectors of the final state particles and the beam, their charges, and their ”Gamp ID”.

SliceGamp reads the file and outputs another gamp formatted file containing events that fall

within a user defined bin into a subdirectory. We execute sliceGamp for the g12 dataset and

the Monte Carlo datasets independently but following the same binning criteria. The sliced

data files are then supplied to gamp. Gamp is responsible of generating decay amplitudes for

every event we include in the fit. To execute gamp, an input key file which contains a list of

amplitudes to calculate and a data file containing events for which the amplitude is to be deter-

mined, are required. Gamp uses the four vectors to calculate the mass and momentum transfer

”t” in addition to the angular properties of every event. The key file supplies gamp with the

decay structure of the wave and the quantum numbers necessary to determine the amplitudes

according to the prescription we outlined in Section 4.2. The output is an amplitude file for

every wave in the waveset in every bin. This is done for the data as well as the raw and accepted
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Monte Carlo. Since it is time consuming and requires extensive computing power, this step is

only done once regardless of any changes in the wave set as long as the binning doesn’t change

and the amplitude for the added wave is available.

After generating the decay amplitudes with gamp, the raw and accepted Monte Carlo am-

plitudes are used to calculate the normalization integrals. This is done by executing a program

called pwaInts. The decay amplitudes are provided to pwaInts alongside a set of waves to find

the normalization integrals for. The pwaInts program then extracts the complex numbers from

the amplitude files and calculates the integrals in every bin, based on the methodology explained

in Section 4.2. A change in the number of waves to include in the fit, requires recalculating the

normalization integrals for the raw and accepted Monte Carlo events. Following the successful

calculation of the normalization integrals, the user can now execute the fitter by running the

pwaFit program. The fitter uses the data decay amplitudes and the accepted normalization

integrals to construct the likelihood function in an event-by-event manner. It requires supplying

starting values for the fitting parameters, or more specifically the production amplitudes, by the

user. A minimization software called ”MINUIT” then minimizes the negative log of the likeli-

hood function and returns the fitting parameters that best describe the data and waves included

in the fit. MINUIT also provides estimated statistical errors that come from the likelihood fit,

which can later be used to determine the statistical errors on the predicted intensities. More

Details on MINUIT and the minimization of the likelihood function are discussed in Section

5.2.3.

The fitter finishes by providing the user with a file containing information about the number

of events in each bin, the normalization integrals for the raw and accepted Monte Carlo, the

error estimates on the likelihood fit, and the production amplitudes. The intensity for each

wave, or a combination of waves, is then constructed using

N = nd
nr
na

∑
αα′

VαV
∗
α′
εψrαα′ (5.2)

where Vα are the production amplitudes (fit parameters), and ψrαα′ are the raw normalization

integrals. The pwaFitView graphical user interface is then used to visualize intensities and

relative phase motion between different waves.
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5.2.2 Preparation of the γp→ ΛK+π+π− Dataset

The preparation of the 16K selected γp → ΛK+π+π− events begins with binning the data

in the Kππ invariant mass. The binning choice is governed by two factors: to maximize the

number of events in every bin, and to insure that the bins are not too large that waves would

not be able to assume their natural decay widths. Ideally, we would like to choose the finest

bin size possible as it validates our assumption that the production amplitudes’ dependence on

the Kππ system is constant. Furthermore, narrow bins are ideal when waves that fall in close

proximity to each other are expected. It is also vital that the bins contain enough events so that

the fitter’s chances of finding a global minimum are increased. Indeed, the lower the number of

events in a bin, the more likely the fitter converges the likelihood function to a local minimum.

Additionally, a low number of events would result in higher errors due to statistical fluctuations.

Motivated by the fact that we only have 16K events to fit, we decided that binning our data

in 100 MeV bins from 1.1 - 2.2 GeV is the most ideal choice for our analysis. At this rate, we

were able to maintain around 1.5K events per bin in the area of interest in the Kππ system.

Choosing such wide bins, however, is problematic as it runs close to the decay widths of some

of the states we expect most contribution from. Therefore, we were not able to choose narrower

bins without drastically reducing the number of events per bin, but we were able to work around

this problem by binning our data in 100 MeV bins again, only this time starting from 1.15 MeV

to 2.25 MeV. This is not equivalent to binning the data in 50 MeV bins, but it is equivalent to

performing two fits, thus allowing the study of the systematics of the PWA. At the end, both

fits were performed simultaneously but independently, and their results were combined together

to observe the intensities.

The final fitted dataset consisted 16K K+π+π− events from 1.1 GeV to 2.2 GeV distributed

among 11 bins, then binned again starting from a 50 MeV shifted bin to cover a range between

1.15 GeV and 2.25 GeV also distributed among 11 bins. The largest bin contained 2533 events

from 1.4 GeV to 1.5 GeV, while the smallest bin housed 25 events from 2.15 GeV to 2.25 GeV.

The decay amplitudes for every event were generated using gamp independently in a bin-by-bin

manner. The set of allowed states for the K+π+π− system is described in Section 5.2.4.

5.2.3 Minimization of The Likelihood Function and Error Estimation

We want to minimize the likelihood function to determine the parameters (production am-

plitudes) that best describe our data in a reliable and rapid manner. To do so, we adopt the use
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of a package called MINUIT [54] to minimize the negative logarithm of the likelihood function.

MINUIT is a physics analysis tool that was developed by Frederick James at CERN about 25

years ago. The software was originally written in Fortran, but has recently been re-implemented

in an object oriented way using C++. MINUIT provides a set of tools for minimizing a chi-

square, likelihood, or user-defined function and for special error analysis. A multi-parameter

function can be supplied to the software with a crude assumption of the unknown parameters’

starting values, MIGRAD (one of MINUIT’s processers) is then called to minimize the func-

tion. When the function converges to a minimum, the fit parameters are found and MIGRAD

provides the user with an estimation of the error matrix. The returned values are the real and

imaginary parts of the production amplitudes in each bin for every wave included in the fit. The

returned values are then implemented into the predicted intensities to study the contribution of

waves to the Kππ system, according to

N = nd
nr
na

∑
αα′

VαV
∗
α′
εψrαα′ (5.3)

The errors on the predicted intensities are of two natures, systematic and statistical. The

systematic components come mostly from the truncation on the rank and on the number of

partial waves included in a fit. The systematic errors are estimated by comparing different sets

(j = 1, ..., N), of intensities, Ij , and calculate their variance using

σ2
sys =

1

N

N∑
j=1

(Î − Ij)2 (5.4)

where Î is the average intensity of N wave sets. The statistical errors, on the other hand, come

from the likelihood fit. They are derived by using the errors on the fit parameters that MINUIT

outputs when it successfully minimizes the likelihood function. The statistical errors on the

predicted N values are calculated using the variance obtained by propagating errors through

Equation 5.3. Recalling that the production amplitudes (Vα) are complex numbers, we can

rewrite them as

Vα = vαR + ivαI (5.5)
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where vαR is the real part of the production amplitude and vαI is the imaginary part, and

α = 1, ...., n, where n is the total number of partial waves. Therefore, Equation 5.3 can be

rewritten as

N = nd
nr
na

∑
αα′

(vαR + ivαI)(vαR − ivαI) εψrαα′ (5.6)

Then propagating the errors from vαR and vαI to N , we obtain

σ2
stat = J . E .J T (5.7)

where E is the covariance matrix, more specifically, the error matrix produced by MINUIT, and

J is the Jacobian. The diagonal terms correspond to the errors for a single wave production

amplitude, while the off-diagonal terms are a representation of the correlation between various

production amplitudes. The Jacobian, J , is a symmetric (2n)×(2n) matrix. The error matrix

generally has the following form

E =



σ2(v1R) σ(v1R, v1I) · · · σ(v1R, vnR) σ(v1R, vnI)
σ(v1R, v1I) σ2(v1I) · · · σ(v1I , vnR) σ(v1I , vnI)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

σ(vnR, v1R) σ(vnR, v1I) · · · σ2(vnR) σ(vnR, vnI)
σ(vnI , v1R) σ(vnI , v1I) · · · σ(vnI , vnR) σ2(vnI)

 (5.8)

where the diagonal terms, σ2(vαR(I)), are the standard variance of vαR(I), and the off-diagonal

terms σ(vαR(I), vαI(R)) represent the covariance between vαR(I), vαI(R). The Jacobian J is an α

× 2n vector of the form

J =
[
· · · ∂N

∂vαR
∂N
∂vαI

· · ·
]

(5.9)

the partial derivative of the predicted intensity can be determined using Equation 5.6,

∂N
∂vαR(I)

= 2 ×
n∑
j=1

εψrαjvjR(I) (5.10)
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Finally, the total error on the predicted intensity N is obtained by using

σ2
N = σ2

sys + σ2
stat (5.11)

In a similar manner, we can estimate the error on the phase difference between two waves.

The phase difference is defined as:

∆φ = arctan

(
Im(V1V

?
2 )

Re(V1V ?
2 )

)
(5.12)

The errors in the phase difference can be determined by error propagation taking ∆φ as a

function of the fitted V1 and V ?
2 values. Replacing Re(V1V

?
2 ) with a and Im(V1V

?
2 ) with b, we

can write the statistical error on the phase difference as

σ2
∆φ =

(
∂δφ

∂a

)2

σ2
a +

(
∂δφ

∂b

)2

σ2
b + 2

(
∂δφ

∂a

)(
∂δφ

∂b

)
σ2
ab (5.13)

where

∂∆φ

∂a
=

a

a2 + b2
; and

∂∆φ

∂a
=

−b
a2 + b2

; (5.14)

The errors in a and b can be derived using the error matrix MINUIT provides (Equation 5.8).

Hence,

σ2
a(b) = Ja(b).E .J Ta(b) (5.15)

and

σ2
ab = Ja.E .J Tb (5.16)
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The Jacobians Ja and Jb have the following form

Ja = (v2R, v2I , v1R, v1I) and Ja = (−v2I , v2R, v1I , −v1R) (5.17)

where v1I(R) and v2I(R) are the imaginary and real parts of the complex numbers V1 and V2.

Error analysis plays an important role in determining the quality of the fit, as it serves as a

tool to assess the minimization of the likelihood function. Abnormally large errors, for instance,

are an indication that MINUIT converged the likelihood function to a local minimum. This effect

could be reduced by performing the fit multiple times with randomly generated starting values

of the fit parameters, then choosing the production amplitudes where the likelihood function

was the lowest in every bin and subsequently best errors.

5.2.4 Wave Selection

The decision to include and exclude waves from a fit has a great impact on its likelihood

to successfully describe the data. Ideally, we would like to include a large number of waves to

get the best description of the angular structure of the data, however, we are constrained by

the available statistics. In our case, the 16K events demand reducing the wave set down to the

most important and most contributing waves required by the data. The final K+π+π− invariant

mass showed significant structure in the lower mass region and exhibited a shoulder behavior

in the higher mass region, the K+π+π− system is thus divided into two mass regions, and both

regions are fitted independently. In what follows, the method we use to construct the waves and

our choice of isobars, are described.

Parametrization of the Isobars: The decay of the K+π+π− resonance will be described

in a subsequent decays manner via the isobar model as we previously outlined. This translates to

a decay of a resonance to an isobar and K+ or π+ bachelor particle. The isobar, in turn, would

then decay to a K+π− or a π+π− preserving charge, angular momentum, isospin, parity, and

energy. Experiments that explored the Kππ system in the past, observed major contributions

from the ρ(770), the K∗(892), and the K∗2 (1430) to the decay of several excited strange mesons.

In order to include any isobars in our partial wave set, it is important to observe indications

of these isobars in the K+π− and π+π− invariant mass spectrum. This means, that peaks

or possible shoulder behavior around the mass of the isobar should exist for the isobar to be

included in the construction of the partial waves.
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Table 5.1: The full set of isobars considered to contribute to the invariant mass distri-
butions of K+π− and π+π− subsystems. Isobars that were present in our data, and
were essential for the success of the PWA, are marked in red.

JP State Name Decay Channel Model

0+ f0(600) π+ π− Breit-Wigner

0+ f0(980) π+ π− Breit-Wigner

0+ f0(1370) π+ π− Breit-Wigner

0+ f0(1500) π+ π− Breit-Wigner

0+ K(800) K+ π− Breit-Wigner

0+ K∗0 (1430) K+ π− Breit-Wigner

1− ρ(770) π+ π− Breit-Wigner

1− ρ(1450) π+ π− Breit-Wigner

1− K∗(892) K+ π− Breit-Wigner

1− K∗(1680) K+ π− Breit-Wigner

2+ f2(1270) π+ π− Breit-Wigner

2+ K∗2 (1430) K+ π− Breit-Wigner

Table 5.1 summarizes the set of isobars considered to contribute to the observed K+π− and

π+π− mass spectrum. All of these waves were parameterized with relativistic Breit-Wigner

functions. For this analysis, except for the K∗2 (1430) and the f2(1270), all of the higher mass

isobars were excluded from the partial wave analysis, due to the absence of any indications

of their existence in our data. The f0(600) and its strange equivalent the K(800) were also

excluded from the fit that we found to describe the data the best. Instead of these states, we

used an isotropic flat background. Results from a fit that included these states are shown in

Appendix A.1.

Waves construction and selection: The partial wave set for the K+π+π− system was

constructed by combining the isobars (marked red) in Table 5.1 and a bachelor particle. As we

mentioned earlier, candidate waves must conserve all the symmetries of the strong interaction

in their production. For this analysis, we will rely on angular momentum, isospin, and parity to

construct these states. We start off by using the initial state of the photon (JP = 1−) and the

proton (JP = 1
2

+
) and assuming an exchange of a K+ between the baryon and meson vertex.

The dominance of a kaon exchange translates to a rank I spin density matrix. The photon and
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the recoil baryon have the freedom to interact with any relative orbital angular momentum thus

allowing all spins to be produced. The parity of the resonance should be constructed in a way

that it is conserved when the resonance decays to an isobar and a bachelor. Although commonly

used in partial wave analysis for 3π systems, the G and C parities are dropped here as a result of

the absence of such symmetries in strange states. Therefore, we only use the following quantum

numbers and physical properties to construct our waves and their corresponding amplitudes:

• J, the total spin of the resonance.

• P, the parity of the resonance.

• L, the relative angular momentum of the isobar Y and the bachelor particle (K+ or π+)

• I, the isospin of the resonance.

• s, the spin of the isobar (in most cases l=s, as we have spinless final state particles)

• l, the relative angular momentum between the two daughters of the isobar.

• [ω0,Γ0], the central mass and width of the isobar as determined by PDG [16].

Each wave will also be characterized by its reflectivity ε. The isospin and total spin of a state

follow the usual selection rules

|II − IB| ≤ I ≤ |II + IB| (5.18)

and

|L− S| ≤ J ≤ |L+ S| (5.19)

The total parity of a resonance is determined using

P = PI .PB.(−1)L (5.20)

where PI is the parity of the isobar and PB is the parity of the bachelor particle. To illustrate

how a wave is constructed in more details, we propose an example where we look for a state

that decays to a ρ(770)K+ in an S-wave. An S-wave translates to an angular momentum L = 0

between the isobar and the bachelor particle. The ρ has a spin Sρ = 1, while the K+ is spinless.

The total spin S for this system is therefore 1. Per Equation 5.19, the total spin J of the state

is therefore 1. The parity is determined using Equation 5.20, thus the parity of this state is
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P = (−1).(−1).(−1)0 = 1. Finally, the reflectivity of this state can be either +1 or -1 and is

determined using Equation 4.23. In this case, the reflectivity is -1 which means that this is an

unnatural state. In conclusion, a state that decays to a ρ(770)K+ in an S-wave has a JP equal

to 1+. A state where the resonance decays to a K∗(892)π+ in an S-wave is constructed in the

same manner and has the same form JP = 1+.

We could construct as many states as we wish and include them in our fit. However, as we

explained before, statistical limitations prohibit us from doing so. Therefore, we only include

states that are required to describe the data. We therefore exclude any waves with high total

spin from our fits as our data does not provide the phase space needed by higher spin states, we

therefore bound our states to J ≤ 4. We also exclude waves with J=0, because the production

of such states with a photon beam is not possible with the exchange of a spin-0 particle between

the baryon and meson vertexes. Similarly, m=0 is excluded from all other JP ’s. We also exclude

any M > 1 spin projections from the final fit as they were not required by the data. All the

waves that could have possibly contributed to our data are compiled in Table A.2.

Although we could systematically decide which waves can be included in our fits, the process

of choosing a ”good” wave set remains a matter of iterating through different wave combinations.

We therefore began with a small wave set including only the lowest angular momentum L = 0

waves. We then studied the intensities of these waves and gradually added other waves while

excluding ones that were not required by the data. It should be noted that in rare occasions,

excluding an insignificant wave from the fit had an effect on the intensities of other waves, in

this case, the wave was kept in the fit. Looking back at our final K+π+π− invariant mass

spectrum in Figure 3.21(a), we recall that the most significant structure is evident in the lower

mass region between 1.3-1.5 GeV. In general, the low mass region of a Kππ system is heavily

populated with states that have been observed in a handful of experiments with kaon or pion

beams. As a matter of fact, states such as the K1(1270) and K1(1400) have been observed to

dominate this mass region [26] [29] [30] [31]. Additionally, the higher mass region has showed

no resonating behavior, except for a shoulder around 1.8 GeV. As a result, we limited our states

in the higher mass region to the waves we included in the lower mass region and two 2− waves

decaying primarily to K∗2 (1430)π+ and f2(1270)K+ in an S wave. We excluded 1+ D-waves

from all fits after observing that most of the 1+ intensity is concentrated in S-waves.

The final wave set consisted of 13 waves, including an isotropic flat background, in the 1.1

- 1.6 GeV mass region, and 17 waves in the 1.6 - 2.2 GeV mass region. The 4 waves difference
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Table 5.2: The full set of waves expected to contribute in the partial wave analysis.
Waves in red correspond to the ones that we included in the final fit where the best
results were obtained. The check marks indicate the region where a wave is included
in the partial wave analysis. Keep in mind that except for the flat background, every
wave has two reflectivities.

L JP Isobar Bachelor 1.1 - 1.6 GeV 1.6 - 2.2 GeV

S

0− f0(600) K+

0− K∗(800) π+

1+ ρ(770) K+ X X

1+ K∗(892) π+ X X

2− f2(1270) K+ X

2− K∗2 (1430) π+ X

P

1+ f0(600) K+

1+ K∗(800) π+

1− ρ(770) K+ X X

1− K∗(892) π+ X X

2− ρ(770) K+

2− K∗(892) π+

D
1+ ρ(770) K+

1+ K∗(892) π+

2+ ρ(770) K+ X X

2+ K∗(892) π+ X X

Flat Isotropic X X

is due to the addition of the 2− waves exclusively in the higher mass region as they are will

not contribute in any way to the masses below their production threshold of 1.6 GeV. The

f0(600) and the K∗(800) isobars were not chosen for the final wave set as they were observed

to have inhomogeneous behavior whenever a wave was excluded or included. While previous

experiments included these waves, in addition to a flat background, we decided to remove them

when a flat background was included, as they were found to cause an ambiguity. Results where

these waves replace the flat background are presented in Appendix A.1.
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5.2.5 Fit Quality

In Section 5.2.3, we mentioned that intensity errors give insight about the quality of the

fit. They, however, are not a qualitatively reliable test for the quality of the fit. Statistical

limitations can significantly affect the quality of the fit and the error estimations, and due to

the low number of events in each bin, MINUIT might converge to a local minimum thus giving

incorrect values for the production amplitudes. Several strategies have been implemented in

this PWA procedure to guarantee best results. The first strategy dictates performing a mass

independent fit multiple times with random starting values for the production amplitudes, then

fitting every bin independently. This is followed by selecting as the correct minimum, the fit that

returns the smallest likelihood value. We employed this strategy in our fits and noticed marginal

effect on their quality, potentially due to the complexity of the structure of the likelihood space.

The second strategy is to track up and down bins in Kππ. A bin, generally with the highest

statistics or most stable results, is chosen to initialize the fitter. Random starting values are

supplied to the fitter so it can start fitting from the chosen bin. The fit parameters that the fitter

then returns, are used as starting values for the neighboring bin. The fitter tracks up the mass

spectrum or down depending on the user’s preference. This method ensures rapid convergence

for subsequent bins, as production amplitudes tend to vary smoothly over the Kππ mass range

as we showed in Figure 4.3. For this analysis, the 1.5-1.6 bin was chosen as a starting point,

mainly because it gave the most stable likelihood results and for being a point of separation for

the two mass regions. The fitter then tracked down from 1.6 GeV to 1.1 GeV fitting the mass

region with the wave selection shown in Table A.2. Similarly, the fitter tracked up the bins from

1.5 GeV to 2.2 GeV fitting this mass region with the selected waves. This strategy significantly

enhanced the fit results, mainly because it starts with a bin that has higher number of events

compared to bin 1.1-1.2 GeV where only a handful of events are accessible.

Both of the methods above were employed in this analysis to guarantee best final results.

The fit was performed a number of times with different fit parameters starting values and from

different initial bins to study consistency. To qualitatively estimate how well the fit describes the

data, weighted Monte Carlo distributions were generated. This method gives the most concise

quality check as it takes into account the angular dependencies of the fitted waves and the

acceptance of the detector to illustrate how well the ”mock data” describes the real data. To

generate weighted Monte Carlo distributions, we start off with a set of accepted Monte Carlo
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events that we used in the fitter to find the weight Wi,α for each wave α in every event i

Wi =
∑
α,α′

V ∗α Vα′ A
∗
i,αAi,α′ (5.21)

where V and A are the production and decay amplitudes. One then finds the sum of weights

over α for every event thus quantifying the kinematics with the fitted production amplitudes.

The total weight for every event is then normalized to the maximum weight in a bin to obtain

a number between 0 and 1 for each event. The dividend is then compared to a random number

r between 0 and 1, if

r >
Wi

Wmax
(5.22)

is satisfied, the event is kept. The weighted Monte Carlo sample is thus reduced to N events in

total, where N is the number of events in the real data. When analyzing these events, various

distributions are generated to compare them to distributions from the experimental data. Ideally,

including a large set of waves in our fit gives the best predicted distributions as the angular

structure of the data would be adequately described. However, statistical limitations dictate

leaving only the most significant waves in our fits. Predicted distributions for this analysis are

shown in Section 5.3.6.

5.3 Fit Results

A mass independent partial wave analysis was carried out on 16K γp → K+π+π− events

from the CLAS g12 experiment using an event based likelihood fit. The fit was performed

multiple times with different wave sets to determine the partial waves which make the most

significant contributions to describing our data. Results presented below are from the fit where

the most significant waves which were required to describe the data. The fit quality was assessed

by stability tests, by performing several fits with random statring parameters in each bin, as

well as results of the predicted distributions. All the intensities below have been corrected for

acceptance.

5.3.1 The Total Intensity

The coherent sum over all waves gives the total intensity in Figure 5.11.The total intensity

is an illustration of an acceptance corrected K+π+π− invariant mass distribution. Effects of ac-

ceptance can be seen when comparing Figures 5.11 and 3.21(a). The shoulder in the higher mass
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Figure 5.10: The values of the likelihood function at its minimum for each bin in the
fit we are presenting. The red point indicates the location of the bin which we used in
our tracking process. A total of hundred fits were performed in that bin to determine
the minimum of the likelihood function.

region was reduced, while the lower mass region peak became more prominent. The acceptance

corrected Kππ mass distribution can be also determined by simply finding the product of the

number of events in every bin in Figure 3.21(a) and the inverse of the acceptance. A rather easy

way to determine the acceptance is by dividing the number of accepted Monte-Carlo events in

every bin in Kππ, by the number of raw Monte Carlo events in the same bin.

5.3.2 1+S Waves

Discussion: The 1+ waves showed significant structures in both mass regions for both decay

modes. Figure 5.12 illustrates the intensity of the coherent sum of all 1+S waves included in the

fit. One can observe a very prominent peak in the lower mass region, thus consistently peaking

where the Kππ invariant mass in Figure 3.21(a) most dominantly peaks. A shoulder in the

higher mass region between 1.6 and 1.8 GeV is also observed. Both peaks were found to be

stable regardless of any changes in fitting parameters or permutations of waves. The structure
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Figure 5.11: The acceptance corrected total intensity of all the partial waves in the fit.
To determine the total intensity, the coherent sum of all the partial waves is calculated.

around 1.35 GeV falls in a range where to the K1(1270) and K1(1400) have been observed. Both

of these states have been found to exist between 1.2 GeV and 1.4 GeV. They are also rather

broad with decay widths around 100 GeV for the K1(1270) and 170 GeV for the K1(1400) [16].

Taking our binning choice into account and the proximity at which these two states exist, it

would be difficult to separate their contributions to the 1+ intensity in the lower mass region.

We could however use their branching ratios to possibly distinguish them by studying different

partial waves contributions to the 1+S intensity.

When we examine the 1+S ρ(770)K+ wave intensity in Figure 5.13(a), we notice that this

wave exhibits resonating structures in both mass regions. An enhancement around 1.35 GeV

and a broader more prominent enhancement peaking around 1.7 GeV are evident. The lower

mass region in the 1+SK∗(892)π+ wave is dominated by a structure peaking around 1.35 GeV

as well. While the low mass structures in both waves could be representations of the same state,

it is difficult to draw a conclusion. We mentioned earlier that this Kππ mass region has been

thoroughly studied by a handful of experiments using a hadronic beam. Most of these studies

reported confirmation of the K1(1270) and K1(1400) in this region whenever separation was

possible. According to reference [16], the K1(1400) state decays primarily (94% of the time)
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Figure 5.12: The acceptance corrected total intensity of all 1+S waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1+S wave decaying to a
ρ(770)K+ or a K∗(892)π+.

through K∗(892)π, while the K1(1270) decays dominantly through ρ(770)K. We fitted the

1+SK∗(892)π+ intensity to a mass-dependent Breit-Wigner distribution to get more reliable

mass and width results and possibly identify the state. The results are shown in Figure 5.14(a).

The mass obtained (1.347 ± 0.015 GeV) and the width (0.224 ± 0.062 GeV) were found to be

close to the properties of one of the 1+ states reported in this region, i.e. the K1(1400)’s. If

we take into account decay properties of the K1(1400) reported in reference [16], the width of

the 1+SK∗(892)π+ enhancement is in good agreement with the width of the reported state.

Similarly, the mass we obtained from our fit falls within the mass limits reported by other

experiments for the K1(1400). A similar structure was observed in the 1+Sρ(770)K+ as we will

discuss below.

Both peaks in the 1+S, ρ(770)K+ wave intensity were also fitted as shown in Figure 5.14(b).

This wave was not fitted with a simple Breit-Wigner. We instead used the K-matrix formalism.

More particularly, we relied on the P-vector approximation of the K-matrix formalism as outlined

by reference [61]. The fit yielded a mass of 1.313 ± 0.027 GeV and a width of a 0.1463 ± 0.016
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(a) The 1+S, ρ(770)K+ wave intensity.

(b) The 1+S,K∗(892)π+ wave intensity.

Figure 5.13: The acceptance corrected total intensities 1+S waves decaying to
ρ(770)K+ (a) and K∗(892)π+(b).
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(a) The 1+S,K∗(892)π+ wave intensity.

(b) The 1+S, ρ(770)K+ wave intensity.

Figure 5.14: The acceptance corrected intensities of the 1+S with a relativistic Breit-
Wigner fit of the low mass structure in 1+S,K∗(892)π+ (a) and a K-matrix fit of both
structures in 1+S, ρ(770)K+ (b).
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GeV for the lower mass structure, and a mass of 1.758 ± 0.075 GeV with a broad width of

0.227 ± 0.017 GeV for the higher mass structure. Keep in mind that these parameters do not

represent the masses and widths of the actual resonances. The actual resonance properties are

determined using the fitted values of the K-matrix as we explain in Appendix D. Comparing

the actual resonance properties from the lower mass region of this wave (m=1.33 ± 0.027 GeV

and Γ=0.144 ± 0.021 GeV) to those from 1+SK∗(892)π+, we notice only a slight difference in

both the mass and the width. And while the mass and width of the low-mass structure in the

1+S, ρ(770)K+ wave are significantly closer to those of the K1(1400) state, a conclusion about

whether this state is a K1(1270) or K1(1400) can not be confidently drawn.

The fitted broad peak in 1+Sρ(770)K+ had a mass of 1.734 ± 0.032 GeV and a width of

0.2279 ± 0.036 GeV and was not found to be explicitly consistent with any states in Refer-

ence [16]. This state, however, does possess some similarities to the reported, yet unconfirmed,

K1(1650) having a mass close to the suggested average of 1.65 GeV and a width close to the

0.250 GeV broad width. It should be noted that this structure was very stable against any

changes in the set of waves included in the fit. It was also present when the flat background was

swapped for the 0−σK+ and/or 0−K∗(800)π+ waves.

Conclusion: The 1+S exhibited very distinct and stable resonating behavior in both mass

regions. A resonance coupling strongly to the K?(892)π+ decay mode was observed to have a

mass = 1.347 ± 0.015 GeV and a width = 0.224 ± 0.062 GeV. The ρ(770)K+ decay mode also

exhibited resonating behavior in the low mass region with a mass = 1.33 ± 0.027 GeV and a

width = 0.144 ± 0.021 GeV. The resonance around 1.7 GeV was observed to couple strongly to

the ρ(770)K+ decay mode and had a mass = 1.734 ± 0.032 GeV and a width = 0.2279 ± 0.036

GeV. Similarities were found between the high mass broad structure in the 1+S ρ(770)K+ wave

and the K1(1650).

5.3.3 1−P Waves

Discussion: The 1−P wave consistently showed strong resonating behavior in the lower

mass region. The peak around 1.4 GeV in Figure 5.15 was found to be most pronounced in

the 1−PK∗(892)π+ wave. Additionally, the 1−P wave showed stable behavior regardless of

any addition or elimination of other waves. The prominent peak around 1.4 GeV seemed to

couple strongly to the K∗(892)π+ mode, while the 1−Pρ(770)K+ wave exhibited no resonating

behavior.
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Figure 5.15: The acceptance corrected total intensity of all 1−P waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+.

.

Figure 5.16 shows the intensities of 1−P, ρ(770)K+ and 1−P,K∗(892)π+. One can observe

of how strongly the 1−P wave couples to the K∗(892)π+ decay mode. The main structure in

Figure 5.16b is centered around 1.4 GeV. A Similar behavior was not present in Figure 5.16a.

We are only presenting the results of 1−Pρ(770)K+ for completion. From Figure 5.17 we can

obtain the results of a mass dependent analysis of this structure. The fit yields a mass of 1.429

± 0.024 GeV and a width of 0.097 ± 0.072 GeV, very close to the 1.414 GeV average mass but

substantially narrower than the 0.232 GeV average width of the K∗(1410) state as reported by

reference [16]. Decay properties of this structure were found to be in good agreement with the

K?(1410), decaying primarily to K∗(892)π+.

Conclusion: An enhancement was found in the 1−P wave around 1.43 GeV. This wave

evidently coupled strongly to the K∗(892)π+ decay mode. Upon performing a mass dependent

analysis on the low mass structure in the 1−P,K∗(892)π+ wave intensity, we found agreement

between this structure and the K1(1410) state in terms of mass and branching ratios.
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(a) The 1−P, ρ(770)K+ wave intensity.

(b) The 1−P,K∗(892)π+ wave intensity.

Figure 5.16: The acceptance corrected total intensities 1−P waves decaying to
ρ(770)K+ (a) and K∗(892)π+(b).
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Figure 5.17: The acceptance corrected total intensity of all 1−P waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+.

.

5.3.4 2+D Waves

Discussion: Also included in this fit are the 2+D waves. The 2+ wave has been extensively

observed in the Kππ system in several kaon beam experiments [12][26][32]. It has been observed

to strongly couple to the K?(892)π mode, and primarily dominate the lower mass region via the

K?
2 (1430) state. The overall intensity of the 2+D wave is shown in Figure 5.18. A significant

enhancement can bee seen in the lower mass region around 1.5 GeV. The 2+D intensity for

the ρ(770)K+ and the K∗(892)π+ decay modes are shown in Figures 5.19(a) and 5.19(b). Both

intensities exhibit broad enhancements between 1.4 and 1.6 GeV, however the ρ(770)K+ was not

as stable, therefore none of the enhancements it exhibited were considered for a mass dependent

analysis. The 2+DK∗(892)π+ intensity was fitted with a mass-dependent relativistic Breit-

Wigner as shown in Figure 5.20. The resulting parameters (m=1.49 ± 0.012 GeV and Γ=0.141
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Figure 5.18: The acceptance corrected total intensity of all 2+D waves included in this
fit. This intensity includes the coherent sum of amplitudes of 2+D wave decaying to a
ρ(770)K+ or a K∗(892)π+.

± 0.042 GeV) are in close agreement with the only reported 2+ state around 1.4 GeV, the

K?
2 (1430). If we compare the width of the enhancement we obtained with the reported range of

widths for the K?
2 (1430), we notice a good agreement.

Conclusion: A stable structure in the low mass region, that strongly couples to the

K?(892)π+ mode, was found in the 2+D wave. This enhancement was fitted with a mass-

dependent relativistic Breit-Wigner, and the yielded parameters were found to be in close agree-

ment with the mass and width of the confirmed K?
2 (1430) state. The resonating behavior in the

ρ(770)K+ wave was not considered for a mass dependent analysis due to the instability of the

results.

5.3.5 2−S Waves

Discussion: The 2− wave was added to the fit mainly to account for the shoulder the

K+π+π− invariant mass exhibits around 1.8 GeV. The most heavily reported 2− resonance

around 1.8 GeV is the K2(1770) which reportedly dominantly decays to K?
2 (1430)π . For this
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(a) The 2+D, ρ(770)K+ wave intensity.

(b) The 2+D,K∗(892)π+ wave intensity.

Figure 5.19: The acceptance corrected total intensities 2+D waves decaying to
ρ(770)K+ (a) and K∗(892)π+(b).
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Figure 5.20: The acceptance corrected intensity of the 2+DK?(892)π+ wave fitted with
a mass-dependent relativistic Breit-Wigner and a second degree polynomial.

reason, we only included 2−S waves decaying to K?
2 (1430)π or f2(1770)K+, in our fits. We

also refrained from including these waves below the K2(1770) production threshold at 1.5 GeV.

Figure 5.21 shows the coherent sum of both 2−S waves. An enhancement is evident between

1.6 GeV and 1.9 GeV. This behavior is more pronounced in the K?
2 (1430)π+ as shown in Fig-

ure 5.22(a).

We fitted the structure in Figure 5.22(a) with a mass-dependent relativistic Breit-Wigner 5.23

resulting in a mass = 1.759 ± 0.03 GeV and a decay width Γ = 0.167 ± 0.076 GeV, which were

found to be in close agreement with the reported average mass (1.773 GeV) and width (0.186

GeV) of the K?
2 (1430)π+ state [16]. We excluded any 2−P waves, decaying through ρ(770)K

and K?(892)π, from our final fit as they were not required by the data.

Conclusion: The 2−S wave accounted for the higher mass shoulder exhibited by the

K+π+π− system. It strongly coupled to the K?
2 (1430)π+ mode and had a mass = 1.759 ±

0.03 GeV and a width = 0.167 ± 0.076 GeV. The K2(1770) state is considered to be a good
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Figure 5.21: The acceptance corrected total intensity of all 2−S waves included in this
fit. This intensity includes the coherent sum of amplitudes of 2−S wave decaying to a
f2(1270)K+ or a K?

2 (1432)π+.

.

candidate for this structure.

5.3.6 Predicted Distributions

The qualities of the fits were determined by weighing the accepted Monte Carlo according to

the procedure outlined in Section 5.2.5. Various features of the data and weighed Monte Carlo

are presented in Figure 5.24. The predicted K+π− and π+π− masses overlap quite well with

their corresponding data distributions. The higher π+π− mass shoulder was also reproduced

by the fit, primarily because of the inclusion of the f2(1270)K+ decay mode in most of our

fits. Comparing the angular distributions of the data to those from the weighted Monte Carlo,

we notice a good agreement between the angles (φGJ , θGJ) in the Gottfried-Jackson frame. A

study was performed on small discrepancy in figure 5.25(a) to test its effect on the PWA results.

The region of discrepancy in φGJ for the (K+π−) system was excluded from the data and the

accepted Monte Carlo, and a partial wave analysis was performed on the new dataset with the
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(a) The 2−S,K?
2 (1430)π+ wave intensity.

(b) The 2−S, f2(1430)K+ wave intensity.

Figure 5.22: The acceptance corrected total intensities 2+D waves decaying to
K?

2 (1430)π+ (a) and f2(1430)K+(b).

113



Figure 5.23: The acceptance corrected intensity of the 2−SK?
2 (1430)π+ wave fitted

with a mass-dependent relativistic Breit-Wigner and a second degree polynomial.

waves we presented earlier. The resulting intensities showed no significant deviations from the

intensities of the waves presented in section 5.3. The predicted helicity angles are also in good

agreement with the corresponding data distributions as shown in Figure 5.26. Therefore we can

deduce that the waves included in this fit properly describe the data.
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(a) The K+π+π− invariant mass.

(b) The K+π− invariant mass. (c) The π+π− invariant mass.

Figure 5.24: Features of the fitted data events (blue) and the predicted distributions
(red points) for the γp→ ΛK+π+π− sample.
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(a) The GJ angle φ of K+π−. (b) The GJ angle φ of π+π−

(c) The GJ cos(θ) of K+π− (d) The GJ cos(θ) of π+π−

Figure 5.25: The measured (blue) and predicted (red points) angular distributions in
the Gottfried-Jackson frame.
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(a) The HF angle φ of K+π−. (b) The HF angle φ of π+π−

(c) The HF cos(θ) of K+π− (d) The HF cos(θ) of π+π−

Figure 5.26: The measured (blue) and predicted (red points) angular distributions in
the Helicity frame. The angular distributions of the K+π− system were determined
using the K+ as a spectator, and those of the π+π+ system were determined using the
π+ as a spectator.
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CHAPTER 6

SUMMARY

A mass independent partial wave analysis of the reaction γp → ΛK+π+π− was performed

using the first and only photoproduction dataset available for Eγ ∈ [4.40 GeV ,5.45 GeV]. The

main motivation for this analysis was to search for excited strange states that have never been

photoproduced before. This includes all excited states except for the K?(892). Our fit results

showed strong evidence of leading strange states such as the K1(1270) decaying in a 1+S wave

an strongly coupling to the ρ(770)K mode, and the K1(1400) dominantly coupling to K?(892).

A prominent and rather broad structure was also found in the 1+S, ρ(770)K+ wave, peaking in

the higher mass region. A good candidate for such a resonance is the K1(1650) state that has

been reported but not confirmed.

The 1−P,K?(892)π+ wave exhibited resonating behavior around 1.4 GeV. Such a structure

was not observed in the ρ(770)K+ decay mode. And while these branching properties are

consistent with the K?(1410), the structure observed in our fits was found to be narrower than

the reported average width.

Complimentary waves such as the 2+D,K?(892)π and the 2+D, ρ(770)K showed evidence

of resonating behavior as well. The 2+D,K?(892)π in particular was stable and peaked around

1.45 GeV. A mass-dependent Breit-Wigner fit of this structure showed strong correlation with

the K?
2 (1430) state. The 2+D, ρ(770)K wave on the other hand, did not show strong stability

and showed significant distortion with the exclusion/inclusion of other waves. As a result, we

did not feel confident in interpreting the 2+D, ρ(770)K structures. A strong enhancement was

seen in the 2−S,K?
2 (1430)π intensity in agreement with the K2(1770).

Due to statistical limitations of the data, significant partial wave phase motions were unable

to be measured. Drawing conclusions about resonant nature based solely on intensity is limited,

however the stability of the exhibited structures to the addition or exclusion of others waves,

is a strong evidence that these structures have resonating natures. The quality of the fit was

assessed by weighing a sample of accepted Monte Carlo to the fit parameters, then comparing

its features with the features of the data sample used in for PWA. The included waves were

found to describe the angular and mass dependent structure of the data quite well.
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Table 6.1: Summary of the resonant structures observed in the partial waves, along
with any possible states that could account for them.

JP Decay Channel Mass [GeV/c2] Width [GeV/c2]

1+ ρ(770)K 1.33 ± 0.03 0.14 ± 0.02

1+ ρ(770)K 1.73 ± 0.03 0.23 ± 0.04

1+ K?(892)π 1.35 ± 0.02 0.22 ± 0.06

1− K?(892)π 1.43 ± 0.02 0.1 ± 0.07

2+ K?(892)π 1.49 ± 0.01 0.14 ± 0.04

2− K?
2 (1430)π 1.76 ± 0.03 0.17 ± 0.08

Phase motion was not used in this analysis due to instability. This is a result of the statistical

limitations that this channel suffered from. Drawing a conclusion about a wave based solely on its

intensity behavior might not be enough, however the stability of the exhibited structures to the

addition or exclusion of other waves, is a strong evidence that these structures have resonating

natures. Additionally, the quality of the fit was assessed by weighing a sample of accepted Monte

Carlo to the fit parameters, then comparing its features to the features of the data sample used

in this fit. The included waves were thus found to describe the angular structure of the data

quite well.

This analysis, with limited number of events, was able to show evidence of the production of a

handful of excited strange states, thus giving an impression of what to expect in a similar channel

with higher statistics. With larger number of events, and higher beam energies, experiments

such as GlueX will be able to extend the study of the Kππ system and present a more complete

understanding of a K+π+π− system produced off a Λ.
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APPENDIX A

EXTENDED PWA RESULTS

A series of different PWA fits for the γp→ ΛK+π+π− channel are presented in this chapter.

A.1 PWA Fit with 0−S waves

The flat background in this fit is replaced by the 0−S wave decaying to f0(600)K+ and

K?(800)π+ waves.

Table A.1: The full set of waves included in this partial wave analysis. The check
marks indicate the region where a wave is included in the partial wave analysis. Keep
in mind that except for the flat background, every wave has two reflectivities.

L JP Isobar Bachelor 1.1 - 1.6 GeV 1.6 - 2.2 GeV

S

0− f0(600) K+ X X

0− K∗(800) π+ X X

1+ ρ(770) K+ X X

1+ K∗(892) π+ X X

2− f2(1270) K+ X

2− K∗2 (1430) π+ X

P

1+ f0(600) K+

1+ K∗(800) π+

1− ρ(770) K+ X X

1− K∗(892) π+ X X

D
1+ ρ(770) K+

1+ K∗(892) π+

2+ ρ(770) K+ X X

2+ K∗(892) π+ X X
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A.1.1 1+S Waves

Figure A.1: The acceptance corrected total intensity of all 1+S waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1+S wave decaying to a
ρ(770)K+ or a K∗(892)π+.

(a) The 1+S, ρ(770)K+ wave intensity. (b) The 1+S,K∗(892)π+ wave intensity.

Figure A.2: The acceptance corrected total intensities 1+S waves decaying to ρ(770)K+

(a) and K∗(892)π+(b).
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A.1.2 1−P Waves

Figure A.3: The acceptance corrected total intensity of all 1−P waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+.

.

(a) The 1−P, ρ(770)K+ wave intensity. (b) The 1−P,K∗(892)π+ wave intensity.

Figure A.4: The acceptance corrected total intensities 1−P waves decaying to ρ(770)K+

(a) and K∗(892)π+(b).
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A.1.3 2+D Waves

Figure A.5: The acceptance corrected total intensity of all 1−P waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+.

.

(a) The 2+D, ρ(770)K+ wave intensity. (b) The 2+D,K∗(892)π+ wave intensity.

Figure A.6: The acceptance corrected total intensities 2+D waves decaying to ρ(770)K+

(a) and K∗(892)π+(b).
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A.1.4 Predicted Distributions

(a) The K+π+π− invariant mass.

(b) The K+π− invariant mass. (c) The π+π− invariant mass.

Figure A.7: Features of the fitted data events (blue) and the predicted distributions
(red points) for the γp→ ΛK+π+π− sample.

Discussion: Major structures that were observed in the fit we presented in Section 5.3,

were also observed in this fit. The flat background was replaced with the isotropic 0−S wave.

The only slight difference in waves behavior was found in the 1−S, ρ(770)K+ where the lower

mass enhancement was relatively less prominent when compared to that in Figure 5.13(a). The
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(a) The GJ angle φ of K+π−. (b) The GJ angle φ of π+π−

(c) The GJ cos(θ) of K+π− (d) The GJ cos(θ) of π+π−

Figure A.8: The measured (blue) and predicted (red points) angular distributions in
the Gottfried-Jackson frame.

unstable structures we observed in the 2+D, ρ(770)K+ in Figure 5.19(a) was also absent from

Figure A.6(a). Generally speaking, one can replace the flat background with the isotropic 0−S

wave; however, this would require an in-depth study of the parametrization of the sigma(600)

and K?(800). In this fit, for the sake of simplicity, both mesons were parametrized with broad

Breit-Wigners.
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(a) The HF angle φ of K+π−. (b) The HF angle φ of π+π−

(c) The HF cos(θ) of K+π− (d) The HF cos(θ) of π+π−

Figure A.9: The measured (blue) and predicted (red points) angular distributions in
the Helicity frame. The angular distributions of the K+π− system were determined
using the K+ as a spectator, and those of the π+π+ system were determined using the
π+ as a spectator.
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A.2 PWA Fit with 50 MeV Bins

The flat background is used in this fit. The only change is the width of the bins.

Table A.2: The full set of waves included in this partial wave analysis. The check
marks indicate the region where a wave is included in the partial wave analysis. Keep
in mind that except for the flat background, every wave has two reflectivities.

L JP Isobar Bachelor 1.1 - 1.6 GeV 1.6 - 2.2 GeV

S

1+ ρ(770) K+ X X

1+ K∗(892) π+ X X

2− f2(1270) K+ X

2− K∗2 (1430) π+ X

P

1+ f0(600) K+

1+ K∗(800) π+

1− ρ(770) K+ X X

1− K∗(892) π+ X X

D
1+ ρ(770) K+

1+ K∗(892) π+

2+ ρ(770) K+ X X

2+ K∗(892) π+ X X

Flat Isotropic X X

Discussion: A fit including the waves discussed in Section 5.3 but with 50 MeV bins was

performed. Larger statistical uncertainties as well as instability of some waves were observed.

This is mainly due to the further statistical limitations arising from fitting with smaller bins.

However, the major structures that were observed in our previous 100 MeV binned fits, were

observed here. The low and high mass structures in the 1+S, ρ(770)K+ wave were also observed

in this fit, as evident by Figure A.11(a). Other waves exhibited behaviors very comparable to

those of the corresponding waves in the fit in Section 5.3. We did not seek this binning choice

in our fits mainly because of concerns of reliability arising from the rather large errors and the

discrepancies between the predicted and observed angular distributions.
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A.2.1 1+S Waves

Figure A.10: The acceptance corrected total intensity of all 1+S waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1+S wave decaying to a
ρ(770)K+ or a K∗(892)π+.

(a) The 1+S, ρ(770)K+ wave intensity. (b) The 1+S,K∗(892)π+ wave intensity.

Figure A.11: The acceptance corrected total intensities 1+S waves decaying to
ρ(770)K+ (a) and K∗(892)π+(b).
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A.2.2 1−P Waves

Figure A.12: The acceptance corrected total intensity of all 1−P waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+.

.

(a) The 1−P, ρ(770)K+ wave intensity. (b) The 1−P,K∗(892)π+ wave intensity.

Figure A.13: The acceptance corrected total intensities 1−P waves decaying to
ρ(770)K+ (a) and K∗(892)π+(b).
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A.2.3 2+D Waves

Figure A.14: The acceptance corrected total intensity of all 1−P waves included in this
fit. This intensity includes the coherent sum of amplitudes of 1−P wave decaying to a
ρ(770)K+ or a K∗(892)π+.

.

(a) The 2+D, ρ(770)K+ wave intensity. (b) The 2+D,K∗(892)π+ wave intensity.

Figure A.15: The acceptance corrected total intensities 2+D waves decaying to
ρ(770)K+ (a) and K∗(892)π+(b).
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A.2.4 Predicted Distributions

(a) The K+π+π− invariant mass.

(b) The K+π− invariant mass. (c) The π+π− invariant mass.

Figure A.16: Features of the fitted data events (blue) and the predicted distributions
(red points) for the γp→ ΛK+π+π− sample.
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(a) The GJ angle φ of K+π−. (b) The GJ angle φ of π+π−

(c) The GJ cos(θ) of K+π− (d) The GJ cos(θ) of π+π−

Figure A.17: The measured (blue) and predicted (red points) angular distributions in
the Gottfried-Jackson frame.
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(a) The HF angle φ of K+π−. (b) The HF angle φ of π+π−

(c) The HF cos(θ) of K+π− (d) The HF cos(θ) of π+π−

Figure A.18: The measured (blue) and predicted (red points) angular distributions in
the Helicity frame. The angular distributions of the K+π− system were determined
using the K+ as a spectator, and those of the π+π+ system were determined using the
π+ as a spectator.
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APPENDIX B

THE GLUEX EXPERIMENT

GlueX is a particle physics experiment at the Thomas Jefferson National Accelerator Facility

(Jlab), Newport News, Virginia. The main goal of GlueX is understanding the nature of color

confinement in quantum chromodynamics (QCD). Confinement of quarks and gluon is a unique

property of QCD and understanding it requires understanding the nature of gluonic field binding

the quarks together inside a hadron. GlueX aims to search for hybrids and exotic mesons to

understand confinement as these states manifest gluonic degrees of freedom. GlueX will use a

coherent bremsstrahlung photon beam incident on a liquid hydrogen target to produce these

meson states. Photoproduction is expected to be particularly effective in producing exotic

hybrids, and GlueX is expected to provide the largest photoproduction dataset to date. The

GlueX detector and its housing hall were the most recent addition to Jlab’s facilities and were

part of the 12 GeV upgrade.

B.1 The 12 GeV Upgrade

The Continuous Electron Beam Accelerator Facility (CEBAF) has operated at 6 GeV since

1995 and has served over 1400 users for at east 17 years. The last 6 GeV at Jlab was successfully

completed in the spring of 2012. Ever since, the CEBAF facility and the three halls (A, B, and

C) have undergone various upgrades and improvements. The 12 GeV upgrade aimed to double

the operating electron energy by adding 10 new cryomodules to existing 40 cryomodules in free

space at the end of each linac, and by upgrading the magnets in the original 9 arcs to higher

fields. In addition, a new arc had to be added to provide an additional pass to deliver a 12

GeV beam to hall D. The upgrade also included adding 10 new RF stations to power the 10

new cryomodules, doubling the refrigerator capacity, modifications to the extraction system to

support the higher energy beams, and a new beamline connecting the Hall D to the baseline

accelerator [55]. The upgrade was finalized in 2015 and first commissioning runs in all four halls

were performed. The new beam support system will carry a beam of energies up to 11 GeV

to halls A, B and C, as well as a 12 GeV beam to hall D where the GlueX detector is housed.
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A tagged photon beam of energies up to 9 GeV will then be delivered on the target in hall D.

Different components of the 12 GeV upgrade on CEBAF can be seen in Figure B.1. More details

about the GlueX detector and the construction of the time of flight detector at Florida State

University will be discussed in the next section.

Figure B.1: Schematic CEBAF accelerator overview, including modifications for the
12 GeV update.

.

B.2 The GlueX Detector

The GlueX detector is an azimuthally symmetric and nearly hermetic detector for charged

particles and photons and is shown in Figure B.2. The detector is housed in hall D at Jefferson

lab and is made of 6 subdetectors, each of which performs tasks related to tracking or particle

identification. The process of producing the photons beam, and the detection of the charged

particles is similar to the process followed by CLAS. A 12 GeV electron beam is supplied to

the tagger hall in front of hall D to produce a photon beam via bremsstrahlung radiation.

Electrons first pass through a diamond radiator, then into a dipole magnet that tags the energy

of the scattered electrons, which later is used to get information about the energies of the

produced photons. The diamond radiator is aligned in such a way that it produces a coherent
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bremsstrahlung in the 8.4 GeV to 9.0 GeV range. The coherent photons are linearly polarized

relative to the crystal axes of the diamond. Coherent photons then travel through an 80 m long

vacuum beamline before making their way to hall D. The photon beam then passes through a

3.4 mm diameter collimator to remove off-axis photons while also providing fast feedback on

the beam positioning. Before reaching the target cell in the detector, the photons also travel

through a pair spectrometer system that is used to monitor both the energy and intensity of the

photon beam [56].

The photon beam enters hall D and is directly incident on a 30 cm liquid hydrogen target.

The largest element of the GlueX detector is a solenoid superconducting magnet. The solenoid

is a 73-inch warm bore superconducting device that produces a nominal maximum central field

of 2.0 Tesla along the direction of the beam. Surrounding the target is a 30-element scintillator

detector called the start counter [57][58]. The start counter provides a start signal for time

of flight measurements with 300 ps resolution, and it also identifies the beam pulse associated

with the observed event. It is located in close proximity to the target so it is independent of

particle momenta and trajectories. Immediately surrounding the start counter is the central

drift chamber [59]. Also referred to as the straw tube chamber, the CDC is a 1.5 m long and

1.2 m in diameter. The CDC is made of 3522 1.6 cm straws, forming 28 layers 12 of which are

straight and 16 are stereo. The central drift chamber provides position measurements along the

charged tracks with 150 µm accuracy in the r−φ plane. It also provides dE/dx information for

charged tracks and has a good π/p separation up to 1 Gev/c.

Downstream of the CDC is the forward drift chamber system. The FDC system is made of

four separate packages each of which is based on six layers of planar drift chambers with both

anode and cathode readouts [64]. These readouts allow the drift chambers to reconstruct a three-

dimensional space point which is essential for tracking in the high-magnetic field environment.

Surrounding these tracking detectors and inside the solenoid is the barrel calorimeter. It is a lead-

scintillating fiber calorimeter with readout on both the upstream and downstream layers [64].

The timing information from the BCAL is used to provide time-of-sflight information for particles

interacting in the BCAL and can be used to global particle identification of charged particles and

photons. The second calorimeter in GlueX is the forward calorimeter (FCAL) [66]. The FCAL

consists of 2800 lead-glass crystals each 45 cm long. The crystals are stacked such that the active

area of the FCAL is circular. The FCAL is sensitive to photons of Eγ ≥ 100 MeV. Upstream

fro the FCAL is the time of flight detector which was constructed at Florida State University
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Figure B.2: Schematic CEBAF accelerator overview, including modifications for the
12 GeV update.

.

and will be discussed in the following section. For more information about the subsystems of

the detectors, refer to References [56][57][58][59][64][66].

B.3 The Time of Flight Detector

The construction and assembly of the time of flight detector(TOF) was a year long project

from May 2013 to May 2014. The construction section was completely performed at Florida

State University by a number of graduate and undergraduate students under the supervision of

Dr. Paul Eugenio and Dr. Alexander Ostrovidov. The most recent effort on the time of flight

includes commissioning and calibration which will not be covered in this section. This section

will include a brief description of various construction steps which the author of this document

had a leading role in.

The main purpose of the time of flight detector is to provide timing and energy loss mea-

surements. Timing information from the TOF are combined with timing information from the

137



start counter to determine the identity of a particle in the same fashion CLAS’s time of flight

detector operated (refer to Section 2.4.4). The TOF detector for GlueX consists of two layers of

scintillator paddles with readout using photomultiplier tubes on both sides. Each layer consists

of

• 38 2.54 × 6.00 × 252.00 (cm) scintillator modules with PMT’s mounted on both ends.

• 4 2.54 × 3.00 × 252.00 (cm) scintillator modules with PMT’s mounted on both ends.

• 4 2.54 × 6.00 × 120.00 (cm) scintillator modules with PMT’s mounted on one end.

The half-width and half-length modules go in the center region of both layers, where the half-

length modules account for the beam hole in the middle of each layer as shown in Figure B.3.

The scintillation material used in the modules is Eljen’s EJ200. Each full length module is made

of an EJ200 scintillator bar with a light guide, that is fabricated from the same material by the

FSU machine shop, attached to either end. Each of the half length modules had only one light

guide attached to its scintillator bar.

Producing the modules was a combined effort process and was done in four different steps.

the first step included the fabrication and polishing of the light guides. Polishing the light

guides with highest quality was crucial to guarantee the highest performance from a module.

A smooth and scratch-free surface eliminated any light dispersion effect that could seriously

compromise the performance of the modules. Next, the dimensions of scintillator bars were

measured individually. This was done to ensure dimension measurement consistency between

all the modules. Each scintillator bar was examined for scratches and deformities, then covered

with plastic wrap and prepared for the next step. The next step included attaching the polished

light guides to the scintillator bars using EJ500 optical cement (Figure B.4). Finished modules

were then wrapped with a layer of 3M’s Enhanced Specular Reflector (ESR) film, which serves

as a reflector of the photons produced by particles that transverse the module, so that these

photons could reach the PMT at the end of the module. Wrapped modules were then inspected

for the quality of the ESR wrapping before photomultiplier tubes were attached to their ends. A

Silicon RTV mixture was used to mount PMT’s on the ends of the modules (Figure B.5). After

several hours of curing, the glued PMT/lightguide joints were cheked for quality. Joints that

exhibited any form of irregularity were redone. Finally, finished modules were wrapped with a
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Figure B.3: Schematic of a layer of the Time of Flight detector. Blue colored bars
represent the full width - full length modules. The green colored bars represent the
half width modules, and the red colored bars represent the half length modules. The
white box in the middle represents the beam hole.

.

layer of Tedlar PVF film. The Tedlar layer is added to eliminate any contamination from visible

light.

The position of a module in an individual layer depended on its efficiency and performance.

Modules with highest efficiency, essentially those that had high gain PMT’s attached to them,

were placed in the middle of the layer and closer to the beam beam hole. One with lowest

efficiencies where thus placed on the edges. The Assembly of the TOF detector took place in

hall D at Jefferson Lab, and was completed in 4 months. Several modifications to the original

design had to be done, but we will not cover them here. The finished detector was lifted to

its place in front of the forward drift chamber shortly after all the modules were put in their

corresponding positions. Finally, with the detector in place, it was ready to be cabled and

connected to its DAQ system. Two cables were driven from each PMT to the platform behind

the FDC where the DAQ system was housed. The signal cable from the PMT was connected

to a splitter that would send the signal to an FDC crate and a TDC crate simultaneously,

while the high voltage cable was connected to a channel in the HV crate. The detector was

then turned on and was given a first assessment of performance to check for any light leaks or
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Figure B.4: An illustration of the different steps of polishing that the light guides had
to go through. Several sand papers were used in the process, leading to the shades
variation observed above.

.

Figure B.5: The method used to attach PMT to light guides is illustrated in this photo.
After the Silicon RTV was applied, the PMT/Light guide joint was held together using
the device shown in this photo. Constant pressure had to be applied to the joint to
ensure best results.

.
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Figure B.6: The completed time of flight proudly fashioned in garnet and gold (FSU’s
official colors), as it gloriously resides in its final position.

.

cabling ambiguities. Several cabling ambiguities and light leaks were found and then corrected

for accordingly. The Time of Flight detector currently operates with a 95 ps resolution and has

been operating without any problems. The final form and position of the detector can be seen

in Figure B.6.
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APPENDIX C

DETACHED VERTEX SIMULATION

When generating Monte Carlo for our partial wave analysis, we needed to ensure that we

were accurately simulating the detector’s response to this channel. To do so, we had to account

for the detached vertex of the Λ baryon. Since the Λ decays to a pπ pair via weak interaction,

it would travel for a considerable distance before it decays. As a result, the proton and the

pion would originate from a vertex that is detached from the original event vertex. Genr8

does not account for vertex information and all vertex information is provided by gamp2part.

Gamp2part inserts random vertex information to the generated Monte Carlo but in a common

vertex fashion. A detached vertex was inserted into its code following the prescription detailed

below.

To simulate the detachment of the vertex of Λ, random numbers were generated with an ex-

ponential probability distribution of the Λ lifetime in its rest frame. The probability distribution

is

F (t) = Frest(t) = αe−αt (C.1)

where α is the decay constant and is related to the mean lifetime τ by

τ =
1

α
(C.2)

we can then generate a random variable x between 0 and 1 and relate it to the probability

distribution by

x =

∫ t

0
f(z)dz (C.3)

The relation above relates the source random variable and the known target random variable.

If we plug Equation C.1 into the equation above, we get

x =

∫ t

0
αe−αzdz (C.4)

or,
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x = α

(
−1

α
exp−αt +

1

α

)
= 1− e−αt (C.5)

Inverting the above equation,

t =
ln(1− x)

−α
(C.6)

Then substituting α using Equation C.2, yields

t = −τ ln(1− x) (C.7)

The random number t represents the Λ lifetime at rest. We can relate the lab and rest frame

using the Lorentz factor γ such that

t = trest =
tlab
γ

(C.8)

where γ is

γ =
1√

1− v2/c2
=

1√
1− β2

(C.9)

where v is the relative velocity between inertial reference frames and can be measured using the

momentum of Λ, c is the speed of light, and β is

β =
v

c
=

p√
p2 +m2c2

(C.10)

We can rewrite tlab in natural units as

tlab =
trest√

1− p2

p2+m2

(C.11)

Finally, the distance that Λ flies between its creation and decay is given by,

D = cβtlab =
cγptrest
E

(C.12)

Figure C.1 shows the distance distribution for the data and the accepted simulated Monte

Carlo. The Λ distance is determined by using the vertex of the proton and the vertex of the

event as provided by the TBTR bank. The distance is then determined using
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D =
√

(xp − xevent)2 + (yp − yevent)2 + (zp − zevent)2) (C.13)

(a) The Distance between Λ and event vertex for Data.

(b) The Distance between Λ and event vertex for MC.

Figure C.1: Distributions of the distance between the Λ vertex and the event vertex
for the Data sample (a) and the accepted Monte Carlo sample (b).
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APPENDIX D

THE K-MATRIX FORMALISM

The Breit-Wigner parameterization is valid for a single isolated resonance decaying into one

channel above threshold, however in the real world, resonances can overlap within one channel,

can decay into more than one channel, and can be in the vicinity of thresholds of each other.

As a result, the unitarity of the scattering S-matrix is violated. And while this violation is

marginal in the case of narrow isolated and distant resonances, it becomes more severe when

the resonances become broader and overlap. As a result, a new formalism was proposed a

long time ago to study overlapping and multiple-channel resonances, it is formally referred to

as the K-Matrix formalism. The K-matrix formalism provides a framework through which the

unitarity of the S-matrix of two body processes can be imposed, something the can not be

achieved by the simple sum of two Breit-Wigners. Additionally, this formalism can be extended

beyond scattering problems to cover cases of resonance production in complex reactions via the

P-vector approach. More information about the K-Matrix and P-vectors formalism can be found

in reference [65].

Consider a two-body scattering of the form ab→ cd. Then the differential cross section can

be written in terms of the invariant amplitude M or more precisely, the scattering amplitude f

as follows
dσfi
dΩ

=
1

(8π)2m2

(
qf
qi

)
|Mfi|2 = |ffi(Ω)|2 (D.1)

where i and f represent the initial and final states, Ω denotes the spherical coordinates and m

is the center of mass energy. The q’s are the initial and final breakup momenta. The scattering

amplitude can be expanded to

ffi(Ω) =
1

qi

∑
j

(
2J + 1

)
T Jfi(s)D

J?
λµ(φ, θ, 0) (D.2)

where λ = λa − λb and µ = λc − λd are represented in terms of the helicities of the particles.

Integrating the differential cross section in Equation D.1, the total cross section in the partial
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wave J becomes

σJfi =

(
4π

q2
i

)(
2J + 1

)∣∣T Jfi(s)∣∣2 (D.3)

The initial and final states can be written as

|i〉 = |ab, JMλaλb〉
|f〉 = |cd, JMλcλd〉

(D.4)

where M is the z-component of the total spin J in the overall CM frame. These states are

normalized according to

〈f |i〉 = δij (D.5)

The amplitude that the initial state |i〉 would end up in the final state |i〉 is

Sfi = 〈f |S |i〉 (D.6)

where S is called the scattering operator. We can then define the transition operator through

S = I + 2iT (D.7)

where I is the identity operator. Conservation of probability leads to the unitarity of the scat-

tering operator

S S† = S† S = I (D.8)

Using the unitarity of S, one gets

T − T † = 2iT †T = 2iTT † (D.9)

As a result T becomes Hermitian. We can introduce a new operator called K of the form

K−1 = T−1 + iI (D.10)

K is therefore also Hermitian i.e. K = K†. Due to time reversal invariance, K is real and

symmetric. We can rewrite T in terms of K as

T = (I − iK)−1K (D.11)

The K-matrix elements are representations of resonances α (poles) in decay channels i and

j, and can be written as
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Kij =
∑
α

gαi(m)gαj(m)

m2
α −m2

(D.12)

where

gαi(m) = γαi
√
mαΓ0

αBlαi(qi, qαi)
√
ρi (D.13)

mα is the mass of the pole and Γα is its decay width. It should be noted that these do not

necessarily correspond to the properties of the resonances. The physical properties of the real

resonances can be obtained from the poles of the T-matrix. In the case of two overlapping

resonances, the K-matrix becomes

K =
mAΓA(m)

m2
A −m2

+
mBΓB(m)

m2
B −m2

(D.14)

where the relative decay amplitude Γα(m) is

Γα(m) = Γα0

(
mα

m

)(
q

qα

)
Bα(q, qα)2 (D.15)

As we mentioned earlier, the K-matrix formalism can be extended beyond the formation of

resonances (s-channel resonances) to cover the case of production of resonances by introducing

the P-vectors. According to reference [61], the P-vectors can be written as

P =
∑
α

βαmαΓ0
αB

l
α

m2
α −m2

(D.16)

where βα are complex numbers that account for the phase between the poles and carry the pro-

duction information of a resonance α. Moreover, the production amplitude P can be transformed

into the resulting invariant amplitude F using

F = (I − iK)−1P (D.17)

or more precisely,

F =

∑
α
βαmαΓ0

αB
l
α

mα2−m2

1− i
∑

α
mαΓ0

α
m2
α−m2

ρ
ρα

∣∣∣ Fl(q)Fl(qα)

∣∣∣2 (D.18)

Recall that a relativistic Breit-Wigner amplitude is defined as,

BWα = βα
mαΓ0

α

m2
α −m2 − imαΓα(m)

Bl
α (D.19)
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We can now rearrange the F amplitude and rewrite it in terms of the relativistic Breit-Wigner

amplitude as

F =
∑
α

BWα

1− zα
(D.20)

where zα is defined as

zα(m) = i
m2
α −m2

m2
α −m2 − imαΓα(m)

(∑
β 6=α

Kβ

)
(D.21)

Again in order to find the mass and width of the actual resonances, we have to find the T poles.

This could be achieved by solving for m in the following equation

∏
α

(1− zα(m)) = 0 (D.22)

Solving zα(m) = 1 yields a complex solution of the form m = mass − iΓ
2 . Generally speaking,

the mass and width obtained from the T-poles are expected to be rather close to the ones

obtained from the F-poles. This prediction was illustrated in our partial wave analysis results

for the 1+SρK wave, where two resonances in close proximity were fitted with an F amplitude

to determine their masses and widths.
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APPENDIX E

WIGNER-D FUNCTIONS

The Wigner-D function gives the matrix elements of the rotation operator R in the jm-

representation. Given a set of Euler angles (α,β,γ), a rotation of a state of total spin J, referred

to as |jm〉, can be expressed in a complete space basis as

R =
∑
m′

DJ
m′m(α, β, γ)

∣∣Jm′〉 (E.1)

the Wigner-D functions are defined as the coefficients in this expansion. Therefore we can also

express

R = e−iαJxe−iβJye−iγJz (E.2)

and

DJ
m′m(α, βγ) =

〈
Jm′

∣∣ e−iαJxe−iβJye−iγJz |Jm〉 (E.3)

or

DJ
m′m(α, β, γ) = e−im

′α
〈
Jm′

∣∣ e−iβJy |Jm〉 e−imγ (E.4)

The angles α and β can be thought of as the polar angles φ and θ respectively. We choose γ = 0

thus adopting the convention in Reference [70], and define the Wigner-d functions as

dJm′m(β) =
〈
Jm′

∣∣ e−iβJy |Jm〉 (E.5)

then the Wigner-D functions can be written as

DJ
m′m(α, βγ) = e−im

′αdJm′m(β)e−imγ (E.6)

The dJm′m(β) functions were calculated by Wigner and the have the following form
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dJm′m(β) = C
∑
S

(−1)S

(J −m′ − S)!(J +m− S)!(S +m′ −m)!S!

×
[
cos(

β

2
)

]2J+m−m′−2S

×
[
− sin(

β

2
)

]m′−m+2S

(E.7)

where C =
[
(J +m)!(J −m)!(J +m′)!(J −m′)!

] 1
2 . The sum is over the values of the integer S

for which the factorials ≥ 0. The Wigner-D functions can be normalized such that

∫
dΩDJ1?

m′1m1
DJ2
m′2m2

=
8π2

2J1 + 1
δJ1J2δm′1m′2δm1m2 (E.8)

The following properties can be assigned to these functions [62]

• DJ?
m′m(α, β, γ) = (−1)m

′−mDJ
−m′−m(α, β, γ)

• DJ1
m′1m1

DJ2
m′2m2

=
∑

J3,m′3,m3

(
J1m

′
1J2m

′
2|J3m

′
3

)(
J1m1J2m2|J3m3

)
DJ3
m′3m3

The factors in parentheses are the Clebsch-Gordan coefficients (Appendix D). The normalization

relation is ∫
dΩDJ1?

m′1m1
DJ2
m′2m2

DJ3?
m′3m3

=
8π2

2J3 + 1

(
J1m

′
1J2m

′
2|J3m

′
3

)(
J1m1J2m2|J3m3

)
(E.9)
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APPENDIX F

CLEBSCH-GORDAN COEFFICIENTS

Suppose we have two angular momentum states |J1m1〉 and |J2m2〉. We want to add these

two states to a form a state of angular momentum |Jm〉, such that J = J1 ⊕ J2. These states

are related by a linear relation given by,

|Jm〉 =
∑
m1m2

(
J1m1J2m2|Jm

)
|J1m1〉 |J2m2〉 (F.1)

where the coefficients
(
J1m1J2m2|Jm

)
are the Clebsch-Gordan coefficients, and m = m1 +m2.

An expression of these coefficients was derived by Wigner [62]

(
J1m1J2m2|Jm

)
= δm,m1+m2

×
[
(2J + 1)

(J + J1 − J2)!(J − J1 + J2)!(J1 + J2 − J)!(J +m)!(J −m)!

(J + J1 + J2 + 1)!(J1 −m1)!(J1 +m1)!(J2 −m2)!(J2 +m2)!

] 1
2

×
∑
S

(−1)S+J+m

S!

(J +m1 + J2 − S)(J1 −m1 + S)!

J − (J1 + J2 − S)!(J +m− S)!(S + J1 − J2 −m)!

(F.2)

Then using the orthogonality relations, we can write the reciprocal relations

|J1m1〉 |J2m2〉 =
∑
J

(
J1m1J2m2|Jm

)
|Jm〉 (F.3)

Some important symmetry properties can be extracted from these formulas,

•
(
J1m1J2m2|Jm

)
= (−1)J1+J2−J

(
J1 −m1J2 −m2|J −m

)

•
(
J1m1J2m2|Jm

)
= (−1)J1+J2−J

(
J2m2J1m1|Jm

)

•
(
J1m1J2m2|Jm

)
= (−1)J1−m1

[
2J+1
2J2+1

] 1
2
(
J1m1J −m|J2 −m2

)
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Figure F.1: The Clebsch-Gordan coefficients table with the Wigner-d functions and
the spherical harmonics Y m

l . Image source [16].

.
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