CLAS: Double-Pion Beam Asymmetry

Steffen Strauch University of South Carolina

NSTAR 2005, October 12-15, 2005

Beam-Helicity Asymmetry in $\pi\pi N$

- Motivation of the experiment
 - Why study double-pion production?
 - Why measuring polarization observables?
- Results of the CLAS $\vec{\gamma}p \rightarrow \pi^+\pi^-p$ measurement
- Discussion
 - Sensitivity of the asymmetry to underlying dynamics
 - Study of background mechanisms
 - Study sequential decay of resonances
- Beyond the beam-helicity asymmetry

Double-Pion Photoproduction: $\gamma N o N \pi \pi$

Dominant nucleon-resonance decay channels above 1.6 GeV

with $\pi\pi N$ final states

• Many "missing" states are predicted to couple strongly to the $\pi\pi N$ channels

Particle Data Group Review, S. Eidelman *et al.*, Phys. Lett. B **592**, 1 (2004). S. Capstick and W. Roberts, Phys. Rev. D **49**, 4570 (1994)

CLAS Measurement of $ep ightarrow e' \pi^+ \pi^- p$

- Comparison of data and phenomenological predictions using available information on N^* and Δ states shows discrepancy.
- Better description: sizeable change of $P_{13}(1720)$ properties or introducing new baryon state.

Figure from M. Ripani et al., Phys. Rev. Lett. 91, 022002 (2003)

Polarization Observables for Two-Pion Production off the Nucleon

- Eight transversity amplitudes for the $\gamma N \to \pi \pi N$
- Unpolarized cross section

$$I_0 = \sum_{i=1,4} |b_i^+|^2 + \sum_{i=1,4} |b_i^-|^2$$

- Polarization observables allow extraction of more information, including phases.
- Photon polarization asymmetry I^{\odot}

$$I_0 I^{\odot} = \sum_{i=1,4} |b_i^+|^2 - \sum_{i=1,4} |b_i^-|^2$$

Complete set require additional single-, double- and triplepolarization observables

W. Roberts and T. Oed, Phys. Rev. C 71, 055201 (2005)

The CLAS $\,ec{\gamma}p ightarrow \pi^+\pi^-p\,$ Experiment

Jefferson Lab Hall B

S. Strauch et al. (CLAS Collaboration), Phys. Rev. Lett. 95, 162003 (2005)

Photon-Beam Polarization

• Circularly polarized bremsstrahlung ($E_{\gamma} = 0.5 - 2.3 \text{ GeV}$) from longitudinally polarized electrons ($P_e \approx 0.67$)

Systematic uncertainty from beam polarization: 3%

no target polarization, no recoil polarization

Experimental Beam-Helicity Asymmetries

Asymmetry and Fourier Decomposition

$$I^{\odot}(\phi) = \frac{1}{P_{\odot}} \frac{N(\lambda = +) - N(\lambda = -)}{N(\lambda = +) + N(\lambda = -)} \approx \sum a_k \sin k\phi$$

 $\blacktriangleright~3\times10^7$ events with W=1.35 to $2.35~{\rm GeV}$

Beam-Helicity Asymmetries

• I^{\odot} observable is odd under ϕ transformation (parity conservation) $I^{\odot}(\phi) = -I^{\odot}(2\pi - \phi), \quad I^{\odot}(0) = I^{\odot}(\pi) = 0$

Phenomenological Models

Groups:

W. Roberts and T. Oed, V. Mokeev, L. Roca, A. Fix and H. Arenhövel

- Models constructed according to the same scheme effective Lagrangian densities
- Parameters for resonant and background mechanisms taken from experiments or treated as free parameters
- Differences
 - Wide variations in the corresponding coupling constants allowed by the Particle-Data Group listing
 - Treatment of the background, which appears to be very complicated in the effective Lagrangian approach for double-pion photoproduction

W. Roberts and T. Oed, Phys. Rev. C 71, 055201 (2005); V.I. Mokeev *et al.*, Yad. Fiz. 64, 1368 (2001); [Phys. At. Nucl. 64, 1292 (2001)]; L. Roca, Nucl. Phys. A 748, 192 (2005); A. Fix and H. Arenhövel, Eur. Phys. J. A 25, 115 (2005)

$\pi\pi N$ Model of Fix and Arenhövel

Effective Lagrangian approach with Born and resonance diagrams at the tree level

• The model includes the nucleon, $\Delta(1232)$, N(1440), N(1520), N(1535), N(1680), $\Delta(1700)$, and Mesons: σ , ρ

Event-by-event calculations available

A. Fix and H. Arenhövel, Eur. Phys. J. A **25**, 115 (2005)

Resonance Contributions

 \blacktriangleright Contributions to the $\gamma p \to p \pi^+ \pi^-$ total cross section

Strongest contribution from $D_{13}(1520)$

A. Fix and H. Arenhövel, Eur. Phys. J. A 25, 115 (2005)

Beam-Helicity Asymmetries

Calculations from Mokeev (dashed) and Fix (solid)

Model predictions agree remarkably well for certain conditions, for other conditions they are much worse and out of phase entirely.

 $M(\pi^+\pi^-)$ Distribution at W=1.5 GeV

 $M(p\pi^+)$ Distribution at W=1.5 GeV

$\cos(heta_{ m cm})$ Distribution at W=1.5 GeV

Fourier Coefficients of Angular Distributions

- $I^{\odot} = \sum a_k \sin(k\Phi)$
- Model of Fix and Arenhövel
 - Model valid up to W = 1.7 GeV
 - Excellent agreement at W = 1.5 GeV
 - Generally good agreement
 for a₁
 - Problems: a₁ at low values of W, and a₂

Crucial Role of Interferences

- Calculations by Roca (Valencia model)
- Tree-level mechanisms
- ▶ ∆(1232),
 N*(1440),
 N*(1520), ∆(1700)
- no free parameters
- Example: intermediate-nucleon mechanisms and $\Delta(1232)$ mechanisms, and interference of both.

Relative Phases Among $\pi\pi N$ Mechanisms

- Example: calculations with relative phases of 0° , 90° , 180° , and 270° between the background- and $\pi\Delta$ -subchannel amplitudes
- Great potential to improve description

Excitation and Decay of Proton Resonances

• Helicity asymmetries allow detailed study of the $\gamma N \rightarrow N \pi \pi$ reaction (e.g., sequential decay)

Intermediate $\Delta(1232)$ Resonance

A. Fix and H. Arenhövel, Eur. Phys. J. A 25, 115 (2005)

Intermediate $\Delta(1232)$ Resonance

W = 1.520 GeV 0.5 a 0 -0.5 0.2 0.1 a_2 0 -0.1 -0.2 -0.5 0.5 0 $\cos \theta(\pi^+)$ • $M(\pi^+ p) \approx m_\Delta \pm 30 \text{ MeV}$ $N(1520) \rightarrow \pi^{-} \Delta^{++} \rightarrow p \pi \pi$

A. Fix and H. Arenhövel, Eur. Phys. J. A 25, 115 (2005)

The $\pi^0\pi^0p$ Channel

- Most background terms excluded in the $\pi^0\pi^0$ channel
- Two identical particles in the final state $A(\phi) = A(\phi + \pi)$ $A(\phi) = a_2 \sin 2\phi + \dots$
- \blacktriangleright Illustration: preliminary CLAS data $\gamma^{3}{\rm He}{\rightarrow}~ppn$ for $P_{n}>250~{\rm MeV/c}$
 - T. Ukwatta, private communication

 \blacktriangleright Planned measurement of $\gamma p \rightarrow \pi^0 \pi^0 p$ at Mainz and Bonn

 $ec{\gamma}ec{p} o \pi\piec{N}$ Reaction Rate

$$\rho_{f}I = I_{0} \left\{ \left(1 + \vec{\Lambda}_{i} \cdot \vec{P} + \vec{\sigma} \cdot \vec{P}' + \Lambda_{i}^{\alpha}\sigma^{\beta'}\mathcal{O}_{\alpha\beta'} \right) \\ + \delta_{\odot} \left(I^{\odot} + \vec{\Lambda}_{i} \cdot \vec{P}^{\odot} + \vec{\sigma} \cdot \vec{P}^{\odot'} + \Lambda_{i}^{\alpha}\sigma^{\beta'}\mathcal{O}_{\alpha\beta'}^{\odot} \right) \\ + \delta_{\ell} \left[\sin 2\beta \left(I^{s} + \vec{\Lambda}_{i} \cdot \vec{P}^{s} + \vec{\sigma} \cdot \vec{P}^{s'} + \Lambda_{i}^{\alpha}\sigma^{\beta'}\mathcal{O}_{\alpha\beta'}^{s} \right) \\ + \cos 2\beta \left(I^{c} + \vec{\Lambda}_{i} \cdot \vec{P}^{c} + \vec{\sigma} \cdot \vec{P}^{c'} + \Lambda_{i}^{\alpha}\sigma^{\beta'}\mathcal{O}_{\alpha\beta'}^{c} \right) \right] \right\}$$

W. Roberts and T. Oed, Phys. Rev. C 71, 055201 (2005)

- Known: I_0 , P_z^{\odot} ($\sigma_{3/2} \sigma_{1/2}$, GDH sum rule); new from CLAS: I^{\odot}
- Polarized beam-target experiments with frozen-spin target at CLAS will make available: P_x^{\odot} , P_y^{\odot} , P_z^{\odot} , I^s , P_x^s , P_y^s , P_z^s , I^c , P_x^c , P_y^c , P_z^c

Jefferson Lab proposal to PAC 29, V. Credé*, M. Bellis, S. Strauch, spokespeople

Beam-Target Asymmetry P_z^{\odot}

A. Fix and H. Arenhövel, Eur. Phys. J. A 25, 115 (2005)

Beam-Target Asymmetry P_z^{\odot}

A. Fix and H. Arenhövel, Eur. Phys. J. A 25, 115 (2005)

Summary

- First measurement of the beam-helicity asymmetry in the $\vec{\gamma}p \rightarrow p\pi^+\pi^-$ reaction
 - Beam-helicity asymmetry sensitive to details of the reaction mechanisms
 - Models currently do not provide an adequate description for the behavior of this new observable
- Extraction of N* photocoupling and resonance parameters in combined analysis of cross-section and polarization data
 - Interpretation within phenomenological models
 - Constraining partial-wave analyses
- New beam-target polarization experiments (FROST at CLAS)