Polarization Observables in the Photoproduction of Two Pseudoscalar Mesons

Winston Roberts
wroberts@odu.edu

Old Dominion University

and

Thomas Jefferson National Accelerator Facility

on leave at the Office of Nuclear Physics, DOE

soon to be at Florida State University
Outline

• Introduction and Motivation
• Formalism
• Parity Implications (and Other Relationships)
• Examples
• Conclusions
Introduction and Motivation

Premise:
Polarization measurements are essential for extracting amplitudes.
Introduction and Motivation

Why do we need new observables?
Only alternative in treating a process like $\gamma N \rightarrow N \pi \pi$ is quasi-two-body (QTB) approach
Introduction and Motivation

\[\gamma N \rightarrow N \pi\pi = \gamma N \rightarrow \Delta \pi \rightarrow N \pi\pi \]
Introduction and Motivation

\[\gamma N \rightarrow N\pi\pi = \gamma N \rightarrow \Delta\pi \rightarrow N\pi\pi \]

\[+ \gamma N \rightarrow N\rho \rightarrow N\pi\pi \]
\[\gamma N \rightarrow N\pi\pi = \gamma N \rightarrow \Delta\pi \rightarrow N\pi\pi \]

\[+ \gamma N \rightarrow N\rho \rightarrow N\pi\pi \]

\[+ \gamma N \rightarrow N\sigma \rightarrow N\pi\pi \]
Introduction and Motivation

\[\gamma N \rightarrow N \pi \pi = \gamma N \rightarrow \Delta \pi \rightarrow N \pi \pi \]
\[+ \gamma N \rightarrow N \rho \rightarrow N \pi \pi \]
\[+ \gamma N \rightarrow N \sigma \rightarrow N \pi \pi \]
\[+ \gamma N \rightarrow N(1440) \pi \rightarrow N \pi \pi \]
Introduction and Motivation

\[\gamma N \rightarrow N \pi \pi = \gamma N \rightarrow \Delta \pi \rightarrow N \pi \pi \]

+ \[\gamma N \rightarrow N \rho \rightarrow N \pi \pi \]

+ \[\gamma N \rightarrow N \sigma \rightarrow N \pi \pi \]

+ \[\gamma N \rightarrow N(1440) \pi \rightarrow N \pi \pi \]

+ \[\gamma N \rightarrow N f_2 \rightarrow N \pi \pi \]
\[\gamma N \rightarrow N\pi\pi = \gamma N \rightarrow \Delta \pi \rightarrow N\pi\pi \]
\[+ \gamma N \rightarrow N\rho \rightarrow N\pi\pi \]
\[+ \gamma N \rightarrow N\sigma \rightarrow N\pi\pi \]
\[+ \gamma N \rightarrow N(1440)\pi \rightarrow N\pi\pi \]
\[+ \gamma N \rightarrow Nf_2 \rightarrow N\pi\pi \]
\[+ \ldots \]
Many possibilities to be included. Polarization treated in terms of density matrix for each QTB state
Many possibilities to be included. Polarization treated in terms of density matrix for each QTB state

For instance, if the QTB process is $\gamma N \rightarrow N \rho$, the angular distribution of the $\pi\pi$ pair from the ρ decay looks like
Many possibilities to be included. Polarization treated in terms of density matrix for each QTB state

For instance, if the QTB process is $\gamma N \rightarrow N \rho$, the angular distribution of the $\pi\pi$ pair from the ρ decay looks like

$$W(\theta, \phi, \Phi) = \frac{3}{4\pi} \left[\frac{1}{2} (1 - \rho_{00}^0) + \frac{1}{2} (3\rho_{00}^0 - 1) \cos^2 \theta - \sqrt{2}\Re \rho_{10}^0 \sin 2\theta \cos \phi - \rho_{1-1}^0 \sin^2 \theta \cos \phi \right]$$

$$- P_\gamma \cos 2\Phi \left(\rho_{11}^1 \sin^2 \theta + \rho_{00}^1 \cos^2 \theta - \sqrt{2}\Re \rho_{1,0}^1 \sin 2\theta \cos \phi - \rho_{1-1}^1 \sin^2 \theta \cos 2\phi \right)$$

$$- P_\gamma \sin 2\Phi \left(\sqrt{2}\Im \rho_{10}^2 \sin 2\theta \sin \phi + \Im \rho_{1-1}^2 \sin^2 \theta \sin 2\phi \right)$$
Many possibilities to be included. Polarization treated in terms of density matrix for each QTB state

For instance, if the QTB process is $\gamma N \rightarrow N\rho$, the angular distribution of the $\pi\pi$ pair from the ρ decay looks like

$$W(\theta, \phi, \Phi) = \frac{3}{4\pi} \left[\frac{1}{2} (1 - \rho_{00}^0) + \frac{1}{2} (3\rho_{00}^0 - 1) \cos^2 \theta - \sqrt{2} \Re \rho_{10}^0 \sin 2\theta \cos \phi - \rho_{1 -1}^0 \sin^2 \theta \cos 2\phi \right]$$

$$-P_\gamma \cos 2\Phi \left(\rho_{11}^1 \sin^2 \theta + \rho_{00}^1 \cos^2 \theta - \sqrt{2} \Re \rho_{1,0}^1 \sin 2\theta \cos \phi - \rho_{1 -1}^1 \sin^2 \theta \cos 2\phi \right)$$

$$-P_\gamma \sin 2\Phi \left(\sqrt{2} \Im \rho_{10}^2 \sin 2\theta \sin \phi + \Im \rho_{1 -1}^2 \sin^2 \theta \sin 2\phi \right)$$

Similar expression needed for each QTB contribution: c’est pas très efficace
The QTB treatment neglects contributions that are not QTB
The QTB treatment neglects contributions that are not QTB
The QTB treatment neglects contributions that are not QTB

This contribution is not negligible, but is not present in QTB approach
The QTB treatment neglects contributions that are not QTB

This contribution is not negligible, but is not present in QTB approach

Interferences may be (largely) ignored. Furthermore, at currently available energies, the processes may not be easily separated with kinematic cuts.
The QTB treatment neglects contributions that are not QTB

This contribution is not negligible, but is not present in QTB approach.

Interferences may be (largely) ignored. Furthermore, at currently available energies, the processes may not be easily separated with kinematic cuts.

Treating process as $N \rho$, for example, will lead to results ’of some kind’. Interpretation may not be convincing.
The QTB treatment neglects contributions that are not QTB

![Diagram](image.png)

This contribution is not negligible, but is not present in QTB approach

Interferences may be (largely) ignored. Furthermore, at currently available energies, the processes may not be easily separated with kinematic cuts.

Treating process as $N\rho$, for example, will lead to results ’of some kind’. Interpretation may not be convincing.

Technique used to obtain new observables: direct calculation
The QTB treatment neglects contributions that are not QTB

This contribution is not negligible, but is not present in QTB approach

Interferences may be (largely) ignored. Furthermore, at currently available energies, the processes may not be easily separated with kinematic cuts.

Treating process as $N\rho$, for example, will lead to results 'of some kind'. Interpretation may not be convincing.

Technique used to obtain new observables: direct calculation

Valid for $N\pi$, $N\pi\pi$ (and $N(n\pi)$ for that matter)
Formalism

Matrix element for a process like $\gamma N \rightarrow N \pi \ldots$ can be written...
Formalism

Matrix element for a process like $\gamma N \rightarrow N\pi \ldots$ can be written

$$i\mathcal{M}^{\lambda\gamma}_{\lambda N\lambda N'} = \varepsilon_i(\lambda_{\gamma}) \chi^\dagger(\lambda_{N'}) (A_i + \sigma_j B_{ij}) \phi(\lambda_N)$$
Formalism

Matrix element for a process like $\gamma N \rightarrow N \pi \ldots$ can be written

$$i \mathcal{M}^{\lambda \gamma}_{\lambda N \lambda N'} = \varepsilon_i^\dagger (\lambda_N) \chi^\dagger (\lambda_{N'}) (A_i + \sigma_j B_{ij}) \phi(\lambda_N)$$

ε^\dagger = polarization vector of incident photon
Formalism

Matrix element for a process like $\gamma N \rightarrow N \pi \ldots$ can be written

$$iM^{\lambda\gamma}_{\lambda_N \lambda_{N'}} = \varepsilon_i(\lambda_{\gamma}) \chi^\dagger(\lambda_{N'}) (A_i + \sigma_j B_{ij}) \phi(\lambda_N)$$

ε' = polarization vector of incident photon

ϕ, χ are the Pauli spinors of target, recoil nucleon, respectively
Formalism

Matrix element for a process like $\gamma N \rightarrow N\pi \ldots$ can be written

$$i\mathcal{M}^{\lambda\gamma}_{\lambda N\lambda N'} = \varepsilon_i (\lambda_{\gamma}) \chi^\dagger (\lambda_{N'}) (A_i + \sigma_{ij} B_{ij}) \phi(\lambda_N)$$

$\varepsilon^i =$polarization vector of incident photon

ϕ, χ are the Pauli spinors of target, recoil nucleon, respectively

For odd numbers of pions, \vec{A} is an axial vector, B_{ij} are components of a tensor.
Formalism

Matrix element for a process like $\gamma N \rightarrow N\pi \ldots$ can be written

$$i\mathcal{M}_{\lambda N' \lambda N}^{\lambda\gamma} = \varepsilon_i(\lambda\gamma) \chi^\dagger(\lambda_{N'}) (A_i + \sigma_j B_{ij}) \phi(\lambda_N)$$

ε' = polarization vector of incident photon

ϕ, χ are the Pauli spinors of target, recoil nucleon, respectively

For odd numbers of pions, \vec{A} is an axial vector, B_{ij} are components of a tensor.

For even numbers of pions, \vec{A} is a vector, B_{ij} are components of a pseudotensor.
$$|\mathcal{M}|^2 = \varepsilon_i(\lambda_{\gamma})\varepsilon_l(\lambda_{\gamma})\chi^\dagger(\lambda_{N'}) (A_i + \sigma_j B_{ij}) \phi(\lambda_N) \phi^\dagger(\lambda_{N}) (A_i^* + \sigma_k B_{ik}^*) \chi(\lambda_{N'})$$
$$|\mathcal{M}|^2 = \varepsilon_i(\lambda_{\gamma})\varepsilon_l(\lambda_{\gamma})\chi^\dagger(\lambda_{N'}) (A_i + \sigma_j B_{ij}) \phi(\lambda_N)\phi^\dagger(\lambda_N) (A^*_l + \sigma_k B^*_{lk}) \chi(\lambda_{N'})$$

$$= \varepsilon_i\varepsilon^*_l \text{Tr} \left[\frac{1}{2} \left(1 + \vec{\sigma} \cdot \vec{\Lambda}_f \right) (A_i + \sigma_j B_{ij}) \frac{1}{2} \left(1 + \vec{\sigma} \cdot \vec{\Lambda}_i \right) (A^*_l + \sigma_k B^*_{lk}) \right]$$
\[|\mathcal{M}|^2 = \varepsilon_i(\lambda_\gamma)\varepsilon_l(\lambda_\gamma)\chi^\dagger(\lambda_{N'}) (A_i + \sigma_j B_{i,j}) \phi(\lambda_N)\phi^\dagger(\lambda_N) (A_i^* + \sigma_k B_{i,k}^*) \chi(\lambda_{N'}) \]

\[= \varepsilon_i\varepsilon_l^* \text{Tr} \left[\frac{1}{2} \left(1 + \vec{\sigma} \cdot \vec{\Lambda}_f \right) (A_i + \sigma_j B_{i,j}) \frac{1}{2} \left(1 + \vec{\sigma} \cdot \vec{\Lambda}_i \right) (A_i^* + \sigma_k B_{i,k}^*) \right] \]

\(\Lambda_i, \Lambda_f \) are the polarizations of the initial and final nucleons, respectively.
\[|M|^2 = \epsilon_i(\lambda_\gamma)\epsilon_i(\lambda_\gamma)\chi^\dagger(\lambda_{N'}) (A_i + \sigma_j B_{ij}) \phi(\lambda_N)\phi^\dagger(\lambda_N) (A_i^* + \sigma_k B_{ik}^*) \chi(\lambda_{N'}) \]

\[= \epsilon_i\epsilon_i^* \text{Tr} \left[\frac{1}{2} \left(1 + \vec{\sigma} \cdot \vec{\Lambda}_f \right) (A_i + \sigma_j B_{ij}) \frac{1}{2} \left(1 + \vec{\sigma} \cdot \vec{\Lambda}_i \right) (A_i^* + \sigma_k B_{ik}^*) \right] \]

\(\Lambda_i, \Lambda_f \) are the polarizations of the initial and final nucleons, respectively.

For a beam of \(N \) circularly polarized photons with momentum \(\vec{k} \) along the \(z \)-axis, with \(\frac{1+\delta_\odot}{2} \) photons polarized along the positive \(z \) axis, and \(\frac{1-\delta_\odot}{2} \) photons polarized along the negative \(z \) axis (corresponding to degree of circular polarization \(\delta_\odot \))

\[\frac{1}{N} \sum_{\text{photons}} \epsilon' \cdot \vec{a} \epsilon^* \cdot \vec{b} = \vec{a} \cdot \vec{b} - \hat{\vec{k}} \cdot \vec{a} \hat{\vec{k}} \cdot \vec{b} - i\delta_\odot \hat{\vec{k}} \cdot \vec{a} \times \vec{b} \]
For N linearly polarized photons, with $\frac{1+\delta_\ell}{2}$ polarized along the x' axis, and $\frac{1-\delta_\ell}{2}$ along the y' axis (δ_ℓ is the degree of linear polarization)

\[\frac{1}{N} \sum_{\text{photons}} \bar{\epsilon}' \cdot \bar{a} \bar{\epsilon}^{*} \cdot \vec{b} = \bar{a} \cdot \vec{b} - \hat{k} \cdot \hat{a} \hat{k} \cdot \vec{b} \]

\[+ \delta_\ell \left[\cos 2\beta (a_x b_x - a_y b_y) + \sin 2\beta (a_x b_y + a_y b_x) \right] \]
After some manipulation, the cross section can be written

\[
\rho_f I = I_0 \left\{ \left(1 + \vec{\Lambda}_i \cdot \vec{P} + \vec{\sigma} \cdot \vec{P}' + \Lambda_i^\alpha \sigma^{\beta'} O_{\alpha\beta'} \right) \\
+ \delta_\circ \left(I_1^\circ + \vec{\Lambda}_i \cdot \vec{P}^\circ + \vec{\sigma} \cdot \vec{P}'^\circ + \Lambda_i^\alpha \sigma^{\beta'} O_{\alpha\beta'}^\circ \right) \\
+ \delta_\ell \left[\sin 2\beta \left(I^s + \vec{\Lambda}_i \cdot \vec{P}^s + \vec{\sigma} \cdot \vec{P}'^s + \Lambda_i^\alpha \sigma^{\beta'} O_{\alpha\beta'}^s \right) \\
+ \cos 2\beta \left(I^c + \vec{\Lambda}_i \cdot \vec{P}^c + \vec{\sigma} \cdot \vec{P}'^c + \Lambda_i^\alpha \sigma^{\beta'} O_{\alpha\beta'}^c \right) \right] \right\},
\]
In terms of helicity amplitudes,

\[I_0 = \left| \mathcal{M}^{++}_{++} \right|^2 + \left| \mathcal{M}^{++}_{+-} \right|^2 + \left| \mathcal{M}^{++}_{-+} \right|^2 + \left| \mathcal{M}^{++}_{--} \right|^2
+ \left| \mathcal{M}^{+-}_{++} \right|^2 + \left| \mathcal{M}^{+-}_{+-} \right|^2 + \left| \mathcal{M}^{+-}_{-+} \right|^2 + \left| \mathcal{M}^{+-}_{--} \right|^2 \]
Parity Implications (and Other Relationships)

In terms of helicity amplitudes,

\[I_0 = \left| \mathcal{M}_{++}^+ \right|^2 + \left| \mathcal{M}_{+-}^+ \right|^2 + \left| \mathcal{M}_{-+}^- \right|^2 + \left| \mathcal{M}_{--}^- \right|^2 \]

\[+ \left| \mathcal{M}_{++}^- \right|^2 + \left| \mathcal{M}_{+-}^- \right|^2 + \left| \mathcal{M}_{-+}^+ \right|^2 + \left| \mathcal{M}_{--}^+ \right|^2 \]

\[I^\odot = \left| \mathcal{M}_{++}^+ \right|^2 + \left| \mathcal{M}_{+-}^+ \right|^2 + \left| \mathcal{M}_{-+}^- \right|^2 + \left| \mathcal{M}_{--}^- \right|^2 \]

\[- \left| \mathcal{M}_{++}^- \right|^2 - \left| \mathcal{M}_{+-}^- \right|^2 - \left| \mathcal{M}_{-+}^+ \right|^2 - \left| \mathcal{M}_{--}^+ \right|^2 \]
Parity Implications (and Other Relationships)

In terms of helicity amplitudes,

\[
I_0 = \left| \mathcal{M}_{++}^+ \right|^2 + \left| \mathcal{M}_{+-}^+ \right|^2 + \left| \mathcal{M}_{-+}^- \right|^2 + \left| \mathcal{M}_{--}^- \right|^2 \\
+ \left| \mathcal{M}_{++}^- \right|^2 + \left| \mathcal{M}_{+-}^- \right|^2 + \left| \mathcal{M}_{-+}^+ \right|^2 + \left| \mathcal{M}_{--}^+ \right|^2 \\
\]

\[
I^\odot = \left| \mathcal{M}_{++}^+ \right|^2 + \left| \mathcal{M}_{+-}^+ \right|^2 + \left| \mathcal{M}_{-+}^- \right|^2 + \left| \mathcal{M}_{--}^- \right|^2 \\
- \left| \mathcal{M}_{++}^- \right|^2 - \left| \mathcal{M}_{+-}^- \right|^2 - \left| \mathcal{M}_{-+}^+ \right|^2 - \left| \mathcal{M}_{--}^+ \right|^2 \\
\]

Can we use parity invariance to simplify these expressions?
Parity Implications (and Other Relationships)

In terms of helicity amplitudes,

\[I_0 = \left| M_{++}^+ \right|^2 + \left| M_{+-}^+ \right|^2 + \left| M_{-+}^- \right|^2 + \left| M_{--}^- \right|^2 \]

\[+ \left| M_{++}^- \right|^2 + \left| M_{+-}^- \right|^2 + \left| M_{-+}^+ \right|^2 + \left| M_{--}^+ \right|^2 \]

\[I^\odot = \left| M_{++}^+ \right|^2 + \left| M_{+-}^+ \right|^2 + \left| M_{-+}^- \right|^2 + \left| M_{--}^- \right|^2 \]

\[- \left| M_{++}^- \right|^2 - \left| M_{+-}^- \right|^2 - \left| M_{-+}^+ \right|^2 - \left| M_{--}^+ \right|^2 \]

Can we use parity invariance to simplify these expressions?

If we examine \(I^\odot \), \(M_{++}^+ \) and \(M_{--}^- \) must be related by parity invariance, so \(I^\odot \) would vanish.
In terms of helicity amplitudes,

\[
I_0 = \left| \mathcal{M}_{++}^+ \right|^2 + \left| \mathcal{M}_{+-}^+ \right|^2 + \left| \mathcal{M}_{-+}^+ \right|^2 + \left| \mathcal{M}_{--}^+ \right|^2 \\
+ \left| \mathcal{M}_{--}^- \right|^2 + \left| \mathcal{M}_{+-}^- \right|^2 + \left| \mathcal{M}_{-+}^- \right|^2 + \left| \mathcal{M}_{++}^- \right|^2
\]

\[
I^\oplus = \left| \mathcal{M}_{++}^+ \right|^2 + \left| \mathcal{M}_{+-}^+ \right|^2 + \left| \mathcal{M}_{-+}^+ \right|^2 + \left| \mathcal{M}_{--}^+ \right|^2 \\
- \left| \mathcal{M}_{--}^- \right|^2 - \left| \mathcal{M}_{+-}^- \right|^2 - \left| \mathcal{M}_{-+}^- \right|^2 - \left| \mathcal{M}_{++}^- \right|^2
\]

Can we use parity invariance to simplify these expressions?

If we examine \(I^\oplus \), \(\mathcal{M}_{++}^+ \) and \(\mathcal{M}_{--}^- \) must be related by parity invariance, so \(I^\oplus \) would vanish.

Similar questions arise for many observables.
The upshot of this is that... would indeed vanish for...
The upshot of this is that and would indeed vanish for Polarization Observables in the Photoproduction of Two Pseudoscalar Mesons.
The upshot of this is that and would indeed vanish for...
The upshot of this is that

\[M_{\lambda_{N}, \lambda_{N}'}^{\lambda_{\gamma}}(\theta, \Theta) = \pm M_{-\lambda_{N}, -\lambda_{N}'}^{\lambda_{\gamma}}(\theta, \Theta), \]

and \(I^\circ \) would indeed vanish for \(\gamma N \rightarrow N \pi \).
The upshot is that, under a parity transformation, helicity amplitudes are related to each other at different kinematic points.
The upshot is that, under a parity transformation, helicity amplitudes are related to each other at different kinematic points.

\[M_{\lambda_{N},\lambda_{N'}}^{\lambda\gamma} (\theta, \Theta, \Phi) = \pm M_{-\lambda_{N},-\lambda_{N'}}^{\lambda\gamma} (\theta, \Theta, 2\pi - \Phi) \]
The upshot is that, under a parity transformation, helicity amplitudes are related to each other \textit{at different kinematic points}

\[M_{\lambda N, \lambda N'}^{\gamma} (\theta, \Theta, \Phi) = \pm M_{-\lambda N, -\lambda N'}^{\gamma} (\theta, \Theta, 2\pi - \Phi) \]

\[\rightarrow \text{Polarization observables are either even or odd under the transformation} \]
\[\Phi \leftrightarrow 2\pi - \Phi \]
The upshot is that, under a parity transformation, helicity amplitudes are related to each other at different kinematic points.

\[
\mathcal{M}^{\lambda_\gamma}_{\lambda_N,\lambda_{N'}} (\theta, \Theta, \Phi) = \pm \mathcal{M}^{\lambda_\gamma}_{-\lambda_N,-\lambda_{N'}} (\theta, \Theta, 2\pi - \Phi)
\]

⇒ Polarization observables are either even or odd under the transformation \(\Phi \leftrightarrow 2\pi - \Phi \).

If we compare \(N\pi \) and \(N\pi\pi \) final states, \(N\pi\pi \) observables that are odd have analogs that vanish in \(N\pi \), while \(N\pi\pi \) observables that are even are non-vanishing in \(N\pi \).
From parity,

\[
\begin{align*}
I_0 &= -O_{yy}'^c & P_y &= -P_y'^c \\
P_{y'} &= -P_y^c & O_{xx}' &= -O_{zz}'^c \\
O_{xz}' &= O_{zx}'^c & O_{yy}' &= -I_c^c \\
O_{z zij}' &= O_{xz}'^c & O_{zz}' &= -O_{xx}'^c \\
P_x^c &= O_{zy}'^s & P_z^c &= -O_{xy}'^s \\
P_{x'} &= -O_{yz}'^s & P_z' &= O_{yx}'^s \\
P_x^s &= -O_{zy}'^c & P_z &= O_{xy}'^c \\
P_{x'} &= O_{yz}' & P_z' &= -O_{yx}'
\end{align*}
\]

all at \(\Phi = 0, \Phi = \pi, \Phi = 2\pi \).
From parity,
\[
I_0 = -\mathcal{O}_{yy'}^c, \quad P_y = -P_y^c,
\]
\[
P_{y'} = -P_y^c, \quad \mathcal{O}_{xx'} = -\mathcal{O}_{zz'}^c,
\]
\[
\mathcal{O}_{xz'} = \mathcal{O}_{zx'}^c, \quad \mathcal{O}_{yy'} = -I^c
\]
\[
\mathcal{O}_{zx'} = \mathcal{O}_{xz'}^c, \quad \mathcal{O}_{zz'} = -\mathcal{O}_{xx'}^c
\]
\[
P_{x}^c = \mathcal{O}_{zy'}^s, \quad P_{z}^c = -\mathcal{O}_{xy'}^s
\]
\[
P_{x'}^c = -\mathcal{O}_{yz'}^s, \quad P_{z'}^c = \mathcal{O}_{yx'}^s
\]
\[
P_{x}^s = -\mathcal{O}_{zy'}^\circ, \quad P_{z}^s = \mathcal{O}_{xy'}^\circ
\]
\[
P_{x'}^s = \mathcal{O}_{yz'}^\circ, \quad P_{z'}^s = -\mathcal{O}_{yx'}^\circ
\]

all at $\Phi = 0, \Phi = \pi, \Phi = 2\pi$.

Note that because $I_0 = -\mathcal{O}_{yy'}^c$, $\mathcal{O}_{yy'}^c = -1$ at $\Phi = 0, \Phi = \pi, \Phi = 2\pi$.

From parity,

\[
\begin{align*}
I_0 &= -\mathcal{O}_{yy'}^c \\
\mathcal{O}_{yy'} &= -I^c \\
\mathcal{O}_{xz'} &= \mathcal{O}_{xz'}^c \\
\mathcal{O}_{xy'} &= -\mathcal{O}_{xy'}^c \\
\mathcal{O}_{xx'} &= -\mathcal{O}_{xz'}^c \\
\mathcal{O}_{zz'} &= -\mathcal{O}_{xz'}^c \\
\mathcal{O}_{zz'} &= -\mathcal{O}_{xx'}^c \\
\mathcal{O}_{zz'} &= -\mathcal{O}_{xx'}^c
\end{align*}
\]

all at \(\Phi = 0, \Phi = \pi, \Phi = 2\pi \).

Note that because \(I_0 = -\mathcal{O}_{yy'}^c, \mathcal{O}_{yy'}^c = -1 \) at \(\Phi = 0, \Phi = \pi, \Phi = 2\pi \).

All other observables vanish at \(\Phi = 0, \Phi = \pi, \Phi = 2\pi \).
In $N\pi\pi$, not all 64 observables are independent.
In $N\pi\pi$, not all 64 observables are independent.

Relationships among observables, derived from amplitudes of helicity (or transversity) amplitudes, look like

$$\left[P_{x'} + \xi \mathcal{O}_{yx'} + \zeta \left(P_{x'} + \xi \mathcal{O}^{\circ}_{yx'} \right) \right]^2 + \left[P_{z'} + \xi \mathcal{O}_{yz'} + \zeta \left(P_{z'} + \xi \mathcal{O}^{\circ}_{yz'} \right) \right]^2$$

$$= \left[1 + \xi P_y + \zeta \left(I^{\circ} + \xi P^\circ_y \right) \right]^2 - \left[P_{y'} + \xi \mathcal{O}_{yy'} + \zeta \left(P_{y'} + \xi \mathcal{O}^{\circ}_{yy'} \right) \right]^2$$
In $N\pi\pi$, not all 64 observables are independent.

Relationships among observables, derived from amplitudes of helicity (or transversity) amplitudes, look like

$$\left[P_{x'} + \xi O_{yx'} + \zeta \left(P_{x'}^\circ + \xi O_{yx'}^\circ\right)\right]^2 + \left[P_{z'} + \xi O_{yz'} + \zeta \left(P_{z'}^\circ + \xi O_{yz'}^\circ\right)\right]^2$$

$$= \left[1 + \xi P_y + \zeta (I^\circ + \xi P_y^\circ)\right]^2 - \left[P_{y'} + \xi O_{yy'} + \zeta \left(P_{y'}^\circ + \xi O_{yy'}^\circ\right)\right]^2$$

$\zeta, \xi = \pm 1$, independently: this expression represents 4 relationships.
In $N\pi\pi$, not all 64 observables are independent.

Relationships among observables, derived from amplitudes of helicity (or transversity) amplitudes, look like

$$\left[P_{x'} + \xi \mathcal{O}_{yx'} + \zeta \left(P_{x'}^{\circ} + \xi \mathcal{O}_{yx'}^{\circ} \right) \right]^2 + \left[P_{z'} + \xi \mathcal{O}_{yz'} + \zeta \left(P_{z'}^{\circ} + \xi \mathcal{O}_{yz'}^{\circ} \right) \right]^2$$

$$= \left[1 + \xi P_y + \zeta \left(I^{\circ} + \xi P_y^{\circ} \right) \right]^2 - \left[P_{y'} + \xi \mathcal{O}_{yy'} + \zeta \left(P_{y'}^{\circ} + \xi \mathcal{O}_{yy'}^{\circ} \right) \right]^2$$

$\zeta, \xi = \pm 1$, independently: this expression represents 4 relationships.

There are 28 relations that arise from consideration of the amplitudes of the (helicity or transversity) amplitudes.
In $N\pi\pi$, not all 64 observables are independent.

Relationships among observables, derived from amplitudes of helicity (or transversity) amplitudes, look like

\[
\left[P_{x'} + \xi \mathcal{O}_{yx'} + \zeta \left(P_{x'}^\circ + \xi \mathcal{O}_{yx'}^\circ \right) \right]^2 + \left[P_{z'} + \xi \mathcal{O}_{yz'} + \zeta \left(P_{z'}^\circ + \xi \mathcal{O}_{yz'}^\circ \right) \right]^2
\]

\[
= \left[1 + \xi P_y + \zeta \left(I^\circ + \xi P_y^\circ \right) \right]^2 - \left[P_{y'} + \xi \mathcal{O}_{yy'} + \zeta \left(P_{y'}^\circ + \xi \mathcal{O}_{yy'}^\circ \right) \right]^2
\]

$\zeta, \xi = \pm 1$, independently: this expression represents 4 relationships.

There are 28 relations that arise from consideration of the amplitudes of the (helicity or transversity) amplitudes

There are a further 21 relations that arise from consideration of their phases
In $N\pi\pi$, not all 64 observables are independent.

Relationships among observables, derived from amplitudes of helicity (or transversity) amplitudes, look like

\[\left[P_{x'} + \xi O_{yx'} + \zeta \left(P_{x'} + \xi O_{yx} \right) \right]^2 + \left[P_{z'} + \xi O_{yz'} + \zeta \left(P_{z'} + \xi O_{yz} \right) \right]^2 \]

\[= \left[1 + \xi P_y + \zeta (I^\odot + \xi P_{y'}^\odot) \right]^2 - \left[P_{y'} + \xi O_{yy'} + \zeta \left(P_{y'} + \xi O_{yy} \right) \right]^2 \]

$\zeta, \xi = \pm 1$, independently: this expression represents 4 relationships.

There are 28 relations that arise from consideration of the amplitudes of the (helicity or transversity) amplitudes.

There are a further 21 relations that arise from consideration of their phases.

The number of independent observables is $64-28-21=15$. This is equal to the minimum number of measurements needed at each kinematic point for an unambiguous extraction of the amplitudes (up to quadrant ambiguities in their phases).
In $N\pi\pi$, not all 64 observables are independent.

Relationships among observables, derived from amplitudes of helicity (or transversity) amplitudes, look like

$$\left[P_{x'} + \xi O_{yx'} + \zeta \left(P_{x'}^\odot + \xi O_{yx'}^\odot \right) \right]^2 + \left[P_{z'} + \xi O_{yz'} + \zeta \left(P_{z'}^\odot + \xi O_{yz'}^\odot \right) \right]^2$$

$$= \left[1 + \xi P_y + \zeta \left(I^\odot + \xi P_y^\odot \right) \right]^2 - \left[P_{y'} + \xi O_{yy'} + \zeta \left(P_{y'}^\odot + \xi O_{yy'}^\odot \right) \right]^2$$

$\zeta, \xi = \pm 1$, independently: this expression represents 4 relationships.

There are 28 relations that arise from consideration of the amplitudes of the (helicity or transversity) amplitudes.

There are a further 21 relations that arise from consideration of their phases.

The number of independent observables is 64-28-21=15. This is equal to the minimum number of measurements needed at each kinematic point for an unambiguous extraction of the amplitudes (up to quadrant ambiguities in their phases).

The analogous count for $N\pi$ gives 7 independent observables, 7 observables that must be measured for extraction of amplitudes (up to quadrant ambiguities in their phases).
Relationships can be manipulated to give two sets of inequalities
Relationships can be manipulated to give two sets of inequalities

\[|1 + \xi P_y + \zeta (I^\circ + \xi P_y^\circ)| \geq \left\{ |P_{y'} + \xi O_{yy'} + \zeta (P_{y'} + \xi O_{yy'})|, \right. \]
\[\left. |P_{x'} + \xi O_{yx'} + \zeta (P_{x'} + \xi O_{yx'})|, \right. \]
\[P_{z'} + \xi O_{yz'} + \zeta (P_{z'} + \xi O_{yz'})| \right\} \]
Relationships can be manipulated to give two sets of inequalities

\[
|1 + \xi P_y + \zeta (I^\circ + \xi P_y^\circ)| \geq \left\{ \left| P_{y'} + \xi O_{yy'} + \zeta \left(P_{y'}^\circ + \xi O_{yy'}^\circ \right) \right|, \right.
\]

\[
\left| P_{x'} + \xi O_{yx'} + \zeta \left(P_{x'}^\circ + \xi O_{yx'}^\circ \right) \right|, \left| P_{z'} + \xi O_{yz'} + \zeta \left(P_{z'}^\circ + \xi O_{yz'}^\circ \right) \right| \right\}
\]

\[
1 + P_y^2 + (I^\circ)^2 + (P_y^\circ)^2 \geq \left\{ P_{y'}^2 + O_{yy'}^2 + \left(P_{y'}^\circ \right)^2 + \left(O_{yy'}^\circ \right)^2, \right.
\]

\[
P_{x'}^2 + O_{yx'}^2 + \left(P_{x'}^\circ \right)^2 + \left(O_{yx'}^\circ \right)^2, P_{z'}^2 + O_{yz'}^2 + \left(P_{z'}^\circ \right)^2 + \left(O_{yz'}^\circ \right)^2 \right\}
\]
Relationships can be manipulated to give two sets of inequalities

\[|1 + \xi P_y + \zeta (I^\odot + \xi P_y^\odot)| \geq \left\{ |P_{y'} + \xi \mathcal{O}_{yy'} + \zeta \left(P_{y'} + \xi \mathcal{O}_{yy'} \right)|, \right. \]
\[\left. |P_{x'} + \xi \mathcal{O}_{yx'} + \zeta \left(P_{x'} + \xi \mathcal{O}_{yx'} \right)|, \right. \]
\[\left. |P_{z'} + \xi \mathcal{O}_{yz'} + \zeta \left(P_{z'} + \xi \mathcal{O}_{yz'} \right)| \right\} \]

\[1 + P_y^2 + (I^\odot)^2 + (P_y^\odot)^2 \geq \left\{ P_{y'}^2 + \mathcal{O}_{yy'}^2 + \left(P_{y'}^\odot \right)^2 + \left(\mathcal{O}_{yy'}^\odot \right)^2, \right. \]
\[\left. P_{x'}^2 + \mathcal{O}_{yx'}^2 + \left(P_{x'}^\odot \right)^2 + \left(\mathcal{O}_{yx'}^\odot \right)^2, P_{z'}^2 + \mathcal{O}_{yz'}^2 + \left(P_{z'}^\odot \right)^2 + \left(\mathcal{O}_{yz'}^\odot \right)^2 \right\} \]

What observables need to be measured?

To obtain the amplitudes of the (transversity) amplitudes, we MUST measure differential cross section, along with ρ, ϕ_1, ϕ_2, and ϕ_3 (angular distributions and mass distributions only probe 8 phases of transversity amplitudes mean that there are 7 independent phase differences that can be extracted, and 7 measurements are needed for this. For instance, four of these phase differences can be extracted by measuring any 4 of the 8 observables ρ, ϕ_1, ϕ_2, and ϕ_3 of the remaining phases can be extracted from measuring any 2 of the 8 observables ϕ_4, ϕ_5, ϕ_6, and ϕ_7, along with use of identities among the phase differences (such as). The remaining independent phase difference then can be extracted from one of the observables requiring linearly polarized photons. Complete’set of experiments requires measurement of single, double and triple polarization observables (including observables with both linearly and circularly polarized photons), along with the differential cross section.
What observables need to be measured?

To obtain the amplitudes of the (transversity) amplitudes, we MUST measure differential cross section, along with P_y, P_y', $O_{yy'}$, I_0°, P_y°, $P_y'^\circ$ and $O_{yy'}^\circ$ (angular distributions and mass distributions only probe $I_0 = \left(|M_{++}|^2 + |M_{+-}|^2 + |M_{-+}|^2 + |M_{--}|^2 + |M_{++}'|^2 + |M_{+-}'|^2 + |M_{-+}'|^2 + |M_{--}'|^2 \right)$)
What observables need to be measured?

To obtain the amplitudes of the (transversity) amplitudes, we **MUST** measure differential cross section, along with P_y, P_y', $O_{yy'}$, I, P_y°, $P_y'^\circ$, and $O_{yy'}^\circ$ (angular distributions and mass distributions only probe $I_0 = \left| M_{++}^+ \right|^2 + \left| M_{+-}^+ \right|^2 + \left| M_{-+}^+ \right|^2 + \left| M_{--}^+ \right|^2 + \left| M_{++}^- \right|^2 + \left| M_{+-}^- \right|^2 + \left| M_{-+}^- \right|^2 + \left| M_{--}^- \right|^2$).

8 phases of transversity amplitudes mean that there are 7 independent phase differences that can be extracted, and 7 measurements are needed for this.
What observables need to be measured?

To obtain the amplitudes of the (transversity) amplitudes, we **MUST** measure differential cross section, along with P_y, $P_{y'}$, $O_{yy'}$, I^\odot, P_y^\odot, $P_{y'}^\odot$ and $O_{yy'}^\odot$ (angular distributions and mass distributions only probe $I_0 = \left| M_{++}^+ \right|^2 + \left| M_{+-}^+ \right|^2 + \left| M_{-+}^+ \right|^2 + \left| M_{--}^+ \right|^2 + \left| M_{++}^- \right|^2 + \left| M_{+-}^- \right|^2 + \left| M_{-+}^- \right|^2 + \left| M_{--}^- \right|^2$).

8 phases of transversity amplitudes mean that there are 7 independent phase differences that can be extracted, and 7 measurements are needed for this.

For instance, four of these phase differences can be extracted by measuring any 4 of the 8 observables $P_{x'}$, $P_{z'}$, $O_{yx'}$, $O_{yz'}$, P_x^\odot, P_z^\odot, $O_{yx'}^\odot$ and $O_{yz'}^\odot$.
What observables need to be measured?

To obtain the amplitudes of the (transversity) amplitudes, we must measure differential cross section, along with P_y, P_y', $O_{yy'}$, I^0, P_y^0, $P_y'^0$, and $O_{yy'}^0$ (angular distributions and mass distributions only probe $I_0 = |M_{++}^+|^2 + |M_{+-}^+|^2 + |M_{-+}^+|^2 + |M_{--}^+|^2$)

8 phases of transversity amplitudes mean that there are 7 independent phase differences that can be extracted, and 7 measurements are needed for this.

For instance, four of these phase differences can be extracted by measuring any 4 of the 8 observables P_x, P_z, O_{yx}, O_{yz}, P_x^0, P_z^0, O_{yx}^0, and O_{yz}^0.

2 of the remaining phases can be extracted from measuring any 2 of the 8 observables P_x, P_z, O_{xy}, O_{yz}, P_x^0, P_z^0, O_{xy}^0, and O_{yz}^0, along with use of identities among the phase differences (such as $\phi_1 - \phi_4 = \phi_1 - \phi_2 + \phi_2 - \phi_3 + \phi_3 - \phi_4$).
What observables need to be measured?

To obtain the amplitudes of the (transversity) amplitudes, we **MUST** measure differential cross section, along with $P_y, P_y', O_{yy'}, I^\circ, P_y^\circ, P_y'^\circ$, and O_{yy}° (angular distributions and mass distributions only probe $I_0 = \left| M_{++}^+ \right|^2 + \left| M_{+-}^+ \right|^2 + \left| M_{-+}^- \right|^2 + \left| M_{--}^- \right|^2$).

8 phases of transversity amplitudes mean that there are 7 independent phase differences that can be extracted, and 7 measurements are needed for this.

For instance, four of these phase differences can be extracted by measuring any 4 of the 8 observables $P_{x'}, P_{z'}, O_{yx'}, O_{yz'}, P_{x}^\circ, P_{z}^\circ, O_{xy}^\circ$, and O_{yz}°.

2 of the remaining phases can be extracted from measuring any 2 of the 8 observables $P_x, P_z, O_{xy'}, O_{zy'}, P_x^\circ, P_z^\circ, O_{xy}^\circ$, and O_{zy}°, along with use of identities among the phase differences (such as $\phi_1 - \phi_4 = \phi_1 - \phi_2 + \phi_2 - \phi_3 + \phi_3 - \phi_4$).

The remaining independent phase difference then can be extracted from one of the observables requiring linearly polarized photons.
What observables need to be measured?

To obtain the amplitudes of the (transversity) amplitudes, we **MUST** measure differential cross section, along with $P_y, P_y', O_{yy'}, I^\odot, P_y^\odot, P_y'^\odot$ and $O_{yy'}^\odot$ (angular distributions and mass distributions only probe $I_0 = |M_{++}|^2 + |M_{+-}|^2 + |M_{-+}|^2 + |M_{--}|^2 + |M_{++}'|^2 + |M_{+-}'|^2 + |M_{-+}'|^2 + |M_{--}'|^2$)

8 phases of transversity amplitudes mean that there are 7 independent phase differences that can be extracted, and 7 measurements are needed for this.

For instance, four of these phase differences can be extracted by measuring any 4 of the 8 observables $P_x', P_z', O_{yx'}, O_{yz'}, P_x^\odot, P_z^\odot, O_{yx'}^\odot$ and $O_{yz'}^\odot$.

2 of the remaining phases can be extracted from measuring any 2 of the 8 observables $P_x, P_z, O_{xy'}, O_{yz'}, P_x^\odot, P_z^\odot, O_{xy'}^\odot$ and $O_{yz'}^\odot$, along with use of identities among the phase differences (such as $\phi_1 - \phi_4 = \phi_1 - \phi_2 + \phi_2 - \phi_3 + \phi_3 - \phi_4$).

The remaining independent phase difference then can be extracted from one of the observables requiring linearly polarized photons.

'Complete' set of experiments requires measurement of single, double and triple polarization observables (including observables with both linearly and circularly polarized photons), along with the differential cross section.
Examples

In $\gamma N \rightarrow N\pi\pi$ (or $\gamma N \rightarrow NK\bar{K}$), observables are 5-fold differential, and so can be shown in a variety of ways (even Dalitz plots, for observables that are even under $\Phi \leftrightarrow 2\pi - \Phi$).

To illustrate these observables, I use a ‘simple’ model
Examples

[Diagrams of polarization observables in the photoproduction of two pseudoscalar mesons]
Model includes $s -$ (and $u -$) channel hyperons: $\Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670), \Lambda(1690), \Lambda(1800), \Lambda(1810), \Lambda(1890), \Sigma(1385), \Sigma(1580), \Sigma(1620), \Sigma(1660), \Sigma(1670), \Sigma(1750), \Sigma(1880), \Sigma(1940)$;
Model includes $s-$ (and $u-$) channel hyperons: $\Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670), \Lambda(1690), \Lambda(1800), \Lambda(1810), \Lambda(1890), \Sigma(1385), \Sigma(1580), \Sigma(1620), \Sigma(1660), \Sigma(1670), \Sigma(1750), \Sigma(1880), \Sigma(1940)$;

$t-$channel mesons: K^*, K, π, η;
Model includes $s-$ (and $u-$) channel hyperons: $\Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670), \Lambda(1690), \Lambda(1800), \Lambda(1810), \Lambda(1890), \Sigma(1385), \Sigma(1580), \Sigma(1620), \Sigma(1660), \Sigma(1670), \Sigma(1750), \Sigma(1880), \Sigma(1940)$;

$t-$channel mesons: K^*, K, π, η;

meson production: $\phi(1020)$;
Model includes $s-$ (and $u-$) channel hyperons: $\Lambda(1405)$, $\Lambda(1520)$, $\Lambda(1600)$, $\Lambda(1670)$, $\Lambda(1690)$, $\Lambda(1800)$, $\Lambda(1810)$, $\Lambda(1890)$, $\Sigma(1385)$, $\Sigma(1580)$, $\Sigma(1620)$, $\Sigma(1660)$, $\Sigma(1670)$, $\Sigma(1750)$, $\Sigma(1880)$, $\Sigma(1940)$;

t-channel mesons: K^*, K, π, η;

meson production: $\phi(1020)$;

exotic baryons: $\Theta^+(1540)$.
Model includes $s-$ (and $u-$) channel hyperons: $\Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670),$ $\Lambda(1690), \Lambda(1800), \Lambda(1810), \Lambda(1890),$ $\Sigma(1385), \Sigma(1580), \Sigma(1620), \Sigma(1660),$ $\Sigma(1670),$ $\Sigma(1750), \Sigma(1880), \Sigma(1940);$

$t-$channel mesons: $K^*, K, \pi, \eta;$

meson production: $\phi(1020);$

exotic baryons: $\Theta^+(1540).$

Missing: more mesons (f_0, f_2, etc.);
Model includes $s-$ (and $u-$) channel hyperons: $\Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670),$ $\Lambda(1690), \Lambda(1800), \Lambda(1810), \Lambda(1890), \Sigma(1385), \Sigma(1580), \Sigma(1620), \Sigma(1660),$ $\Sigma(1670), \Sigma(1750), \Sigma(1880), \Sigma(1940);$

$t-$channel mesons: $K^*, K, \pi, \eta;$

meson production: $\phi(1020);$

exotic baryons: $\Theta^+(1540).$

Missing: more mesons ($f_0, f_2,$ etc.);

N^*, Δ^* that couple to hyperons.
Model includes s— (and u—) channel hyperons: $\Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670), \Lambda(1690), \Lambda(1800), \Lambda(1810), \Lambda(1890), \Sigma(1385), \Sigma(1580), \Sigma(1620), \Sigma(1660), \Sigma(1670), \Sigma(1750), \Sigma(1880), \Sigma(1940)$;

t—channel mesons: K^*, K, π, η;

meson production: $\phi(1020)$;

exotic baryons: $\Theta^+(1540)$.

Missing: more mesons (f_0, f_2, etc.);

N^*, Δ^* that couple to hyperons.

Nevertheless, should be sufficient to illustrate the salient points (W. Roberts, Phys. Rev. C 70, 065201 (2004) for more details.)
Figure (b) shows the polarization observables in the photoproduction of two pseudoscalar mesons as a function of the mass difference M_{NK} (GeV). The graph includes lines for different values of Φ^*, with $\Phi^* = 30$, $\Phi^* = 45$, $\Phi^* = 60$, and $\Phi^* = 90$. The y-axis represents the polarization observable $O_{n\ell}^s$. The x-axis represents the mass difference M_{NK} in GeV.
Polarization Observables in the Photoproduction of Two Pseudoscalar Mesons – p.23

(a)

\[P_z^0 \]

\[
\begin{align*}
\phi^* &= 30 \\
\phi^* &= 45 \\
\phi^* &= 60 \\
\phi^* &= 90
\end{align*}
\]
The figure shows polarization observables in the photoproduction of two pseudoscalar mesons as a function of the invariant mass $M_{NK} (GeV)$.

Different curves represent different values of Φ^*:
- $\Phi^* = 30$
- $\Phi^* = 45$
- $\Phi^* = 60$
- $\Phi^* = 90$

The y-axis represents the polarization observable I^0, with values ranging from -0.1 to 0.4.

The x-axis represents M_{NK} (GeV), ranging from 1.4 to 2.0.
(c)
Conclusions

Polarization observables are essential for extracting amplitudes of processes like $\gamma N \rightarrow N\pi$ and $\gamma N \rightarrow N\pi\pi$.
Conclusions

Polarization observables are essential for extracting amplitudes of processes like $\gamma N \rightarrow N \pi$ and $\gamma N \rightarrow N \pi \pi$. Such observables are very sensitive to underlying dynamics.
Conclusions

Polarization observables are essential for extracting amplitudes of processes like $\gamma N \rightarrow N\pi$ and $\gamma N \rightarrow N\pi\pi$.

Such observables are very sensitive to underlying dynamics.

Single, double and triple polarization measurements, along with the measurements using both circularly and linearly polarized photons, are needed to 'unambiguously' extract amplitudes.
Conclusions

Polarization observables are essential for extracting amplitudes of processes like $\gamma N \rightarrow N\pi$ and $\gamma N \rightarrow N\pi\pi$.

Such observables are very sensitive to underlying dynamics.

Single, double and triple polarization measurements, along with the measurements using both circularly and linearly polarized photons, are needed to 'unambiguously' extract amplitudes.

Facilities are poised to make a number of measurements that will challenge (existing and future) models of such processes.