ELSA

the upcoming polarisation programme

- Baryon spectrum & spectroscopy
- Role of polarisation observables
- Selected cases for CrystalBarrel@ELSA

η
$$\pi^0 \pi^0 / \pi^0 \eta$$
beam & target polarisation
ω

- Future extension: forward spectrometer
 - ≻ K⁺ ∧(1405)
 - ≻ Φ(η)

N* resonances

Löhring, Metsch, Petry, EPJ A10, 395(2001)

 $\underbrace{P}_{ELSA} \xrightarrow{\gamma p \rightarrow p \eta}$

V. Crede, O. Bartolomy et al., PRL 94 (2005) 012004

CELSA complete experiment

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \left[1 - \frac{P_{Y} \ln \Sigma}{V_{Y}} \cos 2\Phi + \frac{P_{T} (-P_{Y} \ln H \sin 2\Phi + \frac{P_{Y} circ}{V_{Y}} F) - \frac{P_{T} (-T + \frac{P_{Y} \ln P}{V_{Y}} \cos 2\Phi) - \frac{P_{T} (-P_{Y} \ln G \sin 2\Phi + \frac{P_{Y} circ}{V_{Y}} F) \right]$$

more observables: 2-meson & vector meson final states

polarisation observables & kinematics

$$\Sigma_{x} = \frac{\sigma_{||} - \sigma_{\perp}}{\sigma_{||} + \sigma_{\perp}} \sim \cos 2\Phi$$

$$\Sigma_{dec} = \frac{\sigma_{||} - \sigma_{\perp}}{\sigma_{||} + \sigma_{\perp}} \Big|_{\hat{Z}_{decay}}$$
single-polaris.
$$G_{x,dec} \leftrightarrow P_{y,lin} P_{T,z} \Sigma_{x,dec} \sin 2\Phi$$

$$E = \frac{\sigma_{3/2} - \sigma_{1/2}}{\sigma_{3/2} + \sigma_{1/2}} \leftrightarrow P_{y,circ} P_{T,z}$$

overview ELSA (double-polarisation) proposals

PAC-05 / Sep'05

- * 1. ELSA/1-2005 G in single π^0 and η production
 - 2. ELSA/2–2005 Helicity dependence in single π^0 and η production
- * 3. ELSA/3-2005 Σ and G in η -photoproduction off neutron
- * 4. ELSA/4-2005 Beam-target asymmetries in ω -photoproduction
 - 5. ELSA/5-2005 Meson-nucleus bound states
- * 6. ELSA/6–2005 Double polarisation in $2\pi^0$ –photoproduction
 - 7. ELSA/7–2005 Helicity difference in $\pi^0\eta$ –photoproduction

- accelerator of sufficient energy
- Iongitudinal electron-beam polarisation
- photon tagging
- circular & linear photon-beam polarisation
- beam polarimetry
- polarised target
- (recoil polarimetry)
- 4π detector

ELSA facility solenoid \leftrightarrow $E_0^{max} = 2.46 \text{ GeV}$ Crystal Barrel Dipole (horizontal) Dipole (vertical) extraction septa Quadrupole DORIS cavity superconducting Skew Quadrupole solenoid Sextupole PETRA cavity GDH Combined-Function Magnet Solenoid Radio Frequency Møller Polarimeter tune jump quadrupole Compton Polarimeter stretcher ring bending magnet beamlines for 0.5 - 3.5 GeV booster SR experiments synchrotron BN3 BN2 0.5 - 1.6 GeV injection septa 2.00 tune jump DESY cavity quadrupole BN1 EKS half cell of ELSA LINAC 1 BN0 (20 MeV) Q BPM М skew quadrupoles Mott nolarimete electron pol. e* Μ FZK laboratory gun E source detector (50 keV) tests LINAC 2 (26 MeV) 5 m 10 m 15 m 0 m

photon beam circular polarisation

linear polarisation: Coherent Bremsstrahlung

photon energy / MeV

D. Elsner

η-photoproduction: beam asymmetry

NIM A 356 (1995) 111, NIM A 418 (1998) 233

Bonn polarised frozen spin target

deuteron

$\frac{\mathbf{\gamma} \mathbf{p} \rightarrow \mathbf{p} \boldsymbol{\omega} \leftrightarrow \text{resonances ?}}{\mathbf{\rho} \mathbf{\omega} \mathbf{\omega}}$						
N* SU(6)xO(3)	exp. status	Isgur-Karl assignment	J٩	coupling πN ωN		tot. width
S ₁₁ (1535)	* * * *	N(1535)	1/2-	85	0	164
P ₁₁ (1710)	* * *	N(1710)	1/2+	42	32	242
P ₁₃ (1870)	*	N(1870)	3/2+	10	98	149
P ₁₃ (1950)	missing	N(1955)	3/2+	1.2	90	236
P ₁₃ (2030)	missing	N(2060)	3/2+	0.3	98	145
D ₁₅ (1675)	****	N(1670)	5/2-	30	0	130
$F_{15}(1680)$	* * * *	N(1715)	5/2+	50	1.4	77
F ₁₅ (1995)	missing	N(1955)	5/2+	0.2	184	324
F ₁₅ (2000)	*	N(2025)	5/2+	1.7	180	316

talk H. Lenske

Shklyar et al. (Giessen group) nucl-th/0412029v2

 $p \rightarrow p \omega$

polarisation observables

 $\gamma p \rightarrow p \omega$

polarisation observables

Bonn PWA A. Sarantsev, priv. comm.

 $p \rightarrow p \omega$ Monte-Carlo

azimuthal angular distributions @ 1700-1900 MeV

only π -exchange

solution "6c"

Cos(0)

EXTRA PAGES

planned experiment @ ELSA

- SFB/Transregio 16
- double polarization beam/target
- reaction specific forward extensions \rightarrow K⁺ id

 $\gamma p \rightarrow p \omega$

 $P_{T}^{eff} = f P_{T}$

 N_{ex}

target dilution factor & measurement of asymmetries

$$N_{pol} = N_0^{pol} \{1 + P_C P_T E + P_L (\Sigma_{pol} \cos 2\Phi + P_T G \sin 2\Phi)\}$$

$$N_{unpol} = N_0^{unpol} \{1 + 0 + P_L (\Sigma_{unpol} \cos 2\Phi + 0)\}$$

$$unpolarised target comp.$$

$$p = N_0^{pol} \{1/f + P_C P_T E + P_L [(\Sigma_{pol} + (1/f - 1)\Sigma_{unpol}) \cos 2\Phi + P_T G \sin 2\Phi]\}$$

$$dilution factor$$

$$N_0 = (1/f) N_0^{pol}$$

$$free \text{ proton polarisation}$$

 $\gamma p \rightarrow p \omega$ target dilution factor & measurement of asymmetries beam helicity target polarisation $\pm 2 N_0^{pol} P_C P_T E$ $N(\uparrow) - N(\downarrow)$ $N(\uparrow) + N(\downarrow) = 2 N_0^{\text{pol}} \{ 1/f + P_L [(\Sigma_{\text{pol}} + (1/f - 1)\Sigma_{\text{unpol}}) \cos 2\Phi \pm P_T G \sin 2\Phi] \}$ fit $c + c_{cos} \cos 2\Phi + c_{sin} \sin 2\Phi$ effective target polarisation $A_{exp}(E) = \frac{N(\uparrow) - N(\downarrow)}{C}$ $A_{exp}(G) = \frac{C_{sin}}{C}$ $= P_C P_T^{eff} E$ fixed target spin-direction $= P_{I} P_{T}^{eff}$ sum/difference of reversed target spin-directions C_{cos} $= P_{I} \Sigma$ *assumption*: free = quasifree