Towards a determination of the spectrum of QCD using a space-time lattice

Colin Morningstar
(Carnegie Mellon University)
International Workshop on the Physics
of Excited Baryons (Nstar 2005)
Tallahassee, Florida
October 15, 2005

Lattice Hadron Physics Collaboration

- charge from Nathan Isgur to use Monte Carlo method to extract the spectrum of baryon resonances (Hall B at JLab)
- formed the Lattice Hadron Physics Collaboration (LHPC) in 2000
- acquired funding through DOE SciDAC to build large computing cluster at JLab (also at Fermilab and Brookhaven), develop software
- LHPC has several broad goals
- compute QCD spectrum (baryons, mesons,...)
- hadron structure (form factors, structure functions,...)
- hadron-hadron interactions
- current members of spectroscopy effort:
- Subhasish Basak, Robert Edwards, George Fleming, Jimmy Juge, Adam Lichtl, CM, David Richards, Ikuro Sato, Steve Wallace

LHPC spectroscopy efforts

- extracting spectrum of resonances is big challenge!!
- need sets of extended operators (correlator matrices)
- multi-hadron operators needed too
- deduce resonances from finite-box energies
- anisotropic lattices $\left(a_{t}<a_{s}\right)$
- inclusion of light-quark loops at realistically light quark mass
- long-term project
- this talk is a brief status report
- discuss how to extract excited-state energies from Monte Carlo estimates of correlation functions in Euclidean lattice field theory
- baryon operator construction smearing and pruning

Energies from correlation functions

stationary state energies extracted from asymptotic decay rate of temporal correlations of the fields (imaginary time formalism)

- evolution in Heisenberg picture $\phi(t)=e^{H t} \phi(0) e^{-H t}(H=H a m i l t o n i a n)$
- spectral representation of a simple correlation function
- assume transfer matrix, ignore temporal boundary conditions
- focus only on one time ordering

$$
\begin{aligned}
\langle 0| \phi(t) \phi(0)|0\rangle & \left.=\sum_{n}\langle 0| e^{H t} \phi(0) e^{-H t}|n\rangle\langle n| \phi(0)|0\rangle \begin{array}{l}
\begin{array}{l}
\text { insert complete set } \\
\text { energy eigenstates } \\
\text { (discrete and contir }
\end{array} \\
\end{array}=\sum_{n}^{n}|\langle n| \phi(0)| 0\right\rangle\left.\right|^{2} e^{-\left(E_{n}-E_{0}\right) t}=\sum_{n} A_{n} e^{-\left(E_{n}-E_{0}\right) t}
\end{aligned}
$$

- extract A_{1} and $E_{1}-E_{0}$ as $t \rightarrow \infty$

$$
\text { (assuming }\langle 0| \phi(0)|0\rangle=0 \text { and }\langle 1| \phi(0)|0\rangle \neq 0 \text {) }
$$

Effective mass

- the "effective mass" is given by $m_{\text {eff }}(t)=\ln \left(\frac{C(t)}{C(t+1)}\right)$
- notice that (take $E_{0}=0$)

$$
\lim _{t \rightarrow \infty} m_{\text {eff }}(t)=\ln \left(\frac{A_{1} e^{-E_{1} t}+A_{2} e^{-E_{2} t}+\cdots}{A_{1} e^{-E_{1}(t+1)}+\cdots}\right) \rightarrow \ln e^{-E_{1}}=E_{1}
$$

- effective mass tends to the actual mass (energy) asymptotically
- effective mass plot is convenient visual tool to see signal extraction
a seen as a plateau
- plateau sets in quickly for good operator
- excited-state contamination before plateau

Reducing contamination

- statistical noise generally increases with temporal separation t
- effective masses associated with correlation functions of simple local fields often do not reach a plateau before noise swamps the signal
- need better operators
- better operators have reduced couplings with higher-lying contaminating states
- recipe for making better operators
- crucial to construct operators using smeared fields
link variable smearing
quark field smearing
- spatially extended operators
- use large set of operators (variational coefficients)

Principal correlators

- extracting excited-state energies described in
- C. Michael, NPB 259, 58 (1985)
- Luscher and Wolff, NPB 339, 222 (1990)
- can be viewed as exploiting the variational method
- for a given $N \times N$ correlator matrix $C_{\alpha \beta}(t)=\langle 0| O_{\alpha}(t) O_{\beta}^{+}(0)|0\rangle$ one defines the N principal correlators $\lambda_{\alpha}\left(t, t_{0}\right)$ as the eigenvalues of

$$
C\left(t_{0}\right)^{-1 / 2} C(t) C\left(t_{0}\right)^{-1 / 2}
$$

where t_{0} (the time defining the "metric") is small

- can show that $\quad \lim _{t \rightarrow \infty} \lambda_{\alpha}\left(t, t_{0}\right)=e^{-\left(t-t_{0}\right) E_{\alpha}}\left(1+e^{-t \Delta E_{\alpha}}\right)$
- N principal effective masses defined by $m_{\alpha}^{\text {eff }}(t)=\ln \left(\frac{\lambda_{\alpha}\left(t, t_{0}\right)}{\lambda_{\alpha}\left(t+1, t_{0}\right)}\right)$ now tend (plateau) to the N lowest-lying stationary-state energies

Principal effective masses

- single-exponential fit to each principal correlator to extract spectrum!
\square two-exponentials to minimize sensitivity to $t_{\text {min }}$
- principal effective masses can cross, approach asymptotic behavior from below
- final results independent of t_{0}, but larger values of this reference time can introduce larger errors

Unstable particles (resonances)

- our computations done in a periodic box
- momenta quantized
- discrete energy spectrum of stationary states \rightarrow single hadron, 2 hadron, ...

- scattering phase shifts \rightarrow resonance masses, widths (in principle) deduced from finite-box spectrum
- B. DeWitt, PR 103, 1565 (1956) (sphere)
a M. Luscher, NPB364, 237 (1991) (cube)
- more modest goal: "ferret" out resonances from scattering states
- must differentiate resonances from multi-hadron states
- avoided level crossings, different volume dependences
- know masses of decay products \rightarrow placement and pattern of multi-particle states known
- resonances show up as extra states with little volume dependence

Resonance in a toy model (I)

- O(4) non-linear o model (Zimmerman et al, NPB(PS) 30, 879 (1993))

$$
S=-2 \kappa \sum_{x} \sum_{\mu=1}^{4} \Phi_{a}(x) \Phi_{a}(x+\hat{\mu})+J \sum_{x} \Phi^{4}(x), \quad \sum_{a=1}^{4} \Phi_{a}^{2}(x)=1
$$

Figire 3. Srattering phate ahift 5_{0} in the indignin 0 damer

Resonance in a toy model (II)

- coupled scalar fields: (Rummukainen and Gottlieb, NPB450, 397 (1995))

$$
\begin{aligned}
& S=\frac{1}{2} \int d^{4} x\left(\left(\partial_{\mu} \phi\right)^{2}+m_{\pi}^{2} \phi^{2}+\lambda \phi^{4}+\left(\partial_{\mu} \rho\right)^{2}+m_{\pi}^{2} \rho^{2}+\lambda_{\rho} \rho^{4}+g \rho \phi^{2}\right) \\
& g=0 \\
& g=0_{\mathrm{e}} 008 \\
& g=0.021
\end{aligned}
$$

 A, Band \square (造 table ly.

Operator design issues

- must facilitate spin identification
- shun the usual method of operator construction which relies on cumbersome continuum space-time constructions
- focus on constructing operators which transform irreducibly under the symmetries of the lattice
- one eye on maximizing overlaps with states of interest
- other eye on minimizing number of quark-propagator sources
- use building blocks useful for baryons, mesons, multi-hadron operators

Three stage approach (hep-lat/0506029)

- concentrate on baryons at rest (zero momentum)
- operators classified according to the irreps of O_{h}

$$
G_{1 g}, G_{1 u}, G_{2 g}, G_{2 u}, H_{g}, H_{u}
$$

- (1) basic building blocks: smeared, covariant-displaced quark fields

$$
\left(\widetilde{D}_{j}^{(p)} \widetilde{\Psi}(x)\right)_{A a \alpha} \quad p \text {-link displacement }(j=0, \pm 1, \pm 2, \pm 3)
$$

- (2) construct elemental operators (translationally invariant)

$$
B^{F}(x)=\phi_{A B C}^{F} \varepsilon_{a b c}\left(\tilde{D}_{i}^{(p)} \tilde{\psi}(x)\right)_{A a \alpha}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}(x)\right)_{B b \beta}\left(\tilde{D}_{k}^{(p)} \tilde{\psi}(x)\right)_{C c \gamma}
$$

- flavor structure from isospin, color structure from gauge invariance
- (3) group-theoretical projections onto irreps of O_{h}

$$
B_{i}^{\Lambda A F}(t)=\frac{d_{\Lambda}}{g_{O_{n}^{D}}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda)}(R)^{*} U_{R} B_{i}^{F}(t) U_{R}^{+}
$$

- wrote Grassmann package in Maple to do these calculations

Three-quark elemental operators

three-quark operator

$$
\Phi^{A B C},, j k k=\sum_{x} \varepsilon_{a n c}\left(\tilde{D}_{i}^{(p)} \tilde{\psi}(\vec{x}, t)\right)^{A}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}(\vec{x}, t)\right)^{B} \quad\left(\tilde{D}_{k}^{(p)} \tilde{\psi}(\vec{x}, t)\right)^{C}
$$

- covariant displacements

$$
\begin{aligned}
& \tilde{D}_{j}^{(p)}\left(x, x^{\prime}\right)=\tilde{U}_{j}(x) \tilde{U}_{j}(x+\hat{j}) \cdots \tilde{U}_{j}(x+(p-1) \hat{j}) \delta_{x^{\prime}, x+p \hat{j}} \quad(j= \pm 1, \pm 2, \pm 3) \\
& \tilde{D}_{0}^{(p)}\left(x, x^{\prime}\right)=\delta_{x^{\prime}, x}
\end{aligned}
$$

Baryon	Operator
Δ^{++}	
Σ^{+}	$\Phi^{u u s}{ }_{\text {, }}^{\text {ijk }}$
N^{+}	$\Phi^{u u d}{ }_{, i j k}-\Phi^{\text {duu }}{ }_{\text {, }}^{\text {, }}$, ${ }^{\text {k }}$
Ξ^{0}	$\Phi^{\text {ssu }}$, ijk
Λ^{0}	$\Phi_{\alpha \beta, i j k}^{u d s}-\Phi_{\alpha \beta,, i j k}^{\text {dus }}$
Ω^{-}	$\Phi_{\alpha \beta, \text { jijk }}^{\text {sss }}$

Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

operator design minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid mesons operator (in progress)

Enumerating the three-quark operators

- lots of operators (too many!)

	Λ^{++}, Ω^{-}	Σ^{+}, Ξ^{0}	N^{+}	Λ^{0}
Single-site	20	40	20	24
Singly-displaced	240	624	384	528
Doubly-displaced-I	192	572	384	576
Doubly-displaced-L	768	2304	1536	2304
Triply-displaced-T	768	2304	1536	2304
Triply-displaced-O	512	1536	1024	1536

Spin identification and other remarks

- spin identification possible by pattern matching

J	$n_{G_{1}}^{J}$	$n_{G_{2}}^{J}$	n_{H}^{J}
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
$\frac{5}{2}$	0	1	1
$\frac{7}{2}$	1	1	1
$\frac{9}{2}$	1	0	2
$\frac{11}{2}$	1	1	2
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ, Ω	N	Σ, Ξ	Λ
$G_{1 g}$	221	443	664	656
$G_{1 u}$	221	443	664	656
$G_{2 g}$	188	376	564	556
$G_{2 u}$	188	376	564	556
H_{g}	418	809	1227	1209
H_{u}	418	809	1227	1209

- total numbers of operators is huge \rightarrow uncharted territory
- ultimately must face two-hadron scattering states

Single-site operators

choose Dirac-Pauli convention for γ-matrices

- 20 independent single-site Δ^{++}elemental operators:

$$
\Delta_{\alpha \beta \gamma}=\varepsilon_{a b c} \tilde{u}_{a \alpha} \tilde{u}_{b \beta} \tilde{u}_{c \gamma}, \quad(\alpha \leq \beta \leq \gamma)
$$

- 20 independent single-site N^{+}elemental operators:

$$
N_{\alpha \beta \gamma}=\varepsilon^{a b c}\left(\tilde{u}_{a \alpha} \tilde{u}_{b \beta} \tilde{d}_{c \gamma}-\tilde{d}_{a \alpha} \tilde{u}_{b \beta} \tilde{u}_{c \gamma}\right), \quad(\alpha \leq \beta, \alpha<\gamma)
$$

- 40 independent single-site Σ^{+}elemental operators:

$$
\Sigma_{\alpha \beta \gamma}=\varepsilon_{a b c} \tilde{u}_{a \alpha} \tilde{u}_{b \beta} \tilde{s}_{c \gamma} \quad(\alpha \leq \beta)
$$

- 24 independent single-site Λ^{0} elemental operators:

$$
\Lambda_{\alpha \beta \gamma}=\varepsilon_{a b c}\left(\tilde{u}_{a \alpha} \tilde{d}_{b \beta} \tilde{s}_{c \gamma}-\tilde{d}_{a \alpha} \tilde{u}_{b \beta} \tilde{s}_{c \gamma}\right) \quad(\alpha<\beta)
$$

$\Delta++$ single-site operators

Irrep	Row	DP Operators
$G_{1 g}$	1	$\Delta_{144}-\Delta_{234}$
$G_{1 g}$	2	$-\Delta_{134}+\Delta_{233}$
$G_{1 u}$	1	$\Delta_{124}-\Delta_{223}$
$G_{1 u}$	2	$-\Delta_{114}+\Delta_{123}$
H_{g}	1	Δ_{222}
H_{9}	2	$-\sqrt{3} \Delta_{122}$
H_{9}	3	$\sqrt{3} \Delta_{112}$
H_{g}	4	$-\Delta_{111}$
H_{9}	1	$\sqrt{3} \Delta_{244}$
H_{9}	2	$-\Delta_{144}-2 \Delta_{234}$
H_{9}	3	$2 \Delta_{134}+\Delta_{233}$
H_{9}	4	$-\sqrt{3} \Delta_{133}$

Irrep	Row	DP Operators
H_{u}	1	$\sqrt{3} \Delta_{224}$
H_{u}	2	$-2 \Delta_{124}-\Delta_{223}$
H_{u}	3	$\Delta_{114}+2 \Delta_{123}$
H_{u}	4	$-\sqrt{3} \Delta_{113}$
H_{u}	1	Δ_{444}
H_{u}	2	$-\sqrt{3} \Delta_{344}$
H_{u}	3	$\sqrt{3} \Delta_{334}$
H_{u}	4	$-\Delta_{333}$

Single-site $N+$ operators

Irrep Row	DP Operators					
$G_{1 g}$	1	N_{122}				
$G_{1 g}$	2	$-N_{112}$				
$G_{1 g}$	1	$N_{144}-N_{243}$				
$G_{1 g}$	2	$-N_{134}+N_{233}$				
$G_{1 g}$	1	$N_{144}-2 N_{234}+N_{243}$				
$G_{1 g}$	2	$N_{134}-2 N_{143}+N_{233}$				
G_{14}	1	N_{142}				
G_{14}	2	$-N_{132}$				
G_{14}	1	N_{344}				
G_{14}	2	$-N_{334}$				
G_{14}	1	$2 N_{124}-N_{142}-2 N_{223}$				
G_{14}	2	$-2 N_{114}+2 N_{123}-N_{132}$	\quad	Irrep	Row	DP Operators
:---:	:---:	:---:				
H_{g}	1	$\sqrt{3} N_{244}$				
H_{g}	2	$-N_{144}-N_{234}-N_{243}$				
H_{g}	3	$N_{134}+N_{143}+N_{233}$				
H_{g}	4	$-\sqrt{3} N_{133}$				
H_{u}	1	$\sqrt{3} N_{224}$				
H_{2}	2	$-2 N_{124}+N_{142}-N_{223}$				
H_{u}	3	$N_{114}+2 N_{123}-N_{132}$				
H_{u}	4	$-\sqrt{3} N_{113}$				

Current status and next step

- Development of software to carry out the baryon computations has been completed and thoroughly tested (at long last!)
- gauge-invariant three-quark propagators as intermediate step
- baryon correlators are superpositions of qqq-propagator components \rightarrow superposition coefficients precalculated
- source-sink rotations to minimize source orientations
- Next step: smearing optimization and operator pruning
- optimize link-variable and quark-field smearings
- remove dynamically redundant operators
- remove ineffectual operators
- low statistics runs needed
a monitor progress at http://enrico.phys.cmu.edu

Quark- and gauge-field smearing

- smeared quark and gluon fields fields \rightarrow dramatically reduced coupling with short wavelength modes
- link-variable smearing (stout links PRD69, 054501 (2004))
- define $C_{\mu}(x)=\sum_{ \pm(\nu \neq \mu)} \rho_{\mu \nu} U_{\nu}(x) U_{\mu}(x+\hat{v}) U_{\nu}^{+}(x+\hat{\mu})$
- spatially isotropic $\quad \rho_{j k}=\rho, \quad \rho_{4 k}=\rho_{k 4}=0$

- exponentiate traceless Hermitian matrix

$$
\Omega_{\mu}=C_{\mu} U_{\mu}^{+} \quad Q_{\mu}=\frac{i}{2}\left(\Omega_{\mu}^{+}-\Omega_{\mu}\right)-\frac{i}{2 N} \operatorname{Tr}\left(\Omega_{\mu}^{+}-\Omega_{\mu}\right)
$$

- iterate

$$
U_{\mu}^{(n+1)}=\exp \left(i Q_{\mu}^{(n)}\right) U_{\mu}^{(n)}
$$

$$
U_{\mu} \rightarrow U_{\mu}^{(1)} \rightarrow \cdots \rightarrow U_{\mu}^{(n)} \stackrel{\mu}{\equiv} \widetilde{U}_{\mu}
$$

- quark-field smearing (covariant Laplacian uses smeared gauge field)

$$
\tilde{\psi}(x)=\left(1+\frac{\sigma_{s}}{4 n_{\sigma}} \tilde{\Delta}^{2}\right)^{n_{\sigma}} \psi(x)
$$

Importance of smearing

${ }^{\circ}$ Nucleon G1g channel ${ }^{\circ}$ effective masses of 3 selected operators
${ }^{\circ}$ noise reduction from link variable smearing, especially for displaced operators
${ }^{\circ}$ quark-field smearing reduces couplings to high-lying states

$$
\begin{array}{ll}
\sigma_{s}=4.0, & n_{\sigma}=32 \\
n_{\rho} \rho=2.5, & n_{\rho}=16
\end{array}
$$

${ }^{\circ}$ effect on excited states still to be studied

Tuning the smearing

- the effective mass at $t=4 a_{t}$ for three specific nucleon operators for different quark-field smearings (link smearing same as last slide)

Operator plethora (G1g Nucleon)

G1g nucleon operators

G1g nucleon operators

G1g nucleon operators

G2g nucleon operators

Hu nucleon operators

More effective masses

- single-site + triply-displaced-T operators (25 configurations)

Principal effective masses

principal effective masses for small set of 10 operators

- $G_{1 g}$ on left, other irreps on right.

Summary

outlined ongoing efforts of LHPC to extract baryon spectrum using Monte Carlo methods on a space-time lattice

- mesons (and hybrids), tetraquarks, ...to be studied as well
- emphasized need for correlation matrices to extract spectrum
- spin identification must be addressed
- as light-quark mass decreases, inclusion of multi-hadron operators will become important
- very challenging calculations
- ...to be continued

