Towards a determination of the spectrum of QCD using a space-time lattice

Colin Morningstar (Carnegic Mellon University) International Workshop on the Physics of Excited Baryons (Nstar 2005) Tallahassee, Florida October 15, 2005

October 15, 2005

Lattice Hadron Physics Collaboration

- charge from Nathan Isgur to use Monte Carlo method to extract the spectrum of baryon resonances (Hall B at JLab)
- formed the Lattice Hadron Physics Collaboration (LHPC) in 2000
- acquired funding through DOE SciDAC to build large computing cluster at JLab (also at Fermilab and Brookhaven), develop software
- LHPC has several broad goals
 - compute QCD spectrum (baryons, mesons,...)
 - □ hadron structure (form factors, structure functions,...)
 - hadron-hadron interactions
- current members of spectroscopy effort:
 - Subhasish Basak, Robert Edwards, George Fleming, Jimmy Juge, Adam Lichtl, CM, David Richards, Ikuro Sato, Steve Wallace

LHPC spectroscopy efforts

- extracting spectrum of resonances is big challenge!!
 - need sets of extended operators (correlator matrices)
 - multi-hadron operators needed too
 - □ deduce resonances from finite-box energies
 - \Box anisotropic lattices $(a_t < a_s)$
 - □ inclusion of light-quark loops at realistically light quark mass
- long-term project
- this talk is a brief status report
 - discuss how to extract excited-state energies from Monte Carlo estimates of correlation functions in Euclidean lattice field theory
 - □ baryon operator construction
 - smearing and pruning

Energies from correlation functions

- stationary state energies extracted from asymptotic decay rate of temporal correlations of the fields (imaginary time formalism)
- evolution in Heisenberg picture $\phi(t) = e^{Ht} \phi(0) e^{-Ht} (H = \text{Hamiltonian})$
- spectral representation of a simple correlation function
 - □ assume transfer matrix, ignore temporal boundary conditions
 - focus only on one time ordering $\langle 0 | \phi(t)\phi(0) | 0 \rangle = \sum_{n} \langle 0 | e^{Ht}\phi(0) e^{-Ht} | n \rangle \langle n | \phi(0) | 0 \rangle$ insert complete set of energy eigenstates (discrete and continuous) $= \sum_{n}^{n} |\langle n | \phi(0) | 0 \rangle|^2 e^{-(E_n - E_0)t} = \sum_{n} A_n e^{-(E_n - E_0)t}$

• extract A_1 and $E_1 - E_0$ as $t \to \infty$

(assuming $\langle 0 | \phi(0) | 0 \rangle = 0$ and $\langle 1 | \phi(0) | 0 \rangle \neq 0$)

October 15, 2005

Effective mass

- the "effective mass" is given by $m_{\text{eff}}(t) = \ln \left(\frac{C(t)}{C(t+1)} \right)$
- notice that (take $E_0 = 0$) $\lim_{t \to \infty} m_{\text{eff}}(t) = \ln \left(\frac{A_1 e^{-E_1 t} + A_2 e^{-E_2 t} + \cdots}{A_1 e^{-E_1 (t+1)} + \cdots} \right) \to \ln e^{-E_1} = E_1$
- effective mass tends to the actual mass (energy) asymptotically
- effective mass plot is convenient visual tool to see signal extraction
 - □ seen as a plateau
- plateau sets in quickly for good operator
- excited-state
 contamination before
 plateau

Reducing contamination

- statistical noise generally increases with temporal separation t
- effective masses associated with correlation functions of simple local fields often do <u>not</u> reach a plateau before noise swamps the signal
 - need better operators
 - better operators have reduced couplings with higher-lying contaminating states
- recipe for making better operators
 - crucial to construct operators using *smeared* fields
 - link variable smearing
 - quark field smearing
 - spatially extended operators
 - use large *set* of operators (variational coefficients)

Principal correlators

- extracting excited-state energies described in
 - □ C. Michael, NPB **259**, 58 (1985)
 - □ Luscher and Wolff, NPB **339**, 222 (1990)
- can be viewed as exploiting the variational method
- for a given $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | O_{\alpha}(t) O_{\beta}^{\dagger}(0) | 0 \rangle$ one defines the *N* principal correlators $\lambda_{\alpha}(t,t_0)$ as the eigenvalues of $C(t_0)^{-1/2} C(t) C(t_0)^{-1/2}$

where t_0 (the time defining the "metric") is small

- can show that $\lim_{t\to\infty} \lambda_{\alpha}(t,t_0) = e^{-(t-t_0)E_{\alpha}} (1+e^{-t\Delta E_{\alpha}})$ N principal effective masses defined by $m_{\alpha}^{\text{eff}}(t) = \ln\left(\frac{\lambda_{\alpha}(t,t_0)}{\lambda_{\alpha}(t+1,t_0)}\right)$ now tend (plateau) to the N lowest-lying stationary-state energies

Principal effective masses

- single-exponential fit to each principal correlator to extract spectrum!
 - \Box two-exponentials to minimize sensitivity to t_{\min}
- principal effective masses
 can cross, approach asymptotic
 behavior from below
- final results independent
 of t₀, but larger values of
 this reference time can introduce
 larger errors

Unstable particles (resonances)

- our computations done in a periodic box
 - momenta quantized
 - □ discrete energy spectrum of stationary states → single hadron, 2 hadron, ...

- scattering phase shifts → resonance masses, widths (in principle)
 deduced from finite-box spectrum
 - **B**. DeWitt, PR **103**, 1565 (1956) (sphere)
 - □ M. Luscher, NPB**364**, 237 (1991) (cube)
- more modest goal: "ferret" out resonances from scattering states
 - must differentiate resonances from multi-hadron states
 - avoided level crossings, different volume dependences
 - know masses of decay products → placement and pattern of multi-particle states known
 - resonances show up as extra states with little volume dependence

Resonance in a toy model (I)

• O(4) non-linear σ model (Zimmerman et al, NPB(PS) **30**, 879 (1993)) $S = -2\kappa \sum_{x} \sum_{\mu=1}^{4} \Phi_a(x) \Phi_a(x+\hat{\mu}) + J \sum_{x} \Phi^4(x), \qquad \sum_{a=1}^{4} \Phi_a^2(x) = 1$

Resonance in a toy model (II)

• coupled scalar fields: (Rummukainen and Gottlieb, NPB450, 397 (1995)) $S = \frac{1}{2} \int d^4 x \left(\left(\partial_\mu \phi \right)^2 + m_\pi^2 \phi^2 + \lambda \phi^4 + \left(\partial_\mu \rho \right)^2 + m_\pi^2 \rho^2 + \lambda_\rho \rho^4 + g \rho \phi^2 \right)$ g = 0 g = 0 g = 0 g = 0

Figure 2. The center of mass energy levels for sectors $\vec{F} = 0$ (top now) and $\vec{F} = 2\pi/L$ (bottom) for cases A, B and C (see table 1).

Operator design issues

- must facilitate spin identification
 - shun the usual method of operator construction which relies on cumbersome continuum space-time constructions
 - focus on constructing operators which transform irreducibly under the symmetries of the lattice
- one eye on maximizing overlaps with states of interest
- other eye on minimizing number of quark-propagator sources
- use building blocks useful for baryons, mesons, multi-hadron operators

Three stage approach (hep-lat/0506029)

- concentrate on baryons at rest (zero momentum)
- operators classified according to the irreps of O_h

 $G_{1g}, G_{1u}, G_{2g}, G_{2u}, H_g, H_u$

- (1) basic building blocks: smeared, covariant-displaced quark fields $(\widetilde{D}_{j}^{(p)}\widetilde{\psi}(x))_{Aa\alpha}$ *p*-link displacement (*j* = 0,±1,±2,±3)
- (2) construct elemental operators (translationally invariant)
 B^F(x) = φ^F_{ABC}ε_{abc}(D̃^(p)_iψ̃(x))_{Aaα}(D̃^(p)_jψ̃(x))_{Bbβ}(D̃^(p)_kψ̃(x))_{Ccγ}
 I avor structure from isospin, color structure from gauge invariance
- (3) group-theoretical projections onto irreps of O_h $B_i^{\Lambda\lambda F}(t) = \frac{d_\Lambda}{g_{O_h^D}} \sum_{R \in O_h^D} D_{\lambda\lambda}^{(\Lambda)}(R)^* U_R B_i^F(t) U_R^+$ • wrote Grassmann package in Maple to do these calculations

October 15, 2005

Three-quark elemental operators

• three-quark operator

$$\Phi^{ABC}_{\alpha\beta\gamma,ijk}(t) = \sum_{\vec{x}} \varepsilon_{abc} (\tilde{D}^{(p)}_{i} \tilde{\psi}(\vec{x},t))^{A}_{a\alpha} (\tilde{D}^{(p)}_{j} \tilde{\psi}(\vec{x},t))^{B}_{b\beta} (\tilde{D}^{(p)}_{k} \tilde{\psi}(\vec{x},t))^{C}_{c\gamma}$$

• covariant displacements

 $\tilde{D}_{j}^{(p)}(x,x') = \tilde{U}_{j}(x) \, \tilde{U}_{j}(x+\hat{j}) \cdots \tilde{U}_{j}(x+(p-1)\hat{j}) \, \delta_{x',x+p\hat{j}} \quad (j=\pm 1,\pm 2,\pm 3)$ $\tilde{D}_{0}^{(p)}(x,x') = \delta_{x',x}$

Baryon	Operator
Δ^{++}	$\Phi^{uuu}_{lphaeta\gamma,ijk}$
Σ^+	$\Phi^{uus}_{lphaeta\gamma,ijk}$
N^+	$\Phi^{uud}_{\alpha\beta\gamma,ijk} - \Phi^{duu}_{\alpha\beta\gamma,ijk}$
Ξ^0	$\Phi^{ssu}_{\alpha\beta\gamma,ijk}$
Λ^0	$\Phi^{uds}_{\alpha\beta\gamma,ijk} - \Phi^{dus}_{\alpha\beta\gamma,ijk}$
Ω^{-}	$\Phi^{sss}_{\alpha\beta\gamma,ijk}$

October 15, 2005

Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

- operator design minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid mesons operator (in progress)

Enumerating the three-quark operators

lots of operators (too many!)

	Δ^{++}, Ω^{-}	Σ^+, Ξ^0	N^+	Λ^0
Single-site	20	40	20	24
Singly-displaced	240	624	384	528
Doubly-displaced-I	192	572	384	576
Doubly-displaced-L	768	2304	1536	2304
Triply-displaced-T	768	2304	1536	2304
Triply-displaced-O	512	1536	1024	1536

Spin identification and other remarks

• spin identification possible by pattern matching

J	$n_{G_1}^J$	$n_{G_2}^J$	n_{H}^{J}
$\frac{1}{2}$	1	0	0
$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$ $\frac{9}{2}$ $\frac{11}{2}$ $\frac{13}{2}$ $\frac{15}{2}$ $\frac{17}{2}$	0	0	1
$\frac{5}{2}$	0	1	1
$\frac{7}{2}$	1	1	1
$\frac{9}{2}$	1	0	
$\frac{11}{2}$	1	1	2 2 2 3
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ, Ω	N	Σ, Ξ	Λ
G_{1g}	221	443	664	656
G_{1u}	221	443	664	656
G_{2g}	188	376	564	556
G2u	188	376	564	556
H_g	418	809	1227	1209
H_u	418	809	1227	1209

• total numbers of operators is huge \rightarrow uncharted territory

• ultimately must face two-hadron scattering states

October 15, 2005

Single-site operators

- choose Dirac-Pauli convention for γ-matrices
 - 20 independent single-site Δ^{++} elemental operators:

 $\Delta_{\alpha\beta\gamma} = \epsilon_{abc} \, \tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{u}_{c\gamma}, \qquad (\alpha \le \beta \le \gamma)$

• 20 independent single-site N⁺ elemental operators:

 $N_{\alpha\beta\gamma} = \varepsilon^{abc} \left(\tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{d}_{c\gamma} - \tilde{d}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{u}_{c\gamma} \right), \qquad (\alpha \le \beta, \, \alpha < \gamma)$

• 40 independent single-site Σ^+ elemental operators:

 $\Sigma_{\alpha\beta\gamma} = \epsilon_{abc} \,\, \tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \,\, \tilde{s}_{c\gamma} \qquad (\alpha \le \beta)$

• 24 independent single-site Λ^0 elemental operators:

$$\Lambda_{\alpha\beta\gamma} = \epsilon_{abc} \left(\tilde{u}_{a\alpha} \, \tilde{d}_{b\beta} \, \tilde{s}_{c\gamma} - \tilde{d}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{s}_{c\gamma} \right) \qquad (\alpha < \beta)$$

October 15, 2005

Δ ++ single-site operators

Irrep	Row	DP Operators
G_{1g}	1	$\Delta_{144} - \Delta_{234}$
G_{1g}	2	$-\Delta_{134}+\Delta_{233}$
G_{1u}	1	$\Delta_{124} - \Delta_{223}$
G_{1u}	2	$-\Delta_{114}+\Delta_{123}$
H_{g}	1	Δ_{222}
H_g	2	$-\sqrt{3}\Delta_{122}$
H_g	3	$\sqrt{3}\Delta_{112}$
H_g	4	$-\Delta_{111}$
H_{g}	1	$\sqrt{3}\Delta_{244}$
H_{g}	2	$-\Delta_{144}-2\Delta_{234}$
H_{g}	з	$2\Delta_{134}+\Delta_{233}$
H_{g}	4	$-\sqrt{3}\Delta_{133}$

Row	DP Operators
1	$\sqrt{3}\Delta_{224}$
2	$-2\Delta_{124}-\Delta_{223}$
3	$\Delta_{114}+2\Delta_{123}$
4	$-\sqrt{3}\Delta_{113}$
1	Δ_{444}
2	$-\sqrt{3}\Delta_{344}$
3	$\sqrt{3}\Delta_{334}$
4	$-\Delta_{333}$
	1 2 3 4 1 2 3

October 15, 2005

Single-site *N*+ operators

Irrep	Row	DP Operators
G_{1g}	1	N_{122}
G_{1g}	2	$-N_{112}$
G_{1g}	1	$N_{144} - N_{243}$
G_{1g}	2	$-N_{134} + N_{233}$
G_{1g}	1	$N_{144} - 2N_{234} + N_{243}$
G_{1g}	2	$N_{134} - 2N_{143} + N_{233}$
G_{1u}	1	N_{142}
G_{1u}	2	$-N_{132}$
G_{1u}	1	N344
G_{1u}	2	$-N_{334}$
G_{1u}	1	$2N_{124} - N_{142} - 2N_{223}$
G_{1u}	2	$-2N_{114} + 2N_{123} - N_{132}$

Irrep	Row	DP Operators
H_g	1	$\sqrt{3} N_{244}$
H_{g}	2	$-N_{144} - N_{234} - N_{243}$
H_{g}	3	$N_{134} + N_{143} + N_{233}$
H_{g}	4	$-\sqrt{3} N_{133}$
H_u	1	$\sqrt{3}N_{224}$
H_u	2	$-2N_{124} + N_{142} - N_{223}$
H_u	3	$N_{114} + 2N_{123} - N_{132}$
H_u	4	$-\sqrt{3} N_{113}$

October 15, 2005

Current status and next step

- Development of software to carry out the baryon computations has been completed and thoroughly tested (at long last!)
 - □ gauge-invariant three-quark propagators as intermediate step
 - □ baryon correlators are superpositions of *qqq*-propagator components → superposition coefficients precalculated
 - □ source-sink rotations to minimize source orientations
- Next step: smearing optimization and operator pruning
 - optimize link-variable and quark-field smearings
 - remove dynamically redundant operators
 - remove ineffectual operators
 - low statistics runs needed
 - □ monitor progress at <u>http://enrico.phys.cmu.edu</u>

October 15, 2005

Quark- and gauge-field smearing

- smeared quark and gluon fields fields \rightarrow dramatically reduced coupling with short wavelength modes
- link-variable smearing (stout links PRD69, 054501 (2004))
 - define $C_{\mu}(x) = \sum_{\pm (\nu \neq \mu)} \rho_{\mu\nu} U_{\nu}(x) U_{\mu}(x + \hat{\nu}) U_{\nu}^{+}(x + \hat{\mu})$ spatially isotropic $\rho_{jk} = \rho, \quad \rho_{4k} = \rho_{k4} = 0$

• exponentiate traceless Hermitian matrix

$$\Omega_{\mu} = C_{\mu}U_{\mu}^{+} \qquad Q_{\mu} = \frac{i}{2} \left(\Omega_{\mu}^{+} - \Omega_{\mu}\right) - \frac{i}{2N} \operatorname{Tr}\left(\Omega_{\mu}^{+} - \Omega_{\mu}\right)$$

iterate
$$U_{\mu}^{(n+1)} = \exp\left(iQ_{\mu}^{(n)}\right)U_{\mu}^{(n)}$$
$$U_{\mu} \rightarrow U_{\mu}^{(1)} \rightarrow \cdots \rightarrow U_{\mu}^{(n)} \stackrel{=}{=} \widetilde{U}_{\mu}$$

quark-field smearing (covariant Laplacian uses smeared gauge field)

$$\tilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma}\tilde{\Delta}^2\right)^{n_\sigma}\psi(x)$$

October 15, 2005

Importance of smearing

Nucleon G1g channeleffective masses of 3

selected operators

 noise reduction from link variable smearing, especially for displaced operators

•quark-field smearing reduces couplings to high-lying states

 $\sigma_s = 4.0, \quad n_\sigma = 32$ $n_\rho \rho = 2.5, \quad n_\rho = 16$

•effect on excited states still to be studied

October 15, 2005

Tuning the smearing

• the effective mass at $t = 4a_t$ for three specific nucleon operators for different quark-field smearings (link smearing same as last slide)

Operator plethora (G1g Nucleon)

October 15, 2005

G1g nucleon operators

October 15, 2005

G1g nucleon operators

October 15, 2005

G1g nucleon operators

October 15, 2005

G2g nucleon operators

October 15, 2005

Hu nucleon operators

October 15, 2005

More effective masses

single-site + triply-displaced-T operators (25 configurations)

October 15, 2005

Principal effective masses

• principal effective masses for small set of 10 operators

G_{1q} on left, other irreps on right.

Summary

- outlined ongoing efforts of LHPC to extract baryon spectrum using Monte Carlo methods on a space-time lattice
 - □ mesons (and hybrids), tetraquarks, ...to be studied as well
- emphasized need for correlation matrices to extract spectrum
- spin identification must be addressed
- as light-quark mass decreases, inclusion of multi-hadron operators will become important
- very challenging calculations
- …to be continued

