

#### DANIEL S. CARMAN OHIO UNIVERSITY





## Outline

> Physics Motivation \* Hadronic structure \* Strangeness physics \* Reaction dynamics

Formalism
\* Different observables

> Physics Models

Selected Physics Results

 \* Cross sections & spin observables
 \* Photoproduction
 \* Electroproduction

 Summary / Conclusions



### **N\* Physics at CLAS**

One of the main physics goals of the CLAS program is to probe the structure of the nucleon and its excited states.



→ The N\* spectrum is the emblem of QCD just like the hydrogen atom spectrum is the emblem of quantum mechanics. (F. Lee)

Obtain accurate electromagnetic production cross sections and spin observables over a broad kinematic range.

-> Complete coverage of hadronic decay final state.

Determine the appropriate degrees of freedom to describe hadronic matter as a function of the relevant energy/distance scale.

-> Better understand the connections between the different scales.

#### **Why Strangeness Production?**



Most of what we know about the N\* spectrum comes from:

 $\pi + N 
ightarrow (N^* ext{ or } \Delta^*) 
ightarrow \pi + N ext{ or } \pi + \Delta$ 

**Q** Processes involving strange particle production are complementary.

 $\gamma^{(*)} + N 
ightarrow (N^* ext{ or } \Delta^*) 
ightarrow K + Y$ 

#### **Why Strangeness Production?**



**Solution** Most of what we know about the N\* spectrum comes from:

 $\pi + N 
ightarrow (N^* ext{ or } \Delta^*) 
ightarrow \pi + N ext{ or } \pi + \Delta$ 

Processes involving strange particle production are complementary.

$$\gamma^{(*)} + N 
ightarrow (N^* ~{
m or}~~ \Delta^*) 
ightarrow K + Y$$

(different couplings involved)

Daniel S. Carman, Ohio University



Daniel S. Carman, Ohio University

#### **The Current Landscape**



| $N^* 	o KY$              |      |                   |                  |                            |                               |  |
|--------------------------|------|-------------------|------------------|----------------------------|-------------------------------|--|
| State                    | PDG  | B.R. $(K\Lambda)$ | B.R. $(K\Sigma)$ | $A_{1/2}~({ m GeV^{1/2}})$ | $A_{3/2} \; ({ m GeV^{1/2}})$ |  |
| $N^{st}(1650)\;S_{11}$   | **** | 3-11%             | -                | $0.053 \pm 0.016$          |                               |  |
| $N^{st}(1675) \; D_{15}$ | **** | $<\!1\%$          | -                | $0.019 \pm 0.008$          | $0.015 \pm 0.009$             |  |
| $N^{st}(1680)\;F_{15}$   | **** | -                 | -                | $-0.015 \pm 0.006$         | $0.133 \pm 0.012$             |  |
| $N^{*}(1700) \; D_{13}$  | ***  | $<\!\!3\%$        | -                | $-0.018 \pm 0.013$         | $-0.002 \pm 0.024$            |  |
| $N^{*}(1710) \; P_{11}$  | ***  | 5-25%             | -                | $0.009 \pm 0.022$          |                               |  |
| $N^{*}(1720) \; P_{13}$  | ***  | 1 - 15%           | -                | $0.018 \pm 0.03$           | $-0.019 \pm 0.020$            |  |
| $N^{*}(1900) \; P_{13}$  | **   | -                 | -                | -                          | -                             |  |
| $N^*(1990) \; F_{17}$    | **   | -                 | -                | -                          | _                             |  |
| $N^{st}(2000)\;F_{15}$   | **   | -                 | _                | _                          | -                             |  |

| $\Delta^* 	o K\Sigma$        |      |                  |                               |                            |  |  |
|------------------------------|------|------------------|-------------------------------|----------------------------|--|--|
| State                        | PDG  | B.R. $(K\Sigma)$ | $A_{1/2} \; ({ m GeV^{1/2}})$ | $A_{3/2}~({ m GeV^{1/2}})$ |  |  |
| $\Delta^{*}(1900) \; S_{31}$ | **   | -                | ?                             |                            |  |  |
| $\Delta^{*}(1905) \; F_{35}$ | **** | -                | $0.026 \pm 0.011$             | $-0.045 \pm 0.020$         |  |  |
| $\Delta^{*}(1910) \; P_{31}$ | **** | -                | $0.003 \pm 0.014$             |                            |  |  |
| $\Delta^*(1920) \; P_{33}$   | ***  | 2.1%             | ?                             | ?                          |  |  |
| $\Delta^*(1930) \; D_{35}$   | ***  | -                | $-0.009 \pm 0.028$            | $-0.018 \pm 0.028$         |  |  |
| $\Delta^*(1940) \; D_{33}$   | *    | -                | ?                             | ?                          |  |  |
| $\Delta^{*}(1950) \; F_{37}$ | **** | _                | $-0.076 \pm 0.012$            | $-0.097 \pm 0.010$         |  |  |

We have significant room for improvement!!



#### **Polarization Observables**

Most of our understanding about the reaction mechanism comes from unpolarized experiments.

> This gives access only to limited information.

Polarization provides information about the contributing amplitudes.



Access underlying dynamics via both single and double polarization.

- $\overrightarrow{\gamma}(+) + \mathbf{p} \rightarrow \mathbf{K}^+ + \mathbf{Y}$
- $\gamma^{(*)} + \mathbf{p} \rightarrow \mathbf{K}^+ + \overrightarrow{\mathbf{Y}}$
- $\overrightarrow{\gamma}^{(*)} + \mathbf{p} \rightarrow \mathbf{K}^+ + \overrightarrow{\mathbf{Y}}$

- **Beam Asymmetry**
- **Induced Polarization**
- **Transferred Polarization**



#### **Hadrodynamic Models**

> Isobar models based on effective Lagrangian.

(Mart, Bennhold, Janssen)

**>** Features primarily due to s-channel resonances.

- t-channel contains only K and K\*.
- Coupling strengths set by fits to existing data.
- Parameters set by coupled-channels study.
- Recent addition of u-channel Y\* resonances.
- > Effective at low to moderate energies.

#### **Regge Models**

> Models based on t-channel Regge exchange.

(Guidal, Laget, Vanderhaeghen)

- > NO s-channel resonances included.
- > Very few adjustable parameters.
- > Effective at moderate to higher energies.



|                             | $\mathbf{B}\mathbf{M}$ |               | JB           |               |
|-----------------------------|------------------------|---------------|--------------|---------------|
| Resonance                   | $K^+\Lambda$           | $K^+\Sigma^0$ | $K^+\Lambda$ | $K^+\Sigma^0$ |
| $N^*(1650) (S_{11})$        | *                      | *             | *            | *             |
| $N^*(1710) (P_{11})$        | *                      | *             | *            | *             |
| $N^*(1720) (P_{13})$        | *                      | *             | *            | *             |
| $N^*(1895) (D_{13})$        | *                      | *             | *            | *             |
| $K^{*}(892)$                | *                      | *             | *            | *             |
| $K_1^*(1270)$               | *                      | *             | *            | *             |
| $\Lambda^*(1800) (S_{01})$  |                        |               | *            |               |
| $\Lambda^*(1810) (P_{01})$  |                        |               | *            |               |
| $\Delta^*(1900) \ (S_{31})$ |                        | *             |              | *             |
| $\Delta^*(1910) (P_{31})$   |                        | *             |              | *             |









**Electron Coverage:**  $\theta$  : 15–50°

Hadron Coverage:

 $\theta:15\text{--}140^{\textbf{o}},\ \phi:80\%\ 2\pi$ 

**Resolution :**  $\Delta p/p \sim 1-2\%$ 

 $\Delta \theta, \Delta \phi \sim 2 mrad$ 

```
\mathcal{L} = 1 	imes 10^{34} \ cm^{-2} sec^{-1}
\mathcal{F}_{\gamma} = 1 \times 10^7 / s
```





#### **Polarization Extraction**



The polarization of the  $\Lambda$  is "betrayed" by angular distribution of the proton.

$$rac{dN_p^{\pm}}{d(\cos heta_p^*)} = N^{\pm}[1+lpha P_\Lambda\cos heta_p^*]$$
 (Self-Analyzing Decay)

$$\vec{P}_{\Lambda} = \vec{P}^{o} \pm P_{b}\vec{P}'$$
  
Transferred  
Induced

No polarimeter needed!







2.6

2.4



Bradford (CLAS), submitted to PRC (2005).



Deviations apparent with models over full kinematics.

– Transferred polarization C<sub>x</sub>, C<sub>z</sub> (see Bradford talk).

Similar signatures to electroproduction

#### **Higher–Level Analysis**

#### Decays of Baryon Resonances into $\Lambda K^+$ , $\Sigma^0 K^+$ and $\Sigma^+ K^0$

A.V. Sarantsev<sup>1,2</sup>, V.A. Nikonov<sup>1,2</sup>, A.V. Anisovich<sup>1,2</sup>, E. Klempt<sup>1</sup>, and U. Thoma<sup>1,3</sup>

<sup>1</sup> Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Germany

<sup>2</sup> Petersburg Nuclear Physics Institute, Gatchina, Russia

<sup>3</sup> Physikalisches Institut, Universität Gießen, Germany

#### hep-ex/0506011

June 7, 2005

**Abstract.** Cross sections, beam asymmetries, and recoil polarisations for the reactions  $\gamma p \rightarrow K^+\Lambda; \gamma p \rightarrow K^+\Sigma^0$ , and  $\gamma p \rightarrow K^0\Sigma^+$  have been measured by the SAPHIR, CLAS, and LEPS collaborations with high statistics and good angular coverage for centre-of-mass energies between 1.6 and 2.3 GeV. The combined analysis of these data with data from  $\pi$  and  $\eta$  photoproduction reveals evidence for new baryon resonances in this energy region. A new P<sub>11</sub> state with mass 1840 MeV and width 140 MeV was observed contributing to most of the fitted reactions. The data demand the presence of two D<sub>13</sub> states at 1870 and 2170 MeV. *PACS:* 11.80.Et, 11.80.Gw, 13.30.ce, 13.30.Ce, 13.30.Eg, 13.60.Le 14.20.Gk

| Resonance                     | $\Gamma_{\mathrm{N}\eta}/\Gamma_{\mathrm{N}\pi}$ | $\Gamma_{\Lambda \mathrm{K}}/\Gamma_{\mathrm{N}\pi}$ | $\Gamma_{\Sigma \mathrm{K}}/\Gamma_{\mathrm{N}\pi}$ |
|-------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| $N(1520)D_{13}$               | $1.5 \cdot 10^{-3}$                              | 0                                                    | 0                                                   |
| $N(1675)D_{15}$               | 0.05                                             | 0.05                                                 | 0                                                   |
| $N(1680)F_{15}$               | $1 \cdot 10^{-3}$                                | $1 \cdot 10^{-4}$                                    | 0                                                   |
| $N(1700)D_{13}$               | 0.80                                             | 0.07                                                 | $5.10^{-3}$                                         |
| $N(1720)P_{13}$               | 0.80                                             | 0.20                                                 | 0.01                                                |
| $N(1840)P_{11}$               | 0.25                                             | 0.11                                                 | 0.80                                                |
| $N(1870)D_{13}$               | 2.0                                              | 0.28                                                 | 1.6                                                 |
| $N(2000)F_{15}$               | 0.04                                             | $5 \cdot 10^{-3}$                                    | $3.10^{-3}$                                         |
| $N(2070)D_{15}$               | 0.30                                             | $8 \cdot 10^{-3}$                                    | 0.015                                               |
| $N(2170)D_{13}$               | 0.04                                             | 0.17                                                 | 0.14                                                |
| $N(2200)P_{13}$               | 2.0                                              | 0.18                                                 | 0.11                                                |
| $\Delta(1700)D_{33}$          |                                                  |                                                      | $2.5 \cdot 10^{-3}$                                 |
| $\Delta(1920)\mathrm{P}_{33}$ |                                                  |                                                      | 0.04                                                |
| $\Delta(1940)D_{33}$          |                                                  |                                                      | 0.75                                                |
| $\Delta(1950)\mathrm{F}_{37}$ |                                                  |                                                      | 0.01                                                |

| Observable                                                     | $N_{\rm data}$ | $\chi^2$ | $\chi^2/N_{\rm data}$ | Weight |
|----------------------------------------------------------------|----------------|----------|-----------------------|--------|
| $\sigma(\gamma p \rightarrow \Lambda K^+)$                     | 720            | 804      | 1.12                  | 4      |
| $\sigma(\gamma \mathrm{p} \to \Lambda \mathrm{K}^+)$           | 770            | 1282     | 1.67                  | 2      |
| ${ m P}(\gamma p  ightarrow \Lambda { m K}^+)$                 | 202            | 374      | 1.85                  | 1      |
| $\varSigma(\gamma \mathrm{p}  ightarrow \Lambda \mathrm{K}^+)$ | 45             | 62       | 1.42                  | 15     |
| $\sigma(\gamma p \rightarrow \Sigma^0 K^+)$                    | 660            | 834      | 1.27                  | 1      |
| $\sigma(\gamma p \rightarrow \Sigma^0 K^+)$                    | 782            | 2446     | 3.13                  | 1      |
| $P(\gamma p \rightarrow \Sigma^0 K^+)$                         | 95             | 166      | 1.76                  | 1      |
| $\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$                    | 45             | 20       | 0.46                  | 35     |
| $\sigma(\gamma p \rightarrow \Sigma^+ K^0)$                    | 48             | 104      | 2.20                  | 2      |
| $\sigma(\gamma p \rightarrow \Sigma^+ K^0)$                    | 120            | 109      | 0.91                  | 5      |
| $\sigma(\gamma \mathrm{p}  ightarrow \mathrm{p} \pi^0)$        | 1106           | 1654     | 1.50                  | 8      |
| $\sigma(\gamma \mathrm{p}  ightarrow \mathrm{p} \pi^0)$        | 861            | 2354     | 2.74                  | 3.5    |
| $\Sigma(\gamma \mathrm{p}  ightarrow \mathrm{p} \pi^0)$        | 469            | 1606     | 3.43                  | 2      |
| $\Sigma(\gamma \mathrm{p}  ightarrow \mathrm{p} \pi^0)$        | 593            | 1702     | 2.87                  | 2      |
| $\sigma(\gamma { m p}  ightarrow { m n} \pi^+)$                | 1583           | 4524     | 2.86                  | 1      |
| $\sigma(\gamma \mathrm{p}  ightarrow \mathrm{p} \eta)$         | 667            | 608      | 0.91                  | 35     |
| $\sigma(\gamma \mathrm{p}  ightarrow \mathrm{p} \eta)$         | 100            | 158      | 1.60                  | 7      |
| $\Sigma(\gamma p \rightarrow p\eta)$                           | 51             | 114      | 2.27                  | 10     |
| $\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p}\eta)$         | 100            | 174      | 1.75                  | 10     |

#### Need to reduce ambiguities and improve fits with electroproduction data.

Daniel S. Carman, Ohio University



#### **Structure Functions in Electoproduction**



Solution For each bin in W,  $Q^2$ ,  $\cos \theta_K^*$ perform fit of the form:

 $\sigma = A + B \cos 2\Phi + C \cos \Phi$ 

Provide tomography of structure functions over full kinematic space of the nucleon resonance region.

 $Q^2: 0.5 
ightarrow 3.5 \ {
m GeV}^2 \quad W: 1.6 
ightarrow 2.4 \ {
m GeV}$  Full coverage in K<sup>+</sup> solid angle

#### **Structure Functions in Electoproduction**





Solution For each bin in W,  $Q^2$ ,  $\cos \theta_K^*$ perform fit of the form:

 $\sigma = A + B \cos 2\Phi + C \cos \Phi$ 

Provide tomography of structure functions over full kinematic space of the nucleon resonance region.

 $Q^2: 0.5 
ightarrow 3.5 \ {
m GeV}^2 \quad W: 1.6 
ightarrow 2.4 \ {
m GeV}$  Full coverage in K<sup>+</sup> solid angle

#### **Structure Functions in Electoproduction**





Solution For each bin in W,  $Q^2$ ,  $\cos \theta_K^*$ perform fit of the form:

 $\sigma = A + B \cos 2\Phi + C \cos \Phi$ 

Provide tomography of structure functions over full kinematic space of the nucleon resonance region.

 $Q^2: 0.5 
ightarrow 3.5 \ {
m GeV}^2 \quad W: 1.6 
ightarrow 2.4 \ {
m GeV}$  Full coverage in K<sup>+</sup> solid angle



Daniel S. Carman, Ohio University

N\*2005 Workshop -- October 12-15, 2005

#### **Electroproduction Cross Sections**

 $ep 
ightarrow e'K^+\Sigma^0$ 



#### L/T Separation I

L and T structure functions are typically extracted using Rosenbluth approach.

With CLAS we can also perform a simultaneous fit that constrains L, T, LT, and TT structure functions.

 $\sigma_i = f(Q^2, W, \cos heta_K^*)$  only

**Reduces systematics!** 



*N\*2005 Workshop -- October 12-15, 2005* 



**PRELIMINARY** 



– Mohring (Hall C)
– Markowitz (Hall A)

CLAS, to be submitted (2005).

Daniel S. Carman, Ohio University

#### **Fifth Structure Function**

 $ec{e}+p
ightarrow e'+K^++\Lambda$ 

Measure polarized beam asymmetry to extract fifth structure function.



$$A_{LT'} = \frac{1}{P_e} \frac{N^+ - N^-}{N^+ + N^-}$$
$$= \frac{1}{\sigma_0} \sqrt{2\epsilon_L(1-\epsilon)} \sigma_{LT'} \sin \Phi$$

#### **Calculations from:**

Mart/Bennhold Janssen Guidal

**Substantial differences in the reaction dynamics.** 

**2.567 GeV**  $Q^2 = 0.70 (GeV/c)^2$ 

Nasseripour (CLAS), to be submitted (2005).

N\*2005 Workshop -- October 12-15, 2005



**WJC92** 

\*

\*

\*

\*

\*

2.567 GeV

**BM02** 

\*

\*

\*

\*

\*

\*

**J02** 

\*

\*

\*

\*

\*

\*

\*

\*

### L/T Separation II

• P' data can be used to extract the ratio  $\sigma_{L}/\sigma_{T}$ .

A complementary approach!

Substitution  $\Theta_K^* = 0$ :

 $R = rac{\sigma_L}{\sigma_T} = rac{1}{\epsilon} iggl( rac{c_0}{\mathcal{P}_{z'}'} - 1 iggr)$ 





 $ec{e}+p
ightarrow e'+K^++ec{\Lambda}$ 

*N\*2005 Workshop -- October 12-15 , 2005* 

### **Summary/ Conclusions**



The Hall B strangeness physics program:

Designed to measure cross sections and all combinations of beam, target, and recoil polarization states.

\* Precision data -- broad kinematic coverage

Sensitive to high-mass baryons (>1.6 GeV) with large K-Y couplings and large photocoupling amplitudes.

So far we have found:

**–** Suggestive evidence of resonant structures in the data.

**\*** Both photo- and electroproduction

- **—** Existing theoretical models do not describe the data well in our kinematics.
- **—** Polarization data is quite versatile and useful to study.
- Work needed to incorporate these data into the models.

\* Opportunity for significant new constraints



$$\frac{d\sigma}{d\Omega_{E'} d\Omega_{K}^{*} dE'} = \Gamma_{v} \frac{d\sigma_{v}}{d\Omega_{K}^{*}} \qquad \text{(For unpolarized target)}$$

$$\frac{d\sigma}{d\Omega_{E'}} = \sigma_{0} \left[ 1 + h A_{TL'} + \vec{S} \cdot \vec{P}^{0} + h \left( \vec{S} \cdot \vec{P}' \right) \right]$$

$$\text{Unpolarized Cross Section} \qquad \left[ \sigma_{0} = \mathcal{K}(R_{P'}^{00} + \epsilon_{L} R_{L}^{00} + \epsilon R_{TT}^{00} \cos 2\Phi + \sqrt{2\epsilon_{L}(1+\epsilon)} R_{TL}^{00} \cos \Phi \right]$$

$$A_{TL'} = \frac{\mathcal{K}}{\sigma_{0}} \sqrt{2\epsilon_{L}(1-\epsilon)} R_{TL'}^{00} \sin \Phi \qquad \textbf{Polarized beam}$$

$$\left[ \begin{pmatrix} P_{x'}^{0} \\ P_{y'}^{0} \\ P_{z'}^{0} \end{pmatrix} = \frac{\mathcal{K}}{\sigma_{0}} \begin{pmatrix} \sqrt{2\epsilon_{L}(1-\epsilon)} R_{TL}^{20} \sin \Phi + \epsilon R_{TT}^{20} \sin 2\Phi \\ \sqrt{2\epsilon_{L}(1+\epsilon)} R_{TL}^{20} \sin \Phi + \epsilon R_{TT}^{20} \sin 2\Phi \end{pmatrix} \right] \qquad \textbf{Induced polarization}$$

$$\left[ \begin{pmatrix} P_{x'}^{\prime} \\ P_{y'}^{\prime} \\ P_{y'}^{\prime} \\ P_{y'}^{\prime} \end{pmatrix} = \frac{\mathcal{K}}{\sigma_{0}} \begin{pmatrix} \sqrt{2\epsilon_{L}(1-\epsilon)} R_{TL'}^{20} \cos \Phi + \sqrt{1-\epsilon^{2}} R_{TT'}^{20} \\ \sqrt{2\epsilon_{L}(1-\epsilon)} R_{TL'}^{20} \sin \Phi + \sqrt{1-\epsilon^{2}} R_{TT'}^{20} \end{pmatrix} \right] \qquad \textbf{Transferred polarization}$$

#### **Normalization Check**

$$\gamma + p o \pi^+ + n$$

# CLAS data normalized to pion production.

(photoproduction)

A sampling of the comparison.



**R.A. Schumacher and J. McNabb** 







#### **Electroproduction Cross Sections**

 $ep 
ightarrow e'K^+\Lambda$ 



#### **Electroproduction Cross Sections**

 $ep 
ightarrow e'K^+\Sigma^0$ 

