Recent results from the Crystal Barrel experiment at ELSA

U.Thoma, Bonn University

- Introduction
- η -photoproduction
- $2\pi^0$ photoproduction
- $\pi^0\eta$ photoproduction
- Results of the partial wave analysis
- Future
- Summary

QCD: Effects of the running coupling constant α_s :

Better understanding of strong QCD and the structure of hadrons:

- What are the relevant degrees of freedom ?
- And the effective forces ?

 \Rightarrow Meson - Spectroscopy, Baryon - Spectroscopy

Good understanding of the spectrum and the properties of resonances

- Search for new/missing baryon resonances Investigate the photoproduction of final states different from πN (Missing states are expected to decouple from πN)
- Do these missing states really exist ?
 Do diquark models describe the spectrum ?
 ↔ P₁₁(2100), P₁₃(1900), F₁₅(2000), F₁₇(1990)
 (both oscillators need to be excited)
- Do the neg. parity Δ^* -states \sim 1900 MeV exist?
- Determination of their properties
 - \rightarrow Comparison with models
 - \rightarrow Nature of states, e.g. P₁₁(1440) ?

U. Loering, B. Metsch, H. Petry et al.:

The Crystal Barrel experiment at ELSA

Tagging system

- 14 scintillation counters
- 2 wire chambers
 (352 energy channels)

Tagging range: 25-95 $\%~E_{e^-}$

Innerdetector

3 layers of scintillating fibers

- Additional reconstruction point
- Trigger on charged particles

η - Photoproduction

 \Rightarrow S₁₁(1535), D₁₃(1520), S₁₁(1650), F₁₅(1680), P₁₃(1720), D₁₃(2080) + ... + ρ -, ω -t-channel exchange + new D₁₅: m = 2068 ± 22 MeV,

 Γ = 295 \pm 40 MeV

 \leftrightarrow No need for a 3rd S₁₁!

New $D_{15}\xspace$ -state

⇔ Results vary strongly!

Search for
$$\mathrm{N}^*/\Delta^* o \Delta\pi \;$$
 in $\gamma\mathrm{p} o \mathrm{p}\pi^0\pi^0$

Advantages:

- No diffractive ρ (770) production
- No direct $\Delta^{++}\pi^-$ production
- Fewer Born-terms, t-channel exchanges

 $\Rightarrow \gamma \mathrm{p} o \mathrm{p} \pi^0 \pi^0 \,$ very well suited to investigate $\mathrm{N}^*/\Delta^* o \Delta \pi$

Bigger contribution of resonant amplitudes !

(e.g. compared to $\,\gamma {
m p}
ightarrow {
m p} \pi^+ \pi^-$)

\Rightarrow CB-ELSA

$\gamma p ightarrow p \pi^0 \pi^0 \,$ from TAPS and GRAAL

\Leftrightarrow Big discrepancy:

Oset: D₁₃(1520) $\rightarrow \Delta \pi$ dominant, Laget: P₁₁(1440) $\rightarrow p\sigma$ dominant

Total cross section $~\gamma p ightarrow p \pi^0 \pi^0$ CB-ELSA

Results for our PWA in comparison to $\sigma_{3/2}, \, \sigma_{1/2}$ $\vec{\gamma} \vec{p} ightarrow p \pi^0 \pi^0$ from Daphne at MAMI

Amplitudes adjusted to our unpolarised data only!:

 \rightarrow Extension of the energy range up to 3 GeV

Clear observation of baryon cascades:

$$egin{aligned} &\gamma \mathrm{p}
ightarrow \mathrm{N}^* / \Delta^*
ightarrow \Delta \pi \ &\gamma \mathrm{p}
ightarrow \mathrm{N}^* / \Delta^*
ightarrow \mathrm{D}_{13} ext{(1520)} \pi \ &\gamma \mathrm{p}
ightarrow \mathrm{N}^* / \Delta^*
ightarrow \mathrm{N}^* / \Delta^* ext{ (\sim 1660)} \pi \end{aligned}$$

 \rightarrow Observed for the first time in this data

 \rightarrow Comparison with models 10000 Λ(1232) 8000 $D_{13}(1520)$ 6000 X(1660) 4000 2000

1 1.11.21.31.41.51.61.71.81.9 2

resonance properties:

m, Γ , couplings (\leftrightarrow combined fit)

m(pπ⁰)

 $rightarrow \gamma
m p
ightarrow
m N^*/\Delta^*$ which do not couple to $\pi
m N$ or $\gamma
m N$ could be produced in such cascade decays

$$\gamma \mathrm{p}
ightarrow \mathrm{p} \pi^0 \eta$$

U. Loering et al.

Partial wave analysis:

 $\Rightarrow \Delta^* (\sim 1900) \ {
m J}^{
m P}$ = $rac{3}{2}^-$ needed

+ hints for a possible new resonance
+ observation of baryon cascades
but: 3 ambiguous solutions found

Problem of the partial wave analysis

- Especially at higher energies -
- $\leftrightarrow \textbf{Ambiguous solutions}$

(similar quality of data description reached with different sets of contributing amplitudes)

- \Rightarrow Need for polarisation experiments !
- \leftrightarrow Additional constraints for PWA
 - Distinguish between ambiguous solutions
 - Higher sensitivity on smaller contributions
 - Further confidence in results
- ⇒ Single and double polarisation experiments necessary

CB-TAPS and linear polarisation

+ linearly polarised photons:

 $\leftrightarrow \Phi$ -asymmetry expected:

$$N(\Phi) = N_0(1 - P_T \cdot \Sigma * \cos 2\Phi)$$

Data taking Sep'2002 - Dec'2003

Crystal Barrel

 \rightarrow 90 CsI(TI)-crystals removed

TAPS:

- 528 BaF₂- crystals
- High granularity
- Fast trigger

 \Rightarrow Data analysis in progress ...

future double polarisation experiments \rightarrow see talk by H.Schmieden

 \Rightarrow High sensitivity of polarisation variables !!

Summary

- High quality data has been taken
 - Extends the covered angular and energy range
- \rightarrow First evidence for new resonances: D₁₅(2070) \rightarrow p η (Combined PWA of data on $\gamma p \rightarrow p\pi^0, p\eta, K\Lambda, K\Sigma$: hints for additonal new states)
- \rightarrow Determination of resonance properties (combined PWA)
- $\to\,$ Clear observation of baryon cascades in $\gamma p \to p \pi^0 \pi^0$, $\gamma p \to p \pi^0 \eta$ decays via D_{13}(1520) π^0 and S_{11}(1520) π^0

 \Leftrightarrow Already very interesting !

But there is a lot more to be discovered \Rightarrow

 $\leftrightarrow \textbf{Polarisation experiments}$

 \Rightarrow Detailed testing ground for quark models, lattice QCD calculations ...

Thank you !

$N^{\ast}\mbox{-Resonances}$ with instanton induced forces

Quark model : More Baryons predicted than observed

Possible explanations:

⇔ Baryons have a quark-diquark structure:

One of the internal degrees of freedom is frozen

 $\Leftrightarrow \text{They have not been observed up to now}$ Nearly all existing data from πN - scattering experiments $\Leftrightarrow \text{Missing states decouple from } \pi N$ (supported by theory)

Missing resonances:

→ Many states are predicted to couple significantly to e.g.: $N\eta$, $N\eta'$, $N\omega$, $\Delta\pi$, $N\rho$, $\Delta\eta$, $\Delta\omega$, and $\underline{\gamma p}$ ⇒ Big discovery potential of photoproduction experiments

In addition:

Measurement of resonance properties

- Photocouplings, partial widths

 \Rightarrow Additional information \leftrightarrow Discrimination between different models

Future: Double polarisation experiments

- \rightarrow Discrimination between ambiguous solutions in the PWA
- \rightarrow Higher sensitivity to small contributions

Simulations:

• $\gamma p \rightarrow p \pi^0 \pi^0$ - circular polarised beam on longitudinal polarised target:

.... starting 2006

SFB/TR16

JUSTUS-LIEBIG-

•
$$\gamma p \rightarrow N^* / \Delta^* \rightarrow X \pi^0 \rightarrow p \pi^0 \pi^0$$

The new states - a comparison with the quark model -

New P_{11}

$$I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$$
 Status: *

OMITTED FROM SUMMARY TABLE

N(2100) BREIT-WIGNER MASS

_
>

N(2100) BREIT-WIGNER WIDTH

	VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
<	113 ± 44	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$	>
	260 ± 100	CUTKOSKY	80	PVA	$\pi N \rightarrow \pi N$	
	$200\pm$ 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
	• • • We do not use the following o	data for averages	, fits	, limits,	etc. • • •	
	1077 ± 643	VRANA	00	DPWA	Multichannel	
	$296 \pm 100 + \frac{60}{10}$	PLOETZKE	98	SPEC	$\gamma p \rightarrow p \eta'$ (958)	
	418±171	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$	

$K\Lambda,\,K\Sigma$ - data

New $D_{13}\xspace$ -states

- $D_{13}(1875 \pm 25, 80 \pm 20)$:

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$
 Status: **

OMITTED FROM SUMMARY TABLE

There is some evidence for two resonances in this wave between 1800 and 2200 MeV (see CUTKOSKY 80). However, the solution of HOEHLER 79 is quite different.

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters **111B** (1982).

N(2080) BREIT-WIGNER MASS

	VALUE (MeV)	DOCUMENT ID		DOCUMENT ID		TECN	COMMENT
	\approx 2080 OUR ESTIMATE						
	$1804\pm$ 55	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$		
	1920	BELL	83	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$		
-	1880 ± 100	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
\subseteq	2060 ± 80	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
	1900	SAXON	80	DPWA	$\pi^- ho ightarrow \Lambda \kappa^0$		
	2081 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$		
	• • • We do not use the following	g data for averages	, fits	, limits,	etc. • • •		
	$1946\pm$ 1	PENNER	0 2C	DPWA	Multichannel		
	1895	MART	00	DPWA	$\gamma p \rightarrow \Lambda K^+$		
	$2003\pm~18$	VRANA	00	DPWA	Multichannel		
	1986 ± 75	BATINIC	95	DPWA	π N $ ightarrow$ N π , N η		
	1880	BAKER	79	DPWA	$\pi^- ho ightarrow n\eta$		

N(2080) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
450 ± 185	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
320	BELL	83	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
180 ± 60	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ (lower <i>m</i>)
300 ± 100	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ (higher m)
240	SAXON	80	DPWA	$\pi^- ho ightarrow \Lambda K^0$
$265\pm$ 40	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use the following 	ng data for averages	, fits	, limits,	etc. • • •
859± 7	PENNER	0 2C	DPWA	Multichannel
372	MART	00	DPWA	$\gamma p \rightarrow \Lambda K^+$
1070 ± 858	VRANA	00	DPWA	Multichannel
1050 ± 225	BATINIC	95	DPWA	π N $ ightarrow$ N π , N η
87	BAKER	79	DPWA	$\pi^- ho ightarrow n\eta$

New $D_{15}\xspace$ -state

⇔ Results vary strongly!

$ec{\gamma} \mathrm{p} ightarrow \mathrm{p} \pi^0 \pi^0$

Beam asymmetry:

(compton back-scattered $\gamma\text{-beam}$ \leftrightarrow linear polarisation)

Diagrams included by Oset

$\gamma p ightarrow p \pi^0 \pi^0$ and $\gamma p ightarrow p \pi^+ \pi^-$ from CB-ELSA and CLAS

 \Rightarrow Similar resonance structures in both data sets !

- Isobar model
- Breit-Wigner (or K-matrix) parametrisation for the resonances
- s- and t-channel amplitudes included
- unbinned maximum likelihood fit
 - \rightarrow Event based
 - \rightarrow Takes all correllations properly into account
 - (5 independent variables)
 - \Rightarrow No fitting of projections !

 \leftrightarrow not yet including the CB-ELSA data

• Isobar model, ETA-MAID (Chiang et al.)

 $\Rightarrow S_{11}(1535), D_{13}(1520), S_{11}(1650), D_{15}(1675), F_{15}(1680), \\ D_{13}(1700), P_{11}(1710), P_{13}(1720), \rho -, \omega -t-channel exchange$

- Giessen coupled channel analysis (Penner, Mosel)
 - \Rightarrow S₁₁(1535), D₁₃(1520), S₁₁(1650), D₁₅(1675), F₁₅(1680), P₁₁(1710) (small), ρ -, ω -t-channel exchange
- Chiral constituent quark model (Saghai,Li)
 - \Rightarrow all known *** and **** -resonances, no t-channel exchange

 \Leftrightarrow 3rd S_{11} resonance needed M = 1780 MeV, Γ = 280 MeV

The new $D_{15}(2070)$

Resonance	$\mathrm{N}(2070)\mathrm{D}_{15}$						
J^P	$\Delta\chi^2_{ m tot}$	$\Delta \chi^2_{n\pi^0}$	$\Delta \chi^2_{nn}$	$\Delta \chi^2_{\Lambda { m K}^+}$	$\Delta \chi^2_{\Sigma \mathrm{K}}$		
omitted	1588	940	199	94	269		
repl. by $1/2^-$	1027	669	128	111	-45		
repl. by $3/2^-$	1496	851	214	-46	157		
repl. by $7/2^-$	1024	765	108	-1	19		
repl. by $9/2^-$	872	656	112	-9	118		
repl. by $1/2^+$	832	674	115	55	33		
repl. by $3/2^+$	1050	690	141	-42	20		
repl. by $5/2^+$	766	627	113	48	123		
repl. by $7/2^+$	807	718	112	-67	215		
repl. by $9/2^+$	1129	847	131	7	-9		

Best fit with / without the new D_{15} (2070) $\gamma \mathrm{p} ightarrow \mathrm{p} \eta$

—: best solution with new D $_{15}(2070)$

—: best fit without $D_{15}(2070)$

Best fit with / without the new D $_{15}$ (2070) $\gamma \mathrm{p} ightarrow \mathrm{p} \pi^0$

- —: best solution with new D $_{15}(2070)$
- -: best fit without $D_{15}(2070)$

Differential cross section helicity 1/2 - helicity 3/2

-: best solution, includes new D $_{15}(2070)$ -: 3/2 ⁻ state substitutes D $_{15}(2070)$ -: 3/2 ⁺ state substitutes D $_{15}(2070)$

Differential cross section helicity 1/2 - helicity 3/2

-: best solution, includes new D $_{15}(2070)$ -: 5/2 + state substitutes D $_{15}(2070)$

 $\gamma \mathrm{p}
ightarrow \mathrm{p} \pi^0 \eta$

$\gamma \mathrm{p} ightarrow \mathrm{p} \pi^0 \pi^0, \qquad \mathrm{m}(\mathrm{p} \pi^0)$

 $\gamma \mathrm{p}
ightarrow \mathrm{p} \pi^0 \pi^0, \qquad \mathrm{m}(\pi^0 \pi^0)$

$\gamma \mathrm{p} ightarrow \mathrm{p} \pi^0 \pi^0$

