Strangeness Production on the Neutron via the Reaction
\[\gamma n (p) \rightarrow K^+ \Sigma^- (p) \]

- motivation
- experiment
- K+ identification, kinematic corrections
- inclusive/exclusive analysis
- background studies
- acceptance/efficiency
- unfolding the \(\Sigma^- \) cross section

Jörn Langheinrich
NSTAR 2005
Strangeness Photoproduction

Isospin Channels:

\[\gamma p \rightarrow K^+ \Lambda \]
\[\gamma p \rightarrow K^+ \Sigma^0 \]
\[\gamma n \rightarrow K^+ \Sigma^- \]
\[\gamma n \rightarrow K^0 \Lambda \]
\[\gamma n \rightarrow K^0 \Sigma^0 \]
\[\gamma p \rightarrow K^0 \Sigma^+ \]
CEBAF Large Acceptance Spectrometer
g2a experiment

Beam energy E_0: 2.5 GeV
Photon energy: 20% - 95% of E_0 (tagged region)
Trigger: tagger + 1 charged (or 2 neutral)
Torus current: 87% pos. outbending
Beam current: 10-13 nA 10^{-4} radiator
Events recorded: over 2×10^9

This Analysis:
Ana Lima GWU
Jörn Langheinrich USC

Sponsor:
Barry Berman

Contributions:
Bernhard Mecking
Henri Juengst
Ioana Niculescu
Ulrike Thoma
All nice people doing g2 cooking, calibration, and shifts
K^+ cuts
$p_{K^+} = 0.504$ [GeV]

$\sigma_{\text{fit}} = 7.8$ [MeV]

K^*_MASS [GeV]

K^*_MASS [GeV]

K^*_MASS [GeV]

$p_{K^+} = 1.031$ [GeV]

$\sigma_{\text{fit}} = 22.8$ [MeV]

$p_{K^+} = 1.515$ [GeV]

$\sigma_{\text{fit}} = 36.9$ [MeV]
K⁺ Mass Peak / Resolution

Data
MC Simulation
Polynomial(3) function

Data
MC Simulation
Several gpp settings
K$^+$ Time-of-Flight Correction

Before

Kaon mass [GeV/c2]

Φ [deg]
K^+ Time-of-Flight Correction

After

Kaon mass [GeV/c2]

Φ [deg]

... consider fiducial cuts
Inclusive or Exclusive analysis?

\[\Sigma^- \text{ missing mass} \]

- **High Acceptance**
 - Flat Acceptance
 - High θ, E_γ coverage
 - Model independent simulation
 - Background easy to understand

\[\Sigma^- \rightarrow \pi n \]

- **Separation of Σ^-**
 - Stand alone analysis
 - High mass resolution
 - Fermi motion correction
 - Low background

Let's do both!

Ana Lima
Jörn Langheinrich

Ioana Niculescu
Gabriel Niculescu
$M_X = \sqrt{M_N^2 + M_K^2 - 2M_N E_K + 2E_Y (M_N - E_K + p_K \cos \theta)}$
Assuming Nucleon Target

![Plot showing the distribution of missing mass against the angle of decay, with peaks indicating the presence of different particles such as n, Λ, Σ, and Σ(1385).]
Other Assumptions

Deuterium target

Misidentified π^+
Missing mass vs Kaon mass

\[\Sigma(1385) \]

\[\Sigma \]

\[\Lambda \]
Divide missing mass distribution into bins
Fit K+ mass distribution in each bin

Check fit quality!
Hyperon structure in background

Σ peak 7695.4 evts

Λ peak 6412.61 evts

background 4867.39 evts

miss. mass ($1.362 < E_\gamma < 1.462 \quad 0.7 < \cos \theta_K^{CM} < 0.8$)

Pion contrib. identified by $\gamma p \rightarrow n\pi^+$

Background probability Method:
K⁺ Efficiency / Lab System

MC-simulation using isobar model [T.Mart] as event generator

thrown

reconstr.

background

acceptance
Smear Λ, Σ^0 photoproduction cross section measured off proton target [McNabb, Schumacher] by Fermi motion.

Apply phenomenological fit (Legendre Polynom) to get Σ^0 / Λ ratio

Use this ratio and our measured Λ cross section off deuteron target to calculate Σ^0 cross section

Subtract calculated Σ^0 cross section from our measured Σ_{TOTAL}
Differential Cross Section

Preliminary

\[\Lambda \]

\[\frac{d\sigma}{d\cos \theta} \quad [\mu b] \]

\[\begin{array}{c}
\text{E}_y = 1.012 \\
\sum \\
\text{below threshold}
\end{array} \]

\[\begin{array}{c}
\text{E}_y = 1.113 \\
\sum
\end{array} \]
Differential Cross Section

Preliminary

Our Analysis
Cross Section off Proton [McNabb, Schumacher]
After Sigma0 Subtraction
Our Analysis

Cross Section off Proton [McNabb, Schumacher]

After Sigma0 Subtraction
Our Analysis
Cross Section off Proton [McNabb, Schumacher]
After Sigma0 Subtraction
Our Analysis
Cross Section off Proton [McNabb, Schumacher]
After Sigma0 Subtraction
Our Analysis
Cross Section off Proton [McNabb, Schumacher]
After Sigma0 Subtraction
W dependence of results

Preliminary

$\cos \Theta_{K}^* = 0.35$

Σ after Σ^0 subtraction

Results from exclusive analysis

Kaon MAID
W dependence of results

Preliminary

Σ after Σ^0 subtraction

Results from exclusive analysis

Kaon MAID
Σ after Σ^o subtraction

Results from exclusive analysis

Kaon MAID
W dependence of results

$\cos \Theta_K^* = 0.65$

Σ after Σ^0 subtraction

Results from exclusive analysis

Kaon MAID
W dependence of results

Preliminary

$\cos \Theta_K^* = 0.75$

\[\sigma/d\Omega [\mu b/sr] \]

$W [\text{GeV}]$

Σ after Σ^0 subtraction

Results from exclusive analysis

Kaon MAID
Accomplished:

Robust, model independent analysis
Good/fair reproduction of Λ cross section
Surprising result for Σ^- cross section
 Σ^- cross section lower than expected
cos Θ structure: minimum at 0.45

To do:

Compare exclusive and inclusive
Discuss systematic errors

Your suggestion goes here

Analysis review process