Dynamical Model of $\gamma p \rightarrow K^+ \Lambda$

T.-S. Harry Lee

Argonne National Laboratory

Collaborators:
B. Julia-Diaz (Saclay and Pittsburgh)
B. Saghai (Saclay)
F. Tabakin (Pittsburgh)
Motivated by:
New accurate data of $\gamma p \rightarrow K\Lambda, K\Sigma$

- J.W.C. McNabb et al., PRC 69 (2004) 042201 (JLab)
- K.H. Glander et al., EPJA 19 (2004) 251 (SAPHIR)
- More to come

Objectives:
- Explore the hyperon production mechanisms
- Explore several "missing" nucleon resonances
General Considerations

Unitarity Condition:

\[S^\dagger S = 1 \quad S = 1 + iT \]

\[\rightarrow \]

\[\text{Im}[T_{\gamma N,KY}] \propto \sum_{MB} [T^\dagger]_{\gamma N,MB} T_{MB,KY} \]

\[\propto \sqrt{\sigma_{\gamma N,MB}} \sqrt{\sigma_{MB,KY}} \]

- \(T_{a,b} \) : reaction amplitude
- \(MB = KY, \pi N, \pi\pi N(\rho N, \pi \Delta) \ldots \)
- \(\sigma_{a,b} \) : cross section of \(a \rightarrow b \)
$\gamma p \rightarrow \left(\pi N, \pi \pi N \right) \rightarrow KY$ must be included
First step:

- Consider only the effects due to πN channel

Ingredients of a reaction Model:

- A direct reaction mechanism
- Accounts for coupled channel effects
Formulation

- Extend a dynamical model of $\gamma N \rightarrow \pi N$ (Sato and Lee) to include KY channel

- Channels included:
 $$\gamma p, \pi^+ n, \pi^0 p, K^+ \Lambda, K^+ \Sigma^0$$

- Apply a unitary transformation to derive Hamiltonian H from SU(3) Lagrangians
 $$H$$ is energy independent and hermitian

 $$\rightarrow$$
 Unitarity condition is trivially satisfied
Coupled channel equations:

\[T_{a,b}(E) = t_{a,b}(E) + t_{a,b}^R(E), \]

Resonant term:

\[t_{a,b}^R(E) = \sum_{N_i^*, N_j^*} \bar{\Gamma}_{N_i^*,a}(E)[G^*(E)]_{i,j} \bar{\Gamma}_{N_j^*,b}(E). \]

Non-resonant term:

\[t_{a,b}(E) = v_{a,b} + \sum_c v_{a,c} G_c(E) t_{c,b}(E), \]

Dressed vertex:

\[\bar{\Gamma}_{N^*,a}(E) = \Gamma_{N^*,a} + \sum_b \Gamma_{N^*,b} G_b(E) t_{b,a}(E), \]
Dressed vertex:

\[\tilde{\Gamma}_{N^*,a}(E) = \Gamma_{N^*,a} + \sum_b \Gamma_{N^*,b} G_b(E) t_{b,a}(E), \]

Quark Model Prediction

+ []

pion cloud effect
Photoproduction Amplitude

Dynamical Model:

\[a_{\ell \pm}^{\gamma N \rightarrow KY}(q_{KY}, k) = b_{\ell \pm}^{\gamma N \rightarrow KY}(q_{KY}, k) \]

\[+ \sum_{\alpha = KY} dp_{\alpha} p_{\alpha}^2 t_{\ell \pm K}^{\alpha \rightarrow KY}(q_{KY}, k) G_{0\alpha}(p_{\alpha}) b_{\ell \pm}^{\gamma N \rightarrow \alpha}(p_{\alpha}, k) \]

\[+ \sum_{\alpha = \pi N} dp_{\alpha} p_{\alpha}^2 t_{\ell \pm N}^{\alpha \rightarrow KY}(q_{KY}, k) G_{0\alpha}(p_{\alpha}) b_{\ell \pm}^{\gamma N \rightarrow \alpha}(p_{\alpha}, k) \]

Tree-diagram models:

\[a_{\ell \pm}^{\gamma N \rightarrow KY}(q_{KY}, k) = b_{\ell \pm}^{\gamma N \rightarrow KY}(q_{KY}, k) \]

- Not unitary
- No coupled-channel effects
Procedures

1. Determine \(\pi N \rightarrow KY \) and \(KY \rightarrow KY \)

- \(\nu_{\pi N,\pi N} : \) Sato–Lee model
- \(\nu_{\pi N,KY} \), and \(\nu_{KY,KY} : \) by SU(3)
Solve coupled-channel equation to get non-resonant $t_{\pi N,KY}$

calculate resonant amplitude $t^{R}_{\pi N,KY}$ from known N^*

adjust form factors and N^* parameters to fit data of $\pi N \rightarrow KY$
\[\pi N \rightarrow KY : \quad d\sigma/d\Omega \]

\[\rightarrow K^0\Lambda \quad \rightarrow K^0\Sigma^0 \]

Parameters in the meson–baryon potential are varied to reproduce the experimental data

R.D. Baker et al, NP (1978); T.M. Knasel et al, PRD (1975);
D.H. Saxon et al. NPb (1980); J.C. Hart et al. NPB (1980)
The asymmetries are defined as:

$$\sum \propto \frac{\sigma \perp - \sigma \parallel}{\sigma \perp + \sigma \parallel}$$

$$\rightarrow K^0 \Lambda \quad \rightarrow K^0 \Sigma^0$$

The achieved understanding of the $\pi N \rightarrow KY$ is enough for our purposes. Future data on $KY - KY$ would help to further constrain the model.
Procedures

2. Calculate $\gamma p \rightarrow K^+ \Lambda$ amplitudes

- The direct contributions $t_{\gamma p \rightarrow K^+ \Lambda}$:

 quark model (Li-Saghai)

\[(a) \quad \gamma \\ \rightarrow \\ p \\ \Lambda \\ \rightarrow \\ K^+ \\ p \]

\[(b) \quad \gamma \\ \rightarrow \\ p \\ \Lambda^*, \Sigma^* \\ \rightarrow \\ K^+ \\ p \]

\[(c) \quad \gamma \\ \rightarrow \\ p \\ K^* \\ \rightarrow \\ \Lambda \]
The resonance term $t^{R}_{\gamma p \to K+\Lambda}$ includes:

N:
$P_{11}(1440), S_{11}(1535), S_{11}(1650), P_{11}(1710), D_{13}(1520), D_{13}(1700), P_{13}(1720), P_{13}(1900), D_{15}(1675), F_{15}(1680), F_{15}(2000)$

and

Δ: $S_{31}(1900), P_{31}(1900), P_{33}(1920), D_{33}(1700)$

Non-resonant $t_{\gamma p \to \pi N}$:

$t_{\gamma p \to \pi N} = T^{\text{exp}} - t_{\gamma p \to \pi N}^{R}$

T^{exp} from SAID

Resonance $t_{\gamma p \to \pi N}^{R}$ from Capstick-Roberts quark model
Adjust N^* parameters to fit data

Considered $\gamma p \rightarrow K^+\Lambda$ Data

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Observable</th>
<th># of data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>JLab</td>
<td>$d\sigma/d\Omega$</td>
<td>920</td>
</tr>
<tr>
<td>LEPS</td>
<td>Σ_γ</td>
<td>44</td>
</tr>
<tr>
<td>SAPHIR</td>
<td>$d\sigma/d\Omega$</td>
<td>720</td>
</tr>
<tr>
<td>JLab</td>
<td>Σ_Λ</td>
<td>233</td>
</tr>
</tbody>
</table>

SU(3) breaking parameters, one for each resonance, are varied in the fits.

To study the proposed new resonances, a $3^{rd} S_{11}$ and a $3^{rd} P_{13}$ are included in the fits.
\[\gamma p \rightarrow K^+ \Lambda \] cross sections

Red: JLAB
Black: SAPHIR

- Discrepancies in the two data sets
- We choose to fit them independently

Most relevant:
\(S_{11}(1535), S_{11}(1650), F_{15}(1680) \)
\(P_{13}(1720), P_{13}(1900), F_{15}(2000) \)

Model A: Solid line, JLAB data
Model B: Dashed line, SAPHIR data
Coupled channel effects

Solid: Model A
Dashed: " w/o CC

Large CC effects
which could be hidden in coupling
values in other approaches

Confirms prev. results

(WTChiang et al 2000)

Similar effect for most angles
Effects on N^* properties

Bare: the resonance is directly excited by the incident photon

Dressed: The photon first excites a πN intermediate state
Polarization data

γ polarized

We have now included polarization data in the fits.
Polarization data

Λ polarized

- Results from new fits (Oct. 8, 2005)
Looking for $3^{rd} S_{11}$ and $3^{rd} P_{13}$

Model A and B include a $3^{rd} S_{11}$ and a $3^{rd} P_{13}$.

The fitted values, in the ranges (1.6–2 GeV and 1.6–2.4 GeV)

Effect from $3^{rd} P_{13}$ very small

$(\theta=98 \text{ deg})$ Solid, dotted and dashed:

full Model A, Model A w/o $3^{rd} S_{11}$ Model A w/o $3^{rd} P_{13}$.
Looking for $3^{rd} S_{11}$

Our fitted values are:

<table>
<thead>
<tr>
<th>New Resonances</th>
<th>Model A</th>
<th>Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{11} Mass (GeV)</td>
<td>1.820</td>
<td>1.818</td>
</tr>
<tr>
<td>Width (MeV)</td>
<td>210</td>
<td>270</td>
</tr>
<tr>
<td>P_{13} Mass (GeV)</td>
<td>2.053</td>
<td>2.045</td>
</tr>
<tr>
<td>Width (MeV)</td>
<td>158</td>
<td>390</td>
</tr>
</tbody>
</table>

similar mass in both models, different widths
other $3^{rd} S_{11}$ are

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Width (MeV)</th>
<th>Comment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.780</td>
<td>280</td>
<td>CQM applied to $\gamma p \rightarrow \eta p$</td>
<td>Saghai-Li (2003)</td>
</tr>
<tr>
<td>1.835</td>
<td>246</td>
<td>CQM, applied to $\gamma p \rightarrow K^+\Lambda$ data from SAPHIR</td>
<td>Saghai (2003)</td>
</tr>
<tr>
<td>1.852</td>
<td>187</td>
<td>CQM, applied to $\gamma p \rightarrow K^+\Lambda$ data from JLab</td>
<td>Saghai (2003)</td>
</tr>
<tr>
<td>1.730</td>
<td>180</td>
<td>$K\ Y$ molecule</td>
<td>Li-Workman (1996)</td>
</tr>
<tr>
<td>1.792</td>
<td>360</td>
<td>πN and ηN coupled-channel analysis</td>
<td>Zagreb group (2000)</td>
</tr>
<tr>
<td>1.800</td>
<td>165</td>
<td>J/Ψ decay</td>
<td>Bai (2001)</td>
</tr>
</tbody>
</table>
Effect of $3^{rd} S_{11}$
Summary

A dynamical coupled-channel model has been developed to fit the data of

\[\pi^- p \rightarrow K^0 \Lambda, K^0 \Sigma^0 \]
\[\gamma p \rightarrow K^+ \Lambda \]

Coupled-channel effects due to \(\pi N \) channel are found to be important.

Our results support the 3rd \(S_{11} \) \(N^* \)
\((M \sim 1820 \text{ MeV}, \Gamma \sim 210 - 270 \text{ MeV}) \)

No strong evidence of 3rd \(P_{13} \) \(N^* \)
\((M \sim 2050 \text{ MeV}) \)
Future Developments

- Analyze $\gamma p \rightarrow K\Sigma$ data
- Include $\pi\pi N$ channel
- apply the unitary $\pi\pi N$ model of Matsuyama, Sato and Lee (in progress)