Gauge-Invariant Approach to Meson Photoproduction Including the Final-State Interaction

Helmut Haberzettl

Center for Nuclear Studies, Department of Physics

The George Washington University, Washington, DC

Collaborators: Kanzo Nakayama, UGA Siggi Krewald, FZJ

Example: $\gamma N \rightarrow \pi N$

Attaching a Photon to the πNN Vertex

Total photoproduction amplitude

$$M^\mu = M^\mu_s + M^\mu_u + M^\mu_t + M^\mu_{\rm int}$$

Pions, Nucleons, and Photons

Hadronic scattering: $\pi N \rightarrow \pi N$

Hadronic Driving Terms

Electromagnetic Couplings to Driving Terms

Dressed Nucleon Current

This is VERY complicated!

- The full theory is gauge-invariant as a matter of course.
- In practice, truncations are necessary.
- Truncations usually destroy gauge invariance.

Prescriptions must be found that restore gauge invariance in practical applications.

New Theoretical Tools for Nucleon Resonance Analysis

Old Theoretical Tool

New Theoretical Tools for Nucleon Resonance Analysis

Gauge Invariance

J.C. Ward, Phys. Rev. **78**, 182 (1950)
 Y. Takahashi, Nuovo Cimento **6**, 371 (1957)
 E. Kazes, Nuovo Cimento **13**, 1226 (1959)

Gauge Invariance

Physical condition:

Current Conservation: $k_{\mu}M^{\mu} = 0$ all hadrons on-shell

Center for Nuclear Studies

Gauge Invariance

Physical condition:

Current Conservation: $k_{\mu}M^{\mu} = 0$ all hadrons on-shell

Recipe for Phenomenological Currents: $M^{\mu} = \tilde{M}^{\mu} - a^{\mu} \frac{k \cdot \tilde{M}}{k \cdot a}$ (a^{μ} arbitrary)

Gauge Invariance

Physical condition:

Current Conservation: $k_{\mu}M^{\mu}=0$ all hadrons on-shell

Recipe for Phenomenological Currents: $M^{\mu} = \tilde{M}^{\mu} - a^{\mu} \frac{k \cdot \tilde{M}}{k \cdot a}$ (a^{μ} arbitrary)

Not good enough for microscopic approaches!

Q: So why is it not okay to simply subtract terms to create a transverse current?

A: Because such currents are always transverse — on- and off-shell. This creates unacceptable inconsistencies in microscopic approaches.

To show this consider

and attach photon in all places of the internal 3-point function...

Details, details... \longrightarrow Proof

Example: Two-pion production

Basic Two-pion Production Mechanisms

Ward–Takahashi Identities for the Nucleon and the Pion Currents

$$k_{\mu}\Gamma_{N}^{\mu}(p',p) = S_{N}^{-1}(p')Q_{N} - Q_{N}S_{N}^{-1}(p) \quad \text{nucleon}$$
Form factors: $f_{n}^{ij} = f_{n}^{ij}(p'^{2},p^{2};k^{2})$

$$\Gamma_{N}^{\nu}(p',p) = \gamma^{\nu}Q_{N} + \left[t^{\nu}f_{1}^{00} + \frac{i\sigma^{\nu\mu}k_{\mu}}{2m}f_{2}^{00}\right] + \frac{p'-m}{2m}\left[t^{\nu}f_{1}^{10} + \frac{i\sigma^{\nu\mu}k_{\mu}}{2m}f_{2}^{10}\right]$$

$$+ \left[t^{\nu}f_{1}^{01} + \frac{i\sigma^{\nu\mu}k_{\mu}}{2m}f_{2}^{01}\right]\frac{p-m}{2m} + \frac{p'-m}{2m}\left[t^{\nu}f_{1}^{11} + \frac{i\sigma^{\nu\mu}k_{\mu}}{2m}f_{2}^{11}\right]\frac{p-m}{2m}$$

$$t^{\nu} = \gamma^{\nu}k^{2} - k^{\nu}k$$

$$\prod_{q,\mu} k_{\mu}\Gamma_{\pi}^{\mu}(q',q) = \Delta_{\pi}^{-1}(q')Q_{\pi} - Q_{\pi}\Delta_{\pi}^{-1}(q) \quad \text{pion}$$

$$\Gamma_{\pi}^{\nu}(q',q) = (q'+q)^{\nu}Q_{\pi} + \left[(q'+q)^{\nu}k^{2} - k^{\nu}k \cdot (q'+q)\right]Q_{\pi}f(q'^{2},q^{2};k^{2})$$

H. Haberzettl — N*2005, 12Oct05 — WTI.tex

Generalized Ward–Takahashi Identity for the Pion-Production Current

$$k_{\mu}M^{\mu} = -[F_{s}\tau]S_{p+k}Q_{N}S_{p}^{-1} + S_{p'}^{-1}Q_{N}S_{p'-k}[F_{u}\tau] + \Delta_{p-p'+k}^{-1}Q_{\pi}\Delta_{p-p'}[F_{t}\tau]$$

Equivalently:

Note:

Charge conservation: $-\tau Q_N + Q_N \tau + Q_\pi \tau = 0$

Gross/Riska

Absorb hadronic form factors in propagator and construct single-hadron currents to satisfy the appropriate WT identities.

Ohta

Construct contact current based on minimal substitution of πNN form factor. Basically removes hadronic structure from non-transverse contributions. Not applicable to explicit final-state interactions.

This work

Generalizes Ohta by introducing common form factor for non-transverse contributions only. Allows inclusion of explicit final-state interactions.

Lowest-Order Strategy

Lowest-Order Strategy

Result

$$M_{\rm int}^{\mu} = M_c^{\mu} + T^{\mu} + XG_0 \bigg[\underbrace{(M_u^{\mu} - m_u^{\mu})}_{\text{transverse}} + \underbrace{(M_t^{\mu} - m_t^{\mu})}_{\text{transverse}} + T^{\mu} \bigg]$$

with

$$k_{\mu}M_c^{\mu} = -F_s e_i + F_u e_f + F_t e_{\pi} \, .$$

Phenomenological Choice for M_c^{μ}

$$M_{c}^{\mu} = g_{\pi}\gamma_{5} \left\{ \left[\lambda + (1-\lambda)\frac{\not{q} - \beta \not{k}}{m' + m} \right] C^{\mu} - (1-\lambda)\frac{\gamma^{\mu}}{m' + m} \left[e_{\pi}f_{t} - \beta k_{\rho}C^{\rho} \right] \right\}$$

$$\lambda, \beta: \text{ free parameters}$$

Non-singular auxiliary current:

$$C^{\mu} = -e_{\pi} \frac{(2q-k)^{\mu}}{t-q^2} (f_t - \hat{F}) - e_f \frac{(2p'-k)^{\mu}}{u-p'^2} (f_u - \hat{F}) - e_i \frac{(2p+k)^{\mu}}{s-p^2} (f_s - \hat{F}) ,$$

with

$$k_{\mu}C^{\mu} = e_{\pi}f_t + e_f f_u - e_i f_s$$

Subtraction function:

$$\hat{F} = 1 - \hat{h} \left(1 - \delta_s f_s \right) \left(1 - \delta_u f_u \right) \left(1 - \delta_t f_t \right)$$

 $\delta_x = 0, 1$

Center for Nuclear

mu

01

The function $\hat{h} = \hat{h}(s, u)$ is free fit function.

[Unta:
$$h = 0, X = 0, I^{\mu} = 0$$
]

101.

First Application

Center for Nuclear Studies

Includes

- ρ , ω , and a_1 exchanges in the *t*-channel;
- Δ in s- and u-chanels;
- FSI with Jülich $\pi N T$ -matrix.

Next Order

Next Order

General gauge-invariance condition for U^{μ}

$$k_{\mu}U^{\mu}(p',q',p,q) = Q'_{\pi}U(p',q'-k,p,q) + Q'_{N}U(p'-k,q',p,q) - U(p',q',p,q+k)Q_{\pi} - U(p',q',p+k,q)Q_{N}$$

Holds also true for every subset of U^{μ} that originates from attaching a photon in all possible ways to a single two-body irreducible hadron graph \implies also true for E^{μ}

Next-Order Result

Previously

$$M_{\rm int}^{\mu} = M_c^{\mu} + T^{\mu} + XG_0 \Big[\underbrace{(M_u^{\mu} - m_u^{\mu})}_{\text{transverse}} + \underbrace{(M_t^{\mu} - m_t^{\mu})}_{\text{transverse}} + T^{\mu} \Big]$$

 T^{μ} : undetermined transverse current

Now: T^{μ} is replaced by

WASHINGTON DC

$$T^{\mu} = \left[E^{\mu} - \tilde{E}^{\mu}\right] G_0[F\tau] + T'^{\mu}$$

$$T'^{\mu}: \text{ undetermined transverse current}$$

$$THE GEORGE WASHINGTON UNIVERSITY$$

$$\begin{split} \tilde{E}^{\mu} &= g_{\pi}^{2} \gamma_{5} \left[\lambda - (1-\lambda) \frac{\not{q}}{m' + m_{N}} \right] S_{N} \gamma_{5} \left[\lambda + (1-\lambda) \frac{\not{q}'}{m + m_{N}} \right] D^{\mu} \\ &+ (1-\lambda) g_{\pi}^{2} f_{\pi} f_{1} e_{\pi} \frac{\gamma_{5} \gamma^{\mu}}{m' + m_{N}} S_{N} \gamma_{5} \left[\lambda + (1-\lambda) \frac{\not{q}'}{m + m_{N}} \right] \\ &- (1-\lambda) g_{\pi}^{2} f_{2} f_{\pi'} \gamma_{5} \left[\lambda - (1-\lambda) \frac{\not{q}}{m' + m_{N}} \right] S_{N} e_{\pi}' \frac{\gamma_{5} \gamma^{\mu}}{m + m_{N}} \end{split}$$

Non-singular auxiliary current:

$$D^{\mu} = e'_{\pi} \frac{(2q'-k)^{\mu}}{(q'-k)^2 - q'^2} (f_2 f_{\pi'} - \hat{G}) + e'_N \frac{(2p'-k)^{\mu}}{(p'-k)^2 - p'^2} (f_{N'} f_1 - \hat{G}) + e_{\pi} \frac{(2q+k)^{\mu}}{(q+k)^2 - q^2} (f_{\pi} f_1 - \hat{G}) + e_N \frac{(2p+k)^{\mu}}{(p+k)^2 - p^2} (f_2 f_N - \hat{G}) ,$$
$$\hat{G} = 1 - \hat{g} \left(1 - f_{\pi} f_1\right) \left(1 - f_2 f_N\right) \left(1 - f_2 f_{\pi'}\right) \left(1 - f_{N'} f_1\right)$$

 \hat{g} : free fit function

with

Note: $k_{\mu}D^{\mu} = e_{\pi}f_{\pi}f_1 + e_Nf_2f_N - e'_{\pi}f_2f_{\pi'} - e'_Nf_{N'}f_1$

Center for Nuclear Studies

Transition Currents

First line produces correct off-shell relation. Terms in second line must vanish individually. QED

• In a consistent microscopic approach, this should be ensured dynamically. There should be no need to adjust the transversality manually.

Transversality of this current is ensured by the fact that $N\to \Delta$ is not possible as a physical process, i.e.

With consistent dynamics, this current satisfies

$$\Gamma^{\beta\mu} = G_1 \gamma_5 \left(k^\beta \gamma^\mu - g^{\beta\mu} \not\!\!k \right) + G_2 \gamma_5 \left(k^\beta P^\mu - g^{\beta\mu} k \cdot P \right) + G_3 \gamma_5 \left(k^\beta k^\mu - g^{\beta\mu} k^2 \right)$$

as a matter of course, where P = (p + p')/2 = (2p + k)/2. There is no need for subtractions.

Summary

- Gauge invariance is a fundamental symmetry without it results become arbitrary.
- Current conservation $k_{\mu}M^{\mu} = 0$ necessary, but not sufficient, for gauge invariance of microscopic theories.

• Subtractions $M^{\mu} = \tilde{M}^{\mu} - a^{\mu} \frac{k \cdot \tilde{M}}{k \cdot a}$ in general do not ensure gauge invariance.

- Most of the popular dynamical models are **not** gauge-invariant; despite claims to the contrary.
- Generalized Ward–Takahashi identities are necessary and sufficient.
- Real-world calculations require truncations of dynamical mechanisms that destroy gauge invariance.
- Prescriptions required to restore gauge invariance.
- Transition currents are transverse and this property must be ensured dynamically.
- Formalism allows inclusion of final-state interaction.
- FSI dynamics can be refined step-by-step in controlled manner.

