Models for Extracting N^* Parameters from Meson-Baryon Reactions

T.-S. H. Lee Argonne National Laboratory

Data of γp reaction cross sections (from Ostrick and Schmieden)

Data of πN reaction cross sections (from V. Shklyar)

Challenge :

Extensive data of electromagnetic production of π , η , K, ω , ϕ , and $\pi\pi N$ (ρN , $\pi \Delta$)

$\downarrow\downarrow\downarrow$

Extract properties of nucleon resonances (N^*)

$\downarrow\downarrow\downarrow$

Understand non-perturbative QCD :

- Confinement of constituent quarks
- Chiral dynamics of meson cloud of baryons

Tasks :

- Perform Amplitude Analyses of data \rightarrow Extract N^* parameters
- Develop Dynamical Reaction Models \rightarrow Interpret N^* parameters in terms of QCD :
 - Hadron Models (now)
 - Lattice QCD (near future)

Status :

- In the Δ region
 - Well developed
 - Amplitude Analyses and Dynamical Reaction Models are complementary

Example: $\gamma N \rightarrow \Delta$ M1 transition

- All amplitude analyses : $G_M(0) = 3.50 \pm 0.2$
- Disagree with the quark model : $\frac{G_M^{Exp.}(0)}{G_M^{Q.M.}(0)} \sim 1.4$

Solution: Develop Dynamical Models

 \rightarrow

Find: due to meson cloud

 \bullet Pion cloud has a very large effect on G_M

Recent progress in the Δ region :

- 16 reponse functions of p(e, ep) at Q² = 1 (GeV/c)² have been obtained at JLab (allow almost model independent amplitude analysis)
- LQCD calculations of N- Δ form factors are available
- Low Q^2 data have been obtained at JLab, Mainz, MIT-Bates (reveal Q^2 -evolution of meson cloud effects on N- Δ)
- Data of $\vec{d}(\vec{\gamma}, \pi N)N$ have been obtained at LEGS (will provide $\gamma n \to \pi N$ multipoles :A. Sandorfi's talk)

Model Independent Amplitudes at $Q^2 = 1 \text{ (GeV/c)}^2$ (J. Kelly et al. (2005))

Curves : SL, DMT, MAID, SAID

Recent Results from LQCD

 R_{SM} : measure deformation of N or Δ

red-bar : LQCD of C. Alexandrou et al. (2005) red curve : Bare f.f of SL Model blue curve : Dressed f.f. of SL Model

• In the second and third resonance regions:

Open channels: ηN , $\pi \pi N$ ($\pi \Delta$, ρN), ωN , KN · · ·

Need to develop coupled-channel approaches

 \rightarrow

This talk : Review current developments

Outline

- Introduce a reaction formulation :
 - derive and compare current models of meson production reactions
- Review the status of the coupled-channel analyses
- Concluding Remarks

Reaction Theories

• Based on Hamiltonian or Bethe-Salpeter Equations :

$$T(E) = V + V \frac{1}{E - H_0 + i\epsilon} T(E)$$

V = interactions

Can be used to derive

- Unitary Isobar Models :
 MAID
 Jlab/Yerevan UIM
- Multi-channel K-matrix models :
 SAID
 Giessen model, KVI model
 Kent State University (KSU)
- Carnegie-Mellon Berkeley (CMB) Model
- Dynamical Reaction models
 Juelich, SL, DMT, Ohio-Utrecht · · · Chiral SU(3) models

• Based on Dispersion Relations :

$$\mathbf{R}eA^{I}(s,t) = B^{I} + \frac{1}{\pi}P\int_{s_{thr}}^{\infty} \left[\frac{1}{s'-s} + \frac{\epsilon^{I}\xi_{i}}{s'-u}\right]\mathbf{I}mA^{I}(s',t)$$

Recent works :

Constraint on πN amplitudes in SAID
 R.Arndt, I. Strakovsky, R. Workman
 and collaborators (1996, 2004)

 $-\gamma N \rightarrow \pi N$

O. Hanstein, D. Drechsel, and L. Tiator (1998)

$$-\gamma N \rightarrow \pi N, \eta N$$

I. Aznauryan (1998, 2003)

Will not be covered in this talk

Derivations of Models

• Define K operator:

 \rightarrow

 \rightarrow

 \rightarrow

$$T(E) = V + V \frac{1}{E - H_0 + i\epsilon} T(E)$$

$$T(E) = V + V\left[\frac{P}{E - H_0} - i\pi\delta(E - H_0)\right]T(E)$$
$$K(E) = V + V\frac{P}{E - H_0}K(E)$$

 ${\boldsymbol{P}}$: the principal-value integration.

$$T(E) = K(E) - T(E)[i\pi\delta(E - H_0)]K(E)$$

Lead to on-shell relations between T and K

• Define interactions :

$$V = v^{bg} + v^R$$

Non-resonant term: v^{bg}

Resonant term: $v^R = \frac{\Gamma_i^{\dagger} \Gamma_i}{E - M_{N_i^*}}$

Approaches :

• Start with
$$V = v^{bg} + v^R$$
 :

$$T_{a,b}(k_a, k_b, E) = V_{a,b}(k_a, k_b) + \sum_c \int dk \frac{V_{a,c}(k_a, \mathbf{k}) T_{c,b}(\mathbf{k}, k_b)}{E - E_{M_c}(\mathbf{k}) - E_{B_c}(\mathbf{k}) + i\epsilon}$$

a,b = πN , γN , ηN , ωN , KY, ρN , $\pi \Delta (\pi \pi N)$

- Need off-shell information

- Equations for Dynamical Models
- Start with K matrix:
 - A matrix relation:

$$T_{a,b}(E) = \sum_{c} [(1 + iK(E))^{-1}]_{a,c} K_{c,b}(E)$$

a,b = πN , γN , ηN , ωN , KY, ρN , $\pi \Delta$ ($\pi \pi N$)

- Need only on-shell information
- Equations for K-matrix Models

Derivations

• Unitary Isobar Model (UIM) :

- channels : γN , πN (or ηN)

 $\gamma N \rightarrow \pi N$ amplitude :

 \rightarrow

$$T_{\pi N,\gamma N} = \frac{1}{1 + iK_{\pi N,\pi N}(E)} K_{\pi N,\gamma N}(E)$$
$$= e^{i\delta_{\pi N}} \cos \delta_{\pi N} K_{\pi N,\gamma N}(E)$$
$$\sim e^{i\delta_{\pi N}} \cos \delta_{\pi N} V_{\pi N,\gamma N}$$

 $V_{\pi N,\gamma N} =$ Tree-diagrams

 $\delta_{\pi N}$: πN phase shifts

 \rightarrow Satisfy Watson Theorem in $W < 1.3~{\rm GeV}$

- Mainz and Jlab/Yerevan UIM :

- 1. Include of N^* by using Walker's parameterization
- 2. Unitarize the total amplitude

 \rightarrow

 $T_{\pi N,\gamma N}(UIM) = e^{\delta} cos \delta[v_{\pi N,\gamma N}^{bg}] + \sum_{N_i^*} T_{\pi N,\gamma N}^{N_i^*}(W)$ $T_{\pi N,\gamma N}^{N_i^*}(E) = f_{\pi N}(W) \frac{\Gamma^{tot} M_i e^{i\Phi_i}}{M_i^2 - W^2 - iM_i \Gamma^{tot}} A_{\gamma N}(W)$

 Φ_i : Unitarization Phase

Results from MAID and JLab/Yerevan UIM :

- 1. Successful in extracting Δ parameters
- 2. Can fit pion production data up to W = 2 GeV.

Comments :

Coupled-channel effects are not treated explicitly [$\gamma N \rightarrow (\pi \Delta, \rho N \cdot \cdot) \rightarrow \pi N$ is neglecte] \rightarrow

The extracted N^{\ast} parameters need to be verified

Jlab/Yerevan UIM global fits to $p\pi^0$, $n\pi^+$, and $p\eta$

 \rightarrow Obtain highly constrained $\gamma N \rightarrow N^*$ form factors

More will be given by I. Aznauryan's talk

Recent results from MAID :

 $\gamma N \to N^*$ form factors have been extracted (L. Tiator's talk)

• Multi-channel K-matrix models

- **SAID** :

 \rightarrow

Consider γN , πN , $\pi \Delta$ (all inelastic channels)

 $T_{\gamma N,\pi N}(SAID) = A_I(1 + iT_{\pi N,\pi N}) + A_R T_{\pi N,\pi N}$

$$A_{I} = K_{\gamma N,\pi N} - \frac{K_{\gamma N,\pi \Delta} K_{\pi N,\pi N}}{K_{\pi N,\pi \Delta}}$$
$$A_{R} = \frac{K_{\gamma N,\pi \Delta}}{K_{\pi N,\pi \Delta}}$$

Actual analysis:

$$A_{I} = v_{\gamma N,\pi N}^{bg} + \sum_{n=0}^{M} \bar{p}_{n} z Q_{l_{\alpha}+n}(z)$$
$$A_{R} = \frac{m_{\pi}}{k_{0}} (\frac{q_{0}}{k_{0}})^{l_{\alpha}} \sum_{n=0}^{N} \frac{p_{n}}{m_{\pi}} (\frac{E_{\pi}}{m_{\pi}})^{n}$$

 \bar{p}_n, p_n : fitting parameters

 N^* parameters are extracted by fitting the resulting amplitudes to a Briet-Wigner parameterization at $W\to M^*$

Results from SAID :

- 1. Determine $\pi N \rightarrow \pi N$, $\gamma N \rightarrow \pi N$ amplitudes
- 2. extract N^* parameters

Comments : :

Coupled-channel effects are not treated explicitly [$\gamma N \rightarrow (\pi \Delta, \rho N \cdot \cdot) \rightarrow \pi N$ is neglected] \rightarrow The extracted N^* parameters need to be verified

SAID (2005)

$$T_{\gamma N,\pi N}(SAID) = A_{I}(1 + iT_{\pi N,\pi N}) + A_{R}T_{\pi N,\pi N} + (C + iD)(ImT_{\pi N,\pi N} - T_{\pi N,\pi N}^{2})$$

- Giessen Model and KVI Model :

Set $K \rightarrow V =$ Tree-daigrams \rightarrow

$$T_{a,b}(E) = \sum_{c} [(1 + iV(E))^{-1}]_{a,c} V_{c,b}(E)$$

Comments :

 \rightarrow

Higher-order and off-shell effects are neglected (Note : $K = V + V \frac{P}{E-H_0} K$)

The extracted N^* parameters can not be interprted in terms of quark models and/or LQCD (Lesson from the study of Δ)

Recent results of Giessen Model (V. Shklyar et al. (2005)):

- 1. Include γN , πN , $2\pi N$, ηN , and ωN .
- 2. Find evidence for $D_{15}(1675)$ in $\pi N \rightarrow \omega N$
- 3. Find evidence for $(F_{15}(1680) \text{ in } \gamma N \rightarrow \omega N)$

Recent results from Giessen Model (2005)

Recent Results of KVI Model (A. Usov and O. Scholten (2005))

- Include πN , γN , $K\Lambda$, $K\Sigma$, ϕN , ηN
- Fit the data of $\gamma p \to K^+\Lambda, K^+\Sigma^0, K^0\Sigma^+$ (Show large coupled-channel effects)

Comments :

 $2\pi N$ channel is not included (Note : $\sigma_{\gamma N \to \pi\pi N} \gg \sigma_{\gamma N \to KY}$)

 \rightarrow

The extracted N^{\ast} parameters need to be verified

 $\gamma p \rightarrow KY$ results of KVI Model (2005)

More will be given in O. Scholten's talk

For deriving:

- Carnegie-Mellon Berkeley (CMB) Model
- Kent State University (KSU) model
- Dynamical models

Apply two-potential scattering formulation

$$\begin{aligned} & \text{for } V = v^{bg} + \frac{\Gamma_{N^*}^{\dagger}\Gamma_{N^*}}{E - M_{N^*}^0} \\ & \rightarrow \end{aligned} \\ T(E) \ = \ t^{bg}(E) + \frac{\bar{\Gamma}_{N^*}^{\dagger}(E)\bar{\Gamma}_{N^*}(E)}{E - M_{N^*}^0 - \Sigma_{N^*}(E)} \\ & t^{bg} \ = \ v^{bg} + v^{bg}G(E)t^{bg}(E) \end{aligned}$$

Resonance parameters :

$$\bar{\Gamma}_{N^*} = \Gamma_{N^*} + \Gamma_{N^*} G(E) t^{bg}(E)$$

$$\Sigma_{N^*}(E) = \Gamma_{N^*}^{\dagger} G(E) \overline{\Gamma}_{N^*}$$

Main features :

- Isolate resonant term \sim Briet-Wigner form
- Non-resonant effects on resonance parameters are identified

For multi -channel multi -resonant case:

$$\begin{split} T_{a,b}(E) &= t_{a,b}^{bg}(E) + \sum_{N_i^*, N_j^*} \bar{\Gamma}_{N_i^*, a}^{\dagger}(E) [\hat{G}(E)]_{i,j} \bar{\Gamma}_{N_j^*, b}(E) \\ t_{a,b}^{bg} &= v_{a,b}^{bg} + \sum_c v_{a,c}^{bg} G_c(E) t_{c,b}^{bg}(E) \\ \bar{\Gamma}_{N^*, a} &= \Gamma_{N^*, a} + \sum_b \Gamma_{N^*, b} G_b(E) t_{b,a}^{bg} \\ [\hat{G}(E)^{-1}]_{i,j}(E) &= (E - M_{N_i^*}^0) \delta_{i,j} - \Sigma_{i,j}(E) \\ \Sigma_{i,j}(E) &= \sum_a \Gamma_{N^*, a}^{\dagger} G_a(E) \bar{\Gamma}_{N_j^*, a} \end{split}$$

a,b = πN , γN , ηN , ωN , KY, σN , ρN , $\pi \Delta$ ($\pi \pi N$)

• Carnegie-Mellon Berkeley (CMB) Model Set : $v_{a,b}^{bg}(E) = \frac{\Gamma_{L,a}^{\dagger}\Gamma_{L,b}}{E-M_L} + \frac{\Gamma_{H,a}^{\dagger}\Gamma_{H,b}}{E-M_H}$ \rightarrow $V = v^{bg} + v^R = \sum_{i=N_i^*,L,H} \frac{\Gamma_{i,a}^{\dagger}\Gamma_{i,b}}{E-M_i} = Separable$ \rightarrow $T_{a,b}(E) = \sum_{i,j} \Gamma_{i,a}^{\dagger}G_{i,j}(E)\Gamma_{j,b}$ $G(E)_{i,j}^{-1} = (E - M_i^0)\delta_{i,j} - \Sigma_{i,j}(E)$ $\Sigma_{i,j}(E) = \sum_a \int k^2 dk \frac{\Gamma_{i,a}^{\dagger}(k)\Gamma_{j,a}(k)}{E - E_{M_a}(k) - E_{B_a}(k) + i\epsilon}$

With appropriate variable changes : $s = E^2$ \rightarrow CMB's dispersion relations :

$$\Sigma_{i,j}(s) = \sum_{c} \gamma_{i,c} \Phi_{c}(s) \gamma_{j,c}$$

$$Re[\Phi_{c}(s)] = Re[\Phi_{c}(s_{0})] + \frac{s - s_{th,c}}{\pi} \int_{s_{th}}^{\infty} \frac{Im[\Phi_{c}(s')]}{(s' - s)(s' - s_{0})} ds'$$

CMB model is analytic

Recent applications/extensions of CMB model :

- Zagreb : M. Batinic, A. Svarc and collaborators Consider three channels : πN , ηN , $\sigma(\pi\pi)N$
- PITT-ANL : T. Varana, S. Dytman, T.-S. H. Lee Consider up to eight channels: πN , ηN , $\pi \Delta$, ρN , $\sigma(\pi \pi)N$, $\pi N^*(1440)$, $K\Lambda$, γN

- FSU-PITT :

A. Kiswandhi, S.Capstick, and S. Dytman

Investigate model-dependence in S_{11} channel

Results:

- N^* in S_{11} channel is better understood
- The interplay between channel coupling and N^* excitation has been better understood
- Some extracted N* parameters are significantly different from PDG values

Current effort (A. Kiswandhi, S. Capstick) :

Approach is being developed to replace

$$v_{a,b}^{bg}(E) = \frac{\Gamma_{L,a}^{\dagger}\Gamma_{L,b}}{E - M_{L}} + \frac{\Gamma_{H,a}^{\dagger}\Gamma_{H,b}}{E - M_{H}}$$

by dynamical models

• Kent State University (KSU) model

Start with

$$T(E) = t^{bg}(E) + \frac{\bar{\Gamma}_{N^*}^{\dagger}\bar{\Gamma}_{N^*}}{E - M_{N^*}^0 - \Sigma_{N^*}(E)}$$

One can derive exactly the distorted-wave form

$$S(E) = 1 + 2iT(E)$$

= $\omega^{(+)T}R(E)\omega^{(+)}$

where

$$\omega^{(+)} = 1 + G(E)t^{bg}(E)
R(E) = 1 + 2iT^{R}(E)
T^{R}(E) = \frac{\Gamma_{N^{*}}^{\dagger}(E)\Gamma_{N^{*}}(E)}{E - M_{N^{*}}^{0} - \Sigma_{N^{*}}(E)}$$

KSU separable parameterization:

$$T^{R}(E) = \frac{K}{1 + iK}$$
$$K_{ij} = \sum_{\alpha} tan \delta_{\alpha} f_{i\alpha} f_{j\alpha}$$
$$\omega^{(+)} = B_{1} B_{2} \cdot B_{n}$$
$$B_{i} \sim e^{iX\Delta_{i}}$$

Recent Results from KSU Model

• Fit S = -1 amplitudes with Channels : $\bar{K}n, \pi\Lambda, \pi\Sigma, \pi\Sigma^*(1385), \pi\Sigma^*(1520), \bar{K}\Delta, \bar{K}^*N, \eta N$

 \rightarrow Extract Λ^* and Σ^* in W = 1560 - 1685 MeV

• Analyze data of Crystal Ball Collaboration $K^-p \rightarrow \text{neutrals} (\bar{K}^0 n, \pi^0 \Lambda, \pi^0 \Sigma^0 \cdots)$

Dynamical Models

Two equivalent approaches:

• Solve dynamical equations with $V = v^{bg} + v^R$ directly :

$$T_{a,b}(E) = V_{a,b} + \sum_{c} V_{a,c} G_c(E) T_{c,b}(E)$$

 $a, b, c = \pi N, \gamma N, \eta N, \pi \Delta \cdots$

Recent works :

- Juelich Model : πN
- Fuda et al. : πN , γN
- DMT Model : πN , γN , ηN
- Ohio-Utrecht Model : πN , γN
- Chiral SU(3) models : KY, ωN , γN , πN (set $v^R = 0$)

 Use two-potential formulation to identify resonant mechanism

$$\begin{aligned} T_{a,b}(E) &= t_{a,b}^{bg}(E) + \sum_{N_i^*, N_j^*} \bar{\Gamma}_{N_i^*, a}^{\dagger} [D^{-1}(E)]_{i,j} \bar{\Gamma}_{N_j^*, b} \\ t_{a,b}^{bg}(E) &= v_{a,b}^{bg} + \sum_c v_{a,c}^{bg} G_c(E) t_{c,b}^{bg}(E) \\ \bar{\Gamma}_{N^*, a} &= \Gamma_{N^*, a} + \sum_b \Gamma_{N^*, b} G_b(E) t_{b,a}^{bg}(E) \end{aligned}$$

Recent Works

- Sato-Lee Model : πN , γN
- Yoshimoto et al. : πN , ηN , $\pi \Delta$
- Julia-Diaz et al. : γN , KY, πN
- Matsuyama, Lee, Sato : γN , πN , ηN , ωN , $\pi \pi N$

Juelich's Coupled-channel Model

O. Krehl, C. Hanhart, S. Krewald, J. Speth (2000)

- Channels : $\pi N, \eta N, \sigma N, \pi \Delta, \rho N$.
- Main result:

 P_{11} is due to meson-baryon coupled-channel effects

Being revised and extended to investigate $\gamma N \rightarrow \pi N$ (K. Nakayama et al. (2005))

Coupled-channel Model for KY production

B. Julia-Diaz, B.Saghai, F. Tabakin, T.-S. H. Lee (2005)

- Channels : γN , πN , $K\Lambda$, $K\Sigma$
- \bullet fit SAPHIR and JLAB data of $\gamma N \to K^+ \Lambda$
- Main Result :

Large coupled-channel effects due to πN channel

Recent Results of B. Julia-Diaz et al. (2005)

More will be presented in T.-S. H Lee's talk

DMT Coupled-channel Model

C.-Y Chen, S. Kamalov, S.N. Yang, D. Drechsel, L. Tiator

- Channels : γN , πN , ηN
- $\pi\pi N$ effects are assumed to be in $\Gamma_{N^*} = \Gamma_{1\pi} + \Gamma_{2\pi}$
- Main Results : Need 4 N* to fit S₁₁ amplitudes (show meson cloud effects on γN → S₁₁(1535))
 Fit to all partial waves will soon be completed

Comments :

Need to justify its simple treatment of $\pi\pi N$ channels

(Note : $\sigma_{2\pi N} > \sigma_{\pi N}$ at W > 1.5 GeV)

Coupled-channel Model with $\pi\pi N$ channel

A. Matsuyama, T. Sato , T.-S. H. Lee (in progress)

- Channels : γN , πN , ηN , ωN , $\pi \pi N$ ($\pi \Delta$, ρN , σN)
- Apply second order unitary transformation on H
- Satisfy $\pi\pi N$ unitarity condition :

 $Im f_{a,a}(\theta = 0) = \sum_{b} \sigma_{a,b} + \sigma_{a,\pi\pi N}$ a, b = πN , γN , ηN , ωN (stable particle channels) \rightarrow Coupled-channel equation with $\pi\pi N$ cut Coupled-channel equation with $\pi\pi N$ cut :

$$X_{a,b}(E) = Z_{a,b}(E) + \sum_{c} Z_{a,c}(E)G_{c}(E)X_{cb}(E)$$
$$a,b = \gamma N, \pi N, \eta N, \omega N, \pi \Delta, \rho N, \sigma N$$

$$egin{aligned} &Z(E) = v^{bg} + Z^{cut}(E) \ &v^{bg} = ig(ext{tree-diagrams of Chiral Lagrangians}ig) \ &Z^{cut}(E) : \end{aligned}$$

Apply Spline function method :

- \bullet solve coupled-channel equations with $\pi\pi N~{\rm cut}$
- include $\pi\pi N$ cut effects exactly to calculate $\pi N \to \pi\pi N$ $\gamma N \to \pi\pi N$

(Note : can not be achieved by contour rotation)

• Main Results (2005) :

 $-\gamma N \rightarrow S_{11}(1535)$:

- 1. Meson cloud effect is about 20%
- 2. Bare helicity amplitude is close to quark model
- $-\pi\pi N$ unitary cut is crucial in predicting $\pi\pi N$ production cross sections

	$\gamma N \rightarrow S_{11}(1535)$	
$\pi\pi N$ model	Dressed	61.24
	Bare	77.64
Capstick		76

$$\bar{\Gamma}_{\gamma N,N^*} = \Gamma_{\gamma N,N^*} + \sum_{MB=\pi N,\eta N,\pi\Delta} v_{\gamma N,MB}^{bg} G_{MB} \bar{\Gamma}_{MB,N^*}$$

$$Bare$$

Effect of $\pi\pi N$ cut

If coupled-channel and $\pi\pi N$ cut are neglected

 \rightarrow

- Moscow/JLab Isobar Model of $\gamma N \to \pi \pi N$ (V. Mokeev's talk)
- Amplitude analyses of $\gamma N
 ightarrow \pi \pi N$ of RPI/JLab

Chiral SU(3) coupled-channel models

N. Kaiser, E. Oset, A. Ramos, U. Messiner · · · M. Lutz, E. Kolomeitsev

 \bullet no N^{\ast} field is included explicitly

- V : SU(3) chiral Lagrangians up to $(Q/\Lambda)^n$
- Numerical strategy :
 - On-shell factorization (N/D method)

- chiral counting : u-channel $V \rightarrow$ separable form

 \rightarrow

BS Equations \rightarrow separable \rightarrow algebraic equations

- Recent Results :
 - M. Lutz, E. Kolomeitsev : Can fit both πN and KN data (22 parameters)
 - T. Inoue, E. Oset et al. : Study $\pi N \rightarrow \pi \pi N$ near threshold

— • • • • •

Results of M. Lutz, E. Kolomeitsev :

More will be given in M. Lutz's talk

Concluding Remarks

- \bullet Amplitude Analyses and Dynamical Reaction Models are complementary in N^{\ast} program
 - Has been realized in Δ region
 - to be developed in the 2nd and 3rd N^{\ast} regions
- Gauge invariance is problematic

Due to the need of using phenomenlogical form factors and/or regularization constants

(will be discussed in Haberzettl's talk)

• Coupled-channel approach is mandetory for analyzing data of weak channels (ηN , KY, ωN)

 $\mathsf{Example}: \ \gamma p \to K \Lambda$

Unitarity Condition ($i[T - T^+] = TT^+$) $Im[T_{\gamma p,K\Lambda}] = \sum_{MB} T_{\gamma p,MB}T^*_{K\Lambda,MB}$

$$\propto \sum_{MB} \sqrt{\sigma_{\gamma p,MB}} \sqrt{\sigma_{K\Lambda,MB}}$$

 $\gamma p
ightarrow (\pi N, \pi \pi N)
ightarrow K^+ \Lambda$ must be significant

• collaborations are important

