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Preface

Around 1968, electron scattering experiments at Stanford, California
(SLAC), gave the first clear hints that pointlike particles existed inside
the proton. These were named “partons”. Earlier, in 1964, Gell-Mann
and Zweig had proposed that the proton and the other elementary
particles known at that time were in fact built from more basic entities
named “quarks”.

The quark model had some success in the 1960s; in particular it
enabled sense to be made out of the multitude of meson and baryon
resonances then being found. When interpreted as excited states of
multi-quark and quark-antiquark systems, these resonances and their
properties were understood. Even so, there was much argument at the
time as to whether these quarks were really physical entities or just an
artefact that was a useful mnemonic andyaid ‘when ¢alculating with
unitary symmetry groups. ' :

When the Stanford electron scattering data were combined with
subsequent neutrino data from CERN, Geneva, it began to look as if the
“partons” and “quarks” were one and the same thing. Hence early in the
1970s physicists began to take more seriously the idea that quarks are
the fundamental building blocks of the world about us. ;

Since those days a renaissance has taken place in high-energy physics.
A charmed quark was predicted to exist in order that rather elegant
ideas on unifying weak and electromagnetic interactions might be
consistent with data. Evidence for this charmed quark being present in
Nature was found in 1974 and by 1976 its properties were being studied
and were being found to be exactly as had been predicted. Quarks were
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postulated to have a new sort of charge called “colour”. This gave
predictions that appear to be manifested experimentally. A theory of
strong interactions, “quantum chromodynamics”, has been developed
exploiting this. Although it is still early days, great optimism abounds
that we at last have a theory of strong interactions as well as weak-
electromagnetic. All of these ideas have grown out of the realization that
quarks underwrite the phenomena of the universe, and today practi-
cally all high-energy physicists accept this (indeed, very complicated
experiments are designed, and their results analysed, with the quark—
parton model being used as an axiom).

Given all this interest in quarks, and the extensive use professionals
are making of quark model ideas, it seemed that a basic text was called
for spelling out in some detail the basic ideas. In 1973, I gave a series of
lectures on quarks and partons at Daresbury Laboratory, England,
which were produced as a report and proved very popular. After the
discovery of the J/¥ meson in November 1974 and the subsequent
realisation that charm had been found, I was asked to give lectures on
quarks, symmetries and the new physics. Again there was much
demand for these. It seems sensible therefore to put all these together
and expand them, hereby producing a useful text on the techniques
required when working with quarks and partons. This is what I set out
to do and I must thank Drs D. M. Scott and C. H. Llewellyn Smith for
having encouraged me to begin this venture.

The book is in three parts. Part I describes the basic quark model
ideas (if one wishes to think chronologically, this part of the book is
roughly “pre-1970”). I have gone into some aspects of this in great
detail: building up the baryon wavefunctions is one example, the hope
being that one can thereby understand the physics behind the various
wavefunction symmetries. In Part 2 the parton model (“post-19707)
ideas are presented. I have also dealt with electron scattering kinematics
in some detail. Again, here I have treated some topics more than once
and from different approaches. I wanted thereby to get the important
physics across, in particular the relation between scaling, pointlike
particles, and absence of length scales.

During the writing of the book another quark was discovered and a
veritable explosion of ideas was taking place. In Part 3 I have given a
superficial survey of some exciting recent developments.

In much of the book my intention has been that a first-year experi-
mental graduate student, or good undergraduate theorist, would be able
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to follow it. In some places there are kinematic details or theoretical
ideas which will be of more interest to professionals. My hope is that the
book will stimulate and excite the newcomer sufficiently to go on and
read the specialist reviews listed in the bibliography.

This book could not have been written were it not for the great
benefit I have gained over the years learning from many colleagues in
Oxford, SLAC, CERN and at Daresbury and Rutherford Laboratories.
To them all I give my thanks. I would also like to thank Drs D. M. Scott,
D. Sivers and A. J. G. Hey for their comments on parts of the early
manuscript, Dr G. Karl for acting on my behalf in preparing the proofs
during my absence in the USA, Mrs J. F. Ling for her excellent typing
and finally my wife for her patience and stimulation throughout this
project.

CERN, Geneva F.E. CLOSE
October 1978
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Der kleine Gott . . . In jeden Quark begribt er seine Nase.
Goethe, Faust

Three quarks for Muster Mark.
J. Joyce, Finnegan’s Wake



INTRODUCTION



1 Why Quarks?

At the beginning of this century Thomson suggested that atoms
consisted of electrons embedded in a ball of positive electrical charge.
The recently discovered a and B particles had been observed to be
deflected in magnetic fields and so were natural weapons with which
one could hope to study the atomic substructure, in particular its charge
distribution. Beams of B particles were found to pass through atoms
with little or no deflection causing Lenard to observe that atoms have
vast empty spaces within. The massive positively charged a particles
were seen to be deflected by the atom, sometimes undergoing violent
collisions which scattered them through large angles. This discovery of
significant large angle scattering led Rutherford to suggest that the
atom contained a localised massive nucleus of positive charge, the
collisions of the a particles with these compact heavy nuclei giving rise
to the large angle deflections observed. Furthermore, to support this
intuitive picture, Rutherford was able to show by explicit calculation
that the angular distribution of the scattered a particles agreed with
that expected if they indeed interacted with a massive scattering centre
of positive charge Ze.

Thus was the existence of the nucleus and the proton inferred and
later the proton was isolated in the laboratory. The 90 or so€lements
were found not to be “elements” at all but instead composites of Z
(=1...90...) electrons and a nucleus containing Z protons with
accompanying neutrons. These became the new “elements” or elemen-
tary particles.
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In the 1960s very high energy electron beams were utilised at the
Stanford Linear Accelerator Center (SLAC) in an experiment that was
analogous to the old « particle one in which the atomic structure was
revealed. The electron beam was fired at protons and it was found that
the electrons were scattered with large transfers of momentum more
frequently than had been anticipated (Panofsky, 1968). The obser-
vation of these violent collisions suggested that the proton contained
discrete scattering centres within. Furthermore the distribution of the
scattered electrons in energy and angle exhibited a phenomenon called
scale invariance which suggested that the scattering centres had no
internal structure of their own, and hence were “pointlike” (Bjorken,
1967; Feynman, 1969; Bjorken and Paschos, 1969). More recently,
collisions of two protons head on at the CERN ISR and elsewhere have
shown that debris emerge with large momenta transverse to the collision
axis (large pr) and with a probability much larger than one would
expect if the proton were a diffuse distribution of matter. Hence one 1s
again seeing evidence for discrete scattering centres within the proton.

Comparison of the data on electron scattering with the analogous
probing by neutrino beams has enabled us to learn about the nature, or
quantum numbers, of the constituents of the proton. The large pr
phenomena in proton—proton collisions are hypothesised to arise from
direct collisions between these pointlike constituents and from these
data we are beginning to learn the rules governing their basic inter-
actions.

The reference to the constituents as pointlike means that they have
no internal structure or, more probably, that we have not yet resolved
any that they may have. To Rutherford the nucleus appeared pointlike;
touncover the substructure of the proton required higher energy beams
or equivalently shorter wavelength probes. In turn, to uncover any
substructure to these constituents of the proton will require yet higher
energy beams. The arrival of much higher energy lepton beams at
Fermilab and the CERN SPS might enable us to uncover such a
substructure.

As a result of the above experiments, we have learned that the proton
and neutron are therefore not elementary-but are made instead of
“partons” (which is a generic name for the nucleon constituents). There
appear to be two types of parton:

i. electrically neutral particles that are called gluons. Theoretical
prejudice suggests that these may be massless vector particles.
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ii. Spin % fermion fields called quarks and carrying electrical charges
which are fractions 5 or —} of a proton’s charge. For several years it
was believed that three varieties, or “flavours”, of quark existed
and these were named the up, down and strange quarks. Recently
it has become apparent that a fourth flavour exists, known as a
charmed quark. It is possible that there are further flavours
awaiting discovery. (A fifth flavour was confirmed while this book
was in production. A sixth is now confidently predicted.)

1.1 Hadron spectroscopy

It was not a complete surprise to discover that the proton was not
elementary. The continuing discovery throughout the 1950s and 1960s
of more and more “elementary” particles showed no sign of abating and
today we know of several hundreds. Naturally one supposes that they
are composites of a few more elementary entities rather like the many
atoms (elements!) which were discovered to be composites of electrons,
protons and neutrons.

It was found that if three flavours of quark were hypothesised then
all particles discovered before November 1974 could be understood as
composites of three such quarks (baryons) or of one quark and an
antiquark (mesons).

1.1.1 MESONS (QUARKONIUM)

Quarks have spin 1, like the electron, so the mesons which are bound
states of quark and antiquark can be thought of as “quarkonium” in
analogy to positronium, the bound state of e” and e”. To highlight this
analogy and see how the three flavours of quark are required we will first
recapitulate the energy level structure of positronium.

The e” and e” can couple their spins to 1 (triplet state) or 0 (singlet
state). In addition they can have relative orbital angular momentum
0,1,2... called S,P,D... states. Coupling the spin (&) with the
orbital angular momentum (L) yields the total angular momentum of
the system J = L+.%. The resulting energy levels in atomic physics are
labelled ***'L; and so the lowest levels are 'S, and °S,, then
'P, *P, *P, °P, and so on.
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If there is only one flavour of quark then the quarkonium system will
have a series of levels like those of positronium and each level of
quarkonium will correspond to one meson. Indeed there are mesons
observed corresponding to each of these levels, namely

180]381}_ 1P,}3P0}3P1}3P2}
m)p)’ Bl&IA A,

Actually the meson spectroscopy is not quite as simple as this. The 7
comes in three forms distinguished by their electrical charge, namely
m*m’r . There is also another neutral meson (1°) which has 'S,
quantum numbers. Precisely the same pattern is found at the *S, level
where we have p*p°p ™ and another neutral meson, the °. This pattern
of three charge states for each of the cited mesons plus the brother
neutral appears to run throughout the quarkonium system and would
emerge naturally if there were two flavours of quark, up (u) and down
(d), since at each level 'Sy, °S;, etc. four possibilities can arise
(ua, ui, dd, da) and hence four mesons.

Since the discovery of strange particles it has become clear that there
are in fact nine mesons at each level. This is certainly the case for 'Sy,
3S,, *Py, *P, and will probably prove to be true for the other levels also.
Nine is naturally the number of mesons expected at each level of
quarkonium if three flavours of quark exist (up, down and strange).

The current situation with regard to the quarkonium or meson
spectroscopy is summarised in Table 1.1,

The analogy between positronium and quarkonium is not perfect. If

we ignore the fine and hyperfine structure, the energy levels of posi-
tronium have the familiar Coulomb structure like hydrogen (Fig. 1.1).

TABLE 1.1
Quarkonium meson spectroscopy

'S, 'S, 'Py *Po ’P, P,
" o B* 8" A7? A;
a° p° B° 8° Ad? A)
T o~ B~ & AT? As
n° o° ? P D? £
7" ¢° ? S* E? 0
K+ K+* Q;> K+ QX; K**+
K° K> Q)2 «° Qa2 KHx
R° K™ Q3 i® Q3 R**0
K~ K* Qz? K™ Qx? K**~
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This has the consequence that if the P-wave excitation is an amount A of
energy above the S-wave, then a quantity 2A of energy injected into a
positronium system will excite the constituents into the continuum
where they are liberated as free particles.

4
L 3s 24
35 2d
Ionisation ﬁ.
VIPII VIV 2p
£ [3s 2p Id 2s T 2s id
p— c— ——— d fr— —
2s ip
Ip l—p
Coulomb Linear Oscillator
Is Is ‘ Is
0 [ 2 0 | 2 0 | 2
L

F1G. 1.1. Comparative spectroscopies of Coulomb, linear and oscillator potentials.

In quarkonium the separation of S- and P-wave states is of the order
of 500 MeV. If the quarkonium system were Coulombic (like posi-
tronium) we would infer that 1 GeV of energy impinging on a pion
would liberate free quarks from within. This does not happen in
practice. The energy levels of quarkonium are roughly equally spaced
in energy (like a harmonic oscillator potential for instance) and
pumping in energy just continues to excite higher states which decay
and produce many pions, but never free quarks.

1.1.2 BARYONS (3 QUARK NUCLEI)

The other way that quarks bind to form the observed particles is by
forming groups of three. The resulting particles are called baryons (of
which the proton and neutron are examples) and the resulting system is
analogous to the nuclei made from three baryons. As in the quark-
onium-—positronium analogy we again find that while baryons can be
liberated from nuclei, quarks seem not to be liberated from baryons. In
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b2 )

this “quark nuclei”-“baryon nuclei” example there is a second place
in which the analogy fails and this provides a clue that may explain the
different potential structure in quarkonium as against positronium, and
hence in turn the origin of quark confinement.

First we will study the similarity with the H® and He’ nuclei made
from three nucleons, pnn and npp respectively. Analogously for quarks
u and d, the ground state quark nuclei udd and duu are the neutron and
proton. The three spin 3 quarks in S-wave couple to give ] = or 3, hence
the nucleon and A. As one excites a quark into P, D, F . . . states so the
parity of the state will alternate S(+), P(~), D(+) and so on. This
pattern is indeed seen in the observed spectroscopy of baryons.

In the quark world there is a third flavour, s, needed in order to
understand the strange particles, in particular the A which is an sud
quark system. In the nuclear world one can regard these as analogues of
hypernuclei where an n is replaced by a A, e.g. “He’.

This far it looks as if the quark picture of baryons faithfully imitates
the nuclear example and so all that we need to do is to go to a nuclear
physics text and make trivial modifications throughout. However, there
are two crucial differences.

The quark model picture of baryon spectroscopy is analogous to the
H®, He®, “He’ nuclear system but no analogues of He*, deuterium or
U®*® appear to exist, i.e. if we denote a quark by the symbol g then qgq,
44494, q** are not seen while qqq states are seen. Even more dramatic is
that the basic nuclear elements—the nucleons (which come in two
“flavours”, namely the proton and neutron)—can be removed from a
nucleus and isolated in the laboratory whereas the basic element of the
baryons and mesons, namely the quark, has never been removed from a
proton nor does it appear to be freely available in the Universe in
isolation.

This nonobservation of quarks raises the question as to whether
quarks are real or merely artefacts. The concensus of opinion today is
that they are more than a mnemonic and have a genuine dynamical role
to play in Nature. Predictions based on quark model ideas have been
made that a fourth flavour of quark should exist and that hadrons
containing this quark should have rather distinctive properties. Such
“charmed” hadrons have recently been discovered giving dramatic
support to the quark hypothesis.' If quarks indeed have a “reality” then

! Hence we expect there to be 4 X 4 = 16 mesons for each level of quarkonium. Charmed baryons
should also exist. See Chapter 16 for more details.
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their nonobservation in isolation is a central problem. This question of
quark confinement is at the centre of much current research.

The second important difference between the quark and con-
ventional nuclear cases is that in the nuclear case there is no state
ppp(Li*) with the three protons each in S-wave since the Pauli principle
excludes two protons having the same quantum numbers. The proton
has spin 7 and hence two can exist in S-wave with total spin of 0 but a
third cannot then be accommodated in S-wave. In the three-quark
system on the other hand, the {}” requires three strange quarks each in
S-wave in order to make () (sss). One can either suppose that the
quarks do not obey Pauli statistics individually but instead obey
parastatistics of rank 3, i.e. are like bosons individually but take on
fermion characteristics when in groups of three, or alternatively one can
hypothesise that a further hidden degree of freedom exists for the
quarks so the sss can exist with each quark having the same L and &
quantum numbers so long as each one is in a different state of the
additional degree of freedom. It is therefore hypothesised that the
quarks have a further degree of freedom called colour. Each flavour of
quark comes in three colours. By requiring each s quark in the ™ to
have a different colour then each one can have the same orbital and spin
angular momentum quantum numbers without violating the Pauli
principle.

1.1.3 COLOURED QUARKS AND QUANTUM CHROMODYNAMICS

Currently theoretical research is investigating whether this colour
degree of freedom, which quarks possess but which nucleons do not, is
the crucial feature that differentiates the systematics of quark nuclei and
conventional nuclei. Although it has yet to be proven, it does appear
possible that whereas colourless nucleons can form nuclei with arbi-
trary numbers of nucleons, the colour degree of “freedom” actually
constrains the possible number of quark systems to only a few, e.g.
qqq, 93 but not qq, qqq, 4**°, etc. It is suspected that the colour freedom
causes an isolated coloured quark to combine with an antiquark of the
same colour or with a pair of quarks of different colours so that “white”
mesons or baryons are respectively formed. In the meson case the
colours of quark and antiquark have “annihilated” whereas in the
baryon case the three primary colours, red, yellow and green, have
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yielded white. As a general rule it is believed that Nature forbids all but
“white” hadrons to exist as isolated systems. The background to this
belief, and a description of some of the research into it, will be described
in Chapter 15.

This colour degree of freedom might consequently also generate the
difference between the potentials in positronium (e*e”) and quark-
onium (gq mesons). We stated that the partons come in two forms:
quarks and gluons. The quarks have flavour and come in three colours
whereas the gluons are flavourless but are hypothesised to come in eight
colours. This enables a quark (in any of 3 colours) to couple to another
quark (many of 3 colours) and a gluon, the latter having 9 possible
primary colour mixtures. One of these is a colour singlet (like the
photon which couples electromagnetically to the quarks); the remaining
8 gluons are hypothesised to couple with some strength a, to the quarks.
One can then build up a field theory of strong interactions where quarks
carrying colour charge exchange massless coloured vector gluons
analogous to QED where fermions with electrical charge couple to
photons. This theory of strong interactions is called QCD or quantum
chromodynamics.

In QED an isolated electrical charge polarises the vacuum and
surrounds itself with a virtual cloud of electron—positron pairs (Fig.
1.2(a)). A test charge placed some distance away will feel a small charge
density due to this cloud. Bringing the test particle nearer will cause it to

(a) ' (b)
(c) Nt g ; LY

(d)
F1G. 1.2. Comparison of QED and QCD. In QED the solid lines are electrons and the
wiggly lines photons; only topologies (a) and (c) exist. In QCD the solid lines are quarks
and the wiggly lines gluons. Topologies like (b) and (d) can now also exist due to the
existence of triple gluon vertices.
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probe inside the cloud and so the effective charge density that it feels
will rise. Hence a. increases in QED at short distances. This can be
shown rigorously.

In QCD an isolated colour charge (quark) will analogously surround
itself with a virtual cloud of coloured quark—antiquark pairs, and these
will cause a; to increase at short distances (Fig. 1.2(a)). However, the
gluons themselves carry colour charge (contrast the electrically neutral
photon in QED). Hence a gluon can couple to a pair of gluons and so the
quark can also surround itself with gluon pairs (Fig. 1.2(b)). This tends
to cause a, to decrease at short distances. In a world of eight gluon
colours and less than 16 quark flavours the net effect is that a, decreases
at short distances, tending asymptotically to zero. This implies that in
experiments where the proton is probed at short distances (e.g. high
momentum transfer processes) the quarks will appear to be quasi-free.
This indeed appears to be the case experimentally. At moderately short
distances &, will be small and single gluon exchange will occur between
the quarks in the hadron (Fig. 1.2(c)). This will yield phenomenology
similar to QED; in particular a hyperfine splitting will arise between the
singlet and triplet spin states of g§ analogous to that in e'e” or in
hydrogen (the latter being the source of the 21 cm wavelength photons
which yield the “autograph” of hydrogen). This is hypothesised to be
the source of the 7—p, K-K* and N-A mass differences.

In QED the Coulomb potential persists to large separations giving
rise to the Coulomb—Darwin—Breit potential (1/r to leading order) with
its associated energy level spectrum with rapid ionisation and free e or
e” production. In QCD at large separation a, increases and diagrams
like Fig. 1.2(d) (where gluons fragment and recombine) can contribute.
These topologies have no counterpart in QED where only one photon
exists as against eight colours of gluon in QCD. It is hypothesised that
this generates a non-Coulomb potential (linear, Harmonic
oscillator . .. ?) with energy levels as in Fig. 1.1 and no quark ionisation
(quark confinement).

The basic ideas as to how quarks generate the observed hadron
spectroscopy are described in Part 1 (in particular Chapters 3, 4, 5) and
some more recent ideas on the hyperfine splittings are found in Chapter
17. The new spectroscopy associated with the existence of a fourth
flavour of quark (charm) is described in Chapter 16. Some attempts to
understand the effects that quark confinement might have in spec-
troscopic and other properties of hadrons are described in Chapter 18.
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An introduction to the upsurge of interest in field theories and quantum
chromodynamics is given in Chapter 15.

1.2 Hadron substructure and scaling

When a lepton scatters from a target it does so by transferring energy
and momentum to the target via a virtual current (photon or W boson
for electromagnetic or weak interactions respectively). When large
energy and momentum are transferred then, by the uncertainty prin-
ciple, the current can resolve very small space-time distances and hence
reveal the granular (“parton”) substructure of the target.

If the partons are truly elementary then the interaction of the current
with a parton in the target is a function only of the ratio, x, of the
parton’s energy to the current’s energy in the laboratory or target rest
frame (in a general frame x is the ratio of the parton and target
Mandelstam invariants s = (p, + p2)* where p, is the current and p, the
parton or target four momenta). In particular the scattering is
independent of Q% the invariant squared mass of the virtual current
probe. The dependence on only the dimensionless ratio x is known as
scale invariance or scaling since no energy or length scale governs the
interaction (the partons are “pointlike”).

From the energy and angle of scatter of the lepton one can infer the
value of x of the parton with which it has interacted and by accumulat-
ing events at a given x value one can verify the Q* independence
(scaling) to good approximation in the data.

If the partons (quarks) have a structure themselves then this may be
resolved if 4 current with better resolution (shorter wavelength, larger
Q%) probes the system. The parton carrying momentum fraction x will
be seen to be a system of “prepartons” each carrying some fraction y of
the momentum x (0<y <1). As Q”is increased and this new structure
is resolved there will be a violation of scaling (the size of the parton
clouds sets an intrinsic scale of length which is resolved when Q=
Qiﬁﬁca.). Hence at a given x there will now be a Q? dependence in the
scattering.

Eventually at very high Q? the prepartons will be seen. If their
internal structure is not resolved then a new scaling regime will emerge
in the data. The average momentum of a preparton will be smaller than
the average momentum of a parton. However, by momentum conser-
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vation the total momentum of all the prepartons will be the same as that
of the partons. Hence if the distribution of partons’ momenta is like Fig.
1.3 (dotted line) the prepartons’ momentum distribution might be like
the solid line. Since the partons are resolved at moderate Q” and the

@ large

Probability 1o find momentum x

o |

FIG. 1.3. Parton and preparton momentum distributions (dotted and solid lines
respectively) resolved at small and large Q? respectively (large and short distances).
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(a)

FIG. 1.4. Increasing resolution with increasing QZ yields a different picture of the

proton. (a) Prequarks: Q% < Q% < Q3 yields coherent proton, quark structure and

finally prequark structure as successive granular layers are revealed. (b) and (c) Field

theory: (b) small Q? sees a parton of momentum x; (c) at larger Q* we see that the quark
has radiated a gluon and lowered its momentum to xy.

(b)

(c)
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prepartons at much larger Q? then the data for the momentum dis-
tribution of the scattering centres as a function of Q> will show a
transition from the dotted to the solid curve (scaling violation).

There is some indication in the data that such a pattern of scaling
violation may be present. The data at moderate Q? values are consistent
with quarks being the granular scattering centres in the proton. At
larger Q% we may be seeing the first revelation of a deeper layer of
matter (prequarks...) (Fig. 1.4(a)) or evidence for a field theory
structure based on quarks and gluons where quarks are dressed with
gluon and quark-antiquark clouds. As Q? increases this cloud is probed
(Fig. 1.4(b), (c)). These ideas are developed in more detail in Chapters 9
and 11.

The general phenomenology of inelastic lepton scattering and large
pr hadron collisions is described in Part 2 with particular reference to
the possibility that these phenomena indeed reveal evidence for a quark
substructure in the proton.



PART 1
SYMMETRIES, HADRON SPECTROSCOPY
AND QUARKS






2 SU(N) Symmetries

2.1 Multiplets and quarks

On studying the spectrum of the known particles one finds a large
number of cases where two or three particles exist with the same spin
and parity and mass (to within a per cent or so), the only distinction
among them being the different magnitudes of their electrical charge.
Obvious examples include the neutron and proton

n(939-5 MeV), p(938-3 MeV)

or the three pions 7 (139-6 MeV)7°(135 MeV)7*(139:-6 MeV).

These families are called isospin multiplets and one can imagine that
if electromagnetism did not exist, or could be “turned off”, then the
neutron and proton would become a single entity—the nucleon;
similarly the 77, #°, 7" would become a single entity—the pion. This
suggests that the eigenstates of the strong interactions exhibit a
degeneracy which is lifted when electromagnetic interactions are
turned on.

Degenerate energy levels or eigenstates are traditionally a
consequence of an underlying symmetry of the Hamiltonian. A familiar
example in atomic physics is the Zeeman effect where a degeneracy of
energy levels is lifted when a magnetic field is applied. A rotational
symmetry of the Hamiltonian has been broken by the magnetic field
which has defined a direction (£) in space. The 2], + 1 orientations
along % of the state’s angular momentum J give rise to different energy
levels.
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The interrelation between symmetry and degeneracy of energy levels
carries over to the particle case. The Hamiltonian of the strong inter-
actions has an SU(2) symmetry structure, isospin symmetry. Elec-
tromagnetism (charge) defines a direction in isospin-space (I3), breaks
the isospin symmetry and hence lifts the degeneracy. An example is the
nucleon which shows two faces—the neutron and proton.

The simplest example of a multiplet of SU(2) is the fundamental or
two-dimensional representation which is an object that can occur in two
states labelled up and down or (u, d). The proton and neutron form an
example of such a representation of the SU(2) isospin group with the
proton being the up (I;=+3) and neutron the down (I; = —3) versions
of the nucleon. Higher dimensional representations can exist within the
SU(2) symmetry and in the particle spectrum the three-dimensional
(“regular representation”) is seen (e.g. m 7’m") and also the four-
dimensional (A"A°A*A*™). Even higher dimensional representations of
SU(2) are allowed mathematically but do not appear to be employed in
the particle spectrum.

The strange particles K'K% X73°S" etc. also form isospin
multiplets. One can find several examples of isospin multiplets having
the same spin and parity but with different magnitudes of strangeness.
The masses of these multiplets are of the same order of magnitude,
increasing by about 150 MeV for each unit increase in the magnitude of
the strangeness. An illustrative example of this is the system A(1235),
$*(1385), E*(1530), €(1670) having spin 3 and strangeness
0,—1, -2, =3 respectively.

Taking this and other similar examples one can form families of
particles characterised by isospin and strangeness which are in

JP=0" JPe1”
KO* K ¥
K® K*

v P pOuwO ¢° P

K™ KO K™ Ko

F1G. 2.1. Pseudoscalar and vector meson nonets.
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representations of SU(3) (the SU(2) of isospin having become SU(3)
due to the incorporation of strangeness). This symmetry is clearly
broken by about 20 per cent or more but the underlying multiplet
structures are still apparent in the spectrum (e.g. Figs 2.1 and 2.2).
The fundamental representation of SU(3) is three dimensional.
Higher dimensional representations are allowed, e.g. 6, 8, 10, 27, etc.

I A(1405) n P2
8
3 st Pt
EO
10 AtY
JP=3t

FIG. 2.2. Octet 3" and decuplet 3* baryons.

Are these multiplets realised in Nature? Some of them are but not all.
The data can be summarised as follows.

Mesons are found in singlets and octets (nonets). Two familiar
examples of such nonets are shown in Fig. 2.1 for pseudoscalar (07) and
vector (17) mesons. We refer to this mesonic structure as nonet since for
every octet of particles with a given spin and parity there appears to be a
singlet nearby in mass with the same spin-parity. The physical states are
often mixtures of 1 and 8 (e.g. @ and ¢ in the vector mesons).
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Baryons are found in singlets, octets and decuplets. The octet with
spin-parity 3 and decuplet with 3* are familiar and illustrated in Fig.
2.2. The lowest mass singlet state known to exist is the A(1405) with
J© =37, there being no singlet 3" partner to the 8, 3" containing the
proton.

Some questions that immediately come to mind are: (i) Why do
mesons show nonet structure whereas baryon octets do not appear to
have nearby singlet states? (ii) Why are there decuplets of baryons but
not of mesons?

Another noticeable feature of the spectroscopy is that while the
particles appear to be in 1, 8 and 10 dimensional SU(3) multiplets, the
basic triplet representation is not utilised by Nature.

Gell-Mann (1964) and Zweig (1964) suggested that the fundamental
triplet does exist and that it contains three quarks. The jargon refers to
these as three flavours of quark. The quark was hypothesised to be a
building block in the sense that individual quarks do not exist in
isolation but bind with antiquarks or pairs of quarks to form qg states
(mesons) or qqq (baryons). From the rules for combining represen-
tations of SU(3) one then finds that

q§=3®3=1D8
29q=3Q3®3I=1D8D8D10

The absence of decuplet mesons and the 1, 8, 10 pattern of baryons
therefore emerges naturally from the g§ and qqq structure. Before
showing how these multiplet dimensionalities actually come about we
will survey some of the essential features of unitary symmetry. This can
be discussed mathematically without reference to quarks. The dimen-
sions of the representations of the group can be obtained and the
particles assigned to them. The transitions among the particles and
other of their static properties can be related by the machinery of SU(3)
Clebsch-Gordan coeflicients (e.g. Wigner, 1959; Rose, 1957; Particle
Data Group, 1976; de Swart, 1963). The philosophy would be that one
accepts that an SU(3) symmetry occurs in the underlying strong
interaction Hamiltonian and is manifested in the particle spectrum but
the origin of this symmetry is not discussed.

To motivate the source of this strong interaction SU(3) symmetry
one supposes that quarks fill the fundamental representation. Higher
dimensional representations can then be formed by combining
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fundamental representations qq, qqq, qq etc. One can regard the quarks
merely as a mnemonic and a useful tool which aid one in calculating
SU(3) matrix elements or in building up the wavefunctions for various
representations of the group. This is illustrated in Chapter 3 and the
reader whose interest is primarily in quarks can profitably proceed there
directly and bypass the formal discussion of unitary symmetry.

Of course one can believe that the quarks are more than just a
mnemonic and instead hypothesise that they are the entities out of
which the mesons and baryons are physically constructed. In the
mid-1960s the feeling was that quarks were probably just a mnemonic
and had no physical meaning. Today physicists tend very much
towards the belief that quarks are physical entities that are dynamically
confined within mesons and baryons. The observed multiplet struc-
ture and approximate SU(N) symmetry of particle physics then has its
origin in N flavours of quark filling the fundamental representation of
SU(N) and the composite quark systems yield the hadron spec-
troscopy. In this picture the discussion of Chapter 3 has immediate
physical relevance and the following description of unitary symmetry is
primarily of use for mathematical completeness and for defining
concepts that will pervade subsequent chapters.

2.2 Rudiments of unitary symmetry: SU(N)
22.1 suE
2.2.1.1 The fundamental representation and general idea

The spin independence of nuclear forces and isospin symmetry in
particle physics are two familiar examples of phenomena associated
with an underlying SU(2) symmetry group structure.

The fundamental representation of SU(2) is a doublet

()

As an illustrative example we can consider a particle with spin ;. This
particle can have its spin projected up or down along the 2-axis; we shall
refer to these two states as u, d respectively. Apart from a phase factor
these two states will remain invariant under a rotation about the z-axis.
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Rotation' about some other axis (e.g. the y-axis) by an angle 8 will
transform the states as follows (e.g. Gasiorowicz, 1966, p. 38):

0 0
N cosz sm-Z- u ,
(d’>_ .6 6 (d) (2-2)
—sing cos;
i.e.
=())  ¢=() =
0
o cos 5 e sin 5 o4
—sing , cosg .
2 2

Notice that the 2 X 2 matrix is unitary and hence the norm

X" x'=x"U"Ux=x"x (2.5)
is preserved (where X= (3) etc.).

In general we can consider the transformations
x'=Ux (2.6)
where U is a2 X 2 unitary matrix. The group of such transformations is
known as the SU(2) group. The general form for U is conventionally
written as'

U =exp (3164 . o) (2.7)

where 6 is a measure of the rotation about the axis fi and 3o are 2X2
matrices. These matrices, 30, are called the generators of the
infinitesimal transformations since for infinitesimal 6
X' x+8x
e (2.8)
Sx=16n.(zoy)
Since U is unitary then det U = 1. Having written U =¢}**°? then
utilising the fact that det (e*)=e"**“ for matrices A, it follows that the

! We rotate the axes by 6, the states by —#6.
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2 X2 matrices ¢ have
Traceo =0 (2.9)

Furthermore, U ' =¢ %% while U*=e"**°"° and these two quan-
tities are identical for unitary matrices. Hence

c'=¢ (2.10)

Therefore the matrices & are the set of 2X2 traceless Hermitian
matrices, Viz.

a b>
= 2.11
¢ (b* —a @1
with a real and normalised so that a®’+b*= 1. There are only three
independent matrices of this type and these are conventionally chosen
to be the Pauli matrices

0 1 0 —i 10
"‘_(1 0)’ "2_(1' 0)’ ‘73'(0 —1) @12)

Notice that these matrices do not commute; instead they satisfy the
following commutation relations:

[%O'a, %0'1] = llgijk(%a-k) (2.13)

(where 1,j,k=1,2,3; 123231312 = +1; 213132321 = —1). This is known
as the algebra of the generators of SU(2) and the ¢;;, are the structure
constants of the group.

We can generalise from here and define generators abstractly by the
algebra

[Si, S,] = isiikSk (2.14)

We have found particular 2 X 2 matrices which satisfy this algebra and
act on the (fundamental) two-dimensional representation of SU(2). For
general N-dimensional representations of SU(2) one can find N XN
matrices satisfying this algebra, and the multiplets which are
infinitesimally transformed by these matrices are N-dimensional
representations of SU(2). A particular example, known as the regular
representation, will be illustrated in section 2.2.1.4.

Returning to the two-dimensional fundamental representation, notice
that the matrix 30 is diagonal and hence that (u, d) are eigenstates of it
with eigenvalues (+3, —3) respectively.
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(=10

ety )()=-1)

Hence the various states in an SU(2) multiplet are characterised by
their values of (}a;). The matrices 0. =3(g; £ 107,) acting on the two-
dimensional multiplet generate transformations between states
differing by one unit of (305). This can be seen explicitly since, e.g.

0 1
o, E( ), and hence

00
_(0 1 (1)_
"*““(0 0> o) =0

el DO~

The o. are known as raising and lowering operators and satisfy the
commutation relations

(%0' 3u

(2.15)

(2.16)

[%0'3 o.]==*0.

’ . (2.17)
[0+, 0-1=2(30%)

As aresult we can form a combination of generators that commutes with

all the generators of the group. Such an operator is called a “Casimir

operator” and here 1s

C =Yo.o_+o_0.)+io]
%(crf +oi+ 0'§)
= (30)° (2.18)

Abstracting from the above we can immediately generalise from the
2 X 2 to the N X N dimensional case. Replace 30123 by Si,3and 0. by
S. in all of the above. Hence states are labelled by the eigenvalues of S
and the Casimir operator is 8%, Since §8°S. = 5.8’ then application of
raising or lowering operators S.. generates new states differing by one
unit of (S;) but having the same value of (S?). Hence different represen-
tations can be specified by the eigenvalues of S* while states within that
representation are characterised by the eigenvalue of S;. For an N =
25 + 1 dimensional representation of SU(2) (where S is the maximum
eigenvalue of S3), the eigenvalue of §?is S(S +1). This is easily seen by
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acting on the maximally stretched member of the multiplet (i.e. the one
with maximum S; = S). Then

C=45.5_+5.8,)+83%
=5.5.+5,+52 (2.19)
Acting on the maximally stretched state then

S+Xmax = 0

and hence
CXmax = S(S + 1) Xmax (2.20)

A particular example of the above is the two-dimensional represen-
tation in which case S =3 (the maximum eigenvalue of S3) and the
Casimir operator is S(S +1)=3.

2.2.12 SU(2) breaking

As a particular example illustrating our abstract discussion of SU(2) we

referred to spin and visualised rotations taking place in real space.

Another realisation would be isospin and the analogous rotations would

take place in an internal “isospace”. Just as angular momentum (spin) is

conserved if a theory is invariant under rotations in real space, so will

isospin be conserved if there is invariance under rotations in isospace.
Examples of isospin multiplets include

I=3: neutron(I;=—3}), proton(I5=+3)
I=1: w (I;=-1), 7°(I;=0), 7" (I;=+1)

The proton and the pion have the same electrical charge but different
magnitudes of I;. Therefore define the charge operator by

Q=1B+1, 2.21)

where B is the baryon number equalling one for the proton and zero for
the pion. From the isospin commutation relations (equation (2.14),
namely

[Ii, I,] = iE;jka
it follows that

Q. ]=0; [Q,I,,]#0 (2.22)
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Therefore the charge operator is not invariant under isorotations (it has
selected the 3-axis as special) and hence the charge violates isospin
conservation (more generally electromagnetic interactions violate iso-
spin conservation).

If the Hamiltonian of the world commutes with the generators G; of
some symmetry group

[H,G]=0 foralli (2.23)

then that symmetry will be an exact property of Nature. Let us consider
the case G, = [}, the generators of isospin SU(2). Write H = Hy, + Hem. It
is plausible that isospin is an exact symmetry of the strong interactions
and that

[Hstry Il] = 0

2.24
[Hem, II] # 0 ( )

The electromagnetic contributions to the Hamiltonian are small
compared to the strong contributions (about 1 per cent or so) and hence
the isospin symmetry of the strong interactions can be regarded as an
approximate symmetry of Nature. The existence of the underlying
symmetry can be identified by the existence of multiplets (like proton
and neutron or the three pions) and also by various intensity rules
(various N*-> 7N amplitudes are related by isospin symmetry rela-
tions known as Clebsch—Gordan coefficients, e.g. Wigner, 1959; Rose,
1957; Particle Data Group, 1976).

If isospin were an exact symmetry of Nature then the proton and
neutron masses would be identical. In practice they are slightly
different and in light of the above discussion it is natural to blame this
on electromagnetic effects which break the isospin symmetry. This will
be discussed in detail in section 17.5 using the framework of the quark
model.

2.2.1.3  Conjugate representation of SU(2)

We have seen how the proton and neutron can be regarded as forming
the up and down states in the fundamental two-dimensional represen-
tation of SU(2) of isospin. If we label the antinucleons as @ and d
respectively then the states (d, G) have I; = (+3, —3) just like the doublet
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(u, d). This new representation is known as the conjugate represen-
tation and it is conventional to denote the dimensionality of these
representations by

2=(u,d), 2*=(d,q) (2.25)
How do the 2* states transform under isorotations?

The fundamental doublet ¢ = (:
¢'=Us

) transformed under isorotations as

(2.26)

U =exp (3i0h .T)Ecosg+iﬁ . Tsinz

(7 playing the role of the Pauli spin matrices o in equation 2.7). In
particular a rotation about the 2-axis yields

0
u’ = cos U +sin gd (2.27)
0 0
"= —sin ~u+cos = :
d sin S u+cos 2d (2.28)

if we use the standard representation of the 2X2 T matrices as at
equation (2.12).

Now act on both sides with the charge conjugation' so thatu -, d >
d etc. Equation (2.28) then becomes

~_ .6 6-
d'= —sin 2u+cos 2d (2.28a)
and equation (2.27) becomes
8 . 6=
u’' = cos 2u+sm 2d (2.27a)

We have ordered the equations this way so that we immediately see the
effect on the (I;=+3, I; = —3) doublet

0s 9 sin 0

- cOosS— —sIn— -

d 2 2 \/d

(a') 1.6 [ (ﬁ) (2.29)
Sin 2 COSs 2

! The particular case of rotating about the 2-axis through an angle 6 =, followed by charge
conjugation, yields the operation called G-parity conjugation or just G-parity. See section 4.1.1.
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Note that in equation (2.29) if the doublet is defined to be ( Sl) then
-u
d' = cos =d +si Q(—“) (2.30)
cos > in> (-4 .
(—a) = —sin ‘2—9 d+cos g(-a) (2.31)

which is the standard form for the rotation of the doublet (equations
2.27 and 2.28). In general the doublet

- d
$=(_o) (2.32)
transforms as
$' =Ud,  U=exp(ith.1) (2.33)

Hence the antiparticles, with the above phases, also transform as 2
under SU(2). ,

In general SU(N) where N =2, 3,4 ... there will be basic represen-
tations of dimension N and N*. In the SU(2) case we found that 2 and
2* were equivalent representations, transforming in the same way
under rotations. For N =3,4 ... the 3, 3* etc. representations are not
equivalent. For the particular example of SU(3) this will be illustrated
in section 2.2.2,

2.2.1.4 Regular representation

The simplest representation of the generators of SU(N) are the N*—1
Hermitian traceless N X N matrices, the three Pauli matrices being the
example for SU(2). Using these matrices one can define an N*—1
dimensional representation of SU(/N) which is known as the regular
representation. In the case of SU(2) this will be the three-dimensional
vector (isovector) representation (e.g. the pions).

To illustrate the regular representation recall the algebra of the
generators

[Si, Si] = ie Sk (2.34)
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If we choose S; diagonal then we find a 3 X3 matrix representation

3=22-1)

1 0 0 1 0 -1 0
S;=[0 0 S‘ZJ_E -1 0 1
0 0 -1 0 1 0
; 0 1 0
S;=—|(-1 0 -1 2.35
2 \/E ( )
01 0

which satisfies the SU(2) algebra. The basis on which these act consists
of the eigenstates with eigenvalues S;=+1,0,—1, e.g. if we are
considering isospin then the basis could be the three charge states of
the 77 meson, =¥, w°, 7.

Instead of these charge states one often meets the alternative basis

1

lw1>27§(—\w*>+lw‘>)
|772) EJ% (7 ") +177) (2.36)
|73y = |7TO>

which behave like the components of a vector under rotations in isospin
space. The matrix elements of the S; taken between these states
becomes

(m|Silm) = —igy (2.37)
c.g. <771133|7T2>E—é((w+|53|77+>—(7T*|53|7Tf))
=—1=—ig3, (2.38)

This is a particular example that is true for any SU(V). If the algebra
of the group is defined by

[G;, Gj] = igiu G (2.39)
with M generators G;(i =1 ... M) and g the structure constants of

the group, then a representation can always be obtained with dimension
equal to the number of generators. This is the regular representation
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and is given by

(S0)i = —igix (2.40)
For SU(2) with 3 generators we saw by explicit construction
(S)i=—1€i

The general proof follows by use of Jacobi’s identity. Denoting the
generators by A, then [[A;, Aj], A+ [[A;, Add, A+ [[Ax, A, A1 =0.
Multiply it by a A and take the traces.

2.2.2 SU@)

2.2.2.1 Fundamental representation and general idea

The extension from SU(2) to SU(3) is immediate if we extend the basic
u, d doublet to a triplet u, d, s and investigate transformations of

fu
¢=(d
s
of the form
¢'=Ug

where U 1s now a 3 X 3 unitary unimodular matrix. Following the SU(2)
case write

U =exp (3i6n . \)
where the A; are eight independent Hermitian traceless 3 X 3 matrices
analogous to the o; of SU(2). Canonically these are chosen to be
(Gell-Mann, 1962)

0o 1 - 0 —1 - 1 0o -
/\1= 1 0 - A2= 1 0o - /\3= 0 -1 .
0 - 1 0 - -1 : . B
Ag=|+ - - As=|- - Ae=|+ 0 1
1 -0 t - 0 -1 0
1 1 0 0
A= 0 - Ag=—=|0 1 0 2.41
7 1 8 \/3 ( )
1 0 0 0 -2
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where the dots are zeros and we have written them in this fashion to
highlight the SU(2) subgroups contained within SU(3). The A, have
the structure

T12 : 0

——__J0 (2.42)
0 0 0

and hence exhibit the SU(2) isospin subgroup. The A, are
0 0 0
o (2.43)
|

0 012

and exhibit an SU(2) subgroup called U-spin while the A, s are related
to a third subgroup V-spin. In terms of the basic triplet of Fig. 2.3 these

F1G. 2.3. SU(3) triplet with I, U, V SU(2) doublets.

SU(2) doublets are
u,d (I);  d,s (U);  u,s (V)

The operator F3=3}A; is the isospin operator since acting on u, d, s it
has eigenvalues +3, 0 respectively. The hypercharge operator is
2 2

Y=—"rF=—=.3\ 2.44
Nl NG 2As ( )
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TABLE 2.1
Structure constants of SU(3)

fizz=1
fl47=f246:f257=f345=f516=f637=%
f458=f678=‘/§/2

dy1g = dps = drig = —dgss = 1/‘/3
diae=dis7 = dose = d34s = d3ss = %

dr47 = dyee = dy77 = *%
1

doss = dsss = dogs = dyrg = ——=
448 558 668 778 2\/5

The commutation relations of the matrices 3A; can be obtained by
explicit calculation. Perform this for yourself and verify that

BAs, 241 = ifwGAL) (2.45)
with the structure constants f;; having the valuesin Table 2.1 and being

antisymmetric under interchange of any pair of indices. The matrices
also satisfy anticommutation relations

{%/\i, %Aj} = %66 + dijk(%A K) (2-46)

where the d;, are symmetric under interchange of indices.
As in the SU(2) case we can generalise these results by defining
F,=3)\,; satisfying commutation relations

[F:, Fj] = ifFu (2.47)
(f=1...8). A full study of SU(3) then consists of finding N XN

matrices F, which transform N-dimensional states by
¢->¢'=(1+i6h .F)o (2.48)

These states form N-dimensional multiplets of SU(3).

2.2.2.2 SU(3) Casimir operators

In SU(2) we found a combination of generators that commuted with all
the generators of the group, viz.

C=DP=YII.+I.1)+I}
=4I, I}+1? (2.19)



SU(N) SYMMETRIES 33

whose eigenvalue was shown to be I(I +1). In SU{3) the analogous
invariant operator is

8
FZE Z RE=%{I+a I"'}+I§+%{U+y U—}+%{V+7 V—}+F§
i=1

(2.49)
where
ItEFlil.Fz, IgEFg
. 2
U.=F tiF;, YE\/_EFB (2.50)

Vo=F,x1F;

The operators I, V., and U_ all increase the magnitude of I; and so we
can define a maximally stretched state such that

I+¢max = V+¢max = U—¢max = 0 (2.5 1)

We will now compute the magnitude of the Casimir operator for any
SU(3) representation by acting with F? on the maximally stretched
state of that representation.

First of all use the values of fi; (Table 2.1) to verify that

(L., I.]=2I,
[U,, U]=3Y -I,=2U, (2.52)
[V,, V=3V +I,=2V,

(compare equation 2.17 in the SU(2) case). Now use these to rewrite F*
with I,, U_, V, on the right-hand side of any pair of operators. Acting
with F? on the maximally stretched state ¢ . defined above immedi-
ately yields the result

(F) = (L + 2(I;) +3Y? (2.53)

For example the triplet has u as the maximal state for which I = +3, Y=
i, hence (F% =4
In order to facilitate computation of (F*) for any arbitrary dimen-
sional representation of SU(3) it is useful to do a small ealculation to
manoeuvre equation (2.53) into a more immediately tractable format.
We assert without proof that any SU(3) representation has a convex
boundary in I3 — Y space (see Gasiorowicz, op. cit., p. 264). Hence we
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can act on the state @, with the operator V_ repeatedly (p times) until
another corner of the boundary is reached, 1.e.

(VoY pamax =0 (2.54)

Then act on this corner state with I repeatedly (¢ times) until yet
another corner is reached, i.e.

(1) (VY Gemax=0 (2.55)

The SU(3) representation is now completely specified by (p, q). For
example the octet in Fig. 2.4 has the point A the state ¢... (since
I., V., U_would generate states A,  ; respectively which are not in the
multiplet). Acting with V_ once brings us to the corner B, hence p =1;
and I_ once brings us to C, hence ¢ = 1. Therefore the octet is (1, 1).

y C B As

L.,

FIG. 2.4. The position @... in the octet.

The maximum state has
Li=3(p+q)
Y=3p-q)
and so the expression for F? (equation 2.53) becomes
F*=3(p*+pg+q)+(p+q) (2.57)

We illustrate this formula by applying it to various representations
and derive the results exhibited in Table 2.2. For a triplet (Fig. 2.5)
p=1,q=0. Hence F>=%. The same result holds for an antitriplet for
which p =0,g=1. Foran octet p=1,g =1 and so F*=3.

(2.56)
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TABLE 2.2
Magnitudes of Casimir operators, F2, for some
common SU(3) representations

Dimension (. q) F?
1 (0,0) 0
3 1,0y 3
3 0, 1) 4
8 (1,1) 3
6 (2,0) e
10 3,0) 6

As an exercise calculate the p and ¢ for a six- and ten-dimensional
representation. Compare the (p, ¢) with that of the fundamental triplet
and recall that 6 and 10 are symmetric representations (this is shown in
section 3.3). Compare (p, q) for the “mixed” octet. Finally look at (p, q)
for the 6 and 10 and compare with 3. An obvious pattern in p, ¢ will be
seen to emerge. Compare also with the explicit quark model con-
structions of higher dimensional representations in section 3.3 and the
discussion of Young tableaux in section 3.4. As a check verify that
F?=6 for a decuplet and is ¥ for a 6. Finally ask yourself what are p, q
for a singlet? Show that F? for a singlet is zero and prove that only for a
singlet can it be zero. These results will be important in the discussion

of quarks with three colours (SU(3) of colour) that appears in section
15.2.

N | /..

) /2 i /2

- I/‘z ['/2_‘]3

FIG. 2.5. Weight diagrams for 3 and 3*.
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Notice that 3 has (p, ¢) = (1, 0) whereas 3 is (0, 1). These are there-
fore two inequivalent representations of SU(3) unlike that encountered
in SU(2) where the 2 and 2* were found to be equivalent. The
diagrammatic representations of 3 and 3* are shown in Fig. 2.5 and it is
clearly seen that it is the hypercharge, which is different in the two
cases, that prevents the equivalence. In SU(2) the (u, d) and (d, @) are
the same (if we ignore baryon number) since the hypercharge degree of
freedom has not entered the picture.

222 su@

The fundamental representation of SU(4) is (Fig. 2.6)

»w QA e o0

and the transformations ¢’ = U¢ now involve 4 X 4 unitary unimodular

d u c
—
d uc
s
%4
I3

FIG. 2.6. SU(4) quartet.

matrices. As in SU(3) write

U =exp (3160 . \)
where now A; are 15 independent Hermitian traceless 4 X 4 matrices. We
will choose A;_s to be identical to those of SU(3); hence

0 0 0 O
R ,
r=| i=1..38 2.58)
0,
A
|
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There are six nondiagonal matrices which are chosen (Amati et al.,
1964) analogous to the Pauli matrices

0 1: 0 —1 !
| 0 . 0
- 1 0,_ A _t___O_l__
° | =170 T
0 |0
1 0 I—
0 : - 0 : 1 0
Ay=[-——-——— __Z_Z_ 3 =l '-.9____9 2.59
11 ll 127 K 0 : ( . )
0
0 0 : 0 0! 0
Lo 1 0 —1
0o 0
A= |—————- ‘__Q_Q_ Aa=|-——-—=- I_0 _____ 9
5710 o | . "o 0 0
I
1 0 1 1 0:

Finally there is a traceless diagonal A;s which is chosen so that it

distinguishes the charmed “quark” ¢ from uncharmed uds and is an
SU(3) singlet

-3 0
o1l
I iy - - y . (2.60)
15— — —
Vo |
0 11 0
0 1
Consequently we can define “charm” to be the eigenvalues of
1
. 0
C=1-V6A,5)= 0 (2.61)
0

and hence charm is not a generator of SU(4).



3 Quarks and SU(N)

Representations

If baryons are to be built from three quarks (qqq) then a quark must
have baryon number 3. The antiquark will have baryon number — and
so mesons gq have baryon number zero.

The quark must occur in two flavours which form an isospin doublet
in order that the neutron and proton can be distinguished. This pair of
quarks form the basic representation of isospin SU(2). In order to
distinguish the proton and " a third flavour of quark is needed. This
quark must carry strangeness and in company with the isospin doublet
will form the basic representation of SU(3).

With the canonical relation between charge, baryon number and
strangeness (Gell-Mann, 1963 ; Nishijima and Nakano, 1953)

B+S

Q=I3+ 2

Y
= +E(B+S:——— Y = hypercharge) 3.1

then the quarks have quantum numbers exhibited in Table 3.1. The
u, d, s flavours of quark therefore form an inverted triangle in I;—Y
space.

In order to create charmed hadrons a fourth flavour of quark
(charmed quark) is required and the four flavours form the basic
representation of SU(4). We will concern ourselves with just the three
flavours u, d, s in the present discussion. The extension to charm and

SU(4) will be deferred until Chapter 16.
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TABLE 3.1
Quarks and their quantum numbers
Flavour u d s c
Charge 3 -3 -3 3
Isospin 3 3 0 0
I +3 ~3 0 0
Strangeness 0 0 -1 0
Charm 0 0 0 1
Baryon numbers i 3 3 5
N—— ———
SU(?2)
SU(N) group SU‘(})
SU4)

3.1 Baryons

Baryons are qqq states. If we ignore charm then each of the quarks can
have any of three flavours u,d,s. In Table 3.2 I list the possible
combinations of the quarks uds that can arise after three selections have
been made (for the present we will take no account of the order in which
they were selected, hence uud, udu and duu are equivalent). In column
3 the charge and in column 4 the strangeness of the resulting baryon is

TABLE 3.2
Systems of three quarks with three flavours
Quarks Symmetry Charge Strangeness Examples
uuu S 2 AT
uud SM 1 A'P
udd SM 0 0 A°N
ddd S -1 A~
uus SM 1 SHE
uds SMMA 0 -1 T3 A°A(1405)
dds SM -1 STFET
uss SM 0 =*E°
dss SM -1 -2 HEFET
sss S -1 -3 Q-
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shown. In column 5 examples of baryons with these quantum numbers
are given—the decuplet, octet and singlet A(1405).

If we have chosen uuu then we know that we have a A**, but if we
choose uud then how do we distinguish A™ from proton (other than by
its spin)? For uds there are four possibilities.

The way we distinguish between them is related to the symbols S, M,
A of column 2 which have to do with the symmetry properties of the
states. Specifically—if we now worry about the order in which the
quarks were selected—then what happens if we change the quarks
selected 1st and 2nd around to 2nd and 1st? Clearly if all were the
same—uuu for instance—then you get the same state and this is called
symmetric, labelled S. In fact you can always define an S combination
whatever the three quark content may be, hence 10 such states. If at
least one quark differs from the rest you can write a “mixed symmetric
state” (M) and there are 8 of these (uds comes in two ways since there are
two choices for the “different quark”). Finally if all three are distinct one
can form a single state antisymmetric (A) under interchange of any pair
of quarks.

This brings us to the ideas of symmetry properties of states under
interchange of their labels. We shall discuss this in detail, and begin
with a simple example in SU(2) as a result of which we will be able to
write down spin wavefunctions for systems of three spin 3 quarks. Then
we extend to SU(3) and make contact with the 10(S), 8(M) and 1(A)
structure of Table 3.2. The SU(3) wavefunctions of the three-quark
system will be explicitly constructed. We shall then combine these
SU(3) wavefunctions with the SU(2) quark spin wavefunctions to
formulate the SU(6) structure of the spectrum of gqq states.

3.2 SU(2) representations

The simplest example of this group arises if we have an object that can
exist in two “types”—Ilabelled “up and down” or (3) Examples are

isospin where the nucleon system has I =3, the “up” state (I, = +3)
being the proton and the “down” (I, =—3) the neutron. Another
familiar example is an object with spin 3: turn on a magnetic field which
defines a z direction and its spin points up 1(S.=+3) or down
(S, = —3) in the 2z direction.
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3.2.1 SYSTEM OF TWO SUCH OBJECTS

There are clearly four possibilities, given in the first column of
Table 3.3. Under interchange of the labels 1 and 2 three states are
symmetric and one is antisymmetric.

In the group theory notation we write (2 states); X (2 states), =
2®2 -> 3 @ 1,showing that there are 3 symmetric and 1 antisymmetric
combinations.

A familiar example of this is combining two states with spin 3 to form
a state of spin 1 or 0:

1®:=100 (3.2)
Rewriting this in terms of the (25 + 1) states one would have
2®2=3®1 (3.3)

as in our group theory notation above. In fact we can obtain the Table
above by referring to the Clebsch—-Gordan coefficients for combining
the two spin i states.

With notation |S'S;; S$*S2)—>|SS,) we have from the Clebsch—
Gordan Tables (Particle Data Group, 1976).

wu=3z;33)  =|11)

1
d= ll;l—l =—{|10)+ |00
u ‘222 2) \/Z{l ) | >}

1 (.4)
du=fi=3i) = =(10)-o0)

dd=R-k3-H=[1-1)

TABLE 3.3
Symmetry states for two objects in SU(2)

1st 2nd 1<>2 interchange
u u uu

d ! (ud +du) ! (ud —du)
u —(u u —(ud—du

J2 J2

d u
d d dd

symmetric antisymmetric
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and this is identical to the separation made above into three states
(S =1) and one state (S =0).

3.2.2 SYSTEM OF THREE SUCH OBJECTS

There are now eight combinations. These are shown in Table 3.4 with
their value of S,. One can form the four symmetric combinations and
two types of mixed symmetry states, one antisymmetric and the other
symmetric under interchange of the first two labels but having no
simple symmetry under (13) or (23) interchange. (Actually interchange
either of these latter ways and you will obtain a state which is a linear
combination of the various quoted states—hence “mixed” symmetry.)
The various 3, 5 factors ensure the orthonormality of these states.

TABLE 3.4
Symmetry states for three objects in SU(2)
Tu udu dud d
2u uud ddu d
3u duu udd d
1 1
uuu —(uud +udu+duu) —(ddu+dud +udd) ddd
V3 V3
_ (ud—du) L (ud—duyd
—(ud—-du)u —(ud—du
V2 V2
1 [(ud+du)u -] 1 [(ud+du)d —]
— | ———yudv2 ——| ———dduv2
Vil V2 il V2
Sz=% S.=% Sz=_% Szz_%

The physics of the above is clear if we consider the coupling of three
particles each with spin 3. The coupling of two such objects was
discussed in the previous example and the S =1(0) states with sym-
metric (antisymmetric) properties exhibited. This is recapitulated in
the first column below. Coupling a third particle is shown in the second
column.

From two particles Add a third
(lz)anti—)SIZ=0 ®%_)S=%Only

(3.5)
(12)Sym—)512=1 @%—>S=%ands=%
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Hence the S =3 state can be formed in two ways, one with the S;,=0
(antisymmetric) and one with S;, = 1 (symmetric). This corresponds to
the two mixed symmetry types in rows 3 and 4 of Table 3.4.

We can illustrate this by coupling three spin 3 states using the familiar
Clebsch—Gordan coefficients. For the S, =+3 system one has the
possibilities listed below (Table 3.5).

TABLE 3.5
Coupling three spin } states
S=1®S=} S=i®S=1
i ) Ly Py
2 z
L (ud+du) |10 \[' \/—'——
ST awd 322 .
S=0®Ss=+ s=1
2 2
1(dd) \0011> ‘11>
——=(ud —du)u Sy ad b
V2 22/ i22/a

Solving these yields our previous results, e.g.

2 11
22> f’ 2 2 ‘/11 EE> (3.6)
1 21
= ‘/—guud+ \/3 \/—E(ud+du)u 3.7
\/—(uud+udu+duu) (3.8)

and similarly for the other states.

3.2.3 SYSTEM OF 3 SPIN 3 QUARKS

The previous discussion will be useful later when we build the baryons
out of three quarks each with spin 3. The total spin of the three-quark
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system will be described by three-quark spin states as above. We close
this section by summarising the essential features of SU(2):

3X3=15+0, orin (2S+1) notation2x2=3+1 (3.9)

GX3)X3=(1X3)+(0X3)or 2X2)X2=(3xX2)+(1x2)
= Gotins) tima =(4+2)+2 (3.10)

3.3 SU(3) representations

The simplest example arises if we have one object that can exist in three
types which we shall label (uds). This is a straightforward extension of
the (ud) example of SU(2) and so we shall only sketch the steps. The
interesting physical application will be when strange and nonstrange
uncharmed hadrons are described as systems of quarks, each of which
can occur in three types of “flavours” (up, down and strange).

3.3.1 SYSTEM OF TWO SUCH OBJECTS

There are nine possible combinations which can be separated into six
symmetric and three antisymmetric states (analogous to Table 3.3 in
SU(2)). These are shown in Table 3.6 and form a 6 and 30f SU(3). That
the antisymmetric set is 3 and not 3 can be seen as follows. Note that ud
are an I =4 doublet of the SU(2) subgroup with I, = +3, —; respec-
tively. The degree of freedom (s) that extends the group to SU(3) will
be labelled by having (minus) one unit of “hypercharge” (Y'). Then the
uds states fall in an inverted triangle on a I;— Y plot (Fig. 3.1). This is
called the “weight diagram” for a triplet. The weight diagram for an
antitriplet is an inversion of this, i.e. a triangle (which is easily seen by
considering Gids). The combinations ud, us, ds also form a triangle (Fig.
3.1) and hence are 3.

3.3.2 SYSTEM OF THREE OBJECTS

Exactly as in the SU(2) example add a third u, d or s to the two body
states above. There will be a total of 27 combinations of which 18 come
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TABLE 3.6
Symmetry states for two objects in SU(3)
Ist 2nd 1<>2 interchange
u u  uu
u d} 1 1
—(ud +du) —(ud —du)
PR 7
d d dd
b s} L (us+su) 1 ( su)
—=u U —=\us—
s u \/z V2
d s} 1 1
—(ds+sd —(ds—sd)
s o FET 7
s s ss
symmetric antisymmetric

from 3® 6 and 9 from 3 ® 3. By explicit construction verify

3I®EB®3)->3R(6D3)
- (105D 8y.5)D (8m.aD 1) (3.11)
which is the SU(3) analogue of the 2® (2® 2) in SU(2) in equation

(3.10). The 10(sym) states are obvious. The 8y s, 8. and 1 states are
given in Table 3.7.

__i_—_ 4

| A

\0:-'/3 \0=-2/3 y

FIG. 3.1. u, d, s triplet and ud, us, ds antitriplets.



46 AN INTRODUCTION TO QUARKS AND PARTONS

Notice that the antisymmetric state exists because the three objects
each have three labels available (uds). In the SU(2) example the
restriction to two labels meant that only symmetric and (two) mixed
symmetry states could be found.

TABLE 3.7
®msdm.a: Mixed symmetry representations for the octet states of three quarks
dms bma

P 1[(d+d) 2uud] 1(dd)

—[(u u)u—2uu —=(ud —du)u

J6 V2
N —\/Lg[(ud+du)d—2ddu] —\}—E(ud—du)d
pNe \/ig [(us +su)u —2uus] -\/l—z(us —su)u

o 1[ (dutud dsu+usd 1 [{dsu+usdy (ud+du
> J@H NG >+< N ) JE[( NG ) S( N )}
du+ud
~2( 75 ) SJ
1
P :/l—g [(ds+sd)d —2dds] 7_2 (ds—sd)d
1 [dsu—usd s(du—ud) 1 [s(du—ud) usd—dsu 2(du—ud)s

A — —+ = — —— + -

V2 [ V2 V2 ] JE[ V2 V2 V2 ]
= - \/LE [(ds +sd)s —2ssd] \/Lz [(ds—sd)s]
= - \/LE [(us +su)s —2ssu] :/1—2 [(us—su)s]

ba

L [s(du —ud) + (usd —dsu) + (du —ud)s]

V6
Note: 7~u - d relates P and N; d <>s relates Pe>2"; ue>d and d < s relates N> =™, Note that in

the £° the ud quarks have I = 1 while in the A° they have I = 0. The locations in the octet hexagon
are shown in Fig. 2.2. The antisymmetric singlet state, @4, is also shown.

Identifying uds with the three flavours of quark, the resulting states
are identified with the baryons. You can refer back to Table 3.2 showing
baryon states and the S, M, A, notation should now be clear.
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3.4 SU(N) and Young tableaux

By working through the example of SU(2) in detail and then generalis-
ing to SU(3) we have explicitly seen how to combine the fundamental
representations and have constructed the SU(3) 1, 8 and 10 represen-
tations for the qqq system. Now that a fourth flavour of quark is
believed to exist one might consider a fundamental quartet (c, u, d, s)
and by proceeding through the analogous steps to those just discussed
one could obtain the SU(4) representations of the qqq system. Alter-
natively one could construct the SU(6) representations of gqq that arise
when the uds quarks with spin 1 form the fundamental representation
ut,dt,st,ul,dl,s|, of SU(6). By explicit constructions you would find
that _

606=1® 35 (3.12)

6066=56D70D7020 (3.13)

In turn you could calculate the representations of an SU(8) group
generated by the fundamental representation cf, uf, df, st, cl, ul, d{,
sl.

Instead of proceeding in this tedious fashion afresh for each SU(N) it
would be much more elegant if there were some general techniques
applicable for arbitrary SU(N) which would enable us to easily deduce
the dimensions of the irreducible representations arising from products
of other representations of the group. Elegant and extremely rapid for
calculation are the techniques of Young tableaux. They also have the
merit of being fun to play with. Suppose that we are interested in
SU(N). The fundamental representation will be denoted by a box

= dimension N, (3.14)

while a column of N — 1 boxes denotes the conjugate representation N*

1

> N* (3.15)
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Hence in SU(2) =2 or 2* but in SU(3) we find

=3, =3* (3.16)

and so the fundamental and conjugate representations are the same in
SU(2) but differ in SU(3) and higher groups SU(N =3).

Young tableaux with only one row are associated with a totally
symmetric representation. A column is associated with an antisym-
metric representation.

Now imagine that we wish to obtain the product of two such
representations. We can add the second box to the first either to make a
line or column of two boxes (the general set of rules is given in
Hammermesh, 1963). The dimension of the representations cor-
responding to the line or column is given underneath both for SU(2)
and SU(3). We have already seen how to calculate these dimensions
explicitly.

® = @
(3.17)
sU2): 2 ® 2 = 3 o 1
sU@G): 3 ® 3 = 6 @ 3*

In general the product of two fundamental representations has the
above row and column box structure. By referring to Tables 3.3 and 3.6
we indeed verify the symmetric—antisymmetric row and column struc-
ture.

How do we calculate the resulting dimensions for arbitrary SU(N)?
To calculate the dimension of any array of boxes there is a recipe which
involves forming the ratio of two numbers. We assert that the way to
calculate the numerator and denominator is as follows.

The calculation of the numerator : For any given diagram represent-
ing a product of representations of SU(V) insert N in each of the
diagonal boxes starting from the top left-hand corner. Along the
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diagonals immediately above and below insert N +1 and N — 1 respec-
tively. In the next diagonals insert N +2 and so forth. A particular
example should clarify this, e.g.

N N+1 | N+2

N-1 N N+1

N-2| N-1 N

The numerator of our expression will be the product of all these
numbers.

The calculation of the denominator : This will be the product of the
“hooks”. Each box has a value of the hook associated with it and to find
this value do the following. Draw a line entering the right-hand end of
the row in which the box lies. On entering the box, this line turns
downwards through 90° and then proceeds down the column until it
leaves the diagram. The total number of boxes that the line has passed
through, including the box in question, is the value of the hook
associated with that box. The product of all the hooks is the
denominator.

We will apply these rules to calculate the dimensions of our particular
example met previously. It is trivial to verify that [J indeed has
dimension N (as it should!) and that

- [N -, _ 15-1 RLED
e (3.18)
el K=t
1 2 i
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so that finally

® = ®

_N(N+1)  N(N-1)
2 2

(3.19)

Hence for N =2 we have that 2® 2=3 ® 1 which we found explicitly
in section 3.2. For SU(3) we see that 3 ® 3 =6 @ 3* asinsection 3.3.In
SU(3) the column of two boxes has dimension three by the hook rule
and we recognise it as being the conjugate representation (a column of
N —1 boxes in SU(N)) since it is a two-box column in SU(3).

As an exercise verify that a column of N boxes in SU(N) is always the
singlet representation.

Now let’s combine three objects in SU(N). We have already seen that

® = @

(3.17)

and so we will now add another box to the two-box row and column.
There is a detailed list of rules for forming allowed diagrams which are
set out in Hammermesh (1963). For our present purpose we need only
note that diagrams must not be concave upwards nor concave towards
the lower left. Hence

are all forbidden whereas

is allowed. One combines the third box to the original two in all possible
ways subject to this constraint. This yields the following topologies.
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® = @
_N(NADIN+2) ((NZDNIN+D 55
= 6 A 3 :
while
® = @
_N(N=D(N=2) ((N-HN+DN 3.21)

6 3

and we have written the dimensions of these diagrams alongside. As an
exercise use the hook rule already described and verify these dimen-
sions. To save effort in constructing diagrams note that in SU(N) no
diagram need be drawn which has more than N boxes in any column
since such a diagram trivially has dimension of zero. Hence for N =2
the dimensionality of the tableaux are

2®2)Q2=(4D2)D2 (3.22)

and the column is excluded as it has three boxes and we are discussing
N =2. For N =3 we obtain

B®3HR3I=(10D8)D8D1) (3.23)

Other examples that are of physical interest include SU(4) and SU(6)
where

4 R®4)®4=(20020)D (20D4) (3.24)
and
(6 ®6)® 6= (56D70)D (70D 20) (3.25)

respectively.

If your appetite is now whetted so that you are stimulated to go and
combine more complicated diagrams, e.g. 8 ® 8 in SU(3), then you will
need to know the set of rules that are to be obeyed in order to form legal
diagrams. Once the legal diagrams have been formed, the dimensions
can be calculated by the standard procedure involving the hook rule.
The rules for legal diagrams can be found in Hammermesh (1963).
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As a final illustration we can combine 3 and 3% in SU(3) to obtain the
representations of the ¢§ mesons. We find

® = ® (3.26)

since all other topologies of connected boxes that contain the original
single and two box columns will be concave upwards

or towards the lower left

and hence are forbidden. The dimensions are immediately found to be 1
and 8. In general one can see that in SU(N) the product of N and N*
yields the topologies

® 1.p (N=-1)="— }N(—B(N—l) : (3.27)

andso N®ON*=1® (N*-1).
Notice that if ¢ is the N-dimensional fundamental representation of
SU(N) then ¢A;4f transforms as the N>— 1 regular representation and
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U1y as the singlet (see section 2.2.1.4). For example in SU(2) where
A;=o0; then
Jo.y=ud; Yo =uia—dd; Jo_y =da (3.28)
transform as 7*, w°, 7. The singlet is formed by the trace
Y1y =ua+dd (3.29)

This leads naturally into the representations of meson (qq) states.



4 SU(6): Quarks with Spin

4.1 Mesons

Three flavours of quark (uds) combined with any of three antiquark
flavours (ids) yield nine meson g combinations. Nine pseudoscalar
and nine vector mesons exist corresponding to the nine g flavour

- combinations (Table 4.1). In the framework of SU(3) there is no reason
why the octet representations should be accompanied by singlets. In the
quark model this is natural and the observation of nonets is a clear
indicator of an underlying § structure.

There is only one question to be settled: What are the particular
combinations of uii, dd and s that correspond to the three neutral states
7°,m°% 1'% or p°, w°, ¢°? First of all consider the simpler case of SU(2)
where the two neutrals will be uii and dd. The I =0 combination is
uti+ddand I = 1is —ut +dd. The reason for these phases can be traced
to equation (2.32) where we see that the doublet (d, —i) transforms like
(u,d). The I =1 state with I, =0 in (u, d) ® (u, d) was given in Table
33 as

I = l,Iz=0)=\/L§(ud+du) (4.1)

Hence in (u, d) ® (d, —u) we will have

=11, =O)=\/L§(—uﬁ+d<_i) 4.2)
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The orthogonal combination with I =0 is therefore just the trace of
1 -
¢ =—=(Gu+dd).
¢ ¢ \/2( )

Proceeding to SU(3), the s and § have I =0 in the SU(2) subgroup.
Hence s§ can occur in company with the isoscalar uii + dd but not with

TABLE 4.1
Meson nonet
Charge Strangeness Examples

ud +1 0 " p"
da -1 0 T P
uu 7’ p°
da} 0} 0 {n" °
S§ nvO ¢0
us +1 } +1 {K+ K**
dg 0 KO K*O
Qs -1 } -1 {K' K*~
ds 0 K° K*°

the isovector dd — uii. The SU(3) singlet is the obvious generalisation of
the SU(2) singlet (I = 0) and hence, in notation (SU(3), SU(2)),

1 -
1,1)=—(uu+dd+ss 43
11, 1) \/5( ) 4.3)
Since the isovector contains no ss then
18,3)= 1 (dd —ut) 4.4)
,3)=—(dd—uu .
V2

The third possible combination of udi, dd, s§ orthogonal to these is'

8, 1)= \/Lg(uﬁ +dd —2s8) 4.5)

"The 8 regular representation_of SU(3) transforms as ¢A;¢ (PAs¢ in equation 4.4, Agd in
equation 4.5). The singlet is ¢ 1¢ (equation 4.3). See equation (3.28).
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For pseudoscalar and vector realisations of the above, a frequent
notation is

8,3)=7"p°
8, 1)=ns, ws (4.6)
}1, =n, o

The physical 7 and X (1) or w and ¢ are mixtures of 7,53 and w5
respectively. The n and 7’ are almost pure octet and singlet respec-
tively. The physical @ and ¢ appear to be “ideal mixtures”:

| _

¢'=73w1— \/%ngs§

w= \/Zw1+ \/ingL_(uﬁ+dc_i)
3 3 V2

This question is discussed in more detail in sections 4.3.2 and 17.6.

4.7

4.1.1 G-PARITY

We should take care to make the labelling of quark and antiquark
explicit in the SU(3) states. The ud state for instance can be either

1

#s=u(1)d(2)+d(1)u(2)) 75 (4.8)
or
<z>AE|u<1)a<2)—a(1>u(2>>—j—z (4.9)

the subscripts denoting the symmetry property under interchange of
the labels 1 and 2. We shall in future take the labels to be understood in

the ordering, hence

|
Psa= |udidu)7§ (4.10)
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i-rrTz)

These two states are distinguished by their G-parity (G=C e
With T,=37, then from equation (2.26) we have that G = Cit,=

0 1 . . .
C( 1 0) where C is the charge conjugation operation. Hence

G_ G G G
u->d->—u; d->—-u->-d (4.11)

(see also section 2.2.1.3). Consequently

G¢S»71—§(—au—ua) =—¢s

. (4.12)
G¢A—>7_£(—-au+ua) =+¢da
and so
¢s>G=—1(m")
4.13
$a>G=+1(p") &)
The neutral partners are consequently
¢s: H(dd—ud)+(dd—iu)} = 7°
_ o (4.14)
éa: 3H(dd—ud)—(dd—uu)}=p°
which are charge conjugation eigenstates
Cos=+¢s,  Coi=—o¢i (4.15)

4,1.2 COMBINING WITH SPIN

How do mesons built from quarks and antiquarks obtain a spin or
intrinsic angular momentum?

Suppose, first, that quarks and antiquarks were spinless. A quark and
antiquark in a relative S-wave state of orbital angular momentum would
form a meson with a spin zero and positive parity; hence a scalar meson.
If the g and g were in a relative P-wave then a vector meson would be
formed. The D-wave system forms J/ = 2 mesons and so on. In so far as
one would expect the S-wave state to have the lowest energy then one
would predict that a scalar meson nonet lies lowest in the spectrum. The
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P-wave vectors would be expected to be the next heaviest states, the
D-wave J =2 mesons the next and so on.

Empirically the meson spectrum does not look at all like this. Vector
mesons have comparable or even lighter masses than the scalar mesons.
The lowest mass mesons are pseudoscalars (J"=07) and such states
would not naturally arise if scalar quarks and antiquarks were building
up the meson spectrum. The meson spectrum arises rather naturally if
quarks have spin 3. This will be seen in detail in Chapter 5. We will
anticipate this and study the wavefunctions for q and § states formed
from spin 3 quarks.

The phenomenon of the lowest mass nonets being pseudoscalar and
vector is consistent with spin ; quark and antiquark coupling to spin 0
and 1 respectively. The spin wavefunctions are immediately obtained
from Table 3.3 if we replace u, d by 1, | (which denote the up and down
S. of the quarks’ spins).

We will label the spin triplet wavefunction by xs and singlet by xa
(the subscripts indicating their symmetry properties). Combining with
the SU(3) wavefunctions we have the following possibilities for the
symmetry properties of ¢y under interchange of the labels 1 and 2:

Symmetric: Psxs,  Paxa (4.106)

Antisymmetric:  @sxa, Paxs (4.17)

Clearly the 07, 1~ system corresponds to the totally antisymmetric
combinations since for the neutral charge conjugation eigenstates we

have 0
¢sXA=[C=+,S=O>"'7T
d’Astlc=_,S= 1)"'00

Hence the meson states are

s| 1 ay—
8 Z1L-1n) 10

QU BRLEIn). P

2
where i =0 (singlet), i=1... 8 (octet) states are listed in Table 4.2. As
an exercise verify that G = C(—1)  is satisfied for these states.

These properties have arisen as a consequence of the choice of
antisymmetric dsya which corresponds to anticommutation of the
creation or annihilation operators for the quarks (antiquarks).

(4.18)
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TABLE 4.2
qq representations with explicit G-parity
1 -, = + 4%
:/—-E(us +5u) K" (K™)
1 - = 0 0%
\/—E (ds+5d) K" (K™)
_ (sa+is) K™ (K™
- s
% situ
) S ooy -
- :/—_(sd +ds) K° (K™)
2
1 - = + o+
% (ud £ du) T (p7)
| o
—\—/—_Z.(du:tud) 7 (p7)
143 G d = 0/ 0
> [(dd —ui) % (dd —tu)] T (p)
1 = 3 = = 3 = 0 0,
275[(uu+ dd —2s8) £ (4u + dd — 28s)] ns (ws)
1 - -
% [(udl +dd + s5) £ (u + dd +§s)] 7% (@)

Note : These stateshave Cr* = —", Cp* =p" and the strange
states are defined analogously. ¢s A have neutral charge con-
jugation eigenstates with C =+1, —1 respectively. Note that
7 u=d, 7" d=—0. The 07 are ¢ and 1™ are Pa.

4.2 Baryons

Taking the SU(3) fundamental representation (u, d, s) and combining
it with the SU(2) (1|) one can form a six-dimensional fundamental
representation of SU(6), ut, d7, st, ul, dl, s| (Gursey and Radicati,
1964). Physically in the quark model the intrinsic SU(3) degrees of
freedom will be multiplied by the SU(2) spin of the quarks. For the
mesons we have already anticipated this and seen the 0~ and 1™ nonets
emerging and forming 1®35 of the 6 ® 6 of SU(6). The baryons are
rather more complicated algebraically. To save a lot of work I shall just
quote the following rules for combining states of different permutation
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symmetry and you can verify it by writing out the states explicitly.
Denoting symmetric, mixed and antisymmetric states by S, M, A
respectively, the symmetry propertiés that arise are shown in the
matrix.

S M A

S S M A (4.21)

M| M| SMA | M

Recalling that in SU(3) we found 105, 8y and 1, (equation 3.11 and
Table 3.7), while in SU(2) (Table 3.4) 45 and 2y emerged, then the
above rules imply, for instance, that the 10 with spin 3 (4 in SU(2)) will
be totally symmetric; the 10 with spin ; (2 in SU(2)) will be totally
mixed and so forth.

To classify under SU(6) we collect together those states which are
symmetric, then those which are. mixed and finally those which are
antisymmetric. These are listed below together with their (SU(3),
SU(2)) subgroup dimensionalities. The total number of such states is
given on the right (e.g. (10 ® 4)® (8 ® 2) = 56).

S: (10, 4) +(8,2) =56 (4.22)
M: (10,2)+(8,4)+(8,2)+(1,2) =170 (4.23)
A: 8,2) +(1,4)=20 (4.24)

We can immediately verify these results by using the Young diagram
techniques. Combining three fundamental representations of SU(6)
yields

X X = + + l +

6 ® 6 ® 6 = 56 @ 70 @ 70 @ 20
(4.25)

hence the 56s, 70\ s, 70m 4, and 20, representations are seen.

We can explicitly write out these wavefunctions in the quark model
exhibiting their SU(3) and SU(2) content. For example consider the
A*(uud) with S, =3(11l). The SU(6) wavefunction being totally
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symmetric is
utufd} +utdtul +dtutul
<+utuldt+utdlut+dtulut (4.26)
+u}utdt +uldtut +dlutu?t
The SU(3) ® SU(2) decomposition is

%(uud+udu+duu) %mlmlﬁ 1) (4.27)

where the quarks are ordered 1, 2, 3 and all possible combinations are
taken to yield the wavefunction in equation (4.26).

With the full set of SU(3) wavefunctions @s mgma,a in Table 3.7 and
SU(2)xs.moms (Table 3.4) then the totality of combinations is listed in
Table 4.3. Those states labelled S are totally symmetric (56 of SU(6)).

An example of a 56plet of (broken) SU(6) is the decuplet with J P=3r
containing the A(1236) and the octet with J P=3* containing the
nucleon. If the 56 is the lowest lying representation in the spectrum of
baryons, then the correlation of J =3 with the octet and not decuplet
emerges naturally as does the absence of the singlet state and
consequent absence of nonet structure for the nucleon and its family.

TABLE 4.3
S: Psxs=(10,4)
1
:/—£(¢M,SXM.S + dmaxma)=(8,2)
Ms: Psxms=(10,2) | M, dsxma=(10,2)
bdmsxs=(8,4) dmaxs=8,4)
1 1
E(‘d’m.s)\’m.s +dmaxma)=(8,2) \/_z(‘bM.SXM.A + dmaxms) = (8,2)
Gaxma=(1,2) $axms=(1,2)
A: daxs=(1,4)
1
7Z(¢M.SXM.A — dmaxms) = (8,2)

Note : SU(3) states ¢ and SU(2) states x are combined and SU(6) states are formed and classified
by their symmetry behaviours, S being symmetric and having dimension 56. Two mixed 70
dimensional representations and an antisymmetric 20 dimensional also arise. The explicit
expressions for the SU(3) and SU(2) wavefunctions are given in Table 3.7 and Table 3.4
respectively.



62 AN INTRODUCTION TO QUARKS AND PARTONS

The negative parity states around 1500-1700 MeV belong to a 70plet.
At least for the strangeness zero members, the (SU(3), SU(2)) sub-
structure of the 70 is seen with the following J* states:

(10,2);7,37:(8,2):7,3 : (8, 4)3,3 7,35 (4.28)

while the (1,2); 7,3 are seen, an example being the A(1405) mentioned
earlier as the lowest lying baryon singlet.

The SU(6) group structure does not answer the question why the 56
is the lowest mass multiplet, nor why the positive and negative parity
multiplets alternate in mass as one moves up the scale of masses. These
questions will be discussed in section 5.1 where a detailed description of
the 70 states will also be given. First we will illustrate how to use the
SU(6) wavefunctions (Table 4.3) in calculations.

4.3 Examples of simple calculations

4.3.1 THE NUCLEON'S CHARGES AND MAGNETIC MOMENTS

The nucleons are in a 56plet and the wavefunction for the octet states is
given in Table 4.3, namely

1
\_/—E(d’M,SXM,S"' dmaxma) (4.29)

where @, x refer to unitary and spin wavefunctions respectively, their
explicit forms being given in Tables 3.7 and 3.4.
The nucleon charges are

proton) (1\ 3 1
(neutron) = (0) = El \/-2-(¢M,SXM,S+¢M,AXM,A|ei|¢M,SXM,S

1
+ Pmaxma) \/__2_ (4.30)

where ¢ will be that for the proton or the neutron respectively and e; is
the charge operator for the i-th quark.

It is traditional and simplifying at this point to exploit the fact that
the total wavefunction is symmetric and hence to make the replacement

(. . .|e;|. . >—>3< . .le(3)|. . > (4.31)

it
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since our wavefunctions have always been written with quark number 3
as special (i.e. they are S or A in quarks (1, 2) but mixed in (1,3) or
(2, 3)). We therefore have

(::) - %{ (Duslew|dus)+(dmalec|dual (4.32)

where we have exploited the fact that the spin states are orthonormal,
ie.
(mslms) = (malyma) = 1; (Xm.slxma)=0 (4.33)

All that is left is to calculate the expectation values of the quark
charge operator between the unitary wavefunctions. Writing

e =QGor —3) (4.34)
with Q a scaled charge then
{pmsles|dms)=t(udu+duu—2uud|es|udu + duu — 2uud)
=1G+3+4(-H)Q =0 (4.35)
<¢ll\)d,A lecyl :I,A) =3(udu— duuleg|udu - duu)
=33+%)0Q =30 (4.36)

Consequently

€proton = %(0 + %Q) = Q (4'37)

and so the scaled charge is the same as that of the proton and will from
now on always be set to unity. Similarly for the neutron we find

(Ppmslesldms)=3Q =3 (4.38)
(dmalewldma)=—3Q =—3 (4.39)

and hence
eneutron = 0 (4'40)

The vanishing of the matrix element {@slea)|dms) gives rise to
some interesting selection rules (Moorhouse selection rules) in connec-

tion with the electromagnetic interactions of protons (Chapter 7)
(Moorhouse, 1966).
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As an exercise verify that the spin expectation values of the Pauli
matrices are as follows:

Ohaslo @ xins) = (chslo xhs) = =3
(XMA|0(3)|XMA> (XMA|0'(3)|X§LA>=1 (4‘41)
(MaloPlxbs)=0

Then by considering the magnetic moment operator ZL, ne:a;, evalu-
ated between proton wavefunctions or between neutron wavefunctions
verify that u = up and

3
£r_= (4.42)
N 2
Note that this result is in remarkable agreement with the data which
give
Ke 2:79

P v (4.43)

Baryon magnetic moments are described in more detail in section 7.1.

4.3.2 RADIATIVE VECTOR TO PSEUDOSCALAR MESON
TRANSITIONS

The vector nonet wavefunctions are ¢axs and the pseudoscalars are
dsxa (equation 4.18). The fact that (xs|xa)=0 demands that a spin
operator be present in order to y1e1d the spin transition. The
V - Py transition will therefore involve Y2 | e,0(S=140) and hence will
be proportional to the quark magnetic moment (see also section 7.1,
Chapter 12; Kokkedee, 1969, Becchi and Morpurgo, 1965b, Dalitz,
1965).

If € is the polarisation vector of the emitted photon then the matrix
element for V- Py may be written

M= (<l5A)(s|§1 einiO . €|Psxa) (4.44)

where ¢, x are respectively the flavour and quark spin wavefunctions
and u; the quark scale magnetic moment. We will take p, = ua= u but
anticipate future developments on symmetry breaking and set u,=
4uq when considering K* > Ky.
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We will calculate explicitly the matrix elements for the V and ¥ to
have J, = +1, where the z-axis is the colinear axis defined by the V- Py
decay and the photon moves along the positive z-axis. Then

1
e=——(1,1,0
NoARME
hence

1 _
. eE——(a',‘+ia'y)E~/20'+

V2

We can now write out equation (4.44) explicitly for the case of
w > 7’y and find

M=_\/Eu<{(da+uﬁ);(3d+ﬁu)}ﬁ oot

(da_—Uﬁ);(ad—GU)}(legT)> (4.45)

where we have assumed that w is th= “ideally mixed” combination of w,
and ws that contains no s§ (see equation 4.7 and section 17.6). Factorise
this into

+920';

M= —\/Ep,
(dd +ua)—(dd +Gu)| |(dd—ud)+ (dd —du) N =41
< 2 “ 2 > <TT N >
+(1e2)
(4.46)
Then verify that
(Palerds)=—(dhleds)=—3 (4.47)
+ PN 1\t PR
(Xs(S: = D)|o7 |xa(S: =0)) = —{xs(S: = 1)]|o3 |xa(5. = 0)) NG
(4.48)
and hence
(e107 +e,03)=2e107) (4.49)

when the G-parity wavefunctions are used. Therefore

M(wjzm1> m'y)=—p (4.50)
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Notice that alternatively one need not write out the fully symmetrised
G-parity wavefunctions so long as e;01 and e,0; are separately evalu-
ated and equation (4.49) not used. This is the procedure that is most
frequently met in the literature and so we illustrate its correspondence
with the above treatment.

Write now for the SU(3) portion

E\/_(uu+dd) a’ \/_(dd uu) (4.51)

so that p° and 7° would be distinguished only by their spin wavefunc-
tions. Equation (4.45) is therefore replaced by

_ 5 /ui+dd)tt (dd—ud) (1L=1D
M= J2“< 2 "" % - >

1+22

(4.52)

and

(101 )= <020';>=2%Z (4.53)

hence again

M(wj.c1> 7ly)=—p (4.50)

The analogous calculation for w (/. = —1) can be performed and, of
course, this matrix element is u also. The @ (J, = 0) cannot decay into a
real photon (which is necessarily J, = £1). Hence on summing over
final states and averaging over the initial we have

T =i

spins

which is equation (9) of Becchi-Morpurgo (1965b). To get from here to
an absolute calculation of the rate requires discussion of whether
nonrelativistic or relativistic phase space should be used (Becchi and
Morpurgo, 1965b; Morpurgo, 1977). The observed rate is consistent
with i = fproen, Which agrees with the result found from the calculation
of the proton magnetic moment. Such a relation between baryon
magnetic moments and meson magnetic transitions is a distinct quark
model result and outside any known symmetry scheme.
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Before continuing we make a comment on the convention that we
adopted at equation (4.51) et seq. As this convention is much easier on
labour we shall adopt it hereon. Occasionally one encounters a cal-
culation where the relative phases of two resonances in different
multiplets are important (e.g. 7 and B in the S=0, L=0, 1 respec-
tively, Tables 5.1 and 5.2) and then the G-parity wavefunctions must be
used with no short cuts. Also do not conclude that one can always
assume equation (4.53) for (0,) = (0,) and hence hope to make another
short cut; this is not true in general since, for example, the charge of 7°
is zero due to {e,) = —(e,).

We can now compute the matrix elements for V- Py throughout the
nonet and compare with @ = 7y. First consider ¢ - 7y. With the ideal
mixing assumed above for w, then ¢ =ss. Hence

M (¢ - my) < (ss|e]—ui+dd)=0 (4.54)
The ¢ > 7y is indeed very much suppressed relative to w > 7ry:

I'(¢ > my)

T(w > 77) =(-6 per cent (4.55)

and this is consistent with the ideal mixing and consequent equation
(4.54).

For p°~ 7%y the only change relative to w - 7y is in the isospin
state. Hence

M(p—->77"y)___(—uﬁ+da|el|—uﬁ+dc_i)_l 4.56)
M(w->my) (ui+dd|e]—ua+dd) 3 (4.
Consequently one predicts
T(p°> m'y)=3sT(w > 7°y) (4.57)

since the phase spaces are identical (m, = m,). The situation empiric-
ally is rather confused at present, there being some indication that
p = my decays are too small. The theoretical significance has been
studied by O’Donnel (1976), Edwards and Kamal (1976), and Randa
and Donnachie (1977).

The decays K* - Ky are interesting in connection with symmetry
breaking. In particular we illustrate the neutral and charged ratio
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K°(ds), K*(u8). If w; is the scale parameter for the magnetic moments of
quarks then

e 5 rra— 4.58
MK** > K%) (usMleiuoi +ep207 us(t — 1)) ( )
(s + pa)
= 4.59
(o= 20.) (*:39)
Then if SU(3) were exact
. F(K*°—> Koy) _
Ms= Myd—> K >K'y) =4 (4.60)

As an extreme example of SU(3) breaking consider .~ 0. Then

I(K**->K° 1
R LSty 2 Y (4.61)
I'NK*->K") 4

(only the d and u quarks respectively will contribute). Empirically’
=314 and hence

I'(K** > K%) _

I(K** >K'y)

The widths in keV are 7535 for K**> K% and less than 80 for
K** > K"y.

This symmetry breaking is most interesting when one extends to

SU(4) and charm. The charmed quark mass scale is so much larger than

the strange and u, d mass scales that one expects u.< u,,q (Chapter
17). Then one would predict

I(D*°(ci)>Dy) _
I(D**(cd)>D"y)

1-3 (4.62)

4 (4.63)

since the charmed quark plays no role.

Within the SU(3) arena one can calculate V- Py where Pisn or ',
This requires knowledge of the singlet octet mixing in the n—n’
system. If we define

n = (cos 8)ns+ (sin 8)n,
X(n')=—(sin 8)ns+ (cos 6)m,

(4.64)

' See section 7.1.
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then, taking u,q4.= 1, we can use the wavefunctions of Table 4.2 and
the methods outlined above to obtain the matrix elements as follows:

1
w->my=1 0>NY=— cos @ ++v2 sin @
Y m 3J§( )
p_)ﬂ,,y.__._% p_)n‘y=\/L§(coso+\/ESin0)

2 _
>my=0 -y =—=(—V2 cos 0 +sin @
¢ ->my é->ny 3J§( )

(4.65)
X=>wy= \/_(\/Ecoso—smé?)

X—>p'y=\%(~/§cos0—sin 0)

2
»>Xy=—=(cos @ ++2sin @
¢ -> Xy 3\/3( )

As an exercise verify these and see how they would be affected if

M's ;é ”‘u.d-
A particular case of interest is to choose

V, = V3 (Zui —idd — 1s5) (4.66)

which transforms like a photon. Then M - yy can be computed from
V,>My (M =7° n,X). The matrix element reads (with the same
approach as above)

=2\ o g8 e e FZEE)

N (Zi})(l_i)( 1)x2 (4.67)

(er) {o7) (ewoi)=(e:07)

and hence

Mo, oc—t (4.68)
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Analogously for 1 we find

__ 1
NG

My, = \[ My, (+.70)

Mn 8>yy T M, >y (469)

These are most easily checked by comparing the expectation value of e,
between V, and the normalised 7,5 and 7 states. For example
(V,leuns)  (2uii—dd —ssle,|uii +dd —2s5)1/v6
(VJedm®  (2ud—dd—ssles|— uii +dd)1/v2
_(4+1-2)1/V6
4+ DIN2

4.71)

and hence equation (4.69) follows.
Then for an arbitrary mixture of n; and ns given by equation (4.64)
the matrix element for > yy relative to 7° > yy will be

M 1

7 (("0:‘;1)) =~ (cos 6+2VZsin 0) (4.72)
T

The phase space is proportional to the pseudoscalar mass cubed.

Hence, with (m,/m,)’ =60,

I'(n = vy) V7 sin B2
—_— - + .
Tr 7 ) 20(cos 6 +2v2 sin ) (4.73)

Empirically the ratio is about 30 which suggests 1 =mns. Similar
conclusions arise by comparing n'=>yy and n'->py where vector
meson dominance is used. A good fit to all the radiative decays is found
if =15°,

4.4 Mass splittings in the hadron supermultiplets

Within the SU(2) isospin multiplets there are small mass splittings, e.g.
neutron and proton, 77* and 77°. These are of the order of a per cent or so
and in a quark model may be expected to arise from electromagnetic
effects. For example, photon exchange between the constituent quarks
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will give a contribution to the overall energy (mass) proportional to the
charges of the quarks involved. The contribution in the 7% will
therefore differ from that in the 77° leading to a mass difference between
these two states of order a = e”/47 = 1 per cent. These electromagnetic
mass splittings are discussed in more detail in section 17.5.

Within SU(3) multiplets there are rather large mass splittings, e.g.
the vector mesons p, K*, ¢ are split by some 300 MeV in a mean mass of
around 800 MeV while the " — A baryon decuplet exibits a similar
effect with a splitting of 450 MeV in a mean mass of around 1450 MeV.
Qualitatively the pattern of SU(3) breaking in the mass spectrum seems
to be that within a multiplet each time a strange quark replaces a
nonstrange quark, about 150 MeV is added to the mass of the system.
Examples of this are

A(1235)—Z*(1385)— =*(1530)— Q(1670) (4.74)
and
$.:(1020) — K% (890) — p, @ (770) (4.75)

Hence in some sense (discussed in section 15.2.1) the strange quark has
an effective mass some 150 MeV more than the u or d quarks.

There appears to be a spin—spin force between pairs of quarks. Such a
spin—spin force emerges naturally in a theory where quarks interact by
exchanging vector gluons (such a theory will be introduced in section
15.2 and detailed discussion of the mass splitting phenomenology in
Chapter 17). This leads to shifts in the energy levels or masses which are
proportional to the expectation value (S; . S;). This expectation value is
dependent both on the spin state of the quark pair and the total spin of
the whole system if more than two quarks are present.

In the mesons the S . S force separates states with the same strange-
ness but with total quark spin S=0and S=1 (e.g. 0" and 17, 7 and
p, K and K*) and in the baryons S =3 and S =3 (e.g. N and A).

This S . 8 force also leads to a splitting of the = and A masses in the
octet. In these states the pair of nonstrange quarksarein/ =land I =0
respectively and hence, by the overall symmetry of the 56plet wave-
function, are in S =1 and S = 0 respectively. Since the strange quark
has a larger “mass” than the nonstrange, then one might anticipate that
the S . 8 coupling involving strange quarks differs from that involving
nonstrange by analogy with the mass dependence of the magnetic
interaction familiar in QED. In such a case, the differing total spin of
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the u, d pair in the £° and A° gives rise to the mass splitting through the
S .S force.

The above discussion shows that we are able to qualitatively under-
stand the pattern of mass splittings in the baryon 56plet and the
pseudoscalar and vector mesons. A quantitative discussion of the
spin-spin splittings will be deferred until Chapter 17 after the charmed
spectroscopy has been introduced.

Of particular interest are the mass splittings within the vector mesons
and the psuedoscalars. Together these form 1+ 35 dimensional SU(6)
supermultiplets but the pattern of the mass splittings is quite different
in the two SU(3) nonets of 0~ and 1™ mesons. This has significant
implications for field theories of strong interactions which are intro-
duced in sections 15.2 and 17.6.

44.1 VECTOR MESON MASSES AND THE ZWEIG RULE

The K*(892) has a mass that is almost exactly midway between w (783)
and ¢ (1020). The vector mesons are all ¢¢ in S-wave coupled to spin of
one and the masses of the system will, to first approximation, be the
same if m, = my=m,.

Strange baryons are more massive than their nonstrange counter-
parts which suggests that m,>m, 4. In turn the separation in masses of
w, K*, ¢ suggest that they contain no, one, two strange quarks respec-
tively:

w(i‘_‘—j_éd—d), K*dS),  &(sd) (4.76)

The expectation value of the Hamiltonian # between qq vector
meason wavefunctions will receive contributions from the explicit
quark content and also a contribution M; common to the *S; nature of
the system (e.g. spin—spin splittings etc., Chapter 17). Hence the mass
of K*(ds) can be written

(ds|#|dsy=M,+d+s (4.77)

(where the d,s labels on the right-hand side refer to the flavour
contributions to the mass).
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The equal separation of w, K* and ¢ masses emerges if the w and ¢
have quark content as in equation (4.76) since then

(s§| 9|8y = M, +2s (4.78)
<uu +dd|_ Jui+ dd>

%" M, +2u (4.79)

(where we ignore difference in u and d masses) and hence

my+m,

2

(4.80)

me*—

which is well satisfied and
¢—K¥=K*~w=u—s=120 MeV (4.81)

to be compared with the baryons in equation (4.74).

Since the p has I =1 it cannot contain other than uii and dd and so
will have the same mass as  [(ui+dd)/ \/2]. In fact these states are
nearly degenerate but the w does appear to be about 10 MeV heavier
than the p, suggesting that there may be some small admixture of s5 in
its wavefunction. _

The states ¢ (s§) and w [(uii +dd)/ J 2] are known as “ideally mixed”,
that is they are in a mixture of 8 and 1 of SU(3) since

- uu+dd+ss 2 ui+dd - ZSS)
= —_L— — 4.82
58 \/3( V3 ‘/6 ( )
and hence
06 -2 (4.83)
=—w —\/-w .

N

ui+ddy \F 1
w(—-——\/z )-— 50)1"'\/5(03 (4.84)

Apart from the mass systematics there is another argument that
supports (near) ideal mixing. This is connected to the fact that ¢ > 37
is suppressed relative to ¢ - KK even though phase space favours the
former.

If the ¢ is dominantly s§ then the quark diagrammatic representation
of the decays ¢ > KK or 7rp will be as in Fig. 4.1. Now invent a rule (the
OZI or Zweig rule, Okubo, 1963; fig. 12 in Zweig, 1964b; lizuka, 1966)
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that demands that disconnected diagrams like Fig. 4.1(b) are very much
suppressed relative to connected ones like Fig. 4.1(b). An analogy can
be made with bar magnets (Harari, 1974). A bar magnet has north and

—Z =L

F1G. 4.1. Quark diagrams for decay vertices. (a) Disconnected or “forbidden”. (b)
Connected or “allowed”.

south poles. Cut it into two (Fig. 4.2) and two new poles are created—
north and south poles do not annihilate and then two new ones pop up
from nowhere. If a meson was like a bar magnet, e.g. a string with
charge (quark-antiquark) at the end points, then on cutting the string
two new ends are created (Fig. 4.2) just like the ¢ > KK diagram.

Q Q
oN se r—a
/ \
// \\ // \\
\ N AN
/ \ / / N\ AN
/ / \\ / / \ \
[ oN se | roN se | A o——.
Q Q Q Q@

FIG. 4.2. Bar magnet and string analogies for allowed meson decay diagrams.

One canimagine a world where the OZI rule is exact (the disconnected
diagram absolutely forbidden) the ¢ being pure s§, the @ and p being
degenerate and ¢ > KK always. The real world differs slightly from this
ideal case, the w and p are not exactly degenerate and ¢ - 37 some-
times." This is not surprising since we know that ¢ > KK and KK can
go into p7r. Each of these separate processes is described by a Zweig
allowed diagram (Fig. 4.1(b)). Hence if hadronic interactions are
described by the flow of quark lines then quark diagrams like Fig. 4.3
must exist because unitarity requires ¢ > KK - p7.

'T(¢ > 3m)=0-07T'(w - 37) is 2 measure of the validity of the OZI rule (phase space favours [
decay) and also its violation (0-07 # zero).
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If one imagines the g connected by a string then diagrams like Fig.
4.1(b) are planar whereas those with crossed lines (Fig. 4.3) will be
twisted. Empirically it seems that the twisted diagrams are suppressed
relative to the planar. This has been investigated in the “dual uni-
tarisation models” (for an introduction see Chan and Tsou, 1977),
which contain a small expansion parameter so that a perturbative
approach can be made for hadrodynamics. This small parameter is
related to the twists in diagrams and it appears that at high energies the
nonplanar twisted diagrams are negligible relative to planar. Hence the
OZI rule would be exact in the limit m, - 9. Consequently it is argued
that the rule is better for (cc) than ¢ (s§) due to my, > m,.

= al
X p-
h——‘/K-\‘__"\\/r/d]

K* 3
I }v+

R A N — u

¢>{S§

FIG. 4.3 Quark diagram for ¢ » KK~ prr.

Intuitively it may perhaps be reasonable that twisted diagrams are
suppressed and we illustrate this by returning to the bar magnet or
string example. After the bar magnet has fractured into two new
magnets (Fig. 4.2), then if both of these magnets rotate the original
north and south poles can annihilate to leave us with a single, new
magnet (Fig. 4.4). This sequence of events should be less probable than
the straightforward single fracture.

If quarks are bound by interacting with gluons then one necessarily
expects amplitudes to exist whereby

414, ~> gluons - q2q> (4.85)

These will allow s5 - gluons - uu and ¢ - p7 can occur (Fig. 4.5). If the
quark—gluon coupling is small enough then ¢ - pmr will be suppressed.
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However ¢ - KK also presumably occurs by gluon production of the
nonstrange pair. Why is this not also suppressed ? A possible answer to
this question emerges in quantum chromodynamics where coloured
quarks interact with coloured vector gluons. This theory is introduced

N S S
A0 M
~ /s v / N
N\ Ve
N | VLS
s | RN
~ \ [N S y \ S
~J) O / \
s N N

FIG. 4.4. Bar magnet analogy for ¢ » KK - pr.

in section 15.2 and its relation with the OZI rule is discussed when the
newly discovered charmonium spectroscopy ¢, x (cc) is described. This
is a spectroscopy of massive states (3 to 4 GeV) containing a fourth
flavour of quark (charmed quark) and their decays into hadrons violate

¢{f_>_“
S — et

FIG. 4.5. ¢(s8)~ gluons— p7r (ui, dd).

the OZI rule. As such they provide an interesting laboratory for
studying the OZI rule and learning about hadrodynamics at quark level.
This is dealt with in sections 16.1 and 16.2.
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442 PSEUDOSCALAR MESONS

If we ignore the small mass splitting between charged and neutral pions
and kaons then there are four masses that characterise the psuedoscalar
nonet. These are

w(140),  K(496), n(550),  7'(960) (4.86)

The 7 has I =1 and therefore contains no strange quarks if made
from qq. Clearly the  and ' must contain more than simply ut and dd
since they are both much heavier than the 7. Consequently the ideal
mixing that we encountered in the vector mesons is far from being
realised in the pseudoscalars; indeed the radiative decays of n and n’
suggested that 7 =7z and n'=n, (section 4.3.2). The masses also
qualitatively fit in with this assignment; however there appear to be
some complications in this nonet which will become apparent.

First of all we will derive the Gell-Mann-Okubo formula for the octet
states by a procedure analogous to that employed in the case of vector
mesons (Gell-Mann, 1961 ; Okubo, 1962). As in equation (4.77) we have
for the pseudoscalar K™:

(us|#|us) = My+u+s (4.87)
(where M, is the 'S, analogue of M, for *S,). For the 7*
(ud|#|ud) = Mo+u+d=M,+2u (4.88)
while the ns yields
<:/1z(uﬁ+ dd—2s8) %’\/Lg(uﬁ-t- dd —2s§)> =g, dutss
(4.89)
These yield the Gell-Mann—-Okubo mass formula
4K -7 =3ns (4.90)
Inserting the known K and 7 masses yields
m(ns) =613 MeV (4.91)

to be compared with 17(550) and 7'(960).
Notice that there is a nonvanishing matrix element of the mass
operator between the SU(3) singlet and the isoscalar member of the
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octet, namely
1 - - 1\ 2v2
—(uua+dd+ss %I u-+dd—2s§ —_>=— - 4.92
< 7 (uu ss)| | (ua $s) N 3 (u—s) ( )
Hence in general 1 and 8 isoscalars are not eigenstates of the mass
matrix; instead the physical states will be 1, 8 mixtures. If we define the

mixing angle 6 by

n =cos @ ng+sin 8 n,
, ] (4.93)
n'=-sin@ns+cosfn

and postulate that ns obeys the Gell-Mann—Okubo mass formula, then
we can calculate the magnitude of 6. Since

ns=m cos 0 —n'sin 6 (4.94)

(where m, n' are eigenstates of the mass matrix) then
4K — 7 =3(n cos®* 8+ 7' sin® ) =37, (4.95)

The m35(613) is satisfyingly between the physical mass eigenstates
1(550) and 7'(960) and hence a solution can be found. This is

4K-7—-3n

tan” § = ~
an 3In'—4K+7w

0-2 (4.96)
where we inserted the masses in the final step. Hence 7 is dominantly
octet but does have some singlet admixture. This agrees with the
conclusions drawn from radiative transitions section 4.3.2.

All of the foregoing discussion involved only 73 and nothing was said
about the mass expectation value of 7. In SU(3) this reduced matrix
element is quite independent of the octet. In the quark model the singlet
1s specified and if only three quark flavours exist

1
771_\/5

(ua+dd+s8)=mn'cos 8+ 7 sin @ (4.97)
Hence
1
<n1|%’|nl)=73(4u+2.s)+Mo

=(n'|#|n’) cos> 8 +(n|¥K|n)sin”> 0 (4.98)
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and
2u+4
(ns||ns) = Mo+ u3 2
=(n'|%#|n’) sin® 6 +(n|¥|n) cos’ 6 (4.99)
Consequently
m+tns=n+n'=2u+s+My)=2K (4.100)

The left-hand side is 40 per cent larger than the right which suggests
that the n—n' system receives some contribution (SU(3) singlet?) not
present in the K(SU(3) octet). Notice that for the vector nonet we would
have obtained as analogue of equation (4.100):

o tws=w+¢ =2u+s+M;)=2K* (4.101)

which is well satisfied. Indeed it was from this relation and the equal
mass separation of wK* and ¢ that we concluded that the vector mesons
were well described by ideally mixed combinations of just uii, dd and ss.

Since the vector mesons are so nearly ideally mixed, then a fourth
flavour of quark c will form a state *S,(cc) that by orthogonality will be
uncoupled from uil, dd and s§in *S,. The 'Sy states are not ideally mixed
and, moreover, appear problematic with regard to their masses. Hence
it is possible that 'Sy(ct) may be mixed in to the physical 7 and 7’
(Gaillard et al., 1975; Harari, 1976a). This question is discussed further
in section 17.6 to which the interested reader may prefer to continue
immediately.



5 SU(6) X 0(3): Quarks with
Orbital Excitation

A collection of quarks couple their spins to a total S. If there are three
flavours of quark (u, d, s) the resulting system belongs to some SU(6)
representation. Now place the quarks in a potential, e.g. a harmonic
oscillator. In this well they will have orbital angular momentum L.
Angular momentum conservation emerges from rotational invariance
in three-dimensional space, the resulting group structure being 0(3).
The full symmetry group structure of the quarks in a potential is then
SU(6) ® 0(3). Finally coupling L®S =] generates the total angular
momentum of the system which is identified with that of the hadron
thus formed.

5.1 Baryons

For the three quark baryon states we impose a rule which seems to work

(this will be discussed in Chapter 8), namely that only
(SU(6) ® 0(3))eymmerric representations exist. This is the so-called
“symmetric” quark model, the “symmetric” arising due to the restric-
tion that is imposed on the SU(6) ® 0(3) states. The 56plet lying lowest
and the alternating signs of parity as one proceeds upwards in mass now
emerge naturally as consequences of this (SU(6) ® 0(3))sym structure of
the spectrum.
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5.1.1 THE GROUND STATE

Suppose that all three quarks sit in (1s) states of a harmonic oscillator
potential. The 0(3) state may be represented by

(1s)(1s)(1s) = (1s)’ > L* = 0" (angular momentum, parity) (5.1)

and is clearly symmetric under interchange of any pair since all three are
in the same state (1s).

We have demanded that the (SU(6) ® 0(3)) state be totally sym-
metric. This means that the SU(6) and 0(3) pieces must be both S, both
M or both A as all other combinations yield M or A symmetry
properties for the SU(6) ® 0(3) state (see for instance the multiplication
table for symmetries (equation 4.21)). In the present example the 0(3)
state (1s)’ is symmetric, S, and so the SU(6) state must also be S. The
symmetric SU(6) representation is a 56plet (equation 4.22) and so it is
indeed the 56plet that lies lowest in the spectrum.

The 56plet contains A with S =3 and N with S =3. Since the ground
state has L =0, and hence by convention positive parity, then we find
that the lowest mass states in the spectrum must be

10,7°=3"; 8, J°=3" (5.2)

which is indeed satisfactory empirically. Of course, this has arisen as a
direct consequence of our restriction to (SU(6) ® 0(3)).,m states. The
theoretical significance of this restriction will be discussed in section
8.2. First we will investigate the further consequences of it, in parti-
cular, what are we now forced to predict must be the first excited state?

5.1.2 THE FIRST EXCITED STATE

We excite one quark from (1s) to (1p) and the 0(3) state becomes
(1s)(1s)(1p) = (1s)*(1p) > L* =1~ (5.3)

Since one state now differs from the others (namely 1p as against 1s) we
can form both symmetric and mixed symmetry 0(3) states. For exam-
ple, imagine that ¢ (ry, ry, r;) is the (1s)’ state, completely symmetric in
the quark coordinates r,, r,, r; relative to some origin, e.g. the centre of
mass. The (ls)z(lp) state can be described by wavefunctions r,i, r ¢ or
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r3¢y depending upon which of the quarks is excited. The mixed
symmetry combinations are then

b= 6, (54
U =—1—(r + 11— 2r3)¢ (5.5)
M,S—\/g 1 2 3 .
while the symmetric is
v =L(r +r,+ 1) 5.6)
S_\/g' 1 2 3 ( .

Having excited only one quark then no antisymmetric wavefunction
can be formed.

If we choose the origin to be the centre of mass of the three-quark
system then

r1+r2+l'3EO (5,7)

and so the state s vanishes, only mixed symmetry 0(3) states existing at
the first excited level.

You may be wondering what happens if a different origin is chosen
since the symmetric state would no longer vanish. This symmetric state
would indeed exist but is not a genuine internal excitation of the
three-quark system, rather it is a state where three quarks in an s-state
(like nucleon) have their centre of mass rotating about the observer with
one unit of angular momentum. Hence it is not a genuine excitation of
the three-quark system but is known as a centre of mass excitation or
“spurious state”. Consequently only the mixed symmetry states are of
physical interest in the present context of baryon spectroscopy.

In order that the overall wavefunction formed on combining the 0(3)
and SU(6) states be totally symmetric, then the mixed symmetry 0(3)
state requires that the SU(6) state also be of mixed symmetry. Hence
the first excited level is predicted to be a 70plet in SU(6).

The 70 contains SU(3) 1, 8, and 10 with quark total spin coupled to 3

and also an 8 when the quarks couple to spin 3 (equation 4.23).
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Combining S =3 or 3 with L =1 yields the following negative parity
states

210 (S=H@@L=1)->J"=1,} (5.8)
8 (S=HDL=1)~>]"=7,7 (5.9)
'8 (S=HOUL=1)->]"=7,3.F (5.10)
1 (S=p@L=1)~>]"=1,% (5.11)
The singlet representations appear to be seen
17: SuA(1405)
(5.12)

37: DuA(1520)

The nonstrange members of all the other representations have also been
isolated and appear to be

210:  S41(1650), Ds5(1670) (5.13)
28.  S,,(1535), Dy3(1520) (5.14)
‘8. S,,(1700), Dy3(1700), D;5(1670) (5.15)

Isolating strange baryons is a harder task experimentally but candidates
for the available slots in the 70 are emerging, e.g. A states So; (1670) and
S03(1690) and X states D;5(1765), D,3(1670, 1580), S;,(1620, 1750). The

Y. masses suggest that some mixing may be taking place between 28 and
“8 for instance.

5.1.3 HIGHER STATES

In a harmonic oscillator potential the (1s)*(1d) excitation is degenerate
with both (1s)?(2s) and (1s)(1p)” for a three-quark system. In general
any one of these will have a spurious component which will be indicated
by its dependence on R. However we can eliminate these by appropriate
linear combinations. For example, one can construct two symmetric
representations with L=0":

(//(ls)z(Zs)OC\/Ti(;—az(rf+r§+r§))¢ro (5.16)

t//(ls)(lp)ZOC%az(r, . l'2+l'2 . l'3+l'3 . tl)(lf() (517)
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where @ has dimensions GeV?. The combination that is independent
of R is therefore

¥(L=0")=3(1s)*(2s) +V3(1s)(1p)? (5.18)

To see this define the orthogonal basis

1
R=§(r1+r2+r3)

1
pE\/—z(n—rz) (5.19)
1
xEUg(ﬁ‘l‘l‘z“Zi’s)
and hence
1 1
r =R +\/—.2.p+-\7_—6-)\
1 1
rZER—\/—Ep+T6X (5.20)
t3ER —%X
Consequently
Y(1s)(1p)*cta’(BR*—3(p> + A%))o (5.21)
l//(ls)z(Zs)OC\/Tz(g—az(3R2+p2+A2)) Yo (5.22)
and so
9 3a’
Y(L=0")x (5—%(P2+A2)) o (5.23)

The orthogonal combination corresponds to a state with the internal
motion in the ground state and the centre of mass in the (2s) excitation.
Since (L =0%) is spatially symmetric it combines with the sym-
metric 56 of SU(6).
By consulting a text of harmonic oscillator wavefunctions construct
the following combinations, express them in terms of R, p, A as above,
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verify that R dependence drops out and that the symmetry properties
are such that the SU(6) representations are as indicated.

(56, L=0")=v3(1s)*(2s) +V3(1s)(1p)* (5.24)
(70, L=0") = Vi(15)*(2s) + V3 (1s)(1p)? (5.25)
(56, L=2")=4(1s)(1d) - Vi(Is)(1p)* (5.26)
Y(70, L=2%)=Vi(1s)*(1d) — V3(1s)(1p)? (5.27)
(20, L=1%)=(1s)(1p)* (5.28)

The orthogonal combinations are the 56, L =0" spurious ones dis-
cussed already, a spurious 56, L =2" with internal ground state and
(1d) centre of mass, and spurious 70, L=0%, 1%, 2* with (1s)(1p)
internal and (1p) centre of mass (Karl and Obryk, 1968; Faiman and
Hendry, 1968).

There are many positive parity baryon resonance in the 2 GeV mass
region which are candidates for these representations. Candidates for
the strangeness zero states of the 56, L =2" seem to be seen, namely

7 (1950)
(1690 / (1890
nr—— 2 100\~ —+(18%0) (5.29)

T #(1810) Y%*(?)
1(1910)

A detailed discussion of the assignments of resonances may be found in
the “Baryon Resonance” session report of International Conferences
and these should be referred to. The situation in this region is contro-
versial at present.

One question that has to be settled is whether the full spectroscopy
(equations 5.24-5.28) is realised or whether the simpler pattern of 56
with positive parity and 70 with negative is the true situation in Nature.
The latter emerges if one freezes one of the internal degrees of freedom
so that two of the quarks form a “diquark” (Lichtenberg, 1968; Capps,
1974, 1975). The centre of mass of the diquark is at 3(r, +r,) and the
relative coordinate between this and the remaining quark is

%(r1+r2)—r3ER\/§ (5.30)

Then if ¢, is the ground state which is symmetric, and hence
56, L =0, then for N excitations of A we have a symmetric state for N
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even and mixed symmetry for N odd. Hence the sequence would be
(56, 0%), (70, 17), (56, 2™) etc.

Possible candidates for (70,37) are “‘8(37(2140)), 8 or
*8(37(2190, 2000);57(21002 . . .)) and 2103~ (2200)3~(1960?2?7)). A(56, 4*)
probably exists containing “8(N*(2220)3") and *10(A(2420)%") (see
Horgan, 1974; Cashmore et al., 1975a; Dalitz, 1977).

5.1.4 RADIAL EXCITATIONS

In the harmonic oscillator potential a radially excited (2s) 56,07 is
expected degenerate with the L = 2 (1d) levels. There are candidates for
(56,0")* and (56, 0%)**, namely at (56, 0") are the P;;(1470), P33(1690),
while at (56, 07)** are P,,(1780), P13(2080). The mass separation of P33
and P,; is of the order of A(1236) and N(940). However the masses
overall appear rather low since, for example, the (56, 07)* is expected to
lie around 1700 degenerate with the L = 2(1d) levels rather than in the
vicinity of the L =1 states, (1p), around 1500 MeV.

5.2 Mesons

A fermion-antifermion system is an eigenstate of parity with
P=(—)""! (5.31)

(recall that fermion and antifermion have opposite intrinsic parities—
hence equation 5.31). The charge conjugation applied to neutral
systems with orbital angular momentum L and total spin S is

C=(—)"* (5.32)

Applied to the g system we have a series of states with CP = + for
S=1 and CP=~- for S=0. For S =0 the system’s total angular
momentum J = L and so

C=(-) =—P (5.33)
hence JP¢=07",1*",27",... for this sequence. One cannot form
CP = — states with

P=(-Y =-C (5.34)



SU(6)x0(3): QUARKS WITH ORBITAL EXCITATION 87

These latter states with J*€ =0%", 17,2*", ... are known as “exotics”
or sometimes “exotics of the second kind” to distinguish them from the
qqqq states in 27 etc. which are “exotics of the first kind” (i.e. states
which are not in SU(3) 1 or 8).

The resulting J 7 of the mesons are therefore as listed in Table 5.1.
For each J 7€ a nonet of mesons is predicted composed of uds and ads

flavoured quarks.

TABLE 5.1
J € for q¢ mesons

§=0 S=1

L=0 o 1=
L=1 0+
1

2+

L=2 27 1=
e

3

The nonets at L = 0 are well established. The empirical situation for
L=1 is summarised in Table 5.2. Radially excited vectors (p'(1600),
'(1780), K*'(1650)) and pseudo-scalars (E(1420)?, K'(1400)) may also
have been seen.

TABLE 5.2
Possible classification of g§ mesons
I=1 I=0 I=}

07" w(140) 7(550) 1'(960) K(495)

177 p(770) w(780) $(1020) K*(890)

1*~  B(1235) — — Q(1300) ~

0™ 8(970) £(1200 or 700) $*(993) «(1250) mix
1Tt A (1100) D(1285)? — Q(1400) «

2*% A,(1310) £(1270) £(1514) K**(1420)

27" A3(1640)

-

27"

377 g(1680) w(1675) K***(1780)
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5.3 Mass splittings in L >0 supermultiplets

A spin-spin force acting between quark pairs in baryons will separate
the S =3 and S =3 baryon masses. Similarly a spin—spin force between
quark and antiquark separates S =0 and 1 meson masses. A quan-
titative discussion requires acquaintance with the details and role of the
colour degree of freedom which is described in Chapters 8 and 15.
Hence we defer discussion of these spin—spin splittings until Chapter 17
and at present proceed with a discussion of the patterns of splittings in
the L=1 and L =2 supermultiplets arising from spin—orbit forces
between the quarks.

53.1 L=1MESONS

For qq¢ and qqq systems with L>0 there is the possibility of a
spin—orbit force between the quarks,

YL.S (5.37)

This will lead to separations in masses of states with the same L and S
but differing J as follows. Since J = L@®@S then

2L.S=J"-L*-§ (5.38)
and so
2L.S)rs=J(J+1)—-L(L+1)—S(S+1) (5.39)

As a first example of the effect of this force we shall examine the L = 1
mesons. For a g system the parity is P=(—)""' and the charge
conjugation is C = (—1)**®. Hence when S =0 the L=1 state has
JF€ =1 while for S =1 we have J7° =0"", 1", 2"". The magnitude
of (L. . S) for each of these states is as follows

PC O++ 1++ 1+— 2++
J (5.40)

(L.Sy| —2|-1]0 |1
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Hence the characteristic pattern of L . S forces here is that
Am(2" —=1")=2Am(17" —-0"") (5.41)

(the JP€ =17~ state can be shifted relative to the S =1, 0**, 1**, 2**
states by the S . S force). The empirical situation with respect to the 0**
and 177 states is somewhat confused. It is possible that the I = 1 states
exist as follows:

27 A,(1310); 1%+ A,(1100); 1*~ B(1235); 0** §(970)
(5.42)

which fit in rather well with L . S force splittings and only a small effect
from the S . S force. This is quite different from the L = 0 case where it
is the S .S force that accounts for the 0"~ 17 splitting. There is not
necessarily a contradiction in this. For example, if the S.S and L.. S
forces are arising from vector gluon exchange between quark pairs, then
the potential that is generated will be very similar in form to the familiar
case of the hydrogen atom in QED. In this familiar example there are
two places that spin—spin couplings arise. One is a contact interaction of
form

S; . Si3(r; - ri) (5.43)
and the other is the tensor force which is of form
.. 1S, .
S, . sj-%'—’ (5.44)

In S-waves (S;.8;))=3(S,.rS,.r/r% and so the latter contribution is
absent, the hyperfine splitting arising entirely from the contact inter-
action. In fact the contact interaction can only contribute in the S-wave
case due to the presence of the delta function 8°(r), since for small
distance separation in a state of orbital angular momentum L the
wavefunction is proportional to |r|*, hence vanishing for all but S-
waves. The conclusion from the spectroscopy therefore appears to be
that, at least for L = 1 mesons, the tensor interaction is small or absent
(but see also the cc spectroscopy section 16.3).

5.3.2 L=1 BARYONS

The L =1 baryon situation is rather more complicated than the meson
case since SU(3) 1, 8 and also 10 are present. The *8 states ;7,3 are
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more massive than their “8 counterparts due to the S .S force which
pushes up the S =} states relative to the S = 3 just as in the L = 0 cases of
N and A. This splitting of S = 1and S =3 is shown in the first column of
Fig. 5.1.

“8

20

%8

S.S F.F

FIG.5.1. 70 L =1 baryon supermultiplet. The S . S force splits S =3 and S =3 states.
An SU(3)-dependent F; . F; force splits 1,8 and 10 multiplets.

The separation of the 1, 8 and 10 states can arise from a force that is
dependent on the unitary spin. If there is such a force between pairs of
quarks 1,] having form F;.F, (where F,; are SU(2) generators as
described in section 2.2.2.1) then the F; . F| can be calculated by noting
that

XAFg . F)= F<2i+j) - F<2i> - (21') (5.45)

The eigenvalues of the F” are known as the Casimir operators of the
group and depend upon the representation. They have been evaluated
in section 2.2.2.3) (equation 2.57 et seq.) and for the cases of current
interest are

1: F*=0, 8: F*=3, 10: F?’=6 (5.46)
while for the quarks
3: F*=% (5.47)
Hence in 1, 8, 10 the expectation value 2(Fy, . F;) takes on values

1: 0-%=-% 8 3-%=1  10: 6-%=% (549



SU(6)x0(3): QUARKS WITH ORBITAL EXCITATION 91

and so there will be equal splitting between 1, 8, 10. The mean masses
of these multiplets are in reasonable agreement with this, i.e.

1=1570 MeV, 8=1680 MeV, 10=1800 MeV (5.49)

where we have taken the V and A states in 8 and 10 and added 150 MeV
for the extra unit of strangeness in comparing with the singlet A.

This unitary spin-dependent interaction is at present rather ad hoc.
A more natural way to split the 1,8 and 10 states comes from the contact
interaction of equation (5.43).

Notice that only one quark is excited when forming the L = 1 baryons
(quark number three using Table 3.7 and equation 5.5); hence quarks
numbers one and two remain in S-wave. As a result a contact spin-
dependent interaction between this pair can contribute to the 70plet
mass splittings. If this pair have spin zero (xm.a states in Table 3.7),
then (S;.S,)=—3. For spin one (yms or xs) then (S;.S,)=+4.
Consequently

(8,.8,) a + for (10,2) and (8, 4)
~1 for (8,2)
a —3 for (1,2)

using the SU(6) representations of Table 4.3. The approximately equal
splitting of 1, 8 and 10 has emerged as a result of the way the 70plet
symmetry correlates these unitary spin representations with the quarks’
spin states.

The splitting in masses between the states of different J in each of the
supermultiplets shows that more than just L. S forces are present. For
example, in the ‘8

3 1
2 2

Nl

J=

(L.S)=| 3 |-2|-5

(5.50)

and so the masses should be ordered 37,37, 3~ with the former pair split
by £ of the latter. However, the empirical masses appear to be jumbled.
The 3 and i are comparable and heavier than the 3~. Similarly in the *8
the 7~ is heavier than the 3. In the %1, however, the 3~ is heavier than
the 3. Isgur and Karl (1978) have shown that the tensor in equation
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(5.44) plays an important role. In particular it mixes the ?8 and *8 states
with the same J.

5.3.3 L=2 EXCITATIONS

At L =2 in the baryon spectrum one expects that a set of positive parity
baryons will exist. The even L enables the spatial wavefunction to be
symmetric without being a spurious state (contrast L=1) and so a
spin-unitary spin 56plet can exist here (equations 5.26 and 5.29).

In the 56plet, the S =3(N) couple with L =2 to yield states with
J¥ =3", 55" while the S =3(A) couple to J* =3",3* 5" 1", Just as in the
L =0 case the S =3(A) states are more massive than their S =3(N)
counterparts; so again we find this pattern repeated here, the members
of the supermultiplet with zero stangeness having been quoted at
equation (5.29). As in the L =1, S =3 states, we again see that the
pattern of masses of the J© states with S =3 do not appear to follow an
L .S pattern. An L . S splitting would require

+ + + + + o1t
Am(z 232 ):Am(% —% ):Am(% -3 )=(7><9—5><7):(5><7—3><5):
z 2 (3x5—1x3)

=7:5:3

whereas the observed masses do not have a monotonic behaviour with
spin.

More detailed discussion of mass splitting systematics in the quark
model can be found in Dalitz (1977), de Rujula et al. (1975), and Isgur
and Karl (1978).



6 Quark-Current Interactions:
Symmetries and Dynamics of
Decay Vertices

6.1 U(6)xU(6) and SU(6)

We have seen how hadron states at rest appear to be quark—antiquark
(qq) or three-quark (qqq) composites with orbital excitation and we
discussed the structure of the resulting classification symmetry. We will
now develop these ideas more formally in order to discuss the symmetry
properties of transitions such as N* - Ny, N*—> Nz and so forth.

A U(6) algebra is generated by the 35 generators

A O, AoO; {a=1...8

20 2 2 lj=1,23 .1
where A, are the SU(3) matrices (section 2.2) and o; the Pauli spin
matrices. A quark belongs to the fundamental 6 representation of U(6),
while an antiquark belongs to 6 of U(6);. In turn a quark is a singlet
under U(6); and an antiquark is 1 under U(6),. If we consider the group

U(6), X U(6); generated by

Aa gj AaT
%2’ 2’ 2 6.2
(6.2)
ZA_:! _‘_T_,' (Aan)/
P 2’ 2’ 2
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then
q€(6,1)

e 6) (6.3)
A baryon made of qqq can therefore belong to (56, 1), (70, 1), (20, 1)
representations of U(6), X U(6);. If we imagine that the quarks in the
hadron have relative orbital angular momentum in the hadron rest
frame then one has the symmetry group U(6), X U(6); X0(3) as a
classification scheme for hadron spectroscopy. The lowest lying bary-
ons are therefore (56, 1)L =0 and (70, 1)L = 1 representations of this
symmetry. The g§ mesons will belong to (6,6) representations of
U(6), X U(6); with the lowest-lying states being in the (6,6), L=0
representation of U(6) X U(6) X 0(3).
Whereas the U(6) X U(6) algebra is generated by

the subgroup SU(6) is generated by
s,.=§%+%j"7f (6.5)
(A8) =Y )‘"2‘”+% "é"f

To appreciate the relation of SU(6) to U(6) X U(6) we show the
classifications of various objects under these groups.

U(6) x U(6) SU(6)

Quark: 6,1) 6

Antiquark: 1,6) 6 (6.6)
Baryons: (56, 1) etc. 56 etc. ’
Mesons: (6, 6) 1+35

The fact that SU(6)s is a subgroup of U(6) X U(6) is best illustrated by
the classification of the 36 meson states. Under SU(6) the 1 (=7’) and
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35(n...) are completely different representations and their inter-
actions with other hadrons are not related by the Clebsch—Gordan
coefficients of SU(6). However the i, i’ . . . are all in the same (6, 6) of
U(6) X U(6) and hence their properties are related by Clebsch—Gordans
of that group (compare the discussion of masses in section 17.6).

The observed hadronic spectroscopy is indeed suggestive of a broken
SU(6)s X 0(3) symmetry describing the states at rest and this emerges
naturally in the quark model. By allowing spin-spin and spin-orbit
forces between the constituent quarks the breaking of this symmetry
can be well described. This is discussed in section 5.3 and Chapter 17.

Are decay processes also described by an SU(6) ® 0(3) symmetry? It
is easy to see that they are not.

SU(6)s contains the SU(2) subgroup generated by o; and one can
think of this as the “intrinsic spin” of the hadrons or the quark system’s
total spin (before coupling with the orbital angular momentum in the
system). If SU(2)s is a symmetry of a decay amplitude then the initial
state and final N particle system must be in the same representation.
Consequently the “intrinsic spin” of the hadrons is conserved. This
forbids some well-known decays:

A — N® = (6.7)
(5=3/2) (s=4)  (5=0)
and
(Sel) (S7=TO> ® (s7=70> 6.8)

Therefore although SU(6)s appears to be a good description of particles
at rest it 1s not a symmetry of decay vertices.

6.2 SU(6), and states in motion with p,#0

Emopirically SU(2)s is not a symmetry of decay processes even though it
appears to be approximately a good symmetry for classifying states at
rest. Physically this yields the clue as to the source of the failure: decays
involve particles in motion. How do the states, in particular the quarks,
transform under Lorentz boosts?

Boosts are generators of the Lorentz group and quarks belong to the
spin 3 representation of the space rotational subgroup. Recalling the
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transformation properties of spinors under spatial rotations (equations
2.6 and 2.7)
iOn.c

q'=e"""q (6.9)

then, since ja; are the Lorentz boost generators acting on the spin;
representatiion, we have (Bjorken and Drell, 1964, p. 22; Gasiorowicz,
1967, p. 38)

q=>q' =e"%q (6.10)
for the spinor transformation under a Lorentz boost from rest to a frame

with velocity |v|/c = tanh w.
First we will show the explicit effect of this boost. After boosting by

w; (1=1x,9, z)

¢'(p)=cosh Z(1+a(tanh %) ) g(0) (6.11)
In terms of E, m, p

coshw=E/m; sinh w = |p|/m (6.12)

and hence cosh® @ —sinh’ w = 1. In turn these yield

e A N = R

(hence 2 cosh w/2 sinh w/2= p/m =sinh w).

At rest a Dirac four-component spinor may be formally written

q= (g) where x 1s

) ne()

for the spin up and down configurations respectively. Note that x is a
Pauli two-component spinor. The rest spinor is normalised so that
q*q =1. The combination §q = q"Bq equals unity when the spinor q
represents a particle at rest.
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With the representation

B N R

where o; are the 1= 1, 2, 3 Pauli 2X 2 matrices, then the boost equation
(6.11) becomes

cosh -;—) Ui(sinh -;—))

q'(p)= '|4(0) (6.16)
( 1 h-a—,) cosh2

ol sin 7). >

Written out explicitly this yields

he
q(p)= ~ Zw E\/(E;ml') ql_p (6.17)

a’i(smhz)i Etm
The normalisations are
i (i
{q_q} 2m VEErmd) 71 (©.18)

The gq is therefore referred to as the covariant norm. The spinor ¥
normalised so that ¢ ¢ =1 is therefore ¢y =V (m/E)q. Hence under
boosts

@
¥(p) = (cosh w)™ 2 —L(l) (6.19)
Ui(Siﬂh%)i V219

The quark with spin up or down along the z-axis forms a two-
dimensional fundamental representation of SU(2). Under z boosts the
quark preserves its up—down character but the boost operator a; does
not commute with o, , which are two of the generators of the group
SU(2)s. An operator that does not commute with some or all generators
of a group will in general cause transitions between different represen-
tations of that group. Hence a boost along the z (or any) direction will
lead to transitions between representations of SU(2)s. Consequently



98 AN INTRODUCTION TO QUARKS AND PARTONS

SU(2)s 1s not a suitable symmetry group for moving systems since the
classification of a state will differ in different frames.

It was then noticed that an SU(2) group (SU(2)w) is generated by
(1, Bo,, Bo,, 0,) all of which commute with «;. Consequently
representations of this group are well defined under 2z boosts (Lipkin
and Meshkov, 1965, 1966; Barnes et al., 1965).

It may be helpful to gain a feeling for the way that the Bo,, Bo, which
distinguish SU(2)w from SU(2)s enter the picture physically.

The generators of a group G give rise to transformations of the form

W = e“Sy (6.20)

where 6 is a measure of the size of the transformation. For SU(2)y the
rotations are generated by

R.(8)=€®*,  R.,(0)=e"" (6.21)

The particular case 6 = r is easy to illustrate. We will show that a spin 3
system moving along the z-axis with J =L+ o/2 has its momentum p,
left invariant under the above SU(2)w rotations. Clearly R, leaves p,
invariant. A rotation about x for § =7 sends p,>—p. and when
supplemented by a parity reflection p, is again recovered.

Hence p, is left invariant under the combined action of parity and
rotation about x or y. Now the x, y rotation is generated by exp (17/,) =
exp [im(0,/2)] and combined with parity we have (Pi,.= the intrinsic
parity of the system)

Pocexp [im(0y/2)]= Pim(cos i sin g) (6.22)

since o2 = 1. In turn this quantity is simply P,,ic,. Then since P: =1,
we gbtain

Picic, = exp (um %) (6.23)

For a single quark the intrinsic parity is +1(—1) for the upper (lower)
components. The intrinsic parity operator is therefore the same as

5=(o )
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It is in this way that the B has entered in with the o, and leads to the
“W spin” generators

Boxy

Wx,y = 2 ’

W, =2 O (6.24)

In combination with the SU(3) degrees of freedom we have the
SU(6)w group generated by

Wi= 2(2 ;) i=1...8
W;y—z(); );)Ba” i=0...8 (6.25)
WL—Z()£+);) i=0...8

in contrast to SU(6)s generators in equation (6.5).

By changing from SU(6)s to SU(6)w we have found a group that
classifies particles either at rest or in motion along the z-axis.
Consequently this group is in principle a candidate for describing
collinear or decay processes. To see if it is phenomenologically success-
ful we must first see how the hadron states transform under SU(6).

Both SU(6)s and SU(6)w are subgroups of the rest symmetry
U(6) X U(6) and so S and W are well defined in the rest frame. Since

Bq(q) = +q(—q) (6.26)
then we have that
quarks: W, =8§,

(6.27)
antiquarks: W,=S,; W,,=-85,,

Since W=S for quarks, then baryon states made of gqq will transform
in the same way for SU(6)w as they do for SU(6)s ; for example N and A
are in 56 of both SU(6)s and of SU(6)w. For mesons, which contain g,
the SU(6)w classification differs from that of SU(6)s.

A qq state with S, =1 or W, =1 will be

IS=1,8. =+D)=|W=1, W, =1) (6.28)

Thestates|[S=1, S, =0)and |W = 1, W, = 0) are obtained by acting on
the [11) states with the spin lowering operators ). .(S.—1S,) and
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2aq (W.—iW,) respectively. Since

S=1,8.=1)=|W=1,W.=1)=q14} (6.29)
then
IS=1,5.=0)=q1ql +qlq? (6.30)
whereas
[W=1,W,=0=—¢1ql+qlg? (6.31)

because (W, —1W,)q = —(S, —1S,)q. Consequently we find that
W=1,W,=1)=|S=1,8,=1)
[W=1,W.=0)=—|S=0,S,=0)
[W=0,W,=0=-|S=1,S,=0)
W=1,W,=-1)=-|S=1,5,=-1)

(6.32)

Hence the qq system has separated into a triplet and singlet under each
SU(2) but the S, =0, W, = 0 states have flipped:
S=12W=0, S=0=2W=1 (6.33)
The L =0 meson states of U(6) X U(6) are therefore classified in 1+ 35
of SU(6)s and SU(6)w as follows.
1: S=0,(m)1
35:{5=0, (7ns)8
S= 1, Sz = :tl, (pw8)8+(w1)l
S5=1,85,.=0, (pws)8+ (w;)1
1: W=0,(w)1
35: (W =0, (pws)8
W=1,W,==1, (pws)8+(w:)1
W=1, W, =0, ()8 +(m)1

The decays A - Nar and p > 77 which were forbidden in SU(6)s are
allowed by SU(6)w. The 7 is now |W =1, W, = 0) and so

SU(6)s?

SU(6)w

A-> N&® =«
w=% (w=§) (W=

(6.34)

p > T
(W=0,W,=0) (W=1) (W=1)
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Consequently SU(6)w avoids the obvious difficulties that were found in
SU(6)s. Notice that under boosts L, is conserved but L is not. Hence
the symmetry is referred to as SU(6)w & 0(2).,. (the L, subscript is
really superfluous since W, conservation implies L, conservation
through J.=L.+S,=W,+L,).

6.3 A model with SU(6)w x0(2).. vertex symmetry: duality
diagrams with spin

It is instructive to present a model of decays which does indeed have
SU(6)w X0(2)... as a vertex symmetry. This symmetry emerges
naturally if meson emission from baryons takes place by creation of a ¢
pair from the vacuum (Fig. 6.1) and the quarks have no momentum
transverse to the collinear z-axis defined by the B—>MB decay.

A

F1G. 6.1. B> BM by qq production from the vacuum.

This model is triply instructive.

i. It connects naturally with dual models where “duality diagrams”
are constructed from the elementary vertices of the topology in Fig. 6.1
(Harari, 1969; Rosner, 1969). Hadronic 2-2 processes involving the
exchange of internal quantum numbers are erpirically allowed if they
can be constructed from such vertices without twisting (e.g. Fig. 6.2(a)).
Processes which cannot be so constructed (e.g. 7'p—>K'2" as against
K p-> 7 X") are empirically much suppressed (Fig. 6.2(b)) (techni-
cally, it is the imaginary part of the #=0 amplitude which is
suppressed).

il. The model naturally illustrates why SU(6)w as against SU(6)s
emerges as the vertex symmetry.

iii. It highlights the crucial role of quark momenta transverse to the
z-axis. In particular we shall see that if these are not negligible then the
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SU(6)w X 0(2)L.. 1s broken as a vertex symmetry even though SU(6)y
can be successful as a classification symmetry.

In the picture where baryons are gqq and mesons are gq composites,
decay vertices B, > MB, (B = baryon, M = meson) appear to involve the

u
,r+{f ‘_’}K+ K.{u }v_
d g S d

Piu u=2+
u u

FIG. 6.2. Quark (duality) diagrams for 7"p>K"'2" and K'p>7"2".

P

d s
u u} >t

u u

creation of a qq pair representable by Fig. 6.2. These pictorial
representations of SU(3) invariant vertices can be constructed subject
to the following rules.

1. Each g or q has a directed line > for ¢ and —« for q.

2. Abaryon is three lines pointing to the right, 3, a meson is q to the
right and g to the left, 2.

3. The Zweig rule (sections 4.4 and 16.1) demands that the q and g of
a single meson cannot be disconnected, e.g. Fig. 4.1(a) is not
allowed.

These rules are the basis of quark graphs for general n-point
functions which seem to be a faithful diagrammatic representation of
the constraints that duality imposes. They are known as duality
diagrams.

Carlitz and Kislinger (1970) suggested how one might incorporate
spin into this picture. Consider B> MB, Fig. 6.2, in a frame where the
BMB momenta are collinear along the z-axis. The spin orientations of
quarks that flow through are supposed to remain unchanged. The spin
correlation of the ¢4 pair is to be determined. If the pair is created from
the vacuum and hence has C = P=+,then S=1and L =1, 1.e. the qq
are in a °P, configuration (Micu, 1969).

If one now makes the additional assumption that the momenta of the
quarks transverse to the z-axis can be neglected then L, =S5, =0 is
constrained upon the 3Py, i.e. this becomes a *Py(L, =0, S, = 0) model.
The fact that the qq are created with S = 1, S, = 0 means that they have
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W =0, W,=0. Hence Wspin is conserved and SU(2)w is the spin
symmetry of the vertex. Combining with the SU(3) degree of quark
freedom implies that the vertex symmetry of this particular model is
SU(6)w X 0(2)L. (Carlitz and Kislinger, 1970). Notice in passing that
SU(6)s is not a good vertex symmetry because it would require the ¢q
to be created with S=0, S, =0 which requires L even by charge
conjugation and hence violates parity.

Notice that the SU(6)w X 0(2).., vertex symmetry has emerged as a
consequence of the pr=0 assumption. The neglect of pr in large ¢°
transitions may be justifiable as the Q value of yN - N* is large and
hence pr 1s small compared to Q. In the present example of B—>BM
(where M could be a real photon ¢gq > V > ) the Q value is in general
small and so it is not at all clear that it is justifiable to neglect pr in
resonance decay vertices.

If we relax this constraint then the P, (¢q) can have L, =+1, S, =
F1 present in additiormr to the L,=0, S, =0 so far allowed. This
generates the *P, model of Colglazier and Rosner (1971). The L, = +1,
S, =F1 component breaks the SU(6)w X0(2).. vertex symmetry
because L, is no longer conserved (such a model is discussed in detail in
section 6.7).

Hence to the extent that (|pr|) # 0, i.e. the quarks produced from the
vacuum are not lined up along the collinear axis, then SU(6)w X 0(2),. .
will not be a vertex symmetry even though SU(6)w will remain a
classification symmetry for the initial state with p= 0. Notice in this
connection that even in the rest frame of the initial hadron the SU(6)s
will only be a good classification symmetry if the pr of the quarks is
negligible. Since the confining of the quarks to the proton will give them
internal momenta as a result of the uncertainty principle, then the
nucleon will not be purely L =0, 56 of the Pauli SU(2) (SU(6)), but will
be in a mixture of configurations due to the Dirac nature of the quarks.
This configuration mixing has been investigated algebraically by
Bucella et al. (1970) and by Melosh (1964). It is particularly explicit in
the quark model discussion of Le Youanc et al. (1974b) described in
section 6.6. These effects will lead to deviations from naive nonrela-
tivistic computations of static properties of the nucleon (g5/gv #3) and
will also show up as breaking SU(6)w X 0(2),,. vertex symmetry in
decay processes (see Chapter 7, in particular section 7.3). It 1s therefore
not a surprise to learn from the following examples that SU(6)w X
0(2)... is empirically not a good decay symmetry in general.
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6.3.1 SU®)w AND DECAYS

Empirically the decay B~ wr occurs dominantly in the mode where the
w has helicity =1, the helicity zero production being much suppressed
(Ascoli et al., 1968). This phenomenon is in contradiction to the
predictions of SU(6)w X 0(2).,, and is easily demonstrated. The w and
7 have L =0 and hence the ww system has J, = W,. Hence mw (A = +1)
has W, ==1 and conservation of W, implies that B has W, =+1.
However the Bis a qq state with S =0, hence S, =0, or in W spin basis
W =1, W, =0. Therefore the B does not exist with W, =1 and so the
7w (A ==*1) mode is forbidden contrary to data.

Similarly, in photoproduction, L, conservation implies that only
L, =0 final state baryons can be excited and hence the D,3(1520) and
F,5(1690) which have S= W =3 can only be photoproduced in helicity
z. Empirically this amplitude is almost zero if a proton target is used
(Walker, 1969). What is happening in this case is that the matrix
element involves an important contribution from quark orbital flip
(electric or convection current—equation 7.31) which violates SU(6)w
(see also section 7.3).

6.4 SU(6),, of currents

In weak and electromagnetic interactions the time components
Vo(x, t), A5(x, t) of the vector and axial currents measured there can be
integrated over all space to define 16 vector and axial-vector charges
(Gell-Mann, 1962; Adler and Dashen, 1968):

Q@)= J d*xVi(x, t)
=1...8 (6.35)
Qs = J d’>xAS(x, t)

At equal times these charges satisfy the commutation relations

[Q*(1), Q°(V]=if**"Q" (1)
[Q“(t), Q4(1)]= if**"QX (1) (6.36)
[Qz (1), Q€(D)] = if**"Q* (1)



QUARK-CURRENT INTERACTIONS 105

Hence the right- and left-handed charges Q* £+ Q5 each form an SU(3)
group (Chapter 2) and these commute with each other. Consequently
the above algebra i1s a chiral SUQB)XSU(3); explicitly if Q.=
3(Q% = Q¢) then

[Q%, QF]=1""QX

[Q2, Q%] =if*"Q” (6:37)

[Q%, Q®1=0

From these commutation relations sum rules can be derived (Adler,
1965a, b; Weisberger, 1965) by inserting a complete set of hadronic
intermediate states into the commutator.

Now attempt to enlarge the SU(3)x SU(3) algebra. In a current
quark model with canonical equal time commutation relations among
the quark fields a U(12) algebra emerges. This algebra has 144 genera-
tors which are the integrals over the local densities q(x)I'(A*/2)q(x)
(e¢=0...8). Here I is any of the 16 Dirac covariants.

To exploit the commutation relations and derive sum rules it is in
practice of use to sandwich them between states with infinite momen-
tum (Fubini and Furlan, 1965; Adler and Dashen, 1968). When p, - o
many of the U(12) operators’ matrix elements vanish between finite
mass states. The surviving operators are known as “good operators”.

It is straightforward to verify that only 35 independent good opera-
tors survive in the p, > 00 limit. We give a few illustrations.

Under boosts (equation 6.11) the spinors transform as

q(p) ZCOSh%)(l + a; tanh; %)) q(0) (6.38)
hence
cosh b X
q(p)= ey (6.39)
o, sinh; E

where xy = q(0) is a two-component spinor. In the particular limit of
P> ©

g(p. > %) =cosh g(ax)) (6.40)

We can now compute the properties of the various qI'(A/2)q densities.
Dropping the explicit A SU(3) dependence formally we have, for
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example (a, is given in equation 6.15)

1
g a.q=cosh’= X (Lo )( 0 ‘;‘)(a )x (6.41)

2

=2 coshzzxﬂx

=q'lq
Notice that ¢*Bo.q and q*o,q have quite different behaviours

¢ (R)oa=con ST D) 64

0 “Fo.

and so ¢ o.q 7% 0 whereas q ' Bo.q remains finite. The analogous

result holds for ¢*o,q and q *Bo,q in the p, - o0 limit.

If you carry this exercise through you will find that the good
operators form an SU(6) algebra due to their ¢*A.(1, Bo,, Bo,, 03)q
structure (Dashen and Gell-Mann, 1965). Explicitly

Fo(t)= j d’xVi(t) = J d3xq+(x)%q(x)
= | @sg* e a(0)
_ Jd3xV°‘(x) (@=1...8) (643)

Fr= [ @xvan = | @ea @B a0

Cl

d’xq” (x)Bay——q(x) = I d*xV5e(x) (6.44)
Fi= | @V =Jd3x )80, a(x)

a=(0...8)
j d’xq"(x)ﬁaxéz—q(x) = J d*xV§i(x) (6.45)
Fi(t)= I dPxAS() = J- d’xq +(oc)a',‘/\?q(x)
3 + Aa 3 a
[ @xa gt = [ @wase (6.46)
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These F* quantities are thereby recognised as being the generators of
an SU(6) w algebra which is called SU(6)w,cucrents Since 1t arose when we
investigated the transformation properties of the quark currents.

We have already seen that single particle states in motion along the
z-axis can be classified into SU(6)w X 0(2).,. supermultiplets. This
SU(6)w is referred to as SU(6) wclassification and 1s generated by W< which
close on an SU(6)y algebra.

6.4.1 ARE SU(6)wea AND SU(6)weur RELATED?

The generators F= of SU(6) w.eur are the integrals of local measurable
currents. Are they related to the we generators of SU(6)w..? Dashen
and Gell-Mann (1966a) suggested that they might be related by a
unitary transformation V:

We=vEey! (6.47)

Can V =1 so that W* = F*? The answer is no. For example the axial
charge is a generator of SU(6)w.. and if it was also a generator of
SU(6)w.. then it would not give rise to transitions between different
multiplet representations of the group—a generator can by definition
only cause transitions within a multiplet (Chapter 2). Then by PCAC
one would deduce that no resonance can decay into N and 7A. Other
contradictions can be found. One would predict ga/gv=>5/3, the
nucleon anomalous magnetic moment would vanish (Dashen and Gell-
Mann, 1965b) and the form factors of the p-meson would all vanish
(Bell and Hey, 1974). Hence V # 1 and the SU(6)w,q. and SU(6) w ey,
have different generators.

The hadrons that form multiplets of SU(6)w,q., are built from quarks
which are often referred to as classification or constituent quarks. The
generators of SU(6)w,.. arise from quark currents. The quarks here are
often referred to as current quarks. Hadrons can be classified in
multiplets of SU(6)w.., 1.€. in a current quark basis, and their wave-
functions denoted |@.). In the constituent quark basis they will be in
multiplets and their wavefunctions denoted |¢,). These representations
are related by the hypothesised unitary transformation V':

ey = VI,) (6.48)
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Hence for a nucleon [,) =[56, L, = 0). After V acts on this we will have
a mixture of configurations
[Nucleon) = |56, L., = 0)+ 8|56, L, = +1)+ |70, L, = 0)+- - -
(6.49)
As a result the 7N - N* transition will occur.
If we have an explicit form for V then the a,B,7y... can be

calculated and the current matrix elements between hadron states
would emerge by calculating

(b0d] o) (6.50)

Alternatively, one can transform the operator
(Dl0cleb) = (W V10 V1) = by [0 ]) 651)
0, =Vv0.v ’

From the resulting transformation properties of Gq plus the known
SU(6) w,. behaviour of ¢,, the matrix element can be calculated.

6.4.2 A PARTICULAR UNITARY TRANSFORMATION BETWEEN
SU6)w,cur AND SU(6)w,cla

Buccella et al. (1970) proposed a phenomenological candidate for V.
Writing

3
V=[] V¥ (6.52)
i=1
then
VY =exp (—10Z) (6.53)
where
Z=(oXxL);=1(o.L_—0o_L,) (6.54)

with o, the spin raising or lowering operators in quark spin space while
L. raise or lower the ¥ component of angular momentum of the quarks.
The angle 0 is arbitrary.

Within the framework of the free quark model Melosh (1974)
attempted to provide some theoretical justification for this. The struc-
ture of V is similar to that of a transverse Lorentz boost—see also
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section 7.3 in this respect. A detailed discussion of Melosh’s work and
the relation between his transformation V and similar transformations
by Foldy, Wouthuysen and others is given in Bell (1974) which the
reader interested in this subject should study.

In a classification quark basis the nucleon is a member of the repre-
sentation (8,2) 56(L=0) of (SU(@3), SU(2))e SU(6)(0(3)). For a
nucleon with spin projection +; along the z-axis then its wavefunction
may be written

w(")w%nsmm+|s>,slﬂ>3]o (6.54)

where the subscript after the bracket denotes the value of L, and for
ease of notation we use «, B in place of Ms 4 (Table 3.7). Now act on this
classification space state with the operator V. The resulting nucleon
wavefunction in the current basis is found to be

) = cos O]¢) +sin 6|5¢) (6.55)

1
= 7_5 cos 0[[8). i1 + 18680

—1 i 1 1 1 \/Z 3
7 sin of [ 8)ett)a 483, 80 + 83120 |
+[~/%'l8>al%ms]-l} (6.56)

which 1s identical to the chiral SU(3) ® SU(3) wavefunction of the
nucleon derived by Buccella et al.

With this current space wavefunction for the nucleon one can take
matrix elements of current operators. For example, the expectation
value of I;o, between proton states (which is relevant to ga/gy,
equation 6.88) yields

8a_
8v
In the absence of configuration mixing induced by V, cos § =1 and
hence ga/gv =3. Empirically ga/gy =% and so sin”  =3.
The above has shown the calculation of (¢c|ﬁc|¢c). From equation
(6.51) we can equivalently compute (,]0,|4,) by deriving

5 5
g(cos2 0 —sin” 0) Eg(l —2sin” 6) (6.57)

0,=V70.V (6.58)
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and using ¢, = (0) of equation (6.54). As before we will illustrate the
calculation of g,/gy for which

0.=

)

(0.213)0)

M

1

Then we have that

0,= é [V(e.I) V],
= i: I9 [cos 8+ i(o X L); sin 8]0, [cos @ —i(o X L); sin 6]
P
= ‘il 190, [cos 8 —i(o X L); sin f][cos 6 —i(o X L); sin 0]
i
= _il I90,[cos 20 —1 sin 20(o X L);]
iz
=5 I9 (0. cos 20 +sin 26 &r . L) (6.59)

1

i

Between nucleon classification states which have L = the latter term
involving L, cannot contribute. From the first term we again find

Br_3 520 (6.60)
g 3

in agreement with equation (6.57).

6.5 The SU(3)xSU(3) subalgebra of SU(6),,

The generators of SU(6)w,... in equations (6.43) to (6.46) include
{ &*xV§(x, t) and | d*xA§(x, t) which are respectively Q*(t) and Q5 (t).
The right-handed charges Q* + Q5 and left-handed Q* — Qf generate
two commuting SU(3) algebras and so the chiral SU3)XSU(3) is
contained within SU(6)w,.... It is conventional to label states or opera-
tors by their transformation properties under this SU(3)XSU(3)
subalgebra (Gilman and Harari, 1968; Harari, 1968).
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If a state is in representation A of the Q*+ QsSU(3) and B of
Q° — Q5 then we label it

{(A, B)s.., L.} (6.61)

where S, is the eigenvalue of the axial-vector charge Q2 (which is
identically equal to the z component at infinite momentum, equation
6.43) amd L, is then defined as J, — S.. The direct product A ® B then
gives the ordinary SU(3), Q7 content of the state.

As examples we can illustrate the transformation properties of Q*
and Q¢ themselves. Since

L (Q7+0Q9) (@7~ Q%)

Q 2 > (6.62)
then it transforms as
{(8, 1)o, 0} +{(1, 8)o, 0} (6.63)
Similarly Q¢ transforms as
{(8,1)o, 0} —{(1, 8)o, O} : (6.64)

Of particular relevance are the representations of the quarks and
antiquarks in SU(3)X SU(3). We define the current quarks by their
transformation properties as follows. When p, - 00 a quark with spin up
has positive helicity. The convention that V —A is left handed for
leptons implies the positive helicity quark is a triplet of Q% + Q¢ and so

¢'={3, 112,05 @={1,3)-1,2, 0} (6.65)
while
q'={(1,3),,2, 0}; 3,=1{3, 1)-1,2, 0} (6.66)
These also illustrate the behaviours under the charge conjugation
and natural parity operations (Jacob and Wick, 1959; Harari, 1968;
Gilman and Harari, 1968):
(A, BYsa L] [(B, A)-5», ~L.1n%
(6.67)
(A, B)si L= (B, Aoy LuInSs
where the phase factors depend upon the orbital momentum of the

state. If we are combining ¢ and § the n factors also depend upon the W
spin of the resulting state.
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Now combine ¢ and g with L, =0. Then for the L =20 level

=17, L=+1=4'7"={3,3), 0D

=17, L.=-D=qq,={3,3)-1, 0}
since (3, 1) ® (1, 3) = (3, 3) etc. Under the “normal” SU(3), Q%, we find
3®3=1D8.

For the J, =0 we are combining (3,1),,,X (3, 1)-;,, which yields
(8,1)o®(1, 1),. For the octet states

(6.68)

1877 =17, J.=0)= Jizl{(s, 1o, 0} +{(1, 8),, O
) (6.69)
lsch = 0—+) ]z = O) = 7_}:,{(8’ 1)0’ O}_{(l’ 8)0y O}>

Notice that the J°© =17 transforms like Q* and the J*¢ =0 like
Q5. By acting on equation (6.69) with € we see that the convention is
,{(8’ 1)0, O}) = —l{(lv 8)o, 0}> for L =0, hence ngB(L =0)=-.

For these L = () states we can give a translation dictionary between

the classification of SU(3) X SU(3) and SU(6)w.
JPe=0"",J.=0)=>|W=1,W,=0;].=0) (6.70)
JPe=17,J.=0)|W=0, W.=0;J. = 0) (6.71)

JPe=1",.=xD)e|W=1,W,=x1;J,=x1)  (6.72)

where the SU(3) ® SU(3) representations of the states are given in
equations (6.68) and (6.69).

Now consider three quarks at infinite momentum with J, =3.
Suppose that the nucleon acted under the algebra of currents as if it
were two current quarks with S, =3 each and coupled symmetrically
with a third current quark with S, = —3. We would then have a state

{3, 1)12® 3, 1)12® (1, 3)-1/2}sym (6.73)

(where we have temporarily suppressed the L, = 0). Now 3® 3=6®3,
and of these the symmetrical combination is 6. Hence

lS = % or %y Sz = %)qqq = {(6’ 3)1/2! 0} (674)
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Under Q° we have 6 ® 3=8@® 10 and hence the nucleon octet and A
decuplet emerge. If all three quarks had carried S, = +3 then we would
have

IS =3, 8. =a0e = {3, ) ® (3, 1) ® 3, 1)}yym ={(10, 1)32, 0}  (6.75)

Since Q5 is a generator of SU(3) X SU(3) it cannot cause transitions
from one representation to another. Hence if the physical nucleon were
{(6, 3)1/2, 0} at infinite momentum then Q¢ would only connect it to
itself or the A (since the A also has {(6, 3),/2, 0} representation). This
would predict g5/gv =3 and, via PCAC, forbid 7N -> N*.

For wN—> N* to occur both N and N* must have common
representations in SUQB)®SU(3) of currents. As a result
phenomenological mixing schemes were suggested:

‘N> = a{(6v 3)1/2, 0}+B{(§$ 3)1/2’ O}+ 7{(3v 3)—1/2, 1}+ Tt (6'76)

(Harari, 1968; Gilman and Harari, 1968; Buccella et al., 1970).

In order to bring some systematics to this phenomenology a unitary
transformation V was sought which transforms an irreducible
representation of the algebra of currents into the physical state, e.g.

INY=V[{(6, 3):/2, 0} (6.77)

A candidate for V was suggested by Buccella et al. and the effect of
this on the wavefunction (equation 6.54) has been exhibited in equation
(6.56). Within the framework of a free-quark model a transformation V
has been derived by Melosh and discussed by Eichten et al. (1973). For
our purposes it is sufficient to suppose that V is a single quark operator,
and hence depends only on the coordinates of a single quark and does
not create connected qq pairs. The V developed by the authors above
indeed has this property.

Then if we wish to evaluate the matrix element of a current, say Qs,

(Hadron|Qs|Hadron)

= (Irreducible representation of currents|V 'Q; V|I.R. currents)
(6.78)

we need only calculate the transformation properties of V™'QsV. These
will be the transformation properties of the most general linear
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combination of single quark operators that can be written down consis-
tent with Lorentz invariance and SU(3).

Consider then V7'Q;V. We know that Qs transforms as {(8, 1)o—
(1, 8)o, 0} which has J, = 0. What other combinations of gq exist with
J. =0? The candidate {(8, 1)+ (1, 8),, 0} is Q* and so is no good, and
we are left with {(3,3);, —1} and {(3, 3)_;, 1}. To have the axial trans-
formation property it is the combination {(3, 3)., —1}—1{@3, 3)_, 1} that
is relevant. (Act on Qf with N and compare with N acting on this
combination of (3,3) and (3, 3).) Hence

V'QzvV={@8,1)—(1,8),0} and {[3,3),—1]1—-[3,3)-,, 11}
(6.79)

which behave as components of 35’s of the full SU(6)w of currents
(Gilman et al., 1973, 1974; Hey et al., 1973). These terms are often
referred to as W, and (W.L_— W_L,) respectively in the SU(6)w
language (compare equation 6.59).

For real photoabsorbtion or emission the dipole operator

D.= jd““\/i)

is relevant to the transitions. This transforms as (compare equation

6.69)

Vo(x, 1) (6.80)

D% ={(8, 1)o+(1,8),, +1} (6.81)

By analogous arguments to the above one can see that the most general
form of single quark operator with J, =1 will consist of four terms:

18, 0+ (1,8) 1}, {3300} {8 1)o—(18) 1},
(3.3)-1,2) (6.82)

These are sometimes written as L., W,, W_L., W_L. L, respectively.

For the J, =0 Q¢ natural parity N constrained the four possibilities
to just two because J, =0 is an eigenstate. The J, =+1 or —1 is not an
eigenstate of natural parity A and so all four possibilities can be present
(and appear to be needed phenomenologically: section 7.3; Hey and
Weyers, 1974; Close, 1974b; Cashmore et al., 1975).

Matrix elements for 7 emission or YN - N* can now be calculated.
The irreducible representations for N and N* are known, and the
V'Q2V contains two pieces with arbitrary weight. The 7N - N*
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matrix elements will therefore contain two reduced matrix elements
weighted by appropriate Clebsch—Gordan coefficients. Similarly yN -
N* will involve four reduced matrix elements. These will be exhibited

in Table 7.1 in section 7.2.2.

6.6 SU(3) x SU(3) configuration mixing in the harmonic
oscillator quark model

The SU(6) hadron wavefunctions are traditionally written in terms of
Pauli two-component spinors for the constituent quarks. This receives
motivation from the nonrelativistic quark model where the quarks are
approximately at rest in the hadron rest frame, i.e. the hadron has
negligible internal momenta, and hence the four-component Dirac
quark spinor approximates to a two-component Pauli Spinor.

I's the momentum of a quark in a hadron really negligible ? In models
one tends to predict that it can be sizeable. One illustration of this is
given in the MI'T bag (Chapter 18) where a free quark is confined to a
sphere of radius R. Similarly, in a harmonic oscillator quark model
(pZ)'?~ R " and for a quark with effective mass of around 300 MeV
one finds

(<Pi2>)l/2: m,

This has the consequence that the “small” components of the Dirac
four-spinor are of comparable size to the large. These sizeable “small”
components are the origin of many of the corrections to naive SU(6)
nonrelativistic quark model results. This is illustrated in the bag model
(Chapter 18).

Le Youanc et al. (1974b) hypothesised that in the SU(6) wavefunc-
tions the Pauli spinors should be replaced by Dirac spinors, the latter
taking account of the internal quark motions in the hadron. Hence the
Pauli spinors x; for the i-th quark are replaced with the Dirac spinor

Xi(s) )
u,(s)= ( 6.83
MO - PiXi(S) ( )
where w, is approximately the normal quark magnetic moment u, =

1
2my.

This hypothesis is implicit in many quark model calculations. For
example, the electromagnetic current interaction of the current (Dirac)
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quark is #y,uA*. This can be written out explicitly in 2 X 2 matrix form
for u =1, 2, 3 using the spinors in equation (6.17) and y,= g, v:= Ba;
(equation 6.15). Hence

\/[(E'+m)(E+m)]< ., @,.p! +)( 0 o.A) X
4EE’ XEvmX No.A 0 /|o.p

E+m

(6.84)

where p;=p;+k with k the three momentum of the electromagnetic
field. Expanding out we have the form of the interaction for two-
component spinors

(E’+m)(E+m)] +( o.pi O.p; )
\/[ 1EE X 0.A——E+m+—-E,+m0'.A x (6.85)

Now use the identity of Pauli matrices
o.ac.b=a.b+ioc.axb (6.86)

and if E=E’'=m we find the familiar structure

! x'[(p+p)-A+ioc . kxA]y (6.87)

2m,
of the nonrelativistic electromagnetic interaction. The spin dependent
term conserves L, and is the only term that would be allowed in
SU(6) w- The first term has L, = =1 if a transversely polarised photon is
absorbed and consequently breaks SU(6)w X 0(2), .. It has arisen as a
result of the non-negligible “small” components in the quark spinor.
This model is discussed again with reference to photoproduction in
Chapter 7.

Having made this hypothesis one can similarly study its effect in the
axial matrix elements, e.g. ga/gv. For anucleon at rest g./gv is given by
the coefficient of Yry;ys¢ (expand out y,ys¢y in two-component
spinors and verify that the u =3 component is finite when p' = p - 0).
At quark level p’ = p # 0 and expanding out the quark current we have

_ _E+m/ , o.p +)(03 0) X
Yysysd = 2E (X’E+mX 0 o/|o.p

E+mX

- (Ez%n) X +("3+(E%Z—)z(pr i(0><p)3)) x (6.88)
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which becomes

X +["3(1 _E(EI,‘) i m)) +EET£;] X (6.89)

after manipulating the ¢ matrices using equation (6.86). This has the
same formal structure as equation (6.59) and for g,/gv we find

Pl G (650

The depletion of ga/gy relative to § is clearly seen to be due to the
“small” components in the quark spinors, in particular upon the
transverse momenta. Since transverse momenta break the SU(6)y X
0(2)L. then the deviation of g,/gy from the SU(6)w value is under-
stood.

Formally there is an intimate relation between these results and those
arising from the transformation V of section 6.4. The reason is the
algebraic similarity between V (equations 6.53 and 6.54) and the
Lorentz boost L(p) (equations 6.10 and 6.11) that generates the Dirac
four-component spinor of momentum p from the rest Pauli spinor of
the nonrelativistic SU(6) model. This relationship has been made more
precise by Le Youanc et al. (1974b). They take the spinor (equation
6.16) and explicitly boost it to the infinite momentum frame.

In the p, > 00 boost the spatial part of the wavefunction is Lorentz
contracted following the model of Licht and Pagnamenta (1970) and the
relative time dependence is ignored (compare Feynman et al., 1971,
section 7.4)

¢p.=w<{ \/Tfiz_ﬂz’ Pi'r}) = Yrest({ Pir Pi1}) (6.91)

The spinors transform as follows. For the i-th quark

(!, )

2\c.  1/\p,0 . pxi
— w ¥
= cosh 2(% df) (6.92)

where

Ui=[1+pu,0.(0; . p)lx: (6.93)
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Now for ease of notation we temporarily drop the i subscript and
concentrate on the column vector. This may be written

( (1+o.0..p.+p.)x )
(1+o..p.o.+p.)ox

Then using 0,0, = —0,0, and writing

2=(; o)

we have for the boosted spinor

(6.94)

Luy(s, p) = cosh g [1+p,pis + 'u,qﬁizi(w‘) O 4 I-Lqﬁizi(_)pi(+)]< Xi )

TizXi
(6.95)
where 27 =32, +1X)) and pi" =(p: +ip,).
First of all note what would be the result if the internal momenta were
small. The infinite momentum spinor in equation (6.95) would be

o/ X
cosh z(mzxi) (6.96)

The generators of SU(3) ® SU(3) are 3(1+X,,) and the Dirac spinor
in equation (6.96) transforms identically to a two-component Pauli
spinor ;. Hence the SU(3) X SU(3) representation of the nucleon that
arises from the standard SU(6) Pauli spinor classification is preserved in
the boost to p, =00 if the quarks’ momenta (transverse to z) are
negligible.

However, if the quark momenta are not small the nucleon will have a
different SU(3) X SU(3) classification when p, - o0 than at rest. This is
obvious from the form of the boosted spinor in equation (6.95). We
notice that the B3 are the W spin generators and that the W spin
representation of the quark is being altered due to the presence of the
W*p~ and W™ p" operators in the boost in equation (6.95). Only if the
quark momentum is along the direction of the z boost is its W spin
representation preserved. The presence of transverse quark momenta
lead to SU(3)x SU(3) representation mixing. One can legitimately
regard this mixing as a consequence of quark confinement since this will
give the quarks a momentum even when the parent hadron is at rest
(compare Chapter 18). Equivalently this is the dynamical origin of the
SU(6)w violating decays like B> wr.
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The chiral SU(3) X SU(3) wavefunction for the nucleon at infinite
momentum can now be calculated essentially as in section 6.4 (equation
6.56). The difference is that we previously left cos # and sin 6
undetermined a priori. In the present approach the mixing is given in
terms of {(p7) and u’.

For example the calculation of g,/gv involves

Qs =Y i (1—pap?) (6.97)

(compare equations 6.57, 6.60 and 6.90) where we have dropped p*
contributions which vanish between nucleon wavefunctions with L, =

0. Hence

%%(1 —26) (6.98)

where 8 =¢ for R*/u?=3 which is determined from the harmonic
oscillator parameters fitted to the ground state (m, =300 MeV, R*=5
to 10 GeV™?). Hence the magnitude of g,/gv is in good agreement with
data. In particular note the structure of equation (6.90) for g./gyv and
compare with the MI'T bag and results of Bogobluibov (1968) discussed
in section 18 (in particular equations 18.37 and 18.43).

6.7 Quark pair creation and SU(6),, breaking

In section 6.3 we saw how a *P, model of quark pair creation from the
vacuum gave rise to an SU(6)w X0(2)., vertex symmetry if the
momenta of the quarks transverse to the x direction were ignored. If the
possibility of transverse momenta is admitted, in particular in the °P,
pair, then the SU(6) is broken. The magnitude and systematics of its
breaking will in general depend upon the assumed potential in which
the constituents exist since this leads to the form of the wavefunctions
that control the quarks’ momentum distributions in the hadrons.

By assuming Gaussian wavefunctions for the quarks Le Youanc et al.
(1973, 1974a, 1975a) have carried out a systematic programme of
investigation in the quark pair creation model. For the details and
explicit phenomenology the reader is referred to those papers. As
introduction some of the more general features are outlined here.
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The basic dynamics of the model is that the decay A - BC takes place
as the consequence of a g pair created with vacuum (*P;) quantum
numbers. If ABC are mesons the essential diagram for the process is
drawn in Fig. 6.3.

FIG. 6.3. A~ BC via *P, qq creation.

The *P, pair is created with (L, L.) = (1, m) and (S, S,) = (1, —m) and
L, S are coupled to give J = 0. To introduce the ideas, consider all ABC
as S-wave qg states (e.g. p(J.=0)—> 7 7). The spin-dependent
contribution to the matrix element may be factored out and so

(MsMc|T|My) =y X (1m, 1 = m|00)(Xsxc|XaX-n) I Z5c (6-99)

where vy is a number representing the amplitude for creating the qq pair
from the vacuum, and is a priori unknown. The quanity I'] pc is the
spatially dependent contribution to the matrix element. With the
momenta as shown in Fig. 6.3 then

Im(A; BC) = X,BC (kB) kc 5 kA) = J’ d3k1d3k2d3k3d3k48(k1 +k2—'kA)

X (K, + ks — k)8 (K, + ks — k)5 (K, + ki) YV (k; — k)
X Ya(ky, Ko)p(ky, ks) e (ks ky) (6.100)

The origin of these terms should be obvious. Three delta functions
constrain the internal momenta to yield the mesons’ momenta and the
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fourth shows that the qq are produced from the vacuum with no
momentum. The ¢, ¢ are the spatial wavefunctions of the gq states
A, B, C (we shall suppose them to be harmonic oscillator wavefunctions
as in other calculations, e.g. Chapter 7). Finally the Y7"(k; —k,) is the
spatial dependence of the P, pair.

To simplify the calculation, specialise to the centre of the mass frame
(rest frame of A). We shall route the internal momenta as follows:

k,= %(k +kg)= -k,

(6.101)
k;= %(—k'*'kB) =-k,

consistent with the delta function constraints when k; =0 and k¢ =
—kp. The integral 1,,(A; BC) is transformed into

I,(A; BC)=38(kp+kJ J kYT (ks —k)pa(ks +k)¢B(—k)¢;(%(¥())2)

The harmonic oscillator wavefunctions for ground state mesons
when suitably normalised may be written

RZ 3/4 -k 2p2
“) exp (Mi) (6.103)

Ua(ks, k) = (7 .

and so on, where R, has dimensions of inverse momenta or length and
so are a measure of the “size” of the state. Substituting into equation
(6.102) yields

RAR3RZ\/*
I,,.(A;BC)=%8(k,,+kc) I d3kY;"(kB—k)(—A-§—£)

(kg +k)’R% k*R% k’R%
Xexp ——-——8—— exp | — 3 exp| — 3

(6.104)

The way to deal with this integral is a standard procedure. First
eliminate the cross-terms in the exponent by making the substitution

Rokp

K =k+ ;
(R%+R5+RT)

dk’ = dk (6.105)
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so that the exponential becomes
[_k'z(Ri +RZB+RZC)] [_ 3R%(R3+RY) ]
exp 3 ¢ 8(R% +R%+R%)
(6.106)

The integral therefore becomes

2p2 2+ 2 R 3/2
(A3 BC) =350k + ko) exp | ~ s AR RO J(RaRe) 1

8(R%+ R%+R%) ¥t w2
X J &I’k YT (kg —k) exp [—k'Z(Ri +f§+RZC)] -(6.107)

All that remains is to manipulate 7
Y (kpg—k)=-¢,,. (kB—k)\/(%> (6.108)

into a form dependent on k'. Substitute equation (6.105) into this and
we have finally

ki R%+ R%)RA ]
8(R4+R3+R%)

RARBRC>3/21 [3 R% )
X —,. e e —
( T 77 Nz ©r kB(l R%+R3+R%
k'z(Ri+R§+RZC))
8

I.(A; BC)= —%5(k3+kc) exp [—

Xj4wk'2 dk’exp (— (6.109)
where we have eliminated the £ . k' piece (since upon integration it
vanishes by parity).

The Gaussian integral is standard (equation 7.4.4 of Abramowitch
and Stegun)

= SR’ 2\
L k'zdk’exp(—k’z - )=2~/;<Z—Rz) (6.110)

so that the integral finally becomes

o 3 Em-ke [ kchi(R%+R2c)J
In(A; BCY= N o = = exp 8(R% + R% + R%)
( 2R RzR - )3/2(2R§,+R§+RZC

R%+R3+R% ,24+R§+ch>a(k3 fe)
(6.111)
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In the cases where Rz = R (e.g. p—~> 7" 7, Le Youanc, 1973) define
x=R%, r=R%=R% and the integral may be written in the useful form

3\g,.k ~
L= \/(E) 34 2v8 [RA*F(x, 1, kz)]|x=R%,r=R%‘c (6.112)

with

o [ % 32 x4 r [ —k*xr ]
Flx r’k)_(x+2r> xt2r P 4(x+2r) (6-113)

6.6.1 DECAYS OF RADIALLY EXCITED STATES

The above calculation would have applied to the decay ¢ - DD if the
decay had been kinematically allowed. Barbieri et al. (1975) have used
the model to study "~ DD where " is the second radial excitation of
. All that needs modification relative to the example above is that ¢, is
the relevant radial as against the ground state wavefunction. Instead of
calculating the integral afresh it is more immediate to notice that the
radial wavefunctions can be related to the ground state by differen-
tiation.
For example

[au(R)( R)”“]—\[ l—fRZ ) [n(R)(TR? (6.114)
3

3 4 d
I:,,E\[( —= —)1 .
21 3% (6.115)

where I, is given as a function of x in equation (6.112). Similarly for the
second radial excitation one has (Barbieri et al., 1975)

.15 8 d 16 ,d
I“’\/(8)<1 5% T 15° dx)I (6.116)

with the result that

6.6.2 L=1 MESON DECAYS AND B- wmr

Having developed the basic ideas of the model we can study now the
SU(6)w breaking in decays of L=1 mesons. To recapitulate: the
problem of interest is the helicity structure of decays like B—> wr. The
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final pair each have L, =0 and L, conservation (SU(6)w X0(2)L..)
would therefore require B to have L, =0 and hence J, =0. The B in
J.==1 helicity would therefore be forbidden to decay into ww
(contrary to data) (section 6.3.1).

In the pair creation model the w7 have L, = 0 but the P, can have
m=L,==1 or 0. The B with helicity J, = =1 therefore decays with
an m = £1 ’P, pair, while the J, =0 decays with an m =0 pair. The
restriction to the latter in the Carlitz—Kislinger model (section 6.3)
generated the SU(6)w vertex symmetry of that model and forbade the
J.==1 decay of B—> wm. The m ==x1 pair break the SU(6)y vertex
symmetry. We shall therefore be interested in the relative size of the
breaking and conserving amplitudes, or equivalently

I,-:1(A; BC)
Im=0(A; BC)

In contrast to the previous examples, the initial particle A is now an
L =1 state. If it has m=J, =<1 or 0 then its wavefunction is (take
7 = particle labelled B in A-> BC)

A\ R4 (k+k,)?
Yik+k,)= (&) l\[%RAyr;" (k+k,.,) exp I:——_ig—)}
o

(6.118)

(6.117)

and so we are interested in

L_[dkYi(k,—K)Y' (k+k,) exp {~[(k+k,)°R3 —K*(R% + R)]/8}

I, [dkYY(ks;—k)Y?(k+k,)exp{—[(k +k,)*R% —k*(R% + R2)]/8}
(6.119)

The same transformation to k' as the dummy variable is used as before

(equation 6.105). The spherical harmonics are

Yim(k,Fk)= —sm\/g (k{1 £ [R}/(R% +R%+R2)FK)
(6.120)

If we choose to define the quantisation axis by ks then

3 R% ) 2
1 J— —1 = — 2 -_ —k'
Yilk, ~k)Y, (k+k,) 477{]‘"(1 (RZ+R%3+R2)) °

+ parity odd terms} (6.121)




QUARK-CURRENT INTERACTIONS 125

o 0 3 (RE+ERY .
Yik,-k)Yik+k,)= yyes e + parity odd terms ¢ (6.122)
T
Noting that k?” =k = k}? =]k” in the integral then it is straight-
forward to integrate the exponentials and you should verify that
(_I_O) zl_ki(Rf,+R§+Ri,){l_ R% }

I] B-owm 4 (R32+ R%T+R‘2‘,)2

(6.123)

This result follows at once by exploiting the fact that
J k* dk exp (—ak?) =Zi I k* dk exp (—ak?) (6.124)
a

where a =32 R? in our example.
If the B, w and 7 are assumed to have the same size R, then

Io) 2 2¢4.2
— =1—-=Rk 6.125
(Il B-om 3 ( )
The magnitude of R in a harmonic oscillator potential is related to the

separation in mass between S and P, P and D etc. levels. With
R?*=8 GeV™? (Le Youanc et al., 1973) then

(5) =0-36 (6.126)
I,/ B>wn

which is consistent with the observed value (Ascoli et al., 1968;
Werbrouck et al., 1970) of 0-4733) but somewhat smaller than more
recent data (Ascoli et al., 1970) which give 0-68 +£0-12. In any event the
model and data are agreed that the SU(6)w J, = *1 forbidden ampli-
tude in fact dominates over the allowed J, = 0.



7 Electromagnetic Interactions
and Radiative Transitions in

Explicit Models

The question of how quarks contribute to radiative transitions between
hadrons has been investigated for many years. The standard hypothesis
is that a single quark in the hadron emits or absorbs a photon and the
transition B; - B,y is thereby triggered, a calculation of the amplitude
involving a sum over all quarks and antiquarks in the hadrons con-
cerned. The central point of controversy has been the nature of the
quark’s electromagnetic interaction. '

Early nonrelativistic models imagined the quarks to have a large mass
with the consequence that they had large anomalous moments (Becchi
and Morpurgo, 1965a,b; Faiman and Hendry, 1969). Such a picture
could be motivated intuitively by imagining each quark to be sur-
rounded by a meson cloud due to the strong interactions that are
responsible for its binding within the hadron. For interactions of the
quark with long wavelength electromagnetic waves this internal struc-
ture is not probed, consequently one views the quark as having these
charge and magnetic moment distributions attached rigidly to it.

Calculations of resonance photoproduction, on the other hand,
seemed to work very well phenomenologically if the quark was light, of
the order 300 MeV (Copley et al., 1969a,b). With such a mass the
nonrelativistic nature of the model becomes less clear. Also, the dis-
covery of scale invariance in deep inelastic electron scattering (Chapter
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9) where very short wavelength photons interact with the quarks,
suggested that the quarks indeed had very small masses and moreover
had pointlike interactions with photons, i.e. were Dirac fermions.

7.1 Quark spin flip matrix elements
7.1.1 STATIC MAGNETIC MOMENTS

The quark magnetic moments were originally assumed to be described
by a single parameter u with a normalisation such that the magnetic
moment operator for the quarks has the form (Becchi and Morpurgo,
1965b; Dalitz, 1965)

M= (o, —iou—la,) (7.1)

The proportionality of M, and ¢; is a consequence of SU(3) invari-

ance. In particular, the d and s are in the same U-spin multiplet (having

- the same charge) and hence have the same electromagnetic properties if
the electromagnetic current is a U-spin scalar; consequently

M,=M, (7.2)
Furthermore, if
Jem. = AL +BY (7.3)
then for arbitrary A, B we have

M, +M,+M,=0 (7.4)

after summing over the triplet since

e

3

L=3% Y=0 (7.5)
i i=1
Hence the single scale parameter u related the M; to e;.

Since SU(3) is not exact then one might question the validity of the
assumption in equation (7.1). The effect of mass breaking upon the
magnetic moment operator and ensuing calculations is discussed later.

Morpurgo (1965) calculated the proton magnetic moment by taking
the expectation value of M between proton wavefunctions (Tables 3.7
and 4.3). The result is obtained by exploiting the overall symmetry of
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the wavefunction so that
3
L (pIM:|p)=3uple®al|p) (7.6)

The calculation is now straightforward as follows.
For the 56, L = 0 state

pP= \/ié Ys(Ddmsxmst Pumaxma) . (7.7)

Since (s | sy = 1 and the expectation values of ¢ and o are
(dm,ale¥|Pm.a) =3(proton); —j(neutron) (7.8)
(dmsle®|dms) = O(proton); +3(neutron) (7.9
(Xhalo?xta) =1 (7.10)
(XhsloP[xhs)=—1 (7.11)

then we have

pr=3(plePol|p)=u3¢x1+0x3)=pn (7.12)

Consequently the quark scale moment is identical to the proton’s
magnetic moment in this nonrelativistic calculation. This means that

e
p=279—(h=c=1) (7.13)
and so
2-79
2L b (7.14)
mp m,

with the consequence that for a massive quark a large g factor or
anomalous moment is required. Conversely, a Dirac quark would
require a mass of around 340 MeV and the nonrelativistic nature of the
problem would be unclear (see also the discussion of section 18.1.2 for
the modern viewpoint on this topic).

The corresponding calculation for the neutron yields

un=3(nle®ol[n) = pi(—ix1+3x(-))=-3un  (7.15)
and so there is the parameter free prediction of the quark model that

e__3 (7.16)

N 2
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to be compared with the data,
—T= =146 (7.17)

This result had been found earlier by Beg et al. (1964) within the
framework of SU(6) symmetry. In the quark model it arises from the
fact that the spin—unitary spin wavefunctions of the nucleons are totally
symmetric (equation 4.29). There is no need for SU(6) symmetry to be
exact in the quark model derivation since the spatial wavefunctions ¢
for proton and neutron could be quite different.

From the above discussion it is a straightforward exercise to calculate
ia. You should do this and confirm that

= —liu (7.18)
and hence that
LIV (7.19)
Lr 3

In the early days of the quark model this was compared with the
extant data u,/up=—0-29+0-05 and was satisfactory (Combe et al.,
1966). Since that time data have improved and today we believe that
this ratio 1s (Particle Data Group, 1976)

BAs 0242002 (7.20)
Mp

and a less satisfactory situation has arisen. This is a reflection of SU(3)
symmetry breaking and it seems possible to systematically accom-
modate this.

If the quark masses m,q4 are light, around 340 MeV, then the
separation in mass between A, X% E* () suggests that the strange
quark is somewhat more massive, m, = 500 MeV say. Because the quark

magnetic moment operators are inversely proportional to their masses
m

Ha_ My (7.21)
Ms mgy

This enables the smaller value of wu, to be “understood”. This use of
light masses is discussed in sections 15.2.1, 17.2.3 and 18.1.
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7.1.2 TRANSITION MAGNETIC MOMENTS

Returning to the case of nonstrange baryons we study the transition
¥P - A* (1236). The transition of 3* to 3* can take place by interaction
with either the M1 or E2 multipoles (the magnetic dipole or electric
quadrupole respectively).

Becchi and Morpurgo (1965a) noted that in the quark model the E2
transition is forbidden, in line with the data. This is essentially because
the E2 transition is proportional to the charge operator which cannot
cause transitions between the quark spin ; and 3 states and hence the
matrix element vanishes by orthogonality of the quark spin wavefunc-
tions. Furthermore the E2 transition involves the spherical haromic Y,
which cannot lead to transitions between L = 0 spatial wavefunctions
(recall that the proton and A(1236) are both L =0 in the quark model).

The M1 transition involves the quark magnetic moments—hence the
spin operator in equation (7.1)—and this can lead to transitions
between S =3 and S =3 (Dalitz and Sutherland, 1966). The matrix

element is
wis =(p, m=+3|u. A, m=+%) (7.22)

The wavefunctions for A are given in Tables 3.4 and 4.3 (equation 4.26)
and a straightforward exercise will show that

2v2

KEa = T3 M (7.23)
This calculation would only be realistic in a world where the proton
and A were degenerate. For nondegenerate particles the effects of recoil
in transitions like yN = N* have to be taken into account, and this
brings us to the next stage in the development of transition studies
which is the incorporation of recoil in a systematic fashion. Before
entering the arena we should note that there exists a selection rule which
may be hoped to be independent of this question.

7.1.3 MOORHOUSE’S SELECTION RULE

Moorhouse (1966) noticed that photoexcitation of protons to states N*
in octets with quark spin 3 is predicted to vanish. A particular example
of such a state is the D;s (1690) which belongs to *8 in the 70plet of
SU(6).
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The selection rule is a direct result of the vanishing matrix element in
equation (7.9) for protons.

The matrix element for yp = N* (S =3) necessarily involves the spin
flip, magnetic interaction in order to give a transition from the nucleon
(quark spin =3) to the ‘8 with quark spin total of 3. The wavefunction
for the intital 56plet is

1
56, ?8) = :/_‘2 Yoo (Pmsxms + Pmaxma) (7.24)
while the final state is

170, 8) =—Jl—é‘(¢m,s¢m,s+¢m,A¢M,A)xs (7.25)

The spin flip can only reach the xs from the initial yu s since the
matrix element (xs|o$’ |[xm.a) vanishes identically. Hence the transition
is proportional to the expectation value of (¢ s|e®|dn s). This is finite
for neutron targets but vanishes for protons. Hence the whole matrix
element vanishes and the Moorhouse selection rule follows.

7.2 Quark model amplitudes for resonance photoexcitation

The basic assumption is that a single quark absorbs the photon and
leads to excitation of the system. The nonrelativistic form of the
interaction is written by analogy with nuclear physics (Becchi and
Morpurgo, 1965a,b; Faiman and Hendry, 1969; Copley, Karl and
Obryk, 1969)

3 3
H=7Y J;.A@r)=Y e9[~2igs .kxA+(p'+p’).A] —
=1 i=1 2m,
(7.26)
where ee®, s” are the charge and spin operators of the j-th quark (s = 1o

where @ are the Pauli matrices of section 2.2), p(p’) are the initial and
final momenta of the quark that has absorbed the photon of momentum
k, gee;/2m is the magnetic moment of the bound quark. The quantity
eg/2m is equal to u, the quark scale magnetic moment which is taken to
be equal to the proton’s magnetic moment, and hence u =013 GeV™".
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The electromagnetic field of a photon of momentum k and polarisa-
tion € is given by

A(r)= \/4_#\_/2171; glax exp Ik . 1)+ ar exp (—ik .r)] (7.27)

where € is a unit vector of polarisation. The computation is greatly
simplified if the photon momentum k is chosen as the quantisation axis
(z-axis). A real photon is polarised transverse to this axissincek . A =0.
Without any loss of generality one can focus attention on right-handed
photons (photons with helicity +1) for which

£= —\/iz(l, i, 0) (7.28)

As usual we take advantage of the overall symmetry of the SU(6) X
0(3) baryon wavefunction to write

3
H'=2J Alr)=3]c - A(rs) (7.29)
and hence
¥ =32 \/% wle® exp (—ikz®)]
><{Zi(sxsy—syex)k+§(—\/—1-§)(px+ipy)(3)} (7.30)
or

K = 6\/% pu[e® exp (—ikz‘”)]{ k(s. +is,)® —é(p,, + ipy)(”}
(7.31)

The first term is the magnetic interaction with a quark and flips the
quark’s spin projection , s,, by one unit whereas the second term is the
interaction of the field with the quark’s convection current and raises
the L, of the system by one unit. For the reader already familiar with
some of the literature on the Melosh transformation, these terms are the
explicit model realisation of the general structure BS, and AL, respec-
tively (see also section 7.3 and equation 7.112 et seq.).

One can now compute the matrix elements of #' between nucleon
states with J, = +3 and resonance states with J, =3 and ;. These are the
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helicity amplitudes A;,, and A, respectively, in terms of which the
radiative width of the resonance can be calculated
_ Kk my 8
Y 4 mg 2] +1

{1412+ As 2} (7.32)

The contribution of a resonance to the total cross-section for single
pion photoproduction is given by

1

ool > N* =m0 = {12 2ol P+ A (733)
SSmeg I

where x and I are elasticity and total resonance width and the §, 5 factors

correspond to I =3, 3 respectively.

The data on pion photoproduction have been analysed and A, », A3/,
for several resonances extracted with both proton and neutron targets.
A detailed calculation of these amplitudes has been made by Copley et
al. (1969a,b) and of I', by Faiman and Hendry (1969). To illustrate the
method we will consider two interesting examples, namely photo-
production of D;(1520){’8 of 70 with L = 1} and F,5(1690){8 of 56 with
L=2} which are the most prominently photoproduced resonances
apart from the P;;(1235). These are some interesting properties in the
photoproduction of these states which have not been understood
outside of the quark model discussion which follows. These phenomena
are seen in Figs 1,9, 11 of Walker (1969).

In yp > 7" n the total cross-section shows three clear peaks which are
predominantly P33(1235), D;3(1520), F,5(1690) respectively. However,
for the colinear production (8, =0°) the first peak is seen but the
second and third have vanished. The total cross-section is proportional
to

o1 ~ A1l +|As (7.34)
whereas

a(0=0%~|A,, (7.35)

because the A;, cannot contribute for kinematic reasons in this
configuration (the pion has J =0 and so only J, =3} can appear in the
final colinear system). Consequently one infers that the excitation of the
Di; and Fi;s off protons is entirely in the Aj/z mode, i.e.

A7/2(Dys, Fi5)=0 (7.36)
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In photoproduction off neutrons, on the other hand, one finds a
suppression of the F,5 peak at 90°, i.e. the excitation is dominantly A, ;.
In fact detailed analysis suggests

A32(Fis)=0 (7.37)

This result turns out to be a selection rule flowing from the interaction
equation (7.31). The results A}, =0for Dy; and F,s are more subtle and
will be dealt with later.

7.2.1 WHY IS A;/,(F;5)=0?

The Fis has L=2 and S =3: consequently to have ], =2 it must have
L. #0. The nucleon has L, =0 and so the transition can only proceed
by L, flip, i.e. by the p, +ip, term in ¥’

KH = 6\/%,(1, [e®? exp (—ikzm)]{ k(s,+1s,)® —é(p, + ipy)m}
(7.38)

This interaction in spin and unitary space is therefore proportional to
the charge operator. The matrix element of the charge operator
between neutron and F s is zero because the Fis isin ’8 of a 56plet and so
has the same behaviour under SU(6) as does the neutron. The inter-
action is therefore proportional to the neutron’s charge and hence zero;

(Flsle)|n) =(nlea)|n)=0 (7.39)

Notice that if there had been a spin—orbit interaction in #” then there
could be an L, flip accompanied by a spin operator (the C and D terms
in the general formulation in equation 7.68). In this case the transition
would no longer be proportional to the neutron charge due to the
presence of the spin operator, and so the matrix element would not
necessarily vanish. There is some evidence to suggest that A3, is small
but nonzero in which case such spin-orbit terms may be necessary.
This question is of interest in connection with higher-order relativistic
effects and the Melosh transformation.
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7.2.2 WHY ARE AT/z(Dw» Fi5)=0?

The vanishing of these amplitudes does not follow from any selection
rule and has been one of the most interesting and controversial topics in
the quark model applied to resonance production. That the quark
model gave a possible explanation of these vanishing amplitudes was
first noticed by Copley et al. (1969a,b). Indeed, this work stimulated
Walker to devote his rapporteur talk at the 1969 International Con-
ference on Electron and Photon Interactions to the quark model and to
place particular emphasis on this result (Walker, 1969). In turn the
work of Feynman et al. (1971) was stimulated and with the appearance
of the latter work, a rejuvenation of interest in the quark model took
place.

The production amplitudes for the D;; in particular are very instruc-
tive for appreciating much of the subsequent development of the
subject. We will therefore study them in some detail. This will also act
as an explicit model example of how to calculate matrix elements in the
quark model.

The intention is to calculate matrix elements of #' (equation 7.31)
between quark wavefunctions for 56, L = 0 with J, =+3;and 70, L, J, =
3, 3. For the 56 the wavefunction reads

1
(°8,56) = N Yoo(™ x2i)2 + ™ x K2 (7.40)

where the subscripts on ¢ are LL, and the subscript on x is S,. ¢ is the
unitary wavefunction for proton or neutron and is exhibited in Table
3.7. For the (°8, 70) we have

(8,700, = * % ULILL, SIS whis@™oxs - ™2

Lo+8.=J.
YTt (@M XM+ MM (7.41)

where the coupling of the quarks orbital and spin angular momenta to
give the total J are explicitly taken account of by the Clebsch—-Gordan
coefficient (our convention is that of the Particle Data Group, 1976).

We have already exploited the overall symmetry of the wavefunction
which has the consequence that, by definition, only quark number three
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is participating. Hence the excitation of /5 to ¢™* does not take place
since

M,=p =\/i§(r, ) (7.42)

This is a great simplification as now only the
M S(¢)M S, MS ¢M,AXM,A) (7-43)

piece of the 70 wavefunction will be operative.

First of all we will calculate the amplitude A;,,. Toreach J, =3 for the
states in “8 necessitates L, # 0 since the maximum projection of the
quarks intrinsic spin is +3. For the Dy; with L= 1, the L, =1 is the only
possibility available. Consequently only the p, +ip, piece of the inter-
action contributes to this A;/,, amplitude. Explicitly

3/2 = 6\/> (]2' 11, 22)('-/’11\/{ SI exp (— 1kz(3))|t[/ )(—_)
X [<¢M,S’e(3),¢M,S>_<¢M,A,e(3),¢M,A>] (744)

where we have used the orthonormality of the quark spinor wave-
functions x™*™S_ For proton and neutron we have from equations
(7.8), (7.9) that

(¢™%e®|p™5) = 0(P), 3(N), (7.45)
(@™ eV ™) =5(P), —3(N). (7.46)

If we define
RY® =(it®| exp (—ikz®)(p. +ip,) Vo) (7.47)

which is a quantity that will depend upon the specific spatial wavefunc-
tions chosen, then

AL, = \/E,Lg—l\/% RY® (7.48)
AN, =—2ug™ \/;;’ RYS (7.49)

Notice that there is a relation independent of the particular choice of
wavefunction, namely

Ag/z = _A3N/2 (7.50)
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This follows from the SU(6) states (°8 70 and °8 56) together with the
transformation of the photon interaction (#’) being (p, +ip,)® (like
L.). Compare this with the general approach (equation 7.68 and Table
7.1) setting the spin—orbit interaction, C, to zero.

TABLE 7.1
Helicity amplitudes for photoexcitation of the L =1, 70 by the general current J, ~
AL,+ BS.+ CS,L,.For SU(3) 10 states the proton and neutron amplitudes are equal.
The (ABC),, refer to the expectation values of the J, operator ABC between L =0 and
L =1 orbital wavefunctions.

Al A% Al A%,
1 1 C, B,
$11(°8) \/_S(Am"cm"'Bo:) — —\/_E(Am_%*‘—;‘l')
1 1 1 C 2B, 1 C,
D,;(’8) \/_E(Am = Co1—2By) TE(AOl + Co1) _76’<A01 “%‘ T()I) "\7=(A01 +_0E)
1
Su('®) 0 — ~——=(Bo1— Cor) —
3V3
1 1 2
D13(43) 0 0 —=(Bp; —4Co)) —‘(Bol __Cm)
V15 J5 3
1 2
D,s(8) 0 0 ———(Bo1*+ Co1) - \/"(Bm + Co1)
V15 15
1 Co1 B,
Sy:(10) \/—E(AO,+%-—331) _

1 Coi 2B 1 Io)
Ds3(210) —_<A0, +ﬂ+—°‘) —_(Ao, 4l)
v6 3 3 V2 3

If the photon had transformed as a vector meson then it would have
had a’S, ¢q structure. The symmetry group SU(6)w ® 0(2)... applied
to this transition would forbid the photoproduction of D;; with helicity
3. This result is an immediate consequence of the L, conservation of the
above group symmetry, as discussed in section 6.3. In the explicit quark
model, the amplitudes A;,, are not zero (equations 7.48 and 7.49). The
reason of course is that the second term in the interaction operator
equations (7.26) and (7.31), flips L, and violates SU(6)yw vertex sym-
metry.
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We now turn to study the A,,, amplitude. This can proceed by either

the p, +ip, term or by the S, term in equation (7.31). If the initial state

has J.=S. = —3 then the former term leads to a final state with J, = +3

comprising L, = —1 (orbital flip) while the latter produced the J, =
state with L, =0 and S, = +; (spin flip). If we define

W2 =(6° | exp (—ikz™®)|w5o) (7.51)

then the matrix element becomes

1/2_6f“ 272 <fz|10,zz 10k [(d™5le@[d™ N x5 [SP [} M7

— (@™ V™)1 S X))

UL bR )

S T A S PR Pl (7.52)
where we have again used the fact that |
QM8 ™Sy = (MEISL XM =0 (7.53)
Since
(X 1S9 x i) =1 (7.54)
and
X2 1S9 X% = —3 (7.55)

we have that

k)l o4
kUZIIO,ZZ( 1)} (7.56)

+3

From this one can choose J =%(Sn) or J= %(DB). For the latter we

have finally
2= J[M[g_lR
5
SR CH -_]

(7.57)
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Notice that for J = Z(S“) one would have

= \[\[u[ﬁg—lR‘:{SMR

S, = (7.58)
N, = \/—\/_,L[ V2g ' RYS —1kRYS

Hence there is the possibility of the A, amplitudes vanishing by
cancellation of the orbital flip (R;,) and spin flip (R,) for either the D;;
or the S, but not both. )

Copley et al (1969a,b) explicitly evaluated the RYS¢RMS using
harmonic oscillator wavefunctions. They obtained

ws ik (—k2> s ,\/2 (—k2>
= exp|——): RMS = {1/=
10 o3 p 6a’ s R 1 3a exp o (7.59)

The relevant experimental datum is the relative importance of A, ,, and
As/;. In the model calculation this becomes

Al/z)P 1 ( RIO) 1 ng

= ——(1-grV20 ——( ——) 7.60
(A3/2 \/5 g Rll ‘/5 aZ ( )
This bracket vanishes immediately if k*>= a?/g.

As an exercise it is useful to calculate the A, /, for F;5(1690) which is 8
in 56, L =2. Verify that

2V2 3 _
f/z— 5 \/%T,U«[\/;kRzo—g 1Rm]

Using the harmonic oscillator wavefunctions one finds that
Y S
R,o=—\[=(— _ . =
2= gV3\e) P\gaz)i Rn = T3P gy

Compute also the A3, and verify that the crucial ratio of amplitudes in
this case is

() =03 22) =502
A3/2 \/2 2 R21 \/E 202
Comparing equation (7.63) with equation (7.60) we see that the A, ,,

can vanish for both D,; and F; if

2
Fis = ZkDu
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In the laboratory frame this is indeed approximately true,
5, =017 GeV?, #1s =0-34 GeV?

Copley et al. (1969a,b) chose g=1 and 0-17 GeV? to force this
vanishing; these values of parameters also gave good fits to the photo-
production couplings of several other resonances they examined. Hence
the vanishing of the helicity amplitude A, ,, for F;5 and D;; off protons
could be accommodated. However, two worrying questions are left
unanswered.

i. What is so special about the laboratory frame?

ii. If g=1, then the quark mass is around 340 MeV since u, = wp.
Hence the use of the nonrelativistic interaction in equation (7.26)
is unjustified. In particular, spin—orbit terms could be important
in the interaction (compare our discussion of the A}), =0 for the
Fis).

7.2.3 HELICITY STRUCTURE OF RESONANCE
ELECTROPRODUCTION

Notwithstanding these questions, two interesting properties of these
results were noted by Close and Gilman (1972). The ratio A,,,/ Az, isa
function of |k| which in a given frame is a function of the resonance mass
and also the photon mass. If one now considers electroproduction of the
resonance instead of photoproduction then k| will change (in whatever
frame the calculation was performed) and so a cancellation between |k/|*

—I# 1 1 |
0

I 2 3 4
02 (Gev?)

F1G. 7.1. Change in helicity structure of D;; photo and electroproduction in the
oscillator quark model and data. A”=(|A,,*—|As,2/)/(A12l*+|A3,2). See also
equation (13.12).
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and «?/g in photoproduction would not arise in electroproduction. In
fact with the parameterisation of Copley et al. a very dramatic effect is to
be expected, namely that A},(D;;) which is nearly zero in photo-
production becomes the dominant amplitude in electroproduction.
Indeed, this amplitude is predicted to dominate even by Q%=
0-5 GeV>. A similar behaviour was also found to be present in the
quark model of Feynman et al. (section 7.4).

In the days when this behaviour was noticed in the model, there was
no indication in the data supporting it. More recently, however,
improved data do appear to be consistent with a dramatic change in the
helicity structure as Q? varies in line with the model predictions
(Evangelides et al., 1974; Devenish and Lyth, 1975) (Fig. 7.1). This
phenomenon is also of interest in connection with deep inelastic
scattering of polarised electrons on polarised protons (section 13.2).

7.2.4 ALGEBRAIC APPROACH TO PHOTO- AND
ELECTROPRODUCTION

The second feature of the helicity amplitudes noted in Close and
Gilman (1972) was that, independent of the spatial wavefunctions and
[k[?, the assumed transformation property of equation (7.26) or equa-
tion (7.31) as having two pieces, that is (i) spin flip or magnetic term
(k(s<+1s,) in equation 7.31) and (ii) orbital flip (g~ '(p.+1ip,) in
equation 7.31), enabled two algebraic relations to be written between
combinations of A7}, A% for the Dy;. These relations are independent
of the relative size of the two terms S, , L, and hence of R,; and R,,. We
have already noted one of these,

Asp=—A3, - (7.62)
The second one is
— AN z_g'__AP +1AP (763)
1/2 3\/5 3/2 3 1/2 .

Experimental verification or refutation of these is a direct test for the
assumed transformation property of #' (equations 7.26 and 7.31) and
the 70, 56 assignments of the D;; and proton states, independent of
spatial wavefunctions, choice of frames etc.
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As we shall see in section 7.3, the well-determined amplitudes A}/;
suggest that the interaction #' contains more than just these two terms
and that spin—orbit interactions should be included. One can proceed
piecemeal and include further terms as suggested in analogous atomic
or nuclear interactions. Such a spin-orbit term reads (Bowler, 1970;
Kubota and Ohta, 1976).

—l)is.pXA] -

3
sozz [ om
q

(7.64)

and in the notation analogous to #' in equation (7.31) reads

50 = —6V ku[e® exp (—1tkz™)]

X(z,ln (2“»(3“’(1’ +ip,)O = SPpP)  (7.65)

q

By including this interaction in #” one can break the relation equating
the magnitudes of A3/, and —A%,,. It will also lead to a violation of the
neutron target selection rule

A32(Fis)=0 (7.66)
One could then force
ll)/Z(D13) =0, All)/Z(FIS) =0 (7.67)

in photoproduction and see what Q? dependence results for |A,,,/ A3,
in electroproduction.

More efficiently we can ask what is the most general algebraic
structure of #” that can arise if we assume only that the photon interacts
with a single quark in the hadron and that the total amplitude is additive
in the quarks. This question will be investigated in section 7.3 and the
answer is

#=Y.A;J.=AL,+BS,+CS,L,+DS_L.L,  (7.68)

Hence there are four possible combinations of orbital or spin projection
flips with A, B, C, D unknowns. The matrix elements for photo-
production of resonances are quoted as a function of these quantities in
Table 7.1. Comparison with the results of Copley et al. shows that their
work is a particular case of the general structure (C = D = O).
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7.3 Current matrix elements—a general approach

A common feature of nearly all quark models is that A > By is triggered
by asingle quark q - ¢y and the full amplitude is obtained by summing
over the constituent quarks in A, B. The decay A— By defines a
colinear axis z; the hadrons AB are classified in irreducible represen-
tations of SU(6)w ® 0(2)... The q - gy transition defines an axis z’.
Along this axis the real photon can only flip the quark’s spin and the
decay transforms simply under SU(6)w &® 0(2)L...

If the quarks had no momentum transverse to the hadron decay axis
(%) then the z-axis and z’-axis (¢ = ¢qy) would be coincident. The decay
A - By would then involve only quark spin flips along the hadron decay
axis and so the hadron decay would be SU(6)w X 0(2)... conserving (i.e.
AL, =0).

In general the quarks have momenta transverse to the hadron decay
axis with the consequence that z’# z. Hence the groups SU(6)w X
0(2)L.. and SU(6)w X 0(2).. differ. We can see the physical realisation
of this in two equivalent ways. First we shall show how the simple
classification of states AB under SU(6)w X 0(2) ., leads to configuration
mixing under SU(6)w X 0(2)...; secondly we can see how the simple
SU(6)w X 0(2)L. structure of the q—>gqy transition is complicated
under SU(6)w X 0(2) L ..

7.3.1 CONFIGURATION MIXING

A quark at rest is described by a two-component spinorx” or x* (the two
spin orientations along the z-axis) and is in a basic representation of
SU(2), or, with three flavours, of SU(6) (technically SU(6)qearic). If the
quark is boosted by P, then the spinor x' becomes (equation 6.11)

q'(p.) =/ (E~2+m—m) ;51;_ T (7.69)

E+m

and since o,y = x' we have that

a0 = (522) ﬁ T (7.70)

E+m
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(7.72)

A similar procedure for x* yields
der=(E) X
2m /| =|plx
E+m
Hence the quarks have preserved their characteristic representations of
SU(2) as the spin orientations are unchanged. However if the boost had
been in the x or y direction then the x' becomes
TN Etm) x'
q'(p=)= ( im | op’ (7.71)
E+m
and since o,p, = .p_+o_p. (Where 0. = (0, £ 10,)/2 etc.) then
T4 t
qT(Px) = (E_+'f> X l
2m p+X
\E+m
and the spin has flipped in the lower components. The quark still has
J. = +3 of course; the upper components have S, = +; and the lower
have S, =—3and L, = +1 (see also the discussion in section 18.1).

If a baryon contains three quarks at rest in S-waves then it forms an
irreducible representation of SU(6). If the quarks are in motion along
the z-axis the hadron is in an irreducible representation of SU(6)y.
Quark momenta transverse to the z-axis yield components in the
hadron wavefunction which are not in S-wave, have L,==*1 and
S. = F3 (equation 7.72). Hence the hadron will be in a mixture of SU(6)
configurations. Therefore we see that a nucleon at rest or in motion
along the z-axis is only classified in a 56plet of SU(6) to the approxima-
tion that quark (transverse) momenta are negligible.

If we know the probabilities for the quarks to have momenta p, ;. in
the nucleon, then we can determine the mixture of SU(6)w X 0(2)..
configurations to which the nucleon belongs. The wavefunction for the
nucleon will thereby be written in terms of x' and x' states. A decay
A - By along the z-axis will then be described by a sum over q(x""*)~>
g(x*°" ")+ vy transitions along the z-axis, and hence the quark’s spin is
flipped since L, =0 along the z-axis. Hence the current is simple and
the nucleon configuration is complicated. Radiative matrix elements
computed this way are sometimes referred to as calculated in the
“current basis”.
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7.3.2 CURRENT MIXING

In a frame where the q - gy decay is along some axis z' then the quark
spin is flipped along this axis. One can boost to a frame where the decay
A~ Byiscollinear. This decay will then define an axis z # 2’ in general.
Along the z-axis the yq interaction is not collinear and so the interaction
can now flip L, as well as S,. If the momentum distribution of the
quarks is known then the relative importance of L,#0 and S, #0
interactions can be determined. The former term(s) will be SU(6)y X
0(2)L,. violating.

The photoabsorption by a single quark can transform in any of four
ways in general. With total J, = 1 one can flip the L, with the y-quark
vertex transforming as S =0. This term will be written L, to denote
that it raises the orbital projection by one unit. The y-quark vertex can
transform as S =1 yielding three possibilities corresponding to the
cases where the quark’s spin is flipped up (S.) or down (in which case L,
must be flipped by two) or remains unaltered (and hence L, is flipped
by one).

Hence the most general form of the interaction operator for the
current absorption by a single quark contains four pieces whose relative
importance is a priori arbitrary (Melosh, 1974; Lipkin, 1974; Hey and
Weyers, 1974; Gilman and Karliner, 1974; Close et al., 1974). We will
write

J+=AL,+BS,+CS,L,+DS_L.L,

The A, B, C, D are SU(6) singlet operators whose relative magnitudes
are arbitrary and in general their expectation values will depend upon
the particular orbital wavefunctions of the initial and final state
hadrons. In explicit models these expectation values can be computed.
This is illustrated in sections 7.2 and 7.4 for various models.

Given the classification of hadrons in SU(6) X 0(3) multiplets it is
straightforward to compute matrix elements for use as Clebsch-Gordan
coefficients multiplying the (A, B, C, D), expectation values (i, f being
the 0(3) states of N* and N). Hence an algebraic pattern will emerge
(Table 7.1) among the matrix elements which will be common to any
explicit model having q —> q'y as the basic mechanism. We will illustrate this
in sections 7.4.1 and 7.4.2; equation 7.108 et seq.

Toillustrate this approach we return to the case of photoexcitation of
the Dy3(1520), the prominent resonance in 70, L= 1". The idea is (i) test
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if the general algebraic structure is satisfactory by looking for relations
which are testable independent of ABCD, and (ii) having been satisfied
by its validity (at least to a first approximation) pursue explicit models
to see if their predictions are realised—note that these will now depend
upon explicit values for ABCD.

Since the photon is a mixture of I =0 and I =1, then both neutron
and proton targets give interesting structure. The results of typical data
analyses which extract the magnitudes of the various helicity ampli-
tudes for the production of this state are shown in Table 7.2 in
unspecified units (Moorhouse and Oberlack, 1973; Moorhouse et al.,
1974; Metcalf and Walker, 1974; Knies et al., 1974).

TABLE 7.2
Helicity amplitudes for D,3(1520) photoproduction
A]l)/Z A;)/z l1\1/2 A3N/Z
MO —26=x15 19431 —85+14 —124+13
KMO —19+8 169+ 12 =775 ~120+10
MOR 0+6 174x6 —88+7 —119<x25
MW —6+6 165+ 11 ~66+ 10 —118+13

These analyses have the following common features:
1. A]/Z 0 1/2 <0

ii.  |ADY|>|ADPY (7.74)
lll. A3/2 > _‘A3/2

and furthermore the ratios Alf/z :Af/z :AI;/z : A}/, are the same (within
the errors) for each analysis.

From the general structure of the /™ matrix elements we can form
one relation independent of ABC. This reads

A, +3AY, = =i (AN, +3A%),) (7.75)

which is in good agreement with the data and so the general structure
appears to be a reasonable first approximation. If we define R = C/A
then we find two relations

2 =—m——=Al; (7.76)
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1 2 A}
N 4 AP —-— = 3/2
1/2 3 1/2 3\/5 1+R
and elimination of R between these would recover the single relation in
equation (7.75).
In any explicit model with C absent, then R is zero and hence

A3 =—A3), (7.78)

The relations with zero value for R were first noticed by Close and
Gilman (1972). If R is unity then one finds the relations of the *P, model
(Peterson and Rosner, 1972, 1973), in particular

3N/2 = _%Ag/z (7.79)

From these relations (equations 7.76 and 7.77) which only involve the
largest couplings of this prominent resonance, it seems that

(7.77)

R#0 (7.80)
If we also define
& =By /Ao (7.81)
then we would find for A}/, that
f/z=A7—-:(1-2ﬂ—R) (7.82)

and since A}/, =0 then we have roughly that
A()]IBo]:C()lz“':l :2 (783)

A detailed fit to the full 70plet of resonances only changes this result by
less than 5 per cent (Cashmore et al., 1975b). It seems therefore that
quark models will be inadequate unless a spin-orbit term (C) is
included. We shall consider this question after returning to the
development of some dynamical quark models with respect to elec-
tromagnetic interactions.

7.4 Relativistic models
The main problem of the nonrelativistic model is that the excitation

energies of the states are comparable to the masses themselves and
so the nonrelativistic principles are not warranted. However, the
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nonrelativistic model does appear to have some phenomenological
success. Stimulated by this, Feynman et al. (1971) attempted to create a
relativistic model of quarks with harmonic interaction. The model uses
a simple relativistic four-dimensional generalisation of the nonrela-
tivistic three-dimensional oscillator and enables definite calculations to
be performed. This idea seems to have been first discussed by Fujimura
et al. (1970).

The model is not a complete relativistic theory (pair creation and
other similar effects that would arise from a relativistic quantum field
theory are not included) and hence certain general features of complete
relativistic field theories are violated, in particular unitarity. This arises
from the four-dimensional nature of the oscillator which means that
excitations of the timelike mode will exist in addition to the spatial
excitations of the nonrelativistic three-dimensional oscillator.

Explicitly the three-dimensional Hamiltonian of the non-relativistic
model

2mH;p = p*+m*wiX?
= p +’X? (7.84)

1s generalised to
Kip=(p*~ p}) + Q(X*~ ) =p*+ X" (7.85)

where p®= p,p* and the conjugate position is X,, so that p,, =1(3/3X,,).
Feynman et al. write for three quarks

2

K =303+ 93 +p2)+ 3 (X = X+ (X~ X+ (X, = X))+ C
(7.86)

the 3 and 36 being simply useful normalisations for their calculations,
and C is a constant.

The timelike degree of freedom is a problem due to it having the
opposite sign relative to the space components. For example the ground
state wavefunction for any pair of quarks is proportional to exp [(t;,—
t2)> — (X1 —X;)?]. This tends to zero as their spatial separation increases
which is physically sensible and is familiar from the nonrelativistic
model. However the wavefunction and probability tend to infinity as
their time separation increases, which is nonsense. Feynman et al. also
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illustrate the problems by showing that the time modes have negative
norm and positive energy. This means that the mass spectrum

P% = Q(Z nspace - Z ntime) (7.87)

has states with imaginary mass if timelike modes are excited.

To avoid these problems FKR suppose that only spatial excitations
exist. The model therefore begins to look very much like the earlier
nonrelativistic works.

To satisfy unitarity both spacelike and timelike modes would be
required to be excitable. By restricting attention only to the spacelikes,
FKR argue that their matrix elements will be too large (the timelike
have negative norm) and empirically this indeed turns out to be the
case.

To overcome this difficulty they suppress the matrix elements by
multiplying each one by an arbitrary ad hoc adjustment factor

-M3Q?
F= (——) 7.88
P\ + ) 75
where M? = P? etc. for three lines of four momentum P, + P,+ P;=0

and with Q the spatial momentum of one of the particles 2 or 3 in the
rest system of particle P,. This adjustment factor is analogous to the
exp (—const Q%) of the nonrelativistic three-dimensional oscillator
model. The four-dimensional model would have given exp [const (q5 —
Q?)]. The ad hoc function F replaces this. At this point it is not clear
whether any advance has been made over the nonrelativistic three-
dimensional model.

7.4.1 ELECTROMAGNETIC INTERACTIONS IN THE FKR MODEL

The expression for K (equation 7.85) does not appear to involve the
spin 7 nature of the quarks. The simplest way to incorporate this is to
interpret

P == (0.v")(p.7") (7.89)

This leaves K unchanged and enables us to calculate the effect of
perturbing by an electromagnetic field. Replacing pa by g, —eA(u.)
in the presence of an electromagnetic potential, the first-order
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perturbation is
8K =3 ). ei(pA(w;) + A(u;)p) (7.90)

with j summed over the quarks as usual. For interaction with a plane
wave with momentum g, the electromagnetic potential at quark j is

A, g, exp (k. u;) (7.91)

where ¢, is the wave’s polarisation vector. The interaction is jhe*
where

7n=32 (Y €™ v e™P) (7.92)
)

It is instructive to compare this current with the more familiar ay,u
of electrodynamics. This latter current arises when one describes the
free quark by a Dirac Hamiltonian which is linear in mass and the
electromagnetic perturbations are on the operator

m=f—eA (7.93)
The present model however has perturbed in
m*= (¢ — eA)(f — eA) (7.94)

and so A is always accompanied by a #, hence the agy,u structure of the
current.

The current (equation 7.92) can be written out explicitly using the
following representation of the Dirac matrices (equation 6.15)

1 0 0 o (o 0
7“(0 —1)’ "“”‘(o o)’ “=(0 0') (7.95)

(where o are the Pauli matrices). Set

pa=(€xPa), k=(v,Kk) (7.96)
then moving the plane wave from the right-hand side to the left
Foe*re=e* " (F.+K) (7.97)

yields for u = x or y (i.e. interaction with a real photon)
T =3ea e ((F+K) v+ 7.8)
=3e, ™ (v + €)= piviYu — RiYiVe + YuYiE — YuVibs)
=3e, ™™ (va . e~ pi(viY; V1) E — RiviviEs) (7.98)
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Now
Vi = 0,0, = g; +1€x0% (7.99)
hence
ji=3e,e™(va.e—2p.e~Bxg—io .kxe)  (7.100)

which is exact between four spinors and we have chosen the gauge
k.e=0. Only the a . & term can mix the upper (large) and lower
(small) components of the four spinors. For the initial state with

pr=(E,,p) (7.101)
and final state with
p2=(Ez, p2)=(E\—v,p1— k) (7.102)

then the four spinors in the representation of equation (6.17) become

the familiar
_ E] + ml) X
X \/(———Zm1 o (7.103)

E1+m1X

_ Ez+m2)< . o.p: .
Xz“\/( 2y X E, 2X ) (7.104)

Here x are two-component rest state or Pauli spinors.

The exact expression in equation (7.100) can be placed now between
the Dirac explicit spinors of equations (7.103) and (7.104) and expanded
out to obtain the form of the interaction involving two-component or
Pauli spinors. This becomes

and

—2p;,.etioc . kxe (large-large) (7.105)
O .EC.P a.pza.e)
+ B ) .
V( E+m, E,+m, (large-small) (7.106)

+2p.e(r .P20.p1— 0 .p.0 . kXead .p,
(E] +m1)(E2+m2)

(small-small)

(7.107)

where k=p,—p; and the origin of each of these terms is also shown
(large—large meaning that the upper components were involved etc).
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Notice that the transformation properties of the first line are L, =
+1(L,) and S, = +1(S.) respectively, i.e. like the A and B terms in the
general transformation in equation (7.68). If p, and p, are non-zero then
the second line and third line contain S,L, structure (the C term in
equation 7.68) while the fourth line contains S_L.L. (the D term).

In the operator equations (7.106) and (7.107) the dependence on
quark number 3 is explicit, an implicit unit operator acts on quarks 1
and 2 as in the traditional formalism (section 7.2). Hence this inter-
action falls within the general

AL,+BS.+CS,L.+DS_L.L, (7.108)

structure of section 7.3. The reason for this is that the assumption of
single quark interaction has been made in the model.'

Note that if either p; or p,=0 then the small-small components
vanish and hence in turn the D term is absent. Furthermore the
large—small structure takes on o .k X & form and hence the C term
vanishes. FKR chose to specialise to a coordinate system where p, =0,
hence p, = —k and the interaction collapses to

v
—2p . T . + .
2p.e+ic (kXe)(l E2+m2) (7.109)

FKR then define

2=(m,+m2)2—k2=Ez+mz

7.110
4mlm2 2m2 ( )
and so finally the interaction becomes
—2p.s+i0'.(k><s)(l+ v 2) (7.111)
2m,g

which is equation (32) of their paper. Notice that the structure is simply

AL.+BS, (7.112)

which, as stated above, is due to the p; =0 constraint.

Hence after all the discussion of relativistic effects and so forth, the
model has ended up with identical transformation properties for the
electromagnetic current as in the three-dimensional oscillator model of

1 For a relativistic treatment to be fully consistent, “non-additive” interactions of quarks are
necessary (see, e.g. Kellett, 1974a,b).
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section 7.2. This is indeed the case as can be seen by taking the general
matrix elements in Table 7.1 and setting C = D = 0. The explicit values
for A, and By, turn out to be'

Ao =V20Q (7.113)
3
Bo, ETEAp (7.114)
where
2 v
A=\/gk, p=*/5(1+2m2gz)/\ (7.115)
and
2_ 24 B2
K’= —k2+%——) (7.116)

For k*= 0 these expressions simplify to read

MZ_ 2
p =V2(m;—my), kEIkl=m—'—n— (7.117)

The correspondence with the three-dimensional model is exact and
for 70, L. =1 states reads

Ap=2uR%SVmk (7.118)
JO=v2 E;%R;‘{-S (7.119)
At L=2itis
A(Ap)=~2vZ uN'mk Ry (7.120)
AWa=-2 %”E‘Rﬂ (7.121)

7.4.2 RELATED OSCILLATOR MODELS

Other models that have made a four-dimensional generalisation of the
three-dimensional oscillator Hamiltonian include those of Fujimura et
al. (1970) and Lipes (1972). These authors choose as solutions of the

! See Table 1 of Feynman et al. (1971).
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wave equation wavefunctions which are normalisable (noninfinite) in
all four variables and hence in the rest frame

Volp, & 0) = exp [ N il\‘/lgp](i)z exp [—%(nf Ry +§2)]

37
(7.122)
where
\/ — (X1 + X2+ X)
1
57 Xi—Xa) (7.123)
\/_(X1+X2 2X;)

are four vectors which separate the c.m. from the internal motion and
furthermore separates the internal motion into two independent oscil-
lators. Notice that the time component enters with the same sign as the
spatial in contrast to FKR where the amplitude grew with the time
separation. This can be written covariantly as

)= _iP_-p]
!l/o(Pa ‘f’ n; p) exp [ \/5

<(7) | 557 -med(5) )] e

where P is the c.m. momentum of the composite system.
Fujimura et al. also consider a more general wavefunction

™ = <%)2\/(2n —1) exp [ —%(211(};"4:7)2_ n2+2n<l;'40§>2‘§2]
(7.125)

the parameter n distinguishing the timelike extension from the spatial.
The n =0 case is essentially the (not normalisable in ) FKR solution.
The n =1 is that of Lipes.

The electromagnetic current again has an AL,+ BS, structure
C, D=0 as can be seen by inspecting equation (13a) of Lipes (1972).
Consequently there is an exact correspondence between the results of
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Lipes Table 3 for the matrix elements and the analogous Table 1 of
FKR and those of CKO. This correspondence becomes

Ag_(,)i:))es = \/%\/_QFKR; Bg)ii))es = %pFKR (7' 126)

for the 70, L =1 states.

Lipes’ solution also has problems with the timelike excitations, states
of imaginary mass being present if the number of timelike excitations is
sufficiently large. To eliminate this he restricts attention to spacelike
excitations in the rest frame of the particle, very analogous to the FKR
approach.

However Lipes appears to calculate explicitly the “form factor”
analogue of the FKR adjustment factor F at equation (7.88). In
comparison with electroproduction the shape of his form factor agrees
nicely with the data. A careful reading of his section 3a will reveal that
one power of (1 + q°/4m?) has been arbitrarily omitted in order to attain
this agreement. A possible excuse for this is offered.

7.5 Electromagnetic interactions in the P, model

In the general approach to pion emission at equation (6.79) we argued
that the matrix element contained two pieces transforming as W, and
(W.L_— W_L,) respectively. The emission of a transversely polarised
photon involved four independent contributions (equation 7.73).

(a) (b) (c)

FIG.7.2. M > V7 in the *P, model where (b) V or (c) 7 is regarded as elementary.

Imagine for a moment that this photon is the result of an elementary
vector meson emission in a decay M - Vir (Fig. 7.2). We would infer
that this process contains four degrees of freedom. However, in the *P,
model, we could instead regard the 7 as elementary and hence infer that
only two degrees of freedom characterise the problem (equation 6.79).
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This suggests that in the *P, model not all of ABCD in equation (7.73)
are independent. The *P, model in fact constrains

A= Cy; D=0

and from Table 7.2 we indeed see that data are consistent with
A = Cy;. The origin of this result can be heuristically seen as follows.
(For more details see Petersen and Rosner, 1973, and Le Youanc et al.,
1973.)

The presence of a *P; in a matrix element for M - BC givesrise to x
spin and Y™ (k—kpg) orbital pieces (equations 6.99 and 6.100).
Rewriting x™ with the aid of the Pauli o matrices, then this coupling of
spin and orbital angular momentum generates a o . (k—kg)V(3/47)
contribution to the matrix element. We may regard this as the intrinsic
*P, operator. Now consider its effect upon amplitudes for M - BC
where Bisa 7 or a p.

From equations (6.99) and (6.100) for B= 7 we find that (compare
equation 6.102)

X "1.(M; BC)
31

=\-— -8k tke) | I’k o . (k—kg)y (ks + k) (k)
47 8 I (7.127)

where we have approximated (k)= y5(0) (compare equation 6.103
for an elementary meson where R = 0.) We explicitly see the indepen-
dent o, and 0. structures (compare equation 6.79).

<az>ocj k(K. — ka) Ul + ) (k) (7.128)

(o.)C J PR(k, * ik, ) nr (kg + K) e (k) (7.129)

With particular wavefunctions (e.g. harmonic oscillator) the relative
importance of these terms can be computed (c.f. equation 6.119 for
B w7r).

If B=p then the ’S, vector meson will give a contribution x" to the
matrix element (like the *Py) but there is no orbital angular momentum
contribution from the S-wave p. Coupling to the emitted photon with
polarisation vector € yields a o . € contribution in the matrix element
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which will multiply the *P, operator. Using the identity of Pauli
matrices (equation 7.99) we can rewrite this: 4

o.co0.(k—k)=k.et+iog.(k—k,)Xe (7.130)

(the ky. £ vanishes for transversely polarised photons). Hence we see
the Bo. termat o .k, X¢

(at)OCI dI’k(k, —kg) i (kg + k) e (k) (7.131)
and the AL, and Co,L. pieces are equal

(Ly; o, Ly)yoc I Pk, + k)P (ks +EK)c(k)  (7.132)

The 7 or p emission are therefore both described by two independent
amplitudes in the *P, model; one conserving SU(6)w and one violating
it.

7.6 Massive quark models

A realistic dynamical quark model should have a relativistically invari-
ant basic formulation and also take into account that free quarks have
not been observed. One way to realise this is to have the quark mass
much larger than the hadron masses. If heavy quarks exist with masses
greater than, say, 20 GeV, then mesons will arise as poles in qg
scattering and hence can be described by the Bethe-Salpeter equation
in the g — ¢ channel (Bethe and Salpeter, 1951).

The dynamical input is in the Bethe—Salpeter kernel, namely the
form of the qq interaction. Llewellyn-Smith (1969) noted that if the
quarks have small relative momenta (|p|* <« M%) (Morpurgo, 1965) then
an approximate SU(6) symmetry can hold if they interact through a
Dirac scalar potential. However, there are some interesting effects, e.g.
the low lying vectors mesons contain D, as well as the usual °S,
component.

For a single free quark the spinor has a “large” and ‘“small”
component (equation 6.17). The latter is of the order & . p/ M times the
former. In general a four-component spinor may be separated into
upper and lower (x., x-) two component spinors. A ¢q state at rest may
be described by a wavefunction

x®=0=(1 )
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where x.s transforms like g, ® §p. In the weakly bound nonrelativistic
pictures the “small” component is indeed small and

T. 2
e T I

In the nonrelativistic quark model discussed elsewhere in this chapter it
is implicitly assumed that such relations hold true even in tightly bound
situations with the consequence that x.., x-- can be neglected if
pZ « MZ'

For a pseudoscalar meson in the approximatian that the mass is zero

_ ____(O 1)
X 75—1 0

Hence x,- and y—. =0 but x..= x-- (plus corrections proportional tc
the bound state mass). Detailed study of the coupled Bethe-Salpeter
equations shows that the usual nonrelativistic picture will emerge only
if the interquark potential is a Dirac scalar, since only for this case is

X-——< X++

(Llewellyn-Smith, 1969).

Developments in the Bethe—Salpeter studies include that of
Sundaresan and Watson (1970) who use a relativistic generalisation of
the three-dimensional harmonic oscillator interaction between q and g
and generate a meson spectrum with linearly rising Regge trajectories.
These ideas have been intensively studied by Bohm et al. (1972, 1973,
1974). These authors use a Bethe—Salpeter kernel which simulates a
smooth harmonic potential well for small separations of ¢ and 4 but
which vanishes asymptotically. In their 1972 paper they use scalar
“quarks” and obtain meson Regge trajectories together with daughters.
Their 1973 paper incorporates spin 7 quarks.

Electromagnetic interactions in a massive quark model and, in
particular, the deep inelastic electron-scattering phenomenology
(where the quarks appear to be light—Chapters 9 to 14) have been
investigated by Preparata (section 10.4).



8 Coloured Quarks

8.1 Symmetric quark model

In Chapter 5 we saw that a nice description of the baryon spectrum
emerged if one demanded that the baryons were built from three quarks
and that the total SU(6) ® 0(3) three-quark wavefunction was sym-
metric under the interchange of any pair of quarks (the “symmetric
quark model”). Yet baryons are antisymmetrised with respect to one
another since they are fermions and obey the Pauli principle.
Consequently quarks are funny: they are symmetrised in sets of three
but one set of three is antisymmetrised with another set.

Greenberg (1964) suggested that quarks are parafermions of order 3,
as a result of which the above paradox is avoided. Mathematically this
means that the creation (or annihilation) operator for a quark with given
flavour, spin, momentum quantum numbers (generically labelled A)
becomes

3 3
a’=7% agm, a=7y ag 8.1
i=1 i=1

where 1 is some new label which we might call “colour”. These operators
commute for the same colour but anticommute otherwise
{aui), a;(i)} = 5,\,n {aI(i), a:(i)} =0 (8-2)
e v e
[ari, @] =0(1#))

. e (8-3)
[axe anep]=0G1#))
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We can now create a three-quark state by acting on the vacuum ®, with
the operator f,, where

frw=Hax, a.}, a’}

3
E4' “kz_] a:(i)a;(j)at(k) (8.4)
i#]j¢k¢i
The state f},,®, is therefore symmetric under any permutation of the
Auv labels as are the three-quark states of Chapter 5. However, this

system is a fermion since {f1,., a5} =0 and hence

{frums fapy} =0 (8.5)

which implies that the creation operators for the three body systems
anticommute (hence they are fermions satisfying Pauli statistics).

The price we have paid is to introduce a new threefold degree of
freedom for each quark flavour.' If we call this “colour”, then the quarks
can have three primary colours, red, yellow and blue, and the proton
requires each of its quarks to have a different colour.

8.2 Charges of coloured quarks

The Gell-Mann—Nishijima relation

Y 1
=T;+—=F;+—=F, 8.6
Q 3 2 3 \/3 8 ( )
defines the charge operator as a function of the SU(3) generators. From
the commutation relations in equation (2.47) it follows that

[Q U.]1=[Q, Us]=0 (8.7)

and hence the charge operator is a U-spin scalar. This is exemplified by
the fundamental triplet representation where the d and s quarks form a
U-spin doublet and have the same charge of —3.

If equation (8.6) is generalized to

Q= (T3+—2¥>+%t (8.8)

! Compare with the model of Freund and Lee (1964).
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where t 1s an arbitrary ¢-number, then the commutation relations in
equation (8.2) are preserved but a triplet will now have charges
(z,2—1, 2—1) where

2=3(t+2) 8.9)

The uds triplets in colour states RBY will have charges

2R zR—l ZR_I
2B ZB—']. ZB_]. (8.10)

Ry Zy_l Zy“‘l

~< WX

subject to the constraint that
grt2ptzy=2 (8.11)

(which follows from the requirement that A**(urupuy) have charge +2).
Equivalently, the 2z 2pzy correspond to tripty via equation (8.9) and the
constraint in equation (8.11) corresponds to

hence familiar baryon charges satisfy the standard Gell-Mann-Nishi-
jima relation in equation (8.6).
Notice that the “average charge” of uds is therefore

eu:%(zR+zB+zY)=%
1 1 (8.13)
ea=e,=3[(zr—1)+(zp—1)+(zy—1)]=—3

and so all baryons made of one R, one B and one Y quark will have the
same charges as in the familiar uncoloured quark model since the
average quark charges are the same as for “uncoloured” quarks.

Two particular models are one where electromagnetism is colour-
blind (2& = 2= zy =3) (Greenberg and Zwanziger, 1966; Gell-Mann,
1972) and one where electromagnetism can “spectrum analyse” the
quarks (2y==2=1,2r=0) (Han and Nambu, 1965). The former
therefore contains three identical triplets and if the RBY generate a
symmetry, SU3)coiour, then SU(3)coiour can be an exact symmetry of
Nature. In the Han-Nambu model the quarks have integer charges.
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u d S u d S
R % -1 - R 0 -1 -1
B z2 -1 -3 B 1 0 0 (8.14)
Y ¢ -3 -3 Y 1 0 0
Gell-Mann Han—-Nambu

8.3 Colour and #°~ 2y decay

Colour is also useful in connection with the 7°—> yy rate for which
Adler (1969) and Bell and Jackiw (1969) have given an exact formulaina
field theory of quarks and gluons. The amplitude i1s a known constant

times
(Z e?) - (Z e;") (8.15)
i L=+1/2 i L=-1/2
with e; the quark charges for I; = +3 quarks (Fig. 8.1). To agree with

-4
Y
g - ———
o I3
e Y

FIG. 8.1. The #°- yy decay is related to the triangular coupling of two photons and
the isotriplet axial-vector current; hence the structure of equation (8.15).

experiment within the errors requires that I ie? =1. Fermi-Dirac
(uncoloured) quarks would yield

2es —e€q) =% (8.16)

a factor of three too small in amplitude (nine in rate). With the three
colour degrees of freedom the Gell-Mann colour scheme immediately
rectifies this. In fact any three-colour model with the constraint in
equation (8.11) will be satisfactory since

Y Iel =3 (8.17)
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requires that
(zk +28+23)—[(2r— 1)’ +(zs— 1)’ +(2y—1)*]=1 (8.18)

and hence
Zrt2ptzy=2 (8.11 bis)

8.4 Colour as a symmetry

Suppose that the RYB degree of freedom generates an [SU(3)]coiour
group (see also Han and Nambu, 1974; Close, 1975). Baryons are
therefore [SU(6) ® 0(3) ® SU(3)cotour Jantisymmersic 1f the Pauli principle is
to be satisfied. The familiar baryons of the symmetric quark model
(section 5.1) are therefore

[S U(6) ® 0(3 )]symmetric ® [S U (3)colour] antisymmetric (8 . l 9)

which requires that they be colour singlets (since a totally antisymmetric
three-body state in SU(3) is a singlet). Note that the antisymmetric
colour state requires the three quarks to be one red, one blue and one
yellow.

The quarks form a representation of SU(3)aavour ® SU(3)cotonr- In

place of equation (8.8) we may write now
. ¥
Q= (I3+X> +<al3+B~) (8.20)
2 2
where the tildas refer to the SU(3)CO.O.,,~group and a, B are arbitrary

constants. We will define RB to be the I; = +3, —3 states respectively.
The charges of the u quarks will be

2 a B
= — —+—
==375%%
2 a B
==_—4Z )
=35+ (8.21)
_2 B
VT3 3

and of course we recover equation (8.11).
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The Gell-Mann coloured quarks have & = 8 = 0 and so their charges
transform as a singlet under (SU(3).10ur).- The Han—Nambu charges
arise if @ =B =—1 and hence are 3* under [SU(3)].oi0ur and [3, 3%]
under (SU3);® SU(3).). The weight diagram of the Han—Nambu
quarks is shown in Fig. 8.2. Note the inverted triangle (triplet) of uds
and the triangles (antitriplet) that show the spectrum analysis of each
quark into RBY of SU(3).. If &« =B = +1 one obtains charges trans-
forming as (3, 3) (Greenberg, 1975).

\
@=- Q=0

F1G. 8.2. Weight diagram of Han—Nambu quarks.

The currently observed meson spectroscopy places no constraints
whatsoever on zgzp%y. First of all consider uncoloured quarks where
7" =ud. The charge is given by

(udle, +e;lud) = e, +ea=5+5= (8.22)

in an obvious notation. Now consider coloured quarks. The colour
singlet 77" can be written

- 1 _ — _ 1 - - -
(ud, \/—S(RR +BB +YY)) = 75 (undn +ugdg+uydy)  (8.23)
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The charge calculation now becomes
(", i]él’n*, 1) = Xurdg + ugds + ch_iyleq + eqluRc—lR +updy +uydy)
=3(zr+ 2+ 2v) +3((1 —2r) + (1 — 2p) + (1 — 2v))
=1 (8.24)

Notice that this result was obtained independently of any constraint on
Zgpy- Meson spectroscopy requires only that uds form a triplet and that
in SU(3). the mesons are colour neutral (RR,BB, YY in arbitrary
weights but not RB etc.). The failure to see nine coloured pions suggests
the colour singlet assignment for the conventional states.

In electron—positron annihilation below the threshold for producing
colour nonsinglet states,

R= a(e*i_:-) had:or_xs) _Y =

glee >upn) 5
(section 11.5) independent of the explicit zgpy. Intuitively this is
because only the “average” quark charges are being seen, hence

effectively 5, —3, —3 with three freedoms. This can be seen explicitly by
considering the photon in colour models

2 (8.25)

Y~ ZR(URl_lR + dRaR + SR§R) - (dRaR + SRgR) + zB(uBﬁB + dBaB + SBEB)
et (dBaB + SBgB) + Zy(UYl_lY + dYaY + Sygy) - (dy(—ly + Sygy) (8 .26)

Some algebraic manipulation separates this into a colour 1 and colour §
piece of form

Gui,(RR+BB+YY)) +((2r —3ui, (RR-YY))
+((zs—3)ua, BB—YY)) (8.27)

with similar structure for the quarks d and s.

The colour singlet piece of the photon is therefore independent of the
particular 2gpy. To obtain information on these quantities requires
experiments receiving contributions from above colour threshold. One
example would be the crossing of colour threshold in e*e” annihilation
whence R (equation 8.25) would rise to a new value 3(2% + 23 + 25)—2
(or with a, B defined in equation 8.20, R = 2+3(3a’+ B?)).

In the particular case of Han—-Nambu charges the photon is written

YuN "~ Uycly + UBﬁB - dRaR - SR§R i lll_l(Y? + BE) - (dc—l + S§)RR
(8.28)
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Trivial algebra enables this to be rewritten as

yin = (Guid —idd —1ss)(RR+BB+ YY)
—(ui+dd +ss)(RR —3iBB-1YY) (8.29)
and hence

yun=8,1)—(1,8) (8.30)

The (8, 1) contains the familiar p, w, ¢ vector mesons which are
colour singlets and are produced by the photon in e*e” annihilation.
The (1, 8) piece of the photon can excite vector mesons which are
singlets of SU(3); and octets of SU(3).. If colour SU(3) is a good
symmetry of the strong interactions then these 8 states will not decay by
strong interactions into 1 hadrons. Consequently they will be meta-
stable. However a state (1, 8) can decay into conventional hadrons (1, 1)
. and a photon due to the (1, 8) piece of the photon. It was suggested that
the metastable J/¢ vector meson with mass 3.1 GeV might be such a
state. However it does not have dominantly radiative decays and it now
appears more likely that it is the first manifestation of a fourth flavour of
quark (charmed quark) and hence the *S; cc brother of ¢(ss) and p, @
(Chapter 16).

No evidence for colour octet states has yet been demonstrated. If
such states exist with masses of the order of M GeV (where M is some
number larger than about 5) then in e'e” annihilation above M GeV
one can produce coloured neutral 8 states along with a photon

e*e > y(8,1)>M(8,8)+ (1, §) (8.31)

and above 2M GeV one can pair produce the whole octet of coloured

states. At energies E <M GeV, only colour singlet hadrons are pro-

duced and

o(e’e” > hadrons)
oe’e >u'n’)

R= Yel=2
1

whereas for E >2M GeV the colour degrees of freedom are all unfrozen
and R will rise to a value of 4 (since in the Han-Nambu model
4=Y.e?). Although the data do appear to undergo this sort of
behaviour around 4 GeV, it 1s more likely that this is due to a fourth
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flavour of quark (charm-c) being unfrozen. It seems that there is no
compelling reason to believe that colour is unfrozen at energies so far
probed in the ee” annihilation.

If colour does ever reveal itself, then it will be interesting to look for
“exotic” states like mesons with charge 2 (e.g. uydg) or charge three
baryons. Also, once the colour is revealed, there is no reason why
coloured quarks cannot be produced. This sort of possibility has been
actively investigated by Pati and Salam (1973a,b; 1974; 1975; it is
described in detail by Pati, 1977).

The idea that we have been carrying in the back of our minds in all of
this discussion is that colour singlets lie lowest in mass and that colour
nonsinglets (e.g. 83, .. .) have much higher masses. Imagine what
would happen if the colour nonsinglets were pushed up to infinite
masses. Clearly only colour 1 would exist as physically observable states
and quarks would in consequence be permanently confined. At any
finite energy we would see only the “average” quark charges and
phenomenologically we could not distinguish this from the Gell-Mann
model where the quarks form three identical triplets. The photon here
is

yom~ (uii—idd —1ss)(RR+BB+YY) = (8, 1) (8:32)

and colour singlet states are all that can be produced. In e’e” anni-
hilation, R =2 at all energies unless further flavours of quarks reveal
themselves. This model has been used as the basis for a possible field
theory of strong interactions (quantum chromodynamics) discussed in
section 15.2 (Fritzsch and Gell-Mann, 1972; Weinberg, 1973; Gross
and Wilczek, 1973b; Fritzsch et al., 1974).

8.5 Further reading

After the discovery of the heavy metastable J/¢ meson in 1974 there
was speculation that it might be the first evidence for a nonsinglet
coloured hadron (see, e.g. Krammer et al., 1974; Sanda and Terezawa,
1975; Kenny et al., 1975a,b; Mathews, 1975; Yamaguchi, 1975; Close,
1975; Marinescu and Stech, 1975; Greenberg, 1975). Subsequent data
have ruled out this interpretation of J/¢ but, even so, these papers may
give one a feeling for the phenomena to be expected when (if) colour
threshold is crossed.



168 AN INTRODUCTION TO QUARKS AND PARTONS

The possibility that quarks and leptons might be unified in the
Han-Nambu colour scheme is described in lectures by Pati (1977).
These lectures also discuss the possibility that quarks may be liberated
and may already have been produced as free particles in e*e” anni-
hilation.
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9 Lepton Scattering and Partons

The discovery that high-energy electrons have a significant probability
to scatter from a proton with large transfers of energy and momentum
(Panofsky, 1968) suggests that the proton’s charge is localised on a few
scattering centres (analogous to Rutherford’s inference from a-particle
scattering that the atom contained a nucleus). The energy and angular
distributions of the scattered electrons exhibit a correlation known as
“scaling” which suggests that the scattering centres are structureless
spin ; Dirac particles. This result combined with data on neutrino
interactions indicates that these constituents have the same quantum
numbers as the quarks of Table 3.1.

The scaling phenomenon is often referred to by saying that the
quarks are “pointlike” (Bjorken, 1967; Feynman, 1969; Bjorken and
Paschos, 1969). It is not known whether they are indeed pointlike or
whether high resolution experiments will reveal a deeper substructure.
However, just as in the atomic case the deeper structure of the nucleus is
at first order phenomenologically irrelevant in describing atomic
phenomena, so it appears that we can to a good first approximation
ignore any quark substructure.

Hence we will investigate the deep inelastic scattering of electrons
and neutrinos on protons and neutrons assuming; that the beams scatter
incoherently on the constituent quarks. We will look for evidence in the
data supporting the notion that these quarks carry the quantum
numbers that are expected from the spectroscopic phenomenology
described in previous chapters.
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9.1 Electron scattering

The cross-section for the exclusive process 1 +2 - 3+4 may be written
(appendix B of Bjorken and Drell)
3 3
dg— — 1 1 IAIZ d fg d ?:4
|V1 —V21 2E12E2 (27T) 2E3 (2’”) 2E4
X(pr+p2—ps—ps) (9.1)

(277)46(4)

where E,, v,, are the energy and velocity of particle 1, etc. The phase
space and kinematic factors have been made explicit and the physics is
contained in the Lorentz scalar invariant amplitude |A|?. In particular
this amplitude contains a sum over the spins of particles 3 and 4 and an
average for 1 and 2. If the particles are fermions then equation (9.1)
requires that the Dirac spinors be normalised such that

a(p,s)u(p,s)=2m 9.2)

and hence

tzua(P’s)ﬁﬁ(Pfs)=(ﬁ+m)aB (93)

(that equation 9.3 follows from 9.2 may be verified explicitly using the
spinors in equation 6.17, normalised by equation 9.2 in place of
equation 6.18).

We will study e - e and ep — ep scattering concentrating on |AJ%.
The main difference between electron—proton and electron-muon
scattering is that whereas the muon and electron interact by exchanging
a photon (Fig. 9.1) in a known and calculable fashion (the electron-
photon and muon—photon couplings are believed to be known exactly,
viz. “pointlike coupling”) the proton is a more complicated object
containing an unknown structure. The purpose of electron—proton
scattering experiments is to explore that structure. In order to see the
way in which the proton’s structure manifests itself in the cross-section
it will be useful to compare the form of the electron—proton cross-
section with the form of the analogous cross-section with a muon target.
Apart from the fact that the muon and proton have different masses the
only differences in the cross-sections will come from the corrections to
the “pointlike coupling” which arise due to the proton’s structure (e.g.
its anomalous magnetic moment).
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This detailed derivation of the kinematics and formalism of elastic
and inelastic electron scattering can be omitted if desired. A heuristic
derivation of the essential formalism is presented in section 9.2.2 and a
discussion of the relation between scale invariance and the scattering
from the pointlike objects is given in sections 9.4 and 11.1.

e e
= =
(a)

e e
p P

(b)

F1G. 9.1. (a) Electron-muon and (b) electron-proton scattering in the one photon
exchange approximation.

9.1.1 ELECTRON-MUON SCATTERING

The electromagnetic current of the electron or muon is formally
#(p")y.u(p). For eu > e the invariant amplitude |A|* in equation (9.1)
is

2 2

AP=1 ¥ ﬂ(k',h)?“u(k,sl)%ﬁ(%h)hu(P,Sz) 9.4)

51525354

where the § comes from averaging over the initial spins. Exploiting
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equation (9.3) we can rewrite equation (9.4) as

|A?= L(e ) (9.5)
L&) =3 Trace (X' +m)y“(1(+ m)Yy, (9.6)
=2[kLk, + .k, —gu (k. k' —m?)] 9.7

and analogously for L. Here m is the lepton mass and the rules for
evaluating traces in proceeding from equation (9.6) to (9.7) are given in
appendix A of Bjorken and Drell. Contracting together the tensors
LELE, yields
LOLE =8k .p'k.p+p.k'k.p'—m’p.p'—M?k . k'+2m*M?]
9.8)

In the laboratory frame where the muon is initially at rest
p=(M0), k=(Ek), K=(EX) ¢=Fk=-k)

and if we neglect terms proportional to m* and M % then we see that
q°=—2k .k'=—-2p.p' and hence

2 2 2
LOLE =8 [?_MZEE’ ¥ —qZ—M(E’ —E)+ M 2‘1 ] 9.9)
Using
2 r o 20
q =—4EE’sin" -
2
2
.
E—-E=—-v= oM

M(E'—E)=EE'(cos 6 —1)

(see Fig. 9.2 for the definition of these quantities) then

0 ¢ . 0}
@y ur _ 2 ’ i 27 9‘1
LOL" = 16M?EE {cos S~ 5amsin’s (9.10)
Now insert |A|* (equation 9.5 with 9.10) into the cross-section (equation
9.1). This yields
d’o _4a2(E')2{ ,0 ¢ ,0

dE' A0, q° S22 Z}ZM 0Ca+p—pd)
9.11)
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If the muon is not observed then we may integrate over d’p,. Since

& :
[Ssvgrp-po-siorar-m  ©12)

then with (p)>=M? and p . ¢ = Mv we find (Q*=—¢?)

e Y 8 & s(1-2) o

cos’ S+ AN ) oM

This double differential cross-section is in a form which will compare
most immediately with the inelastic electron scattering (equation 9.35).

F1G. 9.2. Electron-proton interactions in the laboratory frame.

To show how it relates to a form frequently met in the literature we
integrate over dE’ using the identity | dx §(f(x)) = [df/dx]™" and obtain

0
2 n2 27
g:"_“l“’s_z[lﬁ_lf T @ n®) o
a0 o Msm 2 2M2$1n > .
By energy conservation

1+2—bj in? 2
Msm 2

FEm)E o

and hence

do _(do E(  Q .20>
dQ <dQ)Mott E(1+2M2 sin 2 (916)
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which has factored out the Mott cross-section for relativistic electron
scattering in a Coulomb field (Mott, 1929; Chapter 7 of Bjorken and
Drell, 1964). The multiplicative factor in equation (9.16) arises from the
recoil (E' # E) and magnetic interaction. We. can manipulate the Mott
cross-section into the form

do 4mra® v Q% »»@2E- 4a’

e

One sometimes meets the “no structure” cross-section (Rutherglen,
1969) defined by

do do E’
(d—a>Ns=(a—n)Mmf (0-18)

which physically is Coulomb scattering with recoil.

9.1.2 ELASTIC ELECTRON-PROTON SCATTERING

Electron—proton scattering takes place by photon exchange just like the
previous example but now the photon—proton coupling is not known
(contrast the y, coupling for the muon). If account is taken of the fact
that the proton spinors @ (p) and u(p) obey the Dirac equation then the
most general form of the proton’s electromagnetic current J,=
#(p),u(p) can only involve ¥,, ¢, and i0,.q” multiplied by general
functions of p2(=M?), p'(=M?) and q” standing between the spinors,
viz.

Jo~a(p'1{Ti(g)ys + T2(a))io0aq” + Ts(g))g }u(p)  (9.19)

where 0,0 =(1/2)[V,, Y=]- Current conservation, ¢q°J, =0, forces
I'3(¢%) =0 since the terms multiplying I'; ; vanish identically and hence
we have

)

o F). .
Lo=ao)| F@m iz g fu(p) 920
where F;(0)=1 (proton charge) and F,(0)=1. The quantity « is the
anomalous magnetic moment of the proton (=1-79 Bohr magnetons).
Using equation (9.20) for the proton’s electromagnetic current, we can
calculate the electron—proton scattering cross-section in direct analogy
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to the electron-muon case. The only essential difference comes in the
invariant amplitude |A|* where L% is replaced by

L4 =% Trace (¢ + M)T* (3 + M)I” (9.21)
where
I‘u ,qu( )+ ZZ(q ) a

in contrast to the muon target where I'* =y*. In place of equation
(9.14) one finds for the cross-section

do do E’ ) k2Q? 2) Q* 0]
a0 <dQ)MmE[(F ) TRy an’
9.22)

which reduces to the muon example if F;=1, F,=0.
Alternatively one can define electric and magnetic form factors

QZ
Ge=Fi 5 F,
9.23
GMEF1+KF2 )

<
>
&
< 03t}
I +
. !
= *
O 2le
0-2}
5 %
P
!
O:lhp
o
3
0] 10 20 30

Q% (Gev?)

FI1G. 9.3. The proton form factor Gy. The dotted curve is the dipole form in equation
(9.25). The solid line indicates that Gyoc1/Q* for Q?>4 Ge V2.
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in terms of which (compare equation 9.13)

d’c  4a*(E') Q?
dQdE~  Q° 5(”_54”)
o . T ) o2

Mz S 2
The data (Taylor, 1975; and Fig. 9.3) suggest that G u(Q?) decrease as
Q% increases. This decrease is consistent with a dipole behaviour

(e

0-7 GeV? (9-25)
and causes the elastic cross-section to die out rapidly as Q? increases,
e.g.
do(ep—>ep)/dQ*
do(ep —>ep)/dQ*

oc(Qy™* (9.26)

9.1.3 INELASTIC ELECTRON SCATTERING

We come now to the focal point of the discussion, namely the process
e+ p - e+ hadrons where the energy of the final electron and its angle of
scatter are all that one measures. A spectrometer sits at some angle 6 to
the incident electron beam and records the energies of the scattered
electrons and counts events. We assume that the one photon exchange
mechanism is dominant (Fig. 9.4).

The differential cross-section may be written

d*o a’ E' a’ E'
e = AP=— — LW~ 9.27
dQ dEr Q4 E l | Q4 E 2] ( )
where (equations 9.4 to 9.7)
L =3Y i(k's')yau(ks)i(ks)y.u(k's") (9.28)

and the hadronic tensor is

W, =3 X (plJnXnl].|p)27)’8*(p +q —pn) (9:29)
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Compare equation (9.27) with Gilman (1968); our L,,, is four times his,
and all other quantities are identical with his (this is useful in comparing
with the conventions of Bjorken and Walecka, 1966, and Drell and
Walecka, 1964, and is discussed in Gilman, 1968).

p

FIG. 9.4. Electron-proton inelastic inclusive scattering in the one photon exchange
approximation.

If the initial proton is unpolarised then the most general form for
W** which is symmetric in uv is

. W W, y y
W =Wwg* + 2P “p” +Wq q +Mz(1>“q +q“p”) (9.30)

(L, is symmetric in ur and hence only W****™ contributes to the
unpolarised cross-section.) The W, are in general functions of », q°.
Gauge invariance constrains q,W*” =0 for any v, ¢°. Applying this to
equation (9.30) requires

Ws=—-W,y(p.4q/9°) (9.31)

W4 = Wz(P . q/qZ)Z_ Wle/qz (932)

and so

W = Wiiw, (g + TL)
q

. wzj(l;,qu)[(pu_%quxp,_%zgq,)] (9.33)



180 AN INTRODUCTION TO QUARKS AND PARTONS

Contracting with L,, (equation 9.7) yields
uy ' W2 ' 'Ar2
L W*=4Wik .k +M—2{4p.kp.k —2k . k'M?} (9.34)

In the laboratory frame (compare equation 9.8 et seq.), equation (9.34)
substituted into equation (9.27) yields
d’c  4a*E')
dE'dQ  Q*

{cos QWZ(V q%) +2 Wi(v, q°) sin® } (9.35)

Comparing this with equations (9.24) and (9.13) we can see the form
that W, have for elastic scattering (Q*=—q?

wi(v, Q )—4M2GM(Q )6(1/—2%) (9.36)
. o GE(Q)+(Q/4M*)GUH(QY) o  Q*
W3 (v, Q%) = e 5(1/ ZM) (9.37)

(which are identical to equation 8 in Gilman, 1968). Notice the presence
of the form factors Ggm(Q?). For a Dirac particle with “pointlike”
coupling (equation 9.13) we have for the dimensionless combinations

2MW? (v, Q%) = tha(ziy 1) (9.38)
YW (v, Q%) = 6( zzowu - 1) (9.39)

which are functions only of the dimensionless ratio w =2Mv/Q?, no
scale of mass being present (contrast equations 9.36 and 9.37 where the
Gem(Q?) contain an explicit mass scale in equation 9.25).

The two structure functions W, (v, ¢°) are related to the photoab-
sorbtion cross-sections for transverse photons (helicity +1) and longi-
tudinal-scalar photons (helicity 0). It is because the photoabsorbtion
has these two independent cross-sections o's, ot that two independent
structure functions W;, are present in the electron-scattering cross-
section. A photon moving along the z-axis with energy » and squared
mass Q7 can have polarisation vectors

e(x1)= :F\/_(O 1, +4,0) (9.40)
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1
Ny

£(0)= [V(Q*+7%;0,0, v] (9.41)

(gauge invariance demands that q.& =0). If the incident flux of
photons is K then defining

4 2
Ox10= WTG eoWuelio (9.42)
yields
K 1
W= ITO'T(O'T =3(0++0-)) (9.43)
T a
K 2
Wz=m(0”r+0’s)m (9.44)
A useful quantity is
Og m( Vz)
R=Z=—2(1+—)-1 9,
or W, QZ ( +5)

When Q*=0 the photon flux is K = v. When Q?*#0 there is some
arbitrariness about the definition. Gilman’s convention (1968) is to
choose K = |q| = V(¥*+ Q%) = v + Q?*/2v. Hand (1963), however, takes
K to be the “equivalent photon energy”; namely that energy which
would produce a final hadron state of the same mass as would have been
created by a real photon with energy ». Hence, since the final state mass
M* satisfies M**=M?*+2Mv—Q? then K"=p—Q?*/2M. The
structure functions W, are well defined in terms of the experimentally

measured d’o/dQ dE’ (equation 9.35). The photoabsorbtion cross-

sections are then defined modulo this arbitrary flux factor K.

Knowing the form for d’c/dQ dE’ in terms of W,, and also our
definitions of W, in terms of ot s, we can substitute these latter in and
obtain d’c/dQ dE’ in terms of the photoabsorption cross-sections.
This form is widely met in the literature and completes our kinematic
study. The reader is invited to perform the algebra as an exercise and
verify that

d’o
dQ dE’

=T(or+e0s) (9.46)
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where
Q*+v? 61!
e=[1+2 0 tanzi]
(9.47)
_ Ka 5 1
27°Q* E 1—¢

9.2 Deep inelastic scattering and partons

The structure functions W, are functions of both v and q* which can
be independently varied (since the former depends only on the elec-
tron’s energy loss while the latter depends on the scattering angle). The
squared mass of the unobserved hadron system W? is

W =(p+qY=M?*+2p.q+q" (9.48)
which in the laboratory frame reads (Q*=—gq?).
W?=M?+2Mv— Q* (9.49)

The kinematic region probed (v — Q7 plane) is shown in Fig. 9.5.
The data may be summarised as follows. For fixed W (e.g. elastic
scattering or resonance production)

MWW, Q%) >
VW;(W Qz))} —0 (9.50)
. ,,ﬁ/
N
o4 7
&
2 N
/)
///.x= i/2
7 Yx="a
//
~ x=0
—>
2Mv

FIG.9.5. The » — Q? plane probed in ep > eX.



LEPTON SCATTERING AND PARTONS 183

due to the resonance form factors killing the cross-section at large Q?
(compare equations 9.36 and 9.37). However for fixed w = 2Mv/Q*and
Q?=1 GeV? there is the remarkable phenomenon (Fig. 9.6) of Bjorken
scaling (Bjorken, 1969), namely that

MW,(w, Q%) > Fi(w)
vWai(w, Q%) Fa(w)
In addition it appears that o« o-r and hence that
wFy)(w)=2F(w) (9.52)

The Q? independence of dimensionless F,, for fixed values of the
dimensionless w implies that the structure functions are independent of

(9.51)

0-5
0-af-

of e oy

2

a

0-2F

Ol

Q3(Gev?)

FIG. 9.6. Approximate Q* independence of v W, at fixed w =4.

any mass scale (scale invariant). This phenomenon arises naturally if
the inelastic electron—proton scattering is due to incoherent elastic
scattering from pointlike constituents in the proton since for this latter
process no scale of mass is present (equation 9.39).

If the basic scattering of the electron is incoherently on a parton
carrying fraction x of the target’s four momentum (Fig. 9.7) and if the
parton mass and transverse momentum are negligible then

W (v, Q%) > Fy(w) = Z J’ dx eizxf;(x)t‘}(x —%) (9.53)

where the sum is over the various species of parton (u,d,s,c...), of
charges ¢; and fi(x) is the probability that the parton has momentum in
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the interval x - x + dx. The important feature here is the xf(x) structure
from which many relations will be seen to flow.

We will see later that the phenomenology is consistent with the
charged pointlike constituents having the quantum numbers of quarks.

F1G. 9.7. Inclusive ep »>eX viewed as incoherent elastic scattering of electrons from
partons.

That the partons have spin ; is supported by the observation of a small
value of R = o/or. We can see that this quantity will yield information
on the parton’s spin as follows.

If one sits in a frame where the photon and parton momenta are
collinear then a spin 0 parton could not absorb a photon with helicity

B
o-1F +*++++++

1 I n 1 N i n 4 A

0 05 -0
x=Q%2 My

FIG.9.8. R=0./0r as a function of x.
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+1. Hence for the spin zero partons with negligible transverse
momenta,

AT (9.54)

oT

This is not at all like the data (Atwood ef al., 1976), so very little if any
charge of the proton is carried by spinless constituents (at least for the
range of x = 0.1 so far studied). Spin 3 partons on the other hand give
o./or—>0 which qualitatively is like Fig. 9.8. These results will be
derived in the following paragraphs.

9.2.1 stu APPROACH TO ELECTRON SCATTERING AND SCALING

If the inelastic electron scattering from the proton is due to the
incoherent elastic scatterings of the electron on the Dirac quarks, then
the inelastic cross-section will be given by the sum of elastic electron—
quark cross-sections. These latter are essentially the same as the
electron muon cross-sections.

We have calculated the e—u cross-section (section 9.1.1). By compar-
ing with the inelastic cross-section (equation 9.35) we will show how
MW, and v W, are predicted to scale. If one rewrites these equations in
terms of the Mandelstam invariants s, t, u

s=(p+k)Y,  t=(p-p'V, u=(p—k'Y (9.55)

then the results are almost immediate. Moreover, it is then very easy to
make contact with hadronic phenomenology where these variables are
widely employed. Finally, one can gain an intuitive feeling for the
physics behind the angular dependences in the scattering cross-
sections.

9.2.1.1 Electron—-muon scattering

First we look at the e ™ > e u "cross-section. Neglecting masses at
large s, t, u then the L,, W*"* (equation 9.8) becomes

L, W* >2(s*+u? (9.56)
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Then, noting that
d’o m do

dQ%dv EE dQdE’

and that
s=2ME, u=-2ME', t=-Q"% (9.57)

yields (equations 9.14 and 9.15),

do 4ma®1/s*+u®
-—= —( ) (9.58)

dt t2 2\ ¢*
In order to make contact with the inelastic formalism we should make
explicit the energy-momentum conservation. We do this by writing
(compare equation 9.13)
d’o  4ma’® 1(s2+u2)
= - S(s+t+ 9.59
drdu £ 2\ 2 Jottttu ©-59)

(recall that s+t+u =3m” and so at high energies, neglecting the
masses, we have u = —(s +1)). Now recalling equation (9.57) we see that

s+t+u=2m(E—E"\—Q*=2Mv—Q* (9.60)
It will also be useful, later, to notice that

—t _ Qz
s+u 2Mv

(9.61)

1
w

9.2.1.2 Electron—parton scattering

In the parton model, the inelastic electron-target scattering is hypo-
thesised to arise from the sum of incoherent elastic scattering of
electrons on the partons in the target. If the partons have spin 3 and
couple to the photon just as does the u™ of the previous example
(“pointlike coupling”) then we can easily obtain an expression for the
cross-section.

Let us neglect any parton momentum transverse to the target so that

pparton = xplargel (9 .62)
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Then from the previous example we can write the cross-section for
elastic scattering on a muon(parton) with momentum xp. To do this we
note that

§ = xs, u—>xu (9.63)

but t remains untouched since this can be defined involving the electron
vertex alone. Then (compare equation 9.59)

( d20'> 4ma’ l(s2+u2

dt du ’
If the target is built from partons of types (flavours) i and the

probability for a parton i to have momentum fraction x to x + dx is fi(x)

then the inelastic electron-target cross-section will be (after summing
over all the elastic parton contributions)
o(x=)
r——
1)

( d2cr> 47ra 1 s +u
eN-»eX
(9.65)

)x&(t+x(s+u)) (9.64)

2
e (x)>ep(x) t 2

dt du 2 2 dez"’ *fi*) 7

where we used equation (9.61) in rewriting the delta function.

We already see the appearance of the structure in equation (9.53). To
obtain that expression explicitly we must compare the equation (9.65)
with the expression for eN—eX which involves W, (equation 9.35).
This can be immediately recast as

d’o oyt 471-a

{cos ng(v Q%) +2sin QW1(V, Q )}

dtdu s
(9.66)
If the hadronic final state has mass W then
s+t+u=M"+W? (9.67)
and if we are in the deep inelastic region s, ¢, u, W?— o0 then
. tM? (. )
sin® g =— (smce Q?=+4EE’ sin” g) (9.68).
stu
y=sos (9.69)
2
t
= __ (9.70)
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and so equation (9.66) becomes

2 2
( d 0') _4ma” 1 1 [2xFi(s +u)*—2usFy]  (9.71)

dt du/ensex 12 zsz(s+u)

where Fi=MW,, F,=vW, are in principle functions of x,¢ (this
follows most rapidly from equation 9.34).

Since s and u can be independently varied we compare coefficients in
equations (9.65) and (9.71). This shows immediately that F, , are only
functions of x

2xFy(x) = Fy(x) =Y elxfi(x) (x=1/w) 9.72)

which is the master formula of the spin 3 parton model (Bjorken and
Paschos 1964; Callan and Gross 1969).

9.2.2 HEURISTIC APPROACH TO ELECTRON-PARTON
SCATTERING

The relation between 2xF,(x) and F,(x) corresponds to

2r,0 9.73)
oT

and is a consequence of the spin 3 nature of the quarks. We have already
noted that spin 0 constituents would contribute only in o and that this
was readily understood physically by simple helicity considerations.
The above result for the spinj is ultimately related to the helicity
conserving nature of the electromagnetic current. It is this helicity
conservation that is at the root of the angular (s, u) distributions in
equation (9.71) and hence of the F,, interrelation.

To illustrate this we can make a heuristic derivation of the formulae
for elastic electron—parton scattering.

The cross-section for high-energy electron scattering in a Coulomb
field (e.g. the field of an infinitely massive object like a nucleus) is

do 477012(1 +cos H)Z

T (9.74)
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where t = —Q?and @ is the scattering angle in the centre of mass (which
is the same as the laboratory in this case). One can qualitatively
understand this result:

i. The dimensions of do/dt are [energy] *. Since the photon pro-
pagator provides ¢ in do/dt then no further dimensional quan-
tities occur.

ii. The high-energy electron—photon vertex conserves helicity.
Hence 180° scattering is forbidden and in turn this is the origin of
the angular dependence. Note that as £ >0 and v>>» Q? then
0 - 0 and so equation (9.17) is recovered.

The cross-section for e 'u* > e u " is (equation 9.58)

(9.75)

In the centre of mass —u/s =(1+cos 0)/2 and so the first term is the
same as in the Coulomb example. The difference is in the extra presence
of an isotropic term and an overall factor of 3.

The factor 3 arises due to the averaging over the two spin states of the
“target” muon (contrast the previous example).

When e~ and u” have net J, ==1 the 180° scattering is angular
momentum forbidden as before—hence the #°/s*>. When J, = 0 the 180°
scattering can occur (contrast the previous example)—hence the
presence of an isotropic term.

The resulting cross-section is symmetric in s* and u®. Hence the
electron—proton inelastic scattering cross-section will be symmetric in
s and u? if it is the sum of such pointlike elastic contributions. Hence
the equal weightings of the coefficients of (s + u)? and —2us emerge with
the result '

gL
2xF = F,&—->0 (9.76)

Ot

9.3 Scaling, the impulse approximation and confinement

The naive quark—parton model is the subnucleon analogue of the
familiar impulse approximation of nuclear physics (Drell, 1970; Drell et
al., 1970; Drell and Yan, 1971). The current—target interaction in the
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impulse approximation may be represented by Fig. 9.9, the mathema-
tical formulation having been described in the preceding section. The
implicit assumptions that must be satisfied if the incoherent impulse
approximation is valid are:

1. During the time of the current interaction one can neglect inter-
actions between the partons (Fig. 9.9(a)).
2. Final state interactions can be ignored (Fig. 9.9(b)).

Intuitively one parton has been struck so violently that it has recoiled
from its fellow partons and so can be regarded as quasi-free, indepen-
dent of their influence. In the case of a nucleus this is reasonable since
the nucleus shatters as a result of the struck parton (a nucleon in this
example) being truly removed from its friends and so the final state
interactions are indeed absent.

(xp0L,x0)  q=(001240) (xp,OLix0)
€«
—>

—

(POLP) =

(a) Before (b) After

F1G. 9.9. Current interaction in the parton Breit frame: —g*/2P - g = x. The parton
recoils from its fellows as if quasi-free.

If the target is a proton then the partons are quarks. The quarks
appear to be permanently confined within the proton (in contrast to a
nucleus whose partons—the nucleons—can be removed). Hence an
implicit assumption is being made in the quark—parton model, namely
that the final state interactions which confine the quarks act at large
space-time distances of the order of the proton size, much larger than
the parton size and the timescale of the current—parton interaction.
Then during the time of interaction the parton can justifiably be
regarded as quasi-free and the cross-section calculated; the subsequent
final state interactions do not affect the calculation. A widely quoted
example is that of a particle attached to a slack elastic band. If the
particle is struck by an impulse then it moves off as if free. The
cross-section for another particle to interact with it via an impulse is
correctly calculated by pretending that the elastic band is not there. The
confining effect of the elastic band acts later.
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One attempt to formulate a quark-parton model, including the
confining effect of final state interactions, while still retaining the
quasi-free aspect of the impulse approximation has been that of Pre-
parata (1975) (section 10.4). An alternative has been that of bag models
(e.g. Chapter 18) where the confinement arises due to an external
pressure, the deep inelastic scaling behaviour arising from impulse
interaction with quasi-free quarks in the bag (Jaffe, 1975; Jaffe and
Patrascioiu, 1975).

Two-dimensional quantum chromodynamics is a mathematical
laboratory where quarks can be confined ('t Hooft, 1974; for an
introduction see Ellis, 1977). In this model the scaling phenomena also
arise, and the quark confinement is found not to affect the scaling
properties of the model (Einhorn, 1976; Callan et al., 1976). If this
model is a guide to the real four-dimensional world then we may hope
that some a posterior: justification will be given to the naive parton
model (where the scaling phenomena and other properties of inter-
actions are discussed while the final state interactions and confining
properties are ignored).

At the present time the only real justification for the naive quark—
parton model is the extent to which it is empirically successful (Chapter

11).

9.4 Scaling and pointlike structure

Before we investigate the consequences of the master formula, equation
(9.72), it is instructive to ponder on the relation between pointlike
substructure and the existence of scaling phenomena. '

In any electron scattering process, the mass W of the produced
system at the hadronic vertex is given by

W=(p+q)’=M’+2p.q+q"
=M +2My=Q? 9.77)

where Q®= —q*>0 is the squared mass and v is the laboratory energy
of the exchanged photon. Consider first the case of elastic scattering.
Here W?= M? so that

2My =Q? (9.78)
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or equivalently
QZ
My

1 (9.79)

Hence elastic scattering is described by just one kinematical variable
and so the scattering of an electron elastically on a target proton will
involve

S(x—1) (9.80)

from the kinematic constraint (more precisely it is the dimensionless
quantity v W, (equation 9.39) that is proportional to this dimensionless
delta function).

There is also a possibility that there will be an additional Q?
dependence f(Q?) arising dynamically due to the target having a finite
extension in space, hence an internal structure which can be excited in
the photoabsorbtion and which responds differently to different values
of Q? (for example at large values of Q? it is more probable that the
proton will break up than at the smaller values where less momentum
hits it). This f(Q?) is known as the proton’s elastic form factor which
typically has a dipole type of dependence (1+ Q?/0-7 GeV*) ™. Hence
elastic scattering may be summarised by

vWo f(x) X Q% (9.81)
! 7
kinematic dynamic-form factor
0

finite target size

Actually the proton has spin 3 and hence two form factors (e.g. Gg, Gu
in equations 9.36 and 9.37). In the present discussion f(Q?) refers to the
spin averaged combination entering the dimensionless quantity in
equation (9.81).

In the form factor, written' (1+ Q?/A?) ™, the parameter A is bigger
the more pointlike the target. For a genuine structureless target, like a
muon for example, A - 0. In such a case the dimensionless quantity
vW, is controlled only by the dimensionless delta function and no
explicit scale of Q” is present. Hence we say that v W, is scale invariant.

! All that concerns us is that the form factor falls as Q% increases and A” sets the scale of Q%. 1 do not
mean to imply that the form factor necessarily falls as a simple power.
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This is intimately related with the structureless or pointlike nature of
the scattering centre.

The muon is known to be structureless down to 107"* cm whereas the
proton is of order 1fm (107"° cm) in size and this is reflected in the
proton’s Q® dependent form factor. In elastic scattering if Q*« A then
f(Q* =1 and so the target will appear to be pointlike (i.e. no internal
structure will be resolved) and »W, will scale whereas for Q?>» A” the
structure is revealed and the form factor causes the cross-section to die
with increasing Q7 breaking the scale invariance of v W,.

Consider therefore electron scattering from a nucleus with mass M
and plot the cross-section against x = Q*/2Mv. At x = 1 we will see the

(a) ’

(b)

Elastic
ea >e€ea

,'|
[
oll
(7]
Al
Quasi- G|
elastic [
[ ] ‘
| |
|
== | (A "
ol 02 04 | 005 O-l 0-2'0-4O5|

x=Q%/2M,v

F1G. 9.10. Inelastic e~ scattering as template for the parton model. The a-particle
consists of four partons (He*=ppnn) and the quasi-elastic peak is seen at x =1. 400
MeV electrons are detected at (a) 45°(Q* = 0-08 GeV?) and (b) 60°(Q*=0-1 GeV?). The
elastic ea - ea scattering has almost disappeared in (b) whereas the quasi-elastic peak
is approximately Q7 independent and hence scales. The ep - ep quasi-elastic scattering
is shown in the dotted peak centred at x=1/N =% and is smeared out by Fermi
momentum. As x - 0 pions are emitted from the nucleon and mask the quasi-elastic
peak which is otherwise tending to zero. Compare with Fig. 11.1 for electron—carbon
interactions.
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coherent elastic scattering from the nucleus. At higher energies we will
see coherent excitation of nuclear resonances. If we increase Q2 so that
Q%> A%, eus then the nuclear form factors will kill the elastic nuclear
cross-section and also the nuclear resonance production. The cross-
section will be dominated by the beam scattering incoherently and
elastically from the nuclear constituents, i.e. the neutrons and protons.
This “quasi-elastic scattering” occurs when

2myy =Q° (9.82)

where m,, is the mass of a proton or neutron. Hence this quasi-elastic peak
isat x =m,/M =1/N where N is the number of constituents (see also
West, 1975). If

A;ZJroton > Qz > Arzlucleus (9 .83)

then no internal structure of the protons will be resolved (they will
appear pointlike) and the scattering will exhibit scaling, i.e. be depen-
dent only on x (specifically x=1/N), there being no effective Q?
dependence for Q% <« AZo0n. Data on a-particle targets are shown in Fig.
9.10 and Cy; in Fig. 11.1. The latter are discussed in section 11.1.

If this was the whole story then the deep inelastic scattering on a
nucleus would scale and be a delta function at x = 1/N. In practice the
nucleons have a Fermi momentum in the nucleus due to their restric-
tion to the finite nuclear size and so the delta function is smeared over a
range of x to generate a quasi-elastic peak the area under which is
related to the sum of the squared charges of the constituents (compare
equation 11.38). This sequence of events is illustrated in Figs 9.10 and
9.11.

In practice we know that the proton is not elementary and so the
scale invariance of inelastic scattering on nuclear targets is quickly
violated (by Q*<0-1 GeV?). The reason is that the proton form factor
introduces a new Q” dependence into the cross-section. Equivalently
one can think of this dimensionally as being the consequence of the
proton’s size being revealed and hence a manifest new length scale
breaking the scale invariance.

When Q%> 0-7 GeV? the lepton scattering on the proton dominantly
occurs by incoherent elastic scattering from the quarks. Hence on a
nuclear target there will be a rescaling (Fig. 9.11): at Q7 scaling is due to
scattering from the “pointlike” protons while at Q3 there is a new
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(a) (c)
©@%= 0-01 GeVv? ©?=0-5GeV?
c
C*
— | 1
S v 1 |
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I
(b} (d)
Q%-=0-1Gev?2 Q2=5Gev?
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S /1| S
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FIG. 9.11. Schematic illustration of scaling and rescaling as layers of matter are
unravelled in a carbon nuclear target. (a) eC - eC and eC* (nuclear states excited). (b)
Q%?=0-1 GeV% Resonances and elastic scattering have been killed. Quasi-elastic
ep - ep scales, smeared out by Fermi motion of the protons in the nucleus. At small x
pion production begins. (c) For a proton at rest, higher » and Q® produces N*
excitations. In real life this whole figure should be smeared by Fermi momentum of the
proton in the nucleus. (d) At Q3 =5 GeV?, C, C* and even N, N* excitations have been
killed. Quasi-elastic eq -> eq scales. At small x gluon and ¢q sea production begins. ()
Q?*=100 GeV?(?). (Valence) quark contributions swamped by continuum (gluons and
qq) or perhaps g* excitations if quarks are made of prequarks (however even if these
q* exist they will probably be so smeared out that they will not be visible as bumps).
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scaling due to the pointlike quarks. Notice the drift of the structure
function to smaller x values.

This pattern of scaling, scaling violation and rescaling is quite general
if successively more fundamental layers of matter are revealed as Q>
increases (atomic, nuclear, proton, quark, prequark?...). If there is a
reasonably sharp transition between length scales (as is certainly the
case in the first four cases above) then one can visualise the increasing
Q? of a photon probe revealing structure at level N but being insensi-
tive to any substructure at level N +1 (Fig. 9.12) (Kogut and Susskind,
1974a,b; Llewellyn Smith, 1975).

@3

0%> 0%

‘i

05>0%

3

FIG. 9.12. Successive layers revealed as Q7 resolution improves.

If all of the partons at layer N + 1 are charged then they will interact
with a photon probe. Since the momentum of a parton at level N must
equal that of its NV + 1 level prepartons then the area under the structure
function will be conserved (modulo the squared charges of the prepar-
tons compared to the partons) but the average momentum of a prepar-
ton will be less than the parent parton and so the (x) at level N +1 will
be less than at level N. This results in the pattern exhibited in Fig. 9.13
(compare also Fig. 9.11).

Instead of discrete levels one might have a continuous set of layers as
in a field theory for example (see also section 10.6). At level N the
proton contains u and d quarks. Level N + 1 is where these quarks emit
gluons. Level N +2 has the gluons producing further gluons or quark-
antiquark pairs. In particular, strange and charmed quarks may appear
at this level (Fig. 9.14). As N increases, an equilibrium is approached
where the momentum of the proton (originally carried by the three
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“valence” quarks) is shared among all types of quarks and gluons. Since
the number of quarks increases as N increases (or as Q” increases) then

(o) 250 (9.84)

_ ‘02 large
S
X
v |

| |

Q2 small
| l
| l
0 X |

FIG. 9.13. Scaling violation and shift of F,(x, Q%) to smaller (x) as Q? increases. F,(x)
rises at small x and falls at large x as Q7 increases.

Hence
Q%>
Fy(x, Q%) —> 8(x) (9.85)
and instead of the scaling and rescaling of Fig. 9.11 a continuous

violation of scaling will be seen as F,(x, Q%) moves to smaller values of x
tending ultimately to §(x).

Level N N+ N+2

F1G. 9.14. Valence quarks generate gluons and produce a qg sea at level N +2.
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The expected quantitative pattern of scaling violation in a field
theory is discussed in section 10.6.2. A detailed discussion of parton
models with sequential clusters and their relation with renormalisable
field theories is given in Kogut and Susskind (1974a,b) and Llewellyn
Smith (1975, 1976).

In the data (Chapter 11) it does appear that a region with (approxi-
mate) scaling is seen and the properties of the data do suggest that
pointlike quarks are responsible. At the largest values of Q? presently
attained there are indications of a scaling violation qualitatively similar
to that expected in the above discussion (Taylor, 1975; Riordan et al.,
1975; Anderson et al., 1976). At large x the F,(x, Q%) decreases as Q*
increases, while at small x it increases. Whether this is evidence for a
further layer (prequarks), field theory (QCD?) or is an effect associated
with crossing the charm production threshold (section 11.6) is not yet
fully clear (see, for example, Llewellyn Smith, 1975).




10 Some Assorted Topics
in Parton Models

10.1 Old-fashioned perturbation theory and the infinite
momentum frame

In Chapter 9 we made a derivation of the parton model formulae which
may have appeared to be Lorentz invariant in that we explicitly
formulated the approach in terms of s, ¢, #. In the literature one often
sees the model derived, or applied, in an infinite momentum frame
where the target momentum P - 00 in the z direction (Bjorken and
Paschos, 1969; Feynman, 1969, 1972; Drell et al., 1970; Drell and Yan,
1971). In this formalism one makes the dynamical assumption that the
constituents of the target also have large p, but limited pr and hence the
infinite momentum frame is manifestly not a Lorentz invariant concept.
Therefore one might ask how this compares with the stu approach. In
fact, in equation (9.62), we neglected parton momenta transverse to the
target. If s - 00 so that the target has P - 00 then our neglect of pr makes
the two approaches equivalent. We will now illustrate some of the
infinite momentum formalism in order to acquaint the reader with the
techniques.
Consider a proton moving in the z direction:

P> M2
pus[J(P2+M2);0T,P]—»(P+EI;;0T,1>) (10.1)

A parton with mass m and fraction x of the proton’s z-momentum and
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with momentum k- transverse to the target will have
k. = [V(x*P*+m*+ k%), kr, xP] (10.2)

where m% =m?>+ k% is sometimes called the “transverse mass”. If x # 0
then

2
mr

ho=(xP+
w =\ TP

ke, xP) (10.3)

Now consider a photon with momentum g,.. In the laboratory frame
let it have energy ». The invariant P. ¢ = Mv can now be exploited to
obtain an expression for g, in the P - o situation of equation (10.1).

Write

4. =(qo0, 41, q5) (10.4)
then
4°=4¢"q. = (90— q3)(qo+ q3) — 7% (10.5)
and
MZ
MV=P-q=P(qo—qs)+§qo (10.6)

In order that g*> and My are P independent as P - c0 then we require
that

go—qs;=A/P

tom BP (10.7)
=

where A, B are P independent.

There is an infinity of infinite momentum frames corresponding to
the infinity of solutions for A and B. Two extremes which are met in the
literature are:

i. qo and q; large of order P:

A=0, B==— ~q*=q% (10.8)

il. qo and ¢; small of order J

_2Mv+q°

B 4p*

A=Mv, —q*=q%+0(1/P% (10.9)
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hence

+42 2
(I():(ZMV q q 2MV> (10.10)

ap 1™ 4P

This frame coincides with the incident electron-target centre of mass
frame (the electron being the photon source). Notice that frames with g,
and q; small necessarily require ¢°<0.

The technical usefulness of the P> o0 frame approach is if one is
using old-fashioned perturbation theory (OFPT) to calculate field
theory diagrams.! A Feynman diagram is the sum of all possible
time-ordered graphs in OFPT. The amplitude for a given Feynman
diagram is invariant under frame choice. The sum of all the OFPT
diagrams will give the Feynman amplitude, independent of frame, but
the contribution of each individual OFPT diagram depends upon the
frame in general. The utility of the P - o0 frames is that many OFPT
diagrams give contributions 0(1/P")— 0 and hence the calculation is
simplified. For example, in the frames where the photon has no energy
(equations 10.9 and 10.10) all diagrams vanish where the photon
creates a qq pair.

In OFPT particles stay on, mass shell and momentum (but not
energy) is conserved at any field theory vertex. For example consider
the vertex of Fig. 10.1 where a scalar field with momentum p, fragments
into two scalars carrying fractions x and 1—x of the initial p, and in
addition kr(— k) transverse momenta. Hence

MZ
p= (P+E;0Ty P) (10.11)
+ k2
(|x|P+"'ZI ke xP) (10.12)
A2+ kRS
= (|l—x|P+2|T;|lP-; —k, (l—x)P) (10.13)

Then

m>+ k2 A2+k4)

1
E,=E,+E,=P(jx|+|1— +—( +

(10.14)

! The relation between field theory and parton models is discussed in sections 10.5 and 10.6.
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and so
P(l—-|1—x|—|x x<0;x>1
AP=EE 1( | |2+|kL) A2(+k2 |
2 m T T
—_— — — <x<
ZP(M x l—x) O<x<1)
(10.15)
For future reference notice that
2PAE=M?*—5s (10.16)

where s = (p2+p3)2.

0y [XPv /fT]

Py
[R 04l
P3 [(-x) P,- k1]

Fi1G. 10.1. Three-point vertex of scalar fields.

In OFPT the amplitude for such a vertex is inversely proportional to
the energy difference AE. Hence this amplitude vanishes in the P > o0
limit unless 0 <x <1, i.e. when the two fields (particles) move forwards
(in the same direction as the initial particle). Therefore if a scalar proton
showers into a cloud of scalar partons, there will be vanishing pro-
bability as P - 00 that any parton is moving backwards.

We can illustrate the techniques of OFPT as P - o0 by studying the
contribution of the Feynman diagram (Fig. 10.2 (0(g?) in the g¢°’
coupling)) to the elastic form factor of the scalar particle defined by

1 1 1
(2w)’ 2E, 2E,

@'.0)p)= F(g*)(@® +p")u (10.17)
There are six possible time orderings (Figs 10.2(i-vi)) but only Fig.
10.2(i) survives as P - o0 since in each of the other diagrams at least one
intermediate particle must be moving backwards due to three-momen-
tum conservation. Hence these diagrams may be neglected as P - o0
because they contain energy denominators of 0(P) (equation 10.15).

In the surviving diagram p,,; have already been parametrised
(equations 10.11, 10.12 and 10.13) and AE calculated at equation
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(10.15). The energy of p4 is given by

m*+ (kt+ qr)’
=xP+— 10.18
E,=xP 2xP ( )
where we have chosen to parametrise the photon by
My
_ (M, ,0) 10.19
a=(3par (10.19)
Then AE'=(E,+ E,— E,— E;) becomes
2+ (kr+qr)” AZ+EE
AE’=—1—(2Mv+M2—m (kr+qr) T)
2P x 1—x
Since W?= M?*+2Mv — g% (equation 9.49) then
1 (o, m® A2 [kT+(1—x)qT]2)
= ——= - 10.
AE ZP(W x l1—x x(1—x) (10.20)

ATZ%WZ

(iii) (iv)

(b)

{vi)

FI1G. 10.2. (a) Feynman diagram for elastic form factor at 0(g?) in gé* field theory. (b)
(i—vi). Time-ordered diagrams.
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Comparing with equation (10.15) we see that AE and AE' are intimately
related by a shift of momentum and mass

AE' (W, ko+ (1 —x)gr)=AE(M, k) (10.21)

which for elastic scattering (W = M) is particularly simple.
The elastic form factor equation (10.17) becomes

11 g J d*kr dk.(2k +q),

2E, 2E, (2m)’ ) 2E,2E;2E(AE)(AE’)

?'l].0)p) = (10.22)

Examine the 4 =0 component. In equation (10.17) (p +p')o is 2P as
P - o0 while in equation (10.22) (2k + q ), is 2xP. Hence in F(q?) there is
a factor x in the numerator due to the current coupling. Explicitly
comparing equations (10.17) and (10.22) yields

n 1 5 2x
Flg)=¢ j dxj Gk . (1-x)@P AE)2P AE)
(10.23)

where the x factors in the denominator have come from the 2E,;,
energy factors for the internal lines in the loop. With practice one can
immediately write down OFPT amplitudes as P - 00 without all of the
above spadework. Integrate over d’kr dx in each loop; insert the x
factors for the energy of each line in the loop, energy denominators
become [2P AE(kr,x)]=D(kr,x) and no P dependence appears.
Hence finally

'odx

x(l—x)

j kD ke, x)D " (kr+ (1 —x)qr, x)
(10.24)

F@)=¢,

The above field theory has been generalised to the case where a
composite system is described as a constituent plus a core (Gunion et al.,
1973, 1974). The D" in equation (10.24) is replaced by a two-particle
wavefunction ¢

Yk, x)=(M*—s+ie) ' P(s) (10.25)

where ¢ is a vertex function which reduces to the coupling constant in
the lowest-order Feynman diagram calculation in equation (10.24),
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since D=M?—s (equation 10.16). The generalised form factor is
therefore

s[4 dx 2 _
Pl =] i | ko 0tk (1= 5)gn,
(10.26)

Now let us study the large q° dependence of the form factor. Here g+
is large and so s will be large in ¢/ [kr+ (1 — x)qT, x]. Suppose for large s
that ¢ ~s VF(x) (this is discussed in detail in Gunion et al., 1973).
Hence

Ykr+(1—x)qrT, x)~[(l—;§q%)]_N (10.27)

and the asymptotic behaviour of the form factor becomes

1-0(m®/a®) 2N 1 J’ d*krip (kr)
V(1 —x)N

F(q*)~ (qT)”““I0 (10.28)

-«
We have separated the x and 1 — x dependences in this way to exploit the
fact that since ¢ ~ [x(1 —x)]" as x or 1 —x tends to zero or 1 then the
second integral is a finite nonvanishing function of x. Hence asymp-
totically

F(q*)~(q7)™" log (q%/m?) (10.29)

the logarithm arising from the large x behaviour in the integral over dx.
For N =1 we recover the 0(g”) field theory example.

This composite formalism (equation 10.25) with large s behaviour in
equation (10.27) is at the root of deep elastic and large pr
phenomenology in the works of these authors. This is described in
section 14.6. This formalism is also of interest in connection with a
relation between the large q° behaviour of the elastic form factor
(equation 10.29) and the x - 1 behaviour of vW,(x). This is described in
section 10.2.

10.1.1 spPIN
The infinite momentum frame is equally useful when discussing time-

ordered perturbation theory for particles with spin, e.g. fermions
interacting with vector gluons. This is described in detail in Drell et al.
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(1970), and Drell (1970). Quantum electrodynamics and renor-
malisation theory in the infinite momentum frame is described in
Brodsky et al. (1973).

There is one important feature when spin is included to which
attention should be drawn, namely it is no longer necessarily true that
vertices are finite only when all particles move forward. Consider a 7y,
vertex. Using the representation of spinors and y matrices of section 6.2
then immediately for x,,>0

ﬁ(x1P+k1T){ Zo}u(x2P+k2T) = 0Wx P) (10.30)

as in the spinless case. However with yr components

u(x, P+ kir)yru(xP +k,r)

=P\/|x1x21{ + X+0' . (x1P+k1T)>( 0 O'T) X
M \X x.|P or 0/|o. (P + k)
|x2|P
P\/ x13%2>0
= ——lxllex*(asm)x<ﬁ—ﬁ) ——0(1)
M EARNEA
x1x2<0

——— 0(PV|x1x2)) (10.31)

and hence for yr the spin 3 particle prefers to be turned around, the P in
the spinor numerator cancelling the P suppression in the energy
denominator. The 7,3 are called “good” and yr “bad” components.
Consequently some care is necessary when considering what time
orderings survive when spin is present.

As an exercise verify that s also turns the spinors around. See also
p- 1038 of Drell et al. (1970).

10.2 The Drell-Yan-West relation

The charge of a system is the integrated probability of finding consti-
tuents with fraction x of the target’s momentum (as P - o0) weighted by
their charges. Hence

FO)=X Ll dxfi(x)e; (10.32)
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where fi(x) is identical to that defined in equation (9.53). In the
quark-core constituent model we have from equation (10.26) as ¢ >0
that

F(0)=J: dxj dhr Iw(kT)lz

and, comparing with equation (10.32), we can identify

¢ (k) *
x(1—x)

(since in this example one constituent carries unit charge and the core is
neutral). From equation (9.53) or (9.72) we see that vW,(x) = xf(x) in
this example. Hence

f(x)Ej d?kr——— (10.33)

wWy(x > 1) = J d’ky l‘p(kT)l (10.34)

—X

From equations (10.16) and (10.15)

2+ 2 A2+k2
g=m TRy Atk (10.35)
x 1—x

-N

Hence s ~(1—x)"'asx—>1andso (k) ~s ™V ~ (1 —x)". Consequently

vWyx-> 1)~ (1—x)"N! (10.36)
where N is given by the asymptotic behaviour of the elastic form factor

F(g*)~(q*)™ (10.37)

This correlation (equations 10.36 and 10.37) is known as the Drell and
Yan (1970) and West (1970) relation. For the proton if F(q*) ~ q~* then
N=2andso vWy(x> 1)~ (1—x)".

The above example is only good for spinless particles and hence is
not immediately applicable to the proton or, in general, to systems of
quarks. Incorporating spin systematically (section 10.1.7), the Drell-
Yan-West relation can be derived by a procedure analogous to the
above.

Alternatively the Drell-Yan-West relation incorporating spin 3
quarks can be derived directly from our results of Chapter 9. For elastic
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scattering at large ¢ (equation 9.58)

2, 2
S tu

do
a;(ep»ep)=2ﬂ'a 22 4@ (10.38)

while inelastic scattering may be described by (equations 9.65 and 9.53,
or 9.71 and 9.72)

d’o Lt Fy(w =1+ W?/—t)
dt sz(ep-> eX)= Zma s%t? s+u

(10.39)

For any fixed W2, in particular W?= M?, then —t -0 sends w - 1.

If exclusive scattering connects smoothly on to deep inelastic scat-
tering then the Fa(w)~ (w — 1)™ and G (¢) ~t*" will be correlated as
follows:

d’o (ep > eX)

da‘ 2 2 2
E(ep—)ep)zj' S(W?—M>dW?  (10.40)

dt dW?
and so
G§4(t)=I FZ(w—iftJ:/]Z/—t)é(Wz—Mz)dWZ
=Fy(w—1=M?*/—t)/(M*—1) (10.41)
Then as —t - 00 we have
7N ~ M (10.42)

and hence 2N = M + 1 obtains.

10.3 A qualitative introduction to the nonperturbative
parton model

In renormalisable field theories scaling is broken by logarithms (section
10.6). Landshoff and Polkinghorne (1972) and Landshoft et al. (1971)
have formulated a covariant nonperturbative parton model based on
field theory. This model gives a finite scaling form for ¥W; due to the
dynamical postulate that hadronic amplitudes with external virtual
partons tend rapidly to zero as the parton masses become large. We give
an outline of their model and in section 10.5 show how it can be
obtained from the infinite momentum approach of section 10.1. In
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particular we shall see how the imposed softening corresponds to a
damping of the partons’ kt integration, hence leading to scaling in »W,.

If we view photoproduction total cross-sections (¢vW,) as the
imaginary part of the forward Compton amplitude, then scaling arises
from the diagrams where a “free” parton propagates between current
interactions (Fig. 10.3(a)). If the four momenta are labelled as in Fig.
10.4, then the propagator of the parton (apart from spin dependent

P p

(a) P (b) r

F1G. 10.3. (a) Handbag or box diagram. (b) Cat’s ears or six-point diagram.

parts which are not material here, and neglecting any momenta trans-
verse to the proton—photon axis) is |(xp + q)*— m”— ie | where m is the
parton’s mass. The imaginary part of the amplitude includes the delta
function 8 (x>M*+ q*+ 2xp . ¢ — m®) arising from the imaginary part of
the parton propagator. At very large », ¢° we may neglect x*’M? and m?
with the result that the amplitude contains the delta function constraint
8(2Mv/q*+ x) and so the structure function is dependent only on the
ratio »/q” due to this delta function.

If Fig. 10.3(a) was the only diagram that one could draw for Compton
scattering in the parton model then the structure functions would scale.

k+q

P (@) P P (b) P

F1G.10.4. Dominant momentum routing in handbag diagram at large q is shown in (a).
In (b) it is suppressed.



210 AN INTRODUCTION TO QUARKS AND PARTONS

However, one can envisage diagrams where the photons couple to
different partons, or where the photon couples to the same parton but
that parton interacts with other partons between its interactions with
the photons (Fig. 10.5). Only if these diagrams are negligible compared
to the “incoherent impulse” diagrams (Fig. 10.3(a)) will the scaling
automatically obtain.

Finite number Infinite LPS classification
of partons number

KA

(a)

< 1
i

2,

FiG. 10.5. Topological classification of Compton diagrams in the parton model: (a) is

distinguished by the absence of interactions on the parton line between the times of its

interacting with the photons; (b) contains interactions; and in (c) the photons interact
with different partons. The LPS classification corresponds to Fig. 10.3.

(b)

(c)

ik

In general there could be an arbitrary number NV of partons in the
proton. The idea of the nonperturbative parton model is to throw N —1

partons into a black box and concentrate on the parton(s) that interacts

with the external currents. The diagrams come in two types. Figure
10.3(a) we refer to as the box or “handbag” diagram whereas Fig.
10.3(b) is called the “cat’s ears”. The classification into these two classes
will be described later. The blobs contain arbitrary numbers of interac-
ting partons and are treated as parton—proton scattering amplitudes
with Regge behaviour. When calculating the Compton amplitude in
this model the diagram (amplitude) contains the parton—proton scat-
tering subamplitude. This Regge subamplitude causes the whole
Compton amplitude to have Regge behaviour. The important physics,
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in which we are really interested, comes from the coupling of the
photons to the partons and yields the scaling property (which we shall
discuss after explaining the classification of the diagrams into “box” or
“cat’s ears” categories).

For a configuration with any arbitrary number of partons, then if and
only if the diagram contains a freely propagating parton between the
two photons is it classified in Fig. 10.3(a), the box or “handbag” diagram.
Thus the defining feature of this diagram is the freely propagating
parton and hence the scale invariance of the structure functions arises
from this box diagram. All other diagrams with interactions on the
parton which was hit by (or emitted) the photon are classified in the cat’s
ears; thus the defining feature here is that after the parton has interacted
with the photon, the next interaction that that parton undertakes is not
with the second photon.

Asstated above, only the box diagram contains the freely propagating
parton required for the scaling of vW,. Therefore we must invent a rule
that will cause this diagram to dominate over the cat’s ears in the
kinematic realm where this scaling is observed (QZZI GeV? W*>
Resonance masses). The dynamical assumption of this model is that for
a parton off its mass shell, then the parton—proton scattering amplitude
goes rapidly to zero. If a heavy photon hits a parton then the parton has
to transport this mass through the maze until the final photon can take it
away. The only way this mass can flow through to the final photon
without entering a parton—proton scattering blob is if it flows across the
top of Figs 10.3(a) and 10.4. For all other diagrams a heavy parton enters
the blob and the amplitude vanishes. Hence the required diagram
dominates at large q°.

At small q* the partons can stay near their mass shell and so the
parton—proton amplitude need not vanish. Hence the scaling does not
obtain. Incorporating the cat’s ears diagrams one can formulate a model
for all ¢* and study ¢*>= 0 phenomena (Brodsky et al., 1972).

10.4 The massive quark model

In Chapter 7 we mentioned some attempts at formulating massive
quark models with particular reference to hadron (in particular meson)
spectroscopy. If quarks are indeed very massive then this could be the
reason that they are not produced in deep inelastic scattering. The
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scaling phenomena arise because the quark has a small (~300 MeV)
effective mass when confined to a space-time volume of 107" cm. A
problem however is that the diagrams which are ultimately responsible
for generating the scaling phenomena can only be literally correct if free
quarks are produced.

Preparata (1973, 1974) has attempted to incorporate the nonob-
servability of quarks into the dynamics of a massive quark model
(MQM). By formulating the hypothesis that “no quanta are associated
with the quark field” he bypasses the dynamical problem of quark
confinement (Chapter 15) and formulates an unconventional field
theory. A particular feature of his work is that the quark propagator

Aus(p) = J dx €*%0| T (qa (%) qs (¥))I0) (10.43)

does not have a pole at p>= M% nor a cut at the lowest threshold and
hence A.g(p) is an entire function in p?.

Furthermore, since in deep inelastic phenomena the quark mass
appears negligible (scale invariance, Chapter 9) he demands that the
entire function A,g(p) peaks when p®=u? (with u =300 MeV an
“effective mass” for the quark when confined within a space—time
volume of the order of 10™"* cm dimension). The consequence of these
physical demands is that a Lehmann representation (Chapter 16 of
Bjorken and Drell, 1964) cannot hold for the propagator and that the
propagator is exponentially damped at high p®. This unconventional
field theory differs from conventional ideas in that the above exponen-
tial behaviour prevents the rotation of contours in the complex p, plane
when performing momentum space integrals. (This is a crucial
difference compared to the nonperturbative parton model developed by
Landshoff and Polkinghorne (1972) and Landshoff et al. (1971) whose
quark propagator dies as (k*)™' and contour rotations can be per-
formed.)

e

(b)

FIG. 10.6. Scaling in e"e” annihilation: (a) Preparata’s model; (b) naive parton model.
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At low energies the g scattering amplitude has poles which are the
meson states of the Bethe—Salpeter approaches (Chapter 7). At high
energy the g amplitude is hypothesised to have Regge behaviour with
the a(0) = 1 Pomeron the leading intercept. Then in e’e” annihilation
for example the dominant diagram is in Fig. 10.6. If a(0)=1 for the
Pomeron in the loop, then Q%0 ... = constant and the canonical free
field theory scaling result obtains (Preparata, 1975). This result is
formally the same as the free field result (Fig. 10.6(b)) but Preparata’s
approach does not imply that free quarks appear in the final state.

Similar conclusions emerge in electroproduction. The scaling arises
from diagrams like Fig. 10.7 if @ (0) =1 (these are topologically of the
six-point or cat’s ears variety of section 10.3). The four-point handbag
diagrams (which gave the scaling in the free field and nonperturbative
parton model approaches) are absent in the MQM and so again no free
quarks appear in the final state.

Fig. 10.7. Diagram yielding scaling in ep > eX in Preparata’s model.

10.5 Infinite momentum frame derivation of the covariant
nonperturbative parton model

The machinery used in the nonperturbative parton model of section
10.3 exploits Sudhakov variables. Instead of describing this technique
we shall show how this model emerges naturally out of the infinite
momentum field theory of section 10.1.

We begin by returning to the three-point vertex of Fig. 10.1 and
parametrise the momenta as in equations (10.11) to (10.13). The four
momentum of particle number 3 calculated with both three momentum
and energy conservation is

2 2 2
pr—p2= ((1 —x)ﬂwz;"?ﬁ; ~ ke, (1 —x)P) (10.44)
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In time-ordered perturbation theory this quantity squared corresponds
to the Feynman off shell variable u. Note that

u—/\2=(1~x)(M2—

k3 +m? kE+A?
TR AT ) (10.45)

x 1—x

and, comparing with equation (10.15), we see the similarity with the
energy factor appearing in time-ordered perturbation theory. Explicitly

(a)

FIG. 10.8. (a) Time-ordered perturbation theory contribution to the parton—proton
scattering amplitude. (b) Forward parton—proton amplitude.

the TOPT contribution to the parton—proton scattering amplitude for
scalar particles (Fig. 10.8) is

P->oo 2

—_— y —_— g
[2E3(E1—E2 E3+l£)] (277_)3

gZ

M= 2my

(u—A%+1g)™"
(10.46)

Now consider the 0(g?) calculation of the elastic form factor (equation
10.24). For q>=0 we can extract f(x) (as in equation 10.33). Using
(10.45) and (10.46) we see that

o, —x) A,
f(x)= J d kT_Zx Y (10.47)
Having established a connection between f(x) and the parton—proton
scattering amplitude #,, we can immediately generalise ., to
incorporate Regge behaviour. If wp (o, m®) is the imaginary part of the
forward (anti)-parton—proton scattering amplitude (Fig. 10.8(b)) then

p(o”, m*) do?
u—o’+ie

Qmy’M, = J (10.48)
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where A? of the perturbation result (equation 10.46) has been replaced
by a spectral sum variable o, Then

p(a?, m?

»Wax) = xf (x) = j &k J do®(1-x) ( (10.49)

u—o’+ie)*
We have written m” here since one must in general take account of the
off-shell dependence when the parton-proton amplitude is embedded
in the interior of a general amplitude. Since m>= (p, — p;)° then

.o x(1—x)M?*—xo*—k%
m —

1—x

Notice that this coincides with equation (2.25) of Landshoff et al. (LPS)
(1971) where m” is their o* (off-shell parton mass) and k% is the
Sudhakov parameter x>. By hypothesis in LPS this off-shell depen-
dence damps the parton—proton amplitude. From equation (10.50) we
see that in the present approach it corresponds to providing strong
convergence of the k% integrations and leads to Bjorken scaling even in
spin ; theories (where scaling is broken by logarithms in undamped
perturbation theory).

To complete the correspondence with LPS we absorb two Feynman
propagators into p(o?, m?) and define

Im T(0?, %) = mp(a?, m2)/ (i’ —m?)? (10.51)

(10.50)

Hence
x

2(1—x)

which is the same as equation (2.25) of LPS (1971).

Given this formula for f(x) one can immediately see how Regge
behaviour in the parton-proton amplitude drives the Regge behaviour
in vW,(x). If p(0?, m?) = (0?)*B (m?) then with n = xm? we have

f(x)=%xjd2kad""a L _Bem) = 0(x™*)

xl+a l_x (r;-lz__mz)z

7f(x) = J d?kr J dm?Im T (m?>, m?) (10.52)

(10.53)

where the latter step follows since the integrals are convergent.
Hence hadronic interactions have been included to all orders and

transition from the old-fashioned perturbation theory formulation

of the parton model at infinite momentum to the nonperturbative



216 AN INTRODUCTION TO QUARKS AND PARTONS

covariant formulation of LLPS has been achieved. The application of this
formalism is described in detail by Brodsky et al. (1973).

Further discussion of the relation between calculational techniques
can be found in appendix B of Sivers et al. (1977) and Schmidt (1974).

10.6 Parton models and field theory

An essential ingredient of parton models is that at small times and
distances (large ¥ and Q?) the partons can be regarded as freely moving
constituents. Since all other known interactions in Nature appear to be
described by field theories then one may suspect that strong inter-
actions are also. In a field theory language the free motion of partons
corresponds to demanding that interparton interactions are as soft as in
super-renormalisable field theories.

Since in the four-dimensional world there is no super-renormalisable
field theory which includes spin 3 fields then the attempts to provide a
field-theoretic justification for the parton model have required the
imposition of a transverse momentum cut-off (Drell et al., 1970) in
order that the scaling obtains. The covariant analogue of this is the
softened field theory approach of Landshoff and Polkinghorne (1972)
and Landshoffetal.(1971). Thishasbeendescribedinsection 10.3andthe
softening arises by the demand that off-shell parton-hadron scattering
amplitudes tend rapidly to zero as the parton mass becomes large. This
provides an implicit scale which allows exact scaling. In the absence of
ad hoc softening or cut-offs renormalisable field theories do not give
scale invariance.

Renormalisable field theories (like QED) have dimensionless coup-
ling constants. Physical quantities require infinite renormalisations to
define them, i.e. large momenta in loops have infinite amplitude and
have to be renormalised order by order in perturbation theory. As the
momentum increases in a virtual loop, then intuitively the virtual
fluctuation takes place over ever smaller space—time distances. Hence
there is never a length or time-scale beyond which interactions can be
ignored and so there will always be structure in the interacting fields
that is on too small a space—time scale to be resolved however good the
resolution of the probe may be. An intuitive picture of the above has
been developed in a formulation of the parton model by Kogut and
Susskind (1974a,b).
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One can proceed beyond perturbation theory by employing the
machinery of the renormalisation group.' In field theories any function
(e.g. a vertex) will depend upon the four momenta p flowing through
and on the masses and coupling constants g; of the theory. If the overall
scale of the momenta is changed so that p;—> Ap; (or in position space
x;7' > Axi') then the renormalisation group analysis shows that the A
dependence can be removed from the p; and placed instead in dimen-
sionless effective couplings gi(\) which are scale dependent. These
couplings therefore give a measure of the deviations from free-field
behaviour at length scales A .

If g(A > 90) > g* (a constant) the interacting theory is scale invariant
at short distances since all scale dependence has deparated from g(A).
Such a field theory is known as a “fixed point” theory. In super-
renormalisable field theories g(A >0)~0(A"")->0. In QED g(A >
®©)->0o and hence interaction can never be ignored. An exciting
discovery has been that in non-Abelian gauge field theories (e.g. QCD,
section 15.2) g(A »20)~0(InA)"'>0 and hence these theories are
asymptotically free ('t Hooft, 1972; Politzer, 1973; Gross and Wilczek,
1973a,b). Since QCD is an example of such a field theory and contains
spin ; fields (quarks?), then it is a natural candidate as a field theory of
strong interactions and may provide some rationale for the
phenomenological successes of the quark—parton model (Chapter 11).

10.6.1 ASYMPTOTIC FREEDOM

For a gauge field theory involving fermions the renormalisation group
analysis shows that for small g

g 2()‘ 0)
[1+2bg*(Ao) log (A/A0)]

&= +0(g*) (10.54)

where b is a constant. This structure may already be familiar to you for
the particular case of QED where (Gell-Mann and Low, 1954)

e-Z(QZ) _
QZ

e?D(Q% (10.55)

! This is described in detail by Politzer (1974) and also by Bogobliubov and Shirkov (1959).
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with D(Q? the photon propagator and &* the “effective charge”.
Explicitly

~2/ 2 2 e’ Q*
e(Q)=e/{1~ log—2+---} (10.56)
127 m

so that the effective strength £” grows as Q® grows and hence QED is not
asymptotically free (the coefficient b in equation 10.54 is negative).

If there are F flavours of quark each of which occurs in 3 colours then
one can formulate an SU(3)co0u non-Abelian gauge field theory of the
strong interactions where coloured quarks interact by exchanging an

octet of coloured gluons. In such a theory the constant b is found to be'
('t Hooft, 1972; Georgi and Politzer, 1974; Gross and Wilczek, 1974)

1
b =15 (33-2F) (10.57)

and hence is positive if there are less than 17 flavours of quark. In
particular, if there are four flavours (u, d, s, ¢) then

2
g (Ao 25 , ( A )
& VI 4+ _

or with g”=4a, and t =log (A/A,), then

a 25a A 25a A?
L2 (—)z1+ 3 (—) 10.
(1) o °8\x, 127 B\)2 (10.59)

(10.58)

Hence in the above field theory the effective coupling constant a (t)
indeed tends to zero as t > 0(A?—>00) and so the quarks are asymp-
totically free.

In the naive quark model if the quarks are massless, coupled to the
electromagnetic current in a pointlike manner (Chapter 9) and the
quark—gluon coupling & =0, then there is no scale of dimension and
hence the dimensionless quantities F, ; (equation 9.51) are scale invari-
ant. In the non-Abelian field theory where coloured quarks interact
with coloured gluons then at any finite ¢ a scale dependent quantity & (¢)
is manifestly present and so F| ; are not scale invariant. Scale invariance
is approached asymptotically since a(t->o0)—0; at finite ¢ scaling is
broken by logarithms of », Q2.

! A more general formula is given in equation (3.19) of Politzer (1974) for arbitrary SU(N) with
fundamental and adjoint representations of coloured quarks.
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10.6.2 SCALING VIOLATION WITH INTERACTING QUARKS

A probe with mass V@3 resolves structure on a length scale A, and sees
quarks carrying a fraction x of the target’s momentum with probability
g(x). When the resolution is improved (Q3> Q%) then an additional
probability 8¢ (x) may be revealed which will have arisen as a result of a
quark with momentum y > x having radiated a gluon and hence having
reduced its momentum from y to x. At Q? only the parent was resolved;
at Q3 this extra contribution at x is resolved (Fig. 10.9). If we write
7=In Q?, then an improvement A7 in resolution will yield a change
Aq(x) in the quark probability distribution at x as a result of the
quark-gluon vertices of Fig. 10.9.

02
N 4 /\/71020§=I0q Q2
/ ~< X +d(log 02)
N ! X L ) < )
y
N \_ /
\\ d(logOZ/)

~ -

FI1G. 10.9. Improving resolution as Q% increases.

From the renormalisation group analysis, the quark—gluon vertex
effective coupling is scale dependent, @(t). The probability at order
that in a change of resolution d7 the quark will be seen to contain
another quark with fraction 2 of the parent quark’s momentum may be
written a (t)P(z) dt. In QED or QCD, for example, the quantity P(z)
can be calculated explicitly from the vy, quark—gluon vertex and will
depend on the quark and gluon helicity states (Bjorken, 1971; Altarelli
and Parisi, 1977). Hence in general we have

d 4
Ez—(x, )= a(7) j qu(y, 7)P(x/y) (10.60)

as the driving equation for the change in the quark distribution function
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as resolution is improved. The convolution integral can be separated
into two integrals for ¢(y) and P(x/y) individually by a Mellin trans-
formation. For arbitrary N we can rewrite equation (10.60) as

1 1 1
di.[ dx x™Vg (x, 'r)=as(7')j dy yNq(y, ‘r)j dz 2 VP(z)
T Jo 0 0

(10.61)

and hence we have a differential equation for the moments My of the
quark distribution functions

%MN(T) =a,(T)Mn(T)AN (10.62)
where
My ()= J dxxNq(x, 7)= J dx xVN 7 Fy(x, 7) (10.63)

ANEJ dz 2VP(z) (10.64)

The 7(=log Q) dependence of the moments of the structure function
F, (equation 10.63) is governed by the differential equation (10.62)
whose solution depends in particular upon the 7 dependence of a(7).

If a(t)——#0 then we have a fixed point field theory. From
equation (10.62) with @ independent of T we see that the moments have
exponential 7 behaviour and hence are power laws in Q=

If strong interactions are described by a non-Abelian gauge theory
such as quantum chromodynamics then for a(r) small (compare
equations 10.54 and 10.59)

o

e 1+bar (10.65)

with @ = @(0) and b a positive constant (equation 10.57). The solution
of equation (10.62) then shows that the moments are logarithmically
dependent upon Q?%:

An/b
M(n =My O)(;5) (10.66)

(Georgi and Politzer, 1974; Gross and Wilczek, 1974).
Hence if quarks partake in an interacting field theory, the structure
function Fy(x, Q%) will not scale. Instead its moments will have a
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well-defined pattern of scaling violation (linear in Q7?, log Q*...)
determined by the dependence of a (7 = log Q?) for that field theory. In
QCD the coefficient Ay has been calculated by Altarelli and Parisi
(1977) using the definition (equation 10.64) and the known P(z) for the
quark—gluon coupling.

The above discussion has been somewhat over-simplified since there
is also a gluon distribution function in the target, G(y, 7), and a gluon
may produce a quark—antiquark pair hence feeding the q(x, 7). Hence
equation (10.60) generalises to

d i ld )
0 1= ar) | 2L g0, IPune/3)+COL Pacll)
« YL

(10.67)

where the indices i and j run over quarks and antiquarks of all flavours.
Similarly the gluon distributions satisfy

dG 'd .
L =a) | 2[5 40, Peu /) + G, Pac(x/)]
= YL

(10.68)

(the final term arising since a three-gluon vertex exists in order g in
QCD). The calculation of the complete set of Ay that govern the scaling
violation involves solving these integro-differential equations and is
described in Altarelli and Parisi (1977) where a complete development
of these ideas can be found. Notice that conservation of total momen-
tum constrains

% J;l dx x[; qi(x, 7)+ G(x, T)] =0 (10.69)

10.7 os/o+in the naive parton model

In deriving the result (equations 9.72 and 9.73) for os/or we have
explicitly neglected momentum of the parton transverse to the target.
To see the effect of this on the prediction for o°s/ o+ we will consider a
y — P collision along the z-axis where

q=(0;0,0, —2xP)
p=(P;0,0,P)
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and hence
q°’= —4x’P*; —q*/2P .q =«

If the current is absorbed elastically by a parton with four
momentum

k. = (ko; ks, ky, xP)
then the final parton four momentum will be
k. = (ko; ke, ky, —xP)

We shall allow &, , to be arbitrary and so shall not neglect them relative
to ko and k.. The photoabsorbtion cross-sections o5 + can be calculated
from equation (9.42) where W,, will be the tensor appropriate to
electron—quark scattering, i.e. (equation 9.7)

L, =5k.k, +kLk, +39%g..)
Hence

as Lo  ki+iq°

or NLo+L,) Nk2+E—1gP)

Now, the parton mass is
m?>= k3 — (k2 +k2)—x*P?
and so
m*+ k% =k3+iq”
yielding finally
as _ 4(m*+ k%) = 4(m*+kR%)
or  Q*+2k% Q*

Compare this with equation (28.3) in Feynman (1972). If m*+ k% is
of the order of 0:25 GeV? then os/or=1/Q* (GeV? which is of the
order of the small value seen in the data (Fig. 9.8). The possibility that
kr is x dependent has been raised by several authors (L.andshoff, 1976;

Gunion, 1976; Hwa et al., 1977). This would imply that os/o+ is also x
dependent.




11 Quark—Parton Phenomenology

11.1 Electron scattering from nuclei

The naive parton ideas described in section 9.4 are nicely illustrated in
nuclear physics data. In Fig. 11.1 are exhibited the cross-sections for
electrons of about 190 MeV energy scattering on carbon. Elastic scat-
tering requires Q%= 2Mv hence

E'{(1—cos 8)E + M}= ME CoaLy

For an incident energy of 190 MeV this implies that elastic scattering
of the electron through 80° will yield electrons with energy E'=
186 MeV and this is clearly visible in the recoil electron spectrum. As
more energy is given up by the electron, carbon nuclear resonance states
are excited (E'=180, 177 MeV). Quasi-elastic scattering from the
constituent protons of the nucleus occurs when E’' =160 MeV (substi-
tute M =940 MeV in equation 11.1). This is not shown in Fig. 11.1(a)
but the integrated quasi-elastic scattering cross-section is about 3 of the
integrated elastic nuclear cross-section here. Note the typical order of
magnitude of Q7 in this experiment: approximating sin® /2 =3 then

Q?=2EE' - 0-06 GeV>

for the elastic electron nuclear scattering.
At this value of Q7 the nucleon’s internal structure is not resolved.

(QY)=(1+Q%/0-71 GeV*>=0-85 (11.2)
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whereas the exponential nuclear form factor has already suppressed the
elastic nuclear cross-section significantly (the area under the quasi-
elastic peak is already about 3 of that under the elastic peak).

@ 187 mev ) 194 Mev
80° 135°
ne B | Quasi-
.\.uéa L elastic L
® b ! . 8
A Iln. lu|'f|l this, w
- ”u... un',l'"" '
L ' Y
1 ' [}
H | A | | 1 | 1 | 'A
172 180 188 50 100 150 175
E'(MeV)

F1G. 11.1. Electron—carbon scattering: (a) through 80°; (b) through 135°.

If we now study Fig. 11.1(b) where the electron scatters through
135°, then the typical values of Q” are about 0-1 GeV?. The elastic e-C
scattering has almost completely disappeared. From equation (11.1) we
expect that quasi-elastic scattering from the protons will occur when
E'=140 MeV (modulo 10 per cent binding effects). In the data the
quasi-elastic scattering peak is indeed clearly visible, the area beneath it
now being about 300 times larger than that of the elastic e-C peak. The
scattering is now dominated by this quasi-elastic scattering from the
nuclear constituents. To see these constituents has required

i. VQ*»C, size,
ii. v > Cy, nuclear level spacing,

(11.3)

2

2y~ Meontituent (modulo 10-20 per cent binding effects);

since VQ?« nucleon size the nucleon structure is not yet probed and so
a scaling should be seen. Actually the scaling behaviour in the quasi-
elastic region is violated by about 30 per cent in the range 0-06 < Q*=<
0-1 GeV? since G} (Q*=0-1GeV?*)=0-7 (compare 0-85 when Q>=
0:06 GeV?). The Q? dependences of the e-C elastic and quasi-elastic
peaks are compared in Fig. 11.2.

.
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From the properties of the quasi-elastic peak we can learn about the
nuclear constituents. We have already seen that the position of the peak
is consistent with the average momentum (mass) of the constituents
being about i3 of that of the target. The area under the peak is

(a) eC>eC

LSRR RAL

0™

|
|

T T TT7IT

1072

T

| 1 1 | | |
0:01 0-02 0-03 004 005 006

o /0 (Mott)

o

1072~ \

10-3

02 (Gev?3)

FIG. 11.2. (a) Q? dependence of elastic electron~carbon and deep inelastic electron—

carbon scatterings. The latter is quasi-elastic electron—proton scattering. (b) Q>

dependence of elastic electron—proton and deep inelastic (quasi-elastic electron—quark)
interactions. Note the different Q scales in (a) and (b).
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proportional to the sum of the squared charges of the constituents
weighted by any form factors that they themselves may have [G} (%))
and suggests that }; Z? = 6. The magnitude of the elastic e-C scattering
suggests that ); Z; = 6. All of these data fit with our knowledge that C,,
contains 6 protons and 6 neutrons as the constituents at the layer of
matter immediately beneath the nuclear level.

By performing analogous experiments on the proton we will learn
about the layer of matter immediately beneath the nucleon layer. Our
expectations of course are that this new layer of matter will involve
quarks.

From our experience with the nuclear example we may expect that to
see the constituents of the proton will require

i. vQ*>» proton size,

ii. »>protonto N* level spacing, (11.4)
QZ
iil. =— if there are N constituents.
2m,v

In the range of Q® between 1 and 8 (GeV/c)” the elastic ep—>ep
cross-section dies by two orders of magnitude (Fig. 9.3). The data at
x =1 in the deep inelastic continuum are consistent with being QZ
independent over this range of Q® (Fig. 9.6); hence scale invariant. This
is illustrated and compared with the nuclear case in Fig. 11.2(b) (note
the different scales of QZ!). Hence over therangeof 1 < Q*<8(GeV/c),
at least, the proton’s constituents appear to be pointlike. We shall now
study the evidence that they are quarks.

11.2 Quark partons and lepton scattering

11.2.1 ELECTROMAGNETIC STRUCTURE FUNCTIONS

We have seen in equation (9.72) that in the spin ; parton model the
electromagnetic structure functions are given by

2xF () = Fa(x) = elxfi(x)

where the sum is over the partons whose charges are e;, . . . We will use
the notation f,(x) = u(x) etc. and hence, if the partons have the quantum
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numbers of quarks (Table 3.1), the structure functions become

lF;" (%) =g[u"(x)+a"(x)]+1[d"(x)+J"(x)]+1[s"(x)+s"’(x)] .
x 9 9
(11.5)
1 eN 4 N ~N l N N l N =N
-F3 (x)=§[u (x)+a (x)]+§[d (x)+d (x)]+§[s (x)+357(%)]...
X
(11.6)

where the superscripts refer to the neutron (N) and proton (P) target.
Since the u, d quarks and P, N both form isospin doublets then

u®=d" (call it simply u)
d"=u" (call it d) (11.7)
sP=s" (call it 5)

with analogous constraints for the antiquarks. Consequently

lF;"=i(u+a)+1(al+ai+s+§)... (11.8)
x 9 9

1 o« 4 = 1 - _

—F3 =—(d+d)+_(u+a+s+5)... (11.9)
x 9 9

and so (Nachtmann, 1972)
1 F3Y

-<

4 F¥

(x)<4 (11.10)

These bounds are consistent with the data (Bloom, 1973; Bodek et al.,
1974) (Fig. 11.3).

We can proceed further by imposing ideas rooted in duality. Separate
the quarks (partons) into three “valence” quarks and a sea of quarks and
antiquarks along the following lines (Harari, 1971):

3 valence quarks + Sea of qq

0 7
Resonances + Background
7 7

Nondiffractive + Diffractive
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Then (following, e.g. Kuti and Weisskopf, 1971, or Landshoff and

Polkinghorne, 1971) write

q(x)=qv(x) +qs(x) (11.11)
The original guess was

uv(x) = 2dy(x) (11.12)

sv(x) = dy(x) = dy(x) = §y(x) =0 (11.13)

us(x)=ds(x)=ds=ds=ss=5s=K (11.14)
1.0k
08 —+ +“+++ R

¢ *? A
0-6f ++?+"‘:
< +“m*
04
}+++
0-2
| [} { 1
0] 0-2 0-4 06 0-8 10

X

FIG. 11.3. The ratio vW5Y/vWSF as a function of x.

We will impose equations (11.13) and (11.14) but allow uv(x)/dv(x) to

be free. This gives

1 1
~—FN =l(uv+4dv)+—2-K
x 9 9

1
lF;" =l(a’v+4uv)+—2K
x 9 9

(11.15)

(11.16)
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so that if K(x) dominates

eN
2

eP
F;

(x)>1;  (x>0?) (11.17)

whereas for dominance of the valence quarks (and if uy =2dy)

AN
FS (x)—>3 to Py

Hence we begin to have the first hints that perhaps the valence quarks
are dominantly at large x while the sea is near x =0. This will be
reinforced in our subsequent data analyses, but first let us give an
intuitive picture of why this picture is not unreasonable.

In QED the bare electron becomes dressed by diagrams such as Fig.
11.4(a). The analogue for the partons will be that vector (?) gluons
(something has to hold the target together) will play the role of the
photons in QED. Then a three valence quark system will be dressed in
Fig. 11.4(b) where the wiggly lines denote gluons and the solid lines are
quark-partons. The bremsstrahlung probability for momentum k& in
the gluon behaves as dk/k and hence like dx/x. This means that the
gluon emission, and hence the gg structure or sea, tends to like small .

(x=0-2?) (11.18)

DN, 2%
e S

(a) (b)

FI1G. 11.4. (a) Electron dressing in QED. (b) Analogous dressing of three quarks in
QCD.

Hence in Fig. 11.5(a) we can visualise how one might start with a
“primieval” model of three free quarks (for which Fy(x) is essentially
8(x—3)) and then switch on the gluons, or place the quarks in a
potential, which smears F(x) (Fig. 11.5(b)). This far is like the nuclear
analogy. Internal conversion and bremsstrahlung then produce the g
sea at small x yielding finally Fig. 11.5(c) which qualitatively resembles
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the data (Novikov et al., 1976; Altarelli and Parisi, 1977; Altarelli et al.,
1974).!

From equations (11.15) and (11.16) we find that the difference of
proton and neutron structure is given by

5 () — F5" (x) = 3% [uv(x) — dy(x)] (11.19)

The sea of ¢4 pairs does not contribute here; only the three valence
quarks play a role. The data show a peak at x =} (Fig. 11.6). A naive
interpretation of this result (compare the nuclear physics case and
equation 11.1) would be that the constituent masses are about 300 MeV

(¢) —>—

Fz(x)

(b)

(c) \%14:%2% ) /// o/"”“o

F1G. 11.5. Development of Fy(x).

>

! Carried to its logical conclusion this picture gives rise to scaling violations as hinted already in
sections 9.4 and 10.6. See Hinchliffe and Llewellyn Smith (1977), Buras and Gaemers (1977) and

also section 11.8.
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(compare also equation 15.32, section 17.2, and Chapter 18) and that a
genuine quasi-elastic peak is being seen. We shall study these data again
when discussing sum rules (section 11.2.4).

Ol

P_N
Fo-FY
T T
+
——,
_._
-
o
+
%
>

FIG. 11.6. vW,(ep) — vW>(en) data as a function of x.
11.2.2 COMPARISON OF ELECTROMAGNETIC AND NEUTRINO
INTERACTIONS
If we perform experiments at energies where charm production is

absent or negligible then the charged weak current couples to the
isospin of the partons and in the limit of zero Cabibbo angle the reaction

is triggered by
u
o 11.
Az)-#(3) (11.20

iF;" (x) = 2[d(x) + @ (x)] (11.21)

Hence

%F{N (%) =2[u(x)+d(x)] (11.22)
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where in equation (11.22) we have used d™ = u* = u etc. The factor of 2

arises from the presence of axial as well as vector currents coupling, and

in the parton model the weak current is taken to be V — A as for leptons;

hence the axial coupling magnitude is the same as that of the vector.

Comparing equations (11.21) and (11.22) with equations (11.8) and
(11.9) yields .

[F;N +F§P] _Sutatd+d)+3(s+5)_ S
Ny RPN 2wta+d+d) 18

(11.23)

(the rather mysterious % is of course just the average squared charge of
the u, d quarks).

Fa(x)

0.8} +

0-2r+

| ] | |
0 o2 04 06 08 IO
X

FIG. 11.7. Comparison of (18/5) (F§¥ + F$N) with (F3° + F3V).

In Fig. 11.7 we see the data from CERN-Gargamelle (Perkins, 1975)
where F3N"?(x) is compared with 2F3***N from SLAC. The
agreement supports the quark quantum numbers and the saturation of
the inequality at large x suggest that s, §(x = 0-2) =0 (which is in line
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with our picture that strange quarks are in the qq sea which in turn is
confined to small x values).

With Han—Nambu quarks (Chapter 8) the average squared charge of
u and d quarks is 3 which is considerably larger than the data allow (Fig.
11.7). However, if only colour singlet states are being produced then all
transitions are from colour singlet to colour singlet and so the operative
charges will be the SU(3). average charges. These are identical with the
Gell-Mann and Zweig charges (equation 8.14) and so the Han—-Nambu
scheme is consistent with the data if the data are below threshold for
producing nonsinglets of colour.

11.2.3 GLUON MOMENTUM

Since the u(x), d(x), s(x) etc. are the probability distributions of the
parton flavours in x, then xu (x) etc. will be the fractional distributions of
the target’s momentum among the parton flavours. Since F(x) ~ xf(x)
then this structure function is a direct measure of the fractional
momentum distribution of the quarks.

Below charm threshold, momentum conservation yields

1
J dxx(u+id+d+d+s+5)=1-¢ (11.24)
0

where ¢ is the fraction of momentum carried by electrically neutral
constituents, e.g. the gluons.

From equations (11.8) and (11.9) and equations (11.21) and (11.22)
we see that equation (11.24) can be rewritten as

1
J dx GF5™ —%F{P*"”) =1-¢ (11.25)
0

Inserting the data on the left-hand side we find £ = 3,i.e. about half the
momentum is carried by the gluons (Llewellyn Smith, 1974).

Instead of using electron and neutrino data we could use electron
data alone and, defining the ratio of momentum carried by strange
quarks to nonstrange by 8,

fo dxx(s + )

agﬁ dxx(u+a+d+d)

(11.26)
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then from equations (11.8), (11.9), (11.21) and (11.22) we have

9(1+8)
5426

1
j dx (FF + FN)
0
(11.27)

If the sea is an SU(3) singlet then extraction of quark distribution
functions from data (section 11.4) suggest 6 < 0-06. If § ranges from 0
to 0.06 then equation (11.27) with data yields (0.54 to 0.56) + 0.04 for the
total ¢ and § momentum. Hence again we conclude that nearly half of
the momentum is carried by neutrals (i.e. partons which do not take
part in electromagnetic and weak interactions).

1
J dex(u+a+d+d+s+5)=
0

11.2.4 SUM RULES

Since a nucleon has no strangeness then
1
O=J dx [s(x)—§(x)] (11.28)
0
The charges of proton and neutron give

1=Jldx[§(u—ﬁ)—%(d—5)]

0= dx B(d-d)—3(u—)]

and so
2= s [ (x) = @i (x)] (11.29)
1= dx [d)-d()] (11.30)

These state that the net excess of s, d, u quarks overs, d, G in the proton
are 0, 1, 2, respectively.

These sum rules for the quark distributions can now be combined
with the relations (11.8), (11.9), (11.21) and (11.22) to yield sum rules
for the targets.
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One interesting consequence is that we can check if the data indeed
agree that there is a net excess of three quarks over antiquarks:

1

N(q)—N(q)=J; [(u+d+s)—(a+d+5)] dx (11.31)

Then since the nucleon has zero strangeness we utilise equation (11.28)

and obtain
1

N(q)—N(q)=L [ +d)— (@ +d)] dx

1

El J (F5P"Ny dx (11.32)
2 J
where F; is the vector—axial vector interference term' that will be met in
the study of neutrino interactions in section 11.3. The data (Cundy,
1974) on this integral show that it equals 3-2+0-6, and thus is
consistent with a net excess of three quarks over antiquarks. This is the
Gross-Llewellyn Smith sum rule (1969).

Since F3N(x)— F5F (x)=2x(u—i—d+d) we find the Adler sum
rule (Adler, 1966):

1
[ - P =2 (11.33)
o X
Another interesting quantity is

F§P(x)—F§N(x)E%(u+ﬁ_d_J) (11.34)

X

If we impose duality (i.e. 4 = uy + us etc., equation 11.11) then the sum
rules (11.29) and (11.30) become

1= Jl dx dy(x) (11.35)

2=J dx uv(x) (11.36)

and so equation (11.34) yields

2 (x)—F; (x)E%(uv(x)_dv(x)) (11.37)

X

1 . . . . " . . . .
We will sometimes employ & manifestly to discriminate weak interaction structure functions
from their F electromagnetic analogues.
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which gives
ld 1
L ;x(FE" @)= F (@) =3=L (e~ (]  (1138)

The data are consistent with this and yield (Bloom, 1973) 0-28+ ?
The ? is the contribution from large w(small x). If we believe that
F¥— FN~ "2 when x<0-1 (Regge-like) then the data are consistent
with the predicted value of 3.

11.3 Neutrino interactions

Defining x = Q*/2Mv and y = v/E then it is a straightforward exercise
to rewrite equation (9.71) in the form

d’o 47ra s
dx dy 12

[Fax)(1 = y)+ Fi(x)xy’] (11.39)

For the process v(#)N - u*X one has a similar formula (Llewellyn
Smith, 1974)

day G’s
— _|_ E——
o= 2] F 1)+ Fiehay* (13
(11.40)
and if 2x%,(x) = %,(x) (as suggested by spin ; partons) this becomes

d’ol G%s
dx dy - Egz(X)

—v)? (1 — )2 T

[ELESIRRETIE £70) R
2 2 Fa(x)
In comparison with the electromagnetic case (equation 11.39) we see
the absence of 1% due to the assumed pointlike (no photon exchanged)
nature of the neutrino interaction. Also there is the new structure
function %; which is due to the violation of parity in the weak inter-
actions. Its role will be transparent when we discuss the quark—parton
model for this process (section 11.3.2). First we shall discuss the above
formulae and neutrino kinematics. This can be bypassed if desired,
proceeding directly to the parton model.
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11.3.1 NEUTRINO KINEMATICS

We shall endeavour to make comparisons with the electromagnetic case
examined in section 9.1.3. The electron interaction took place by
exchange of a single photon and we shall assume that the weak
interaction involves the exchange of a W boson of mass my. The

cross-section may be written by analogy to the electromagnetic case
(9.27):

d’o G* ( may )ZE’
- S Low 11.42
d0dE  Qn) \mh+QY E ¢ (1142)

The lepton tensor is now (compare equation 9.7)
L,,=kk,+k,k,—g. k. kR tic, k'R (11.43)

with upper and lower signs for the (left-handed) neutrino or (right-
handed) antineutrino beam. In the unpolarised electron beam the &,
cancelled in the mixture of right- and left-handed leptons.

For an unpolarised initial nucleon the hadronic tensor may be written
(compare with equation 9.30)

W +‘1“¢1"W4
2M? M?

W. - va
ww = ‘ng“"+ﬁ§PHP"_13“ *pads

BaV gt BV __ AV o
(L) w2 24" T ) (11.44)
The W, and W's terms were constrained by gauge invariance in the
electromagnetic case and #’s was not present since it multiplies a tensor
antisymmetric in u»; here they contribute in principle but we shall
neglect them as they yield contributions to the cross-section only to the
order of the lepton mass, and, in the absence of heavy leptons, can be
dropped henceforth. The term %’ was absent in the electromagnetic
case since its contribution to the cross-section violates parity (as can be
seen later—equation 11.47).

Contracting L, W** we obtain

0 +E’
ZEE'{ZsinZE‘W'1+coszg‘W}:F Wg% sin® g} (11.45)
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(compare equation 9.35 in the electron case), the upper (lower) sign
coming from v (7) interactions. Hence

dZU_(V,ﬁ) GZEIZ m%v 2

dQdE' 277 (mév+02)

E+E
{2°W'1 sin” —+ W, cos” E:FOW(_M—) sin 2}

(11.46)

and from this point on we shall send mw — o0 which has the effect of
removing the term in the first parentheses above. Obtaining the x, y
form at equation (11.40) is straightforward. The x, y terms multiplying
&2 follow immediately by analogy with the electromagnetic case
(equation 11.39). The only new feature is the %; term. To manipulate
this into the desired form we note first that
E+E'=2E(1—y/2).

Then comparing with the %", term that also multiplies sin® (/2) we
multiply and divide by ». This yields »%% (which is %3(x)) and
E/v=1/y, hence the xy(l—y/2) factor in place of xy* in the %,
contribution.

The similarity and difference with the electromagnetic case (equation
9.35) is obvious. Further, in analogy with the electromagnetic case, we
can define “W-absorption cross-sections” for right-, left-handed or
scalar W as oy, oL, os. The calculation of the relations between these
cross-sections and the structure functions proceeds as in the elec-
tromagnetic case and we obtain

K
W,=———(or+
' wcfz((r" oL

K 2

Wz 77-G\/— QZQ Z(O'R+0'L+20'5) (11.47)
K 2M

Ve Yoy T

In the electromagnetic interaction parity invariance forces og = o and
hence W5™ was zero, and or=3(0r+0L). The other important
difference with the electromagnetic case is that %", , contain now both
vector—vector (VV) and axial-axial (AA) pieces in contrast to the
electromagnetic W,, which are purely VV. The vector-axial vector
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interference is given by %3 and hence the sign change in equation
(11.46) upon replacing a neutrino beam (V—A) by an antineutrino
beam (V +A).

11.3.2 PARTON MODEL AND NEUTRINO INTERACTIONS

In the electromagnetic case we were able to understand the data by
postulating that the electromagnetic current (photon) interacted with
partons whose electromagnetic currents were @y,u, i.e. like the muon’s
electromagnetic current, hence “pointlike”. The one new assumption
that is invoked in the weak interaction is that the parton’s weak current
has the familiar form of the neutrino iy, (1 — ys)u, i.e. V— A, while the
antiparton is V+ A. Hence it is almost obvious by inspection that the
model predicts that %' and v#, will scale (compare the electron case)
and that | %7 | =| W13 |. As an exercise the reader should calculate this
explicitly using the electron example as a guide (see also Llewellyn
Smith, 1974). In the process you will find that the prediction is that the
Wiscaleas W(v, Q%), vWo(v, QY), vWs(v, Q% > %, ,3(w) and that F; is
maximal and negative (i.e. the scattering is predicted to be all in the
left-handed mode (compare equation 11.47). This is a consequence of
the parton current being @y, (1 —vys)u; for antipartons with @y, (1 +
vs)u then the scattering would be right-handed. Hence one has a
potential test of the relative importance of partons and antipartons in
the data description. Stated another way, the parity violation is maximal
if only partons or only antipartons are contributing, whereas if the
partons and antipartons are equally important then the parity violation
is minimal.

11.3.2.1 vy distributions

The physical significance of the x, y dependences in the cross-section
equation (11.41), namely

dZ z GZ
oy _G’ %(x)[

1+(1-y) _1-(1=y)* sFi(x)
dxdy 2=

] (11.41 bis)

is of interest when we discuss the quark—parton model for this process.
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In the quark—parton model the basic interaction is a weak coupling of
the lepton with the quark weak current. If the latter is V—A (like
v->u”) then the y dependence of neutrino—quark scattering is as
follows (Fig. 11.8):

;7] ~ (1= 9)° (1149
y

j—;- [vq; 4]~ 1 (isotropic) (11.49)

This can be derived explicitly from the form of the lepton tensor
equation (11.43) (which is also W,,, in the parton model). Perform this
as an exercise.

do/dy
[
l
|
|
!
l
/

vq vq N\

FIG. 11.8. Isotropic and (1 —y)* distributions for u~ produced in vq and 7q inter-
actions.

Heuristically this result can be understood as follows (Fig. 11.9). An
interaction at a point is S-wave; all the angular momentum information
of the vq interaction will therefore be contained in the spin structure. A
vq interaction will have J, =0 in the c.m. system since both have
helicity —3 (if m, =0). Pointlike interaction will therefore carry no
memory of directicn and hence an isotropic distribution can ensue. For
a v interaction on the other hand, J. = —1 since the g has helicity +3
and so the total J, = —1. The emerging ¢ and u ™ are right-handed and
left-handed respectively and so J.- = —1 along the z'-axis (oriented at 8
with respect to the initial z-axis). This angular momentum picture leads
to a|d}, (8)[* distribution. Since y = v/E, then y —1=—-2ME’/2ME =
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u/s, and so di;(8)=(1+cos0)/2=1—y, giving the (1—y)* dis-
tribution, in which the 180° scattering is clearly suppressed, as against
isotropic behaviour in the »q case.

F1G. 11.9. Helicity structure of »q and »q§ interactions.

For the case of an isoscalar target, writing g(x) and q(x) for the
probabilities to find quarks or antiquarks at given x, then

e CORIERIEI0) (11.50)
d2 v
e CORIREIRIO) (11.51)

where we have used equations (11.48) and (11.49). Comparing with
equation (11.41) we have

xFy(x) _ q(x)=d(x)
Fox)  q(®)+3()

and so the x distributions of quarks and antiquarks can be compared by
studying the x dependence of this ratio of structure functions (more
correctly, the distributions of V£ A elementary currents are revealed).
The equation (11.52) also helps us to appreciate why the extra structure
function &; appears in the weak interaction as compared to the elec-
tromagnetic case. The parity violation causes the left- and right-handed
couplings to be independent (hence %;) in the weak interaction, and
hence the difference in ¢ and q couplings.

B= (11.52)
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The data on %, and x%; from Gargamelle (Perkins, 1975) (Q*>
1 GeV?, W?>4 GeV?) are shown in Fig. 11.10. We see that for x>
0-4, F,(x) = xF;(x) and so from equation (11.52) we have
x=0-4
g(x)/q(x) —— 0 (11.53)

whereas for x > 0, x%;(x) > 0 and hence
x>0

q(x)/q(x) — 1 (11.54)

This fits in with our previous guess from the electromagnetic case,

namely that (valence) quarks dominate as x = 0-4 while antiquarks are
all in the sea with x -0 (equation 11.18 et seq.).

(x)

L
+
HH

FIG. 11.10. %, and x%; as functions of x.
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We can investigate this further by studying the y distributions for
various regions of x. The data for E; <30 GeV from Gargamelle and
Fermilab are all consistent with (1—y)? distributions for # induced
reactions and isotropy for v interactions at large x (Perkins, 1975).

A best fit to the Gargamelle data on the y distributions yields
(Perkins, 1975)

— <xg3)

B=%)

~0-80 (11.55)
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and hence

I dx x[q(x)—q(x)]=0-8 j dx x[q(x)+q(x)] (11.56)
or
J‘ dx xq(x)=9 J dx xq (x)

This implies that antiquarks carry only about 5 per cent of the target
momentum (45 per cent quarks and 50 per cent gluons, section 11.2.3).
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F1G. 11.11. {y) in v data as a function of energy.

Equivalently one often sees data presented on (y) (Fig. 11.11). If
quarks dominate the deep inelastic data then

<y>v=<y>vq=2 (1157)
) =<y>aq =%

and the data are consistent with these.
11.3.2.2 Total cross-sections
So far we have just assumed that v(7) data scale analogously to their

electromagnetic cousin. This we should really check. If we integrate
equation (11.40) over dx and dy, then, assuming scaling (i.e.
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Fa(x, Q%) > F,(x)) we have for the total cross-section

5 stJ 5 2 _xFs3(x)
25)= 22 [ dx F2° [-:——]
i e e
and hence a linear rise with energy (s = 2MF). This is consistent with
the Gargamelle data (Perkins, 1975). Furthermore, from equations
(11.58) and (11.52) we have (where & is written F” or F” hereon)

o’ _[dx Fi(®)(G+33(*)/[g(x)+3(x)))
o’ [da F3(x)(1-33(x)/[q(x)+q(x)])

and hence is bounded to lie between 3 and 3 for targets with an equal
number of protons and neutrons for which F; = F3. The Gargamelle
data (all Q% W) have this ratio=0-37 which again fits with the
dominance of quarks over antiquarks (or, rather, of left-handed parton
currents).

If only data is included with Q*>1 GeV, W?>4 GeV? then from
fitting the x,y distributions one has B~0-80 (equation 11.55) and
hence

(11.58)

(11.59)

o°_[dxxllq(x)+q()]

o [dxx[q(x)+3d(x)]
which is slightly larger than when all Q*, W were included. These data
for E up to 200 GeV are shown in Fig. 11.12.

=0-43 (11.60)

; o-s +++ ++ ++++ .
%é 0-6F ++ ¢ + +# #i+
T st s &

£ (GeV)
FI1G. 11.12. ¢°/E and ¢*/E for E <200 GeV.
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11.3.2.3 Hydrogen versus isoscalar targets

The previous discussion concentrated on isoscalar targets since the
early experiments used heavy nuclear targets with almost the same
numbers of neutrons as of protons. More recently experiments have
been performed on hydrogen (i.e. proton targets).

F3® = F3N =2x[d(x)+ i (x)] (11.21 bis)
F3N =F3® = 2x[u(x)+d(x)] (11.22 bis)

(since only F; distinguishes between » and 7)." Then from equation
(11.41) at y =0 we have

v(v) 2
‘;—‘: = %—SFZ‘"’ (x) (11.61)
y=0
hence
v(v) GZ ' v(v)
o =om X F3" (x) dx (11.62)
y=0

For targets with equal numbers of protons and neutrons it therefore
follows from equations (11.21), (11.22) and (11.62) that

7P+oN
a_v v

_ ﬁ dx F;P+-‘:N (x) _
ymo Jo dx F57N (x)

(11.63)

vP+vN
0_ v

This can be exploited experimentally to relatively normalise the # and v
cross-section data.

For targets with differing numbers of protons and neutrons one
cannot obtain such a relation. For example

o.iP

a_vP

_ j?, dx fu(x)+ J(x)]x
y=o Jo dx [d(x)+i(x)]x

(11.64)

From do/dx|,—o we can immediately obtain information on the
flavour distributions without needing to separate F3(x). In particular
for x=0-2, where antiquarks can be neglected,
vP da’

da_ vP

dn =u(x)/d(x) (11.65)

y=0

y=0 dx

' We are continuing to work below charm production threshold and ignore the Cabibbo angle.
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From the electroproduction data it appeared that the u flavour
dominates as x> 1 (FI"/F}" -4 in Fig. 11.3 and compare this with
equations 11.8 and 11.9). This in turn suggests that

do_ vP

dx
do

dx

y=0
oP

y=0

should tend to zero at large x. The data do show that this ratio is falling
with increasing x, consistent with the u(x)/d(x) that one extracts from
the large x electroproduction data (Derrick, 1977).

11.4 Quark distribution functions

The comparison of electromagnetic and neutrino data has suggested
that for x = 0-2 antiquarks and strange quarks play a negligible role. In
this domain one can invert equations (11.8) and (11.9) and immediately
obtain the u, d quark distribution functions

19
u(x)'-“; E[4F§P(x)—F§N(x)]
o (11.66)
dx)=—13 [4F5 (x) = F5 (x)]

If we assume that the sea is an SU(3) singlet, then defining K (x) by
(11.14) yields in place of equation (11.66)

FP (x) = g [5(uy + dv)(x) + 24K (x)] (11.67)

FP (x)— F5N (x) = g(uv—dv)(x) (11.68)

From (11.52) and from (11.21) and (11.22) we have

FyPN(x) L 4K(®)
xF3PN(x)  uy(x)+dy(x)

(11.69)

and from Fig. 11.10 we see that K(x) is negligible for x=0-1 but
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dominates over uv, dy as x = 0. Also one finds (equation 11.23)

Fs&"N@x) 5 1 [ 4K (x) ]

FP*N(x) 18 18L(uy+dv)(x)+ 4K (x)

We see that equation (11.70) is not a very sensitive indicator of the
importance of the sea since if the sea is absent then the ratio of
electromagnetic to weak structure functions is'5/18 and the ratio rises
only to 6/18 if the sea dominates. The weak structure functions in
equation (11.69) provide a good way of resolving the sea contribution
due to the V£ A structures of ¢ and g being probed. The quality of
electromagnetic data implies that equations (11.67) and (11.68) are
perhaps the most direct way of attacking the extraction of the quark
distribution functions. In addition there is the useful ratio

FN(x)  (uy+4dy)(x)+ 12K (x)
F(x)  (4uy+dy)(x)+ 12K (x)

(11.70)

(11.71)

(in principle the neutrino data in equation (11.65) provide the most
direct test of uv/dv(x)).

In Fig. 11.13 we exhibit (without error bars) the parton distribution
functions as extracted by Barger and Phillips (1974). The qualitative
features are obvious and their origins clear: the sea is negligible for

-0

(a)

08

06

0-4

0-2

| | ] 1 | |
o] 02 04 06 08 10 02 04 06 08 IO
X

FIG. 11.13. x Dependence of parton distribution functions: (a) all the u and d quarks
in the proton and for 11, d, § in the sea; (b) valence quarks g, (x) and sea g,(x). The sea is
assumed to be an SU(N) singlet.
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x=0-3 (equation 11.69 and Fig. 11.10), the u quark dominates
significantly at large x (equation 11.71 and Fig. 11.3), the u—d
difference being given directly by equation (11.68), and is positive at
all x>0-11 (Fig. 11.6).

The discovery of charmed states has uncovered new ways of studying
the sea (sections 11.6).

11.4.1 COUNTING RULES AND PARTON X DISTRIBUTIONS
If vW,(x)- constant as x >0 then the parton probability f(x)~x""
which corresponds to Pomeron a = 1 Regge behaviour in the Compton
amplitude (equation 10.53). The nondiffractive structure function
contributions (e.g. vW3¥ — v W3") are controlled by Regge exchanges
with a =3(f, A;) and hence fN°(x)~x""/%. If one associates valence
quarks with nondiffractive and q4 sea with diffractive (Pomeron)
components then as x - 0
Guea(®) ~ %75 Quatence() ~x 71 (11.72)

The x dependence of q(x) as x—>1 is also of interest. From the
Drell-Yan-West relation in equation (10.42) we see that the g>— o
elastic form factor behaviour is correlated with yW,(x - 1). For the
proton we anticipated vW,(x > 1)~ (1—x)* (equation 10.36 et seq.).
Hence

W2 3
g(x)~22 x(x)~(1—x) (11.73)

as x—> 1 in the proton. This need not imply that all quark flavours
behave this way, only that the leading behaviour is (1—x)*. Indeed if

eN
2

x=1
P (%) n
2

then it is possible (Gunion, 1974) that
u(x)~(1—=x)*;d(x)~(1—-=x)* (11.74)
in this limit.
It has been argued that (1 —x)’ is the natural expectation for the
leading behaviour as x> 1 if the proton is viewed as three valence
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quarks. This result follows from counting rules for the energy depen-
dence of large-scale scattering of composite systems (Matveev et al.,
1973; Brodsky and Farrar, 1973) and is discussed in more detail in
section 14.3.4. The essential idea is that an inclusive cross-section
AB - CX is given by the sum of the cross-sections for contributing
subprocesses ab —»>c¢d at large pr and weighted by the probabilities
furar forss fcse for the systems A, B to fragment into constituents a, b and
for ¢ to produce C. These fragmentation probabilities are scale invariant
and so the scaling behaviour of Edo/d*p(AB—- CX) is intimately
related to the scaling behaviour of the elementary subprocess ab - cd
(see also section 14.1). The electron—proton elastic scattering cross-
section is then the sum of the electron—quark cross-sections. The
greater the number of quarks in the proton then the smaller the
probability for elastic scattering (since elastic scattering is the pro-
bability that in a hard collision all of the constituents change direction
so that the system does not break up). The counting rules give

F()y~t"™ (11.75)

(this result is derived in equation 14.28) and so n =3 yields F(t)~t">
and by the relation equation 10.42 yields (1 —x)* for q(x).

Blankenbecler and Brodsky (1974) have shown that for inclusive
reactions the counting rules can be formulated as follows. The elemen-
tary fields taking part in the elementary subprocess will be called
“active”, the remainder “passive”. Then

Edo _ _
Ty AB = COlusrn~ 7 (B, €) = 7 F(6e)  (11.76)
for £ =m%/s fixed. Here
N = tpgee—2 (11.77)
F = anassive—- 1 (1 1 '78)

Physically the suppression for large N is as described above while the
“forbiddenness”, F, increases as 71, increases since these spectators
use up the available phase space.

For ep—>eX we have n,..=4 for eq >eq and npieee® =2 which
yields yWy(x)~(1—x)’ as x> 1.

From this relation one may consider e§ > eg to determine the x
dependence of §(x) as x > 1. Here ... = 4 (since ¢qqqq is the minimal
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configuration) and hence »Wj(x); ~(1—x)” which has been used
(Gunion, 1974; Farrar, 1974) to suggest that

qua(®)~(1-2)°;  Quealx)~(1—x)’ (11.79)

as x > 1. However one can in principle consider eq = eq as the basic
subprocess (e + §qqqq - e + qqq where gq annihilate into a gluon which
is absorbed by a valence quark, Fig. 11.14). This will yield q..(x)~
vWy(x); ~(1—x)°.

>

FIG. 11.14. (1—-x)’ sea contribution arising from qqqqd < qqq.

A derivation of the counting rules is given in the aforementioned
papers and in section 14.3.4. A detailed discussion of the related
phenomenology can be found in Sivers ef al. (1977).

11.5 Scale invariance in electron—positron annihilation

We shall be primarily concerned here with the annihilation of an
electron and positron (each carrying energy E in their centre of mass
frame) into a single photon. For this process we have

§ = (po-+pe)* =4EZ,, = Q* (11.80)

where Q7 is the squared mass of the photon produced in the anni-
hilation.

Since the photon has J , then electron—positron annihilation
is a useful tool for studying the vector meson spectroscopy (J ¢ =177).

PC _ 1~-
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At small s we see three vector mesons (p, w, ¢), which is already a hint
that there are three flavours of light quarks, since the three vector
mesons reflect these three degrees of freedom:

p }(ua:da)
w

@ (s9)

The observation of a fourth vector meson () at E.,, =3-1 GeV is
therefore suggestive of a fourth flavour

t(cc)

(The vector meson at 3:7 GeV is more naturally interpreted as a radially
excited cc state rather than a state made from a fifth flavour—see section
16.)

Not only does the existence of these vector mesons p, w, @, ¢ suggest
four flavours of quarks, but their leptonic widths are related to the
squared charges of the quarks contained within them and empirically

::i;:q&:w‘\' 10 :2 :8 -~ (ez>u+d:szc

(though why this quantity as against, say, mI""*” should be related to e?
is not known).

Apart from the study of vector meson properties, the e"e” anni-
hilation into hadrons through a single photon is a useful tool for
investigating the J/*“ = 17~ hadronic continuum. Three questions arise
here:

a. What is the Q” dependence of o(e*e” - hadrons)?
b. How big is it?
c. What is it made up of?

We will discuss questions (a) and (b) now, and (c) will be examined in
later sections.

In order to lead in to questions (a) and (b) it is instructive to first
study a simple example that nicely illustrates the relation between
scaling and pointlike behaviour.
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1151 ee»u‘u”

The cross-section for this process can be calculated exactly from QED
in the one photon annihilation. One has

2 2 1/2
FEsnu () = 7Y (1—4—"'—> em*+Q?%  (11.81)

3Q* Q*
where m is the muon mass, and there is a threshold behaviour (1 -
4m?/Q%"* appropriate to production of u*u” in a relative S-wave
(JP“=1"" can produce fermion-antifermion in S-wave because
fermion and antifermion have opposite intrinsic parity).

If Q*>» m?, then
47a’®

3Q?

(this is derived explicitly in equation 14.9). Notice that this expression
contains no scale of length or mass associated with the muon. The
quantity Q%c is dimensionless and independent of Q? (scales).

Do all cross-sections scale? The answer is easily seen to be “no” by
considering the very similar production of the fermion-antifermion
pair, proton—antiproton.

o.ggeD‘»u*u—)(QZ) ~

(11.82)

1152 e'e">pp

The cross-section for this process is very similar to thatof e’e > u~
and reads

4ma’ 4M*\ 12
3Q° (1_ QZ>

ST Q) = 2M*G%(Q)+Q*G4(Q)

(11.83)

where now M is the proton mass and Gg v are the electric and magnetic
form factors of the proton. If Gg= Gy =1 then the equation looks like
that fore'e > u u".

When Q%> M?, then (assuming Gg and Gy are not too different in
their Q? dependence)

e 4ma?
o.(e e *pp)(QZ)z 37TQaZ IZVI(QZ)
, 2 2 -
;*378'2 (1+%) ' G0 (11.84)
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This differs from the previous case (e"e” > 1 " 7) by the presence of the

form factor, in which the “size” (mass) of the proton manifestly appears.

The dimensionless quantity Q*c(Q?) now depends manifestly on the

scale—the proton mass or size—and hence is not scale invariant. As Q?

increases, so Q%o (e*e” - pp) dies away in magnitude.

Similarly the cross-section for e"e” > 7" 7~ has an explicit depen-
dence on the pion form factor

2y -1

F@)=(1+2)

mP

. (11.85)
(ete~»m+w™) 2\ Ta 2\12
o (Q)=352lF-(Q)

and so Q%(e*e” > 7+ 7 ") dies out with Q2.

It is expected that any (quasi) two-body channel behaves in a similar
fashion, i.e. Q0 decreases with increasing (large) Q% due to the finite
size of the coherently produced final state particles. If this is so, then
what is the behaviour of Q*c(e*e” > all hadrons)?

11.5.3 o(e'e” > hadrons)

In the parton model we expect that e"e” - hadrons takes place by
e’e” - parton+antiparton, and the partons then fragment into the
observed hadrons by some unknown mechanism. Then at large Q?

o(e'e">hadrons)= Y o(e'e > qq) (11.86)
i=udsec. ..
=Yelo(ee >pn"p’) (11.87)
and hence
R Ecr(e;'e_—>hadrons) _y o2 (11.88)

oete >upT) -

so we expect to find this quantity constant in Q> (Feynman, 1972;
Cabibbo et al., 1970) and its magnitude measures directly the sum of the
squared charges of the fundamental fermion fields. Hence below charm
threshold, the u, d, s degrees of freedom are operative, and as they come
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in three colours (e.g. section 15.2) we have
Ru=3G+s5+35)=2 (11.89)

At higher Q? we will cross the threshold for production of charmed
mesons. The first feature in the data will be the appearance of narrow
vector mesons in the e*e” channel (identified with the ¢ at 3-1 GeV and
3:7 GeV), followed by the charm production threshold where R will
rise and show complicated structure (around 4 GeV). At higher Q* one
anticipates that R will again show scaling (become constant) with value

R =2+36%m (11.90)
If '
e.=5 then R->3} (11.91)

The data do indeed show scaling behaviour (Fig. 11.15). Frascati data at
VQ%<3 GeV is unclear but not inconsistent with constant ~2 to 3 in
magnitude. Better data from SPEAR below 3-5 GeV suggest R ~2-5 to
3 with no obvious structures. After the 4 GeV structures R appears to
have settled down again to a value around 53. One unit of this is believed
to be due to pair production of a new heavy lepton (Perl, 1977). Is the
remaining 43 consistent with uds and c or are more quarks needed?

wA A ¥ \y/

T ! *MHMWM H

Ry e

Il 1 i
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Ecm

FIG. 11.15. Data on o(e*e” > hadrons)/o(e*e > " u").
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In non-Abelian gauge theories with asymptotic freedom one expects
the asymptotic value of R to be approached slowly from above.
Explicitly (Appelquist and Georgi, 1973 ; Zee, 1973)

R =Y e[1+b/log (Q*/Q%)+" -] (11.92)

where for three colours
b=4% (11.93)

and Q3 is a priori unknown. Hence the e*e” annihilation data appears to
be a remarkable manifestation of the scaling idea and perhaps even of
the simple quark—parton model.

If the partons have spin ; we expect or » o at large Q% and the
partons to be produced with a (1 + cos” 8) angular distribution relative
to the e”e” axis. The hadron fragments from the partons will, at high
energies, be produced in a cone along the direction of motion of the
parent parton. Hence we expect to see jets of hadrons with a (1+ cos” 8)
distribution. Remarkably this appears to be manifested by the high-
energy data. We will show this in section 12.4.

11.6 Charm production in N and eN

The narrow vector meson J/¢ and the rise in the e“e” annihilation
cross-section around 4 GeV provide the first evidence for a new massive
hadronic degree of freedom. It now appears clear that these phenomena
are due to the existence of a fourth flavour of quark (charmed quark,
denoted c) (Glashow et al., 1970; Gaillard et al., 1975) whose weak
interaction is

vc—>u”(—d sin .+ s cos 0,) (11.94)

(Gell-Mann, 1964; Hara, 1964; Glashow et al., 1970). The theoretical
background to the charm hypothesis and the phenomenology of the
emerging spectroscopy are described in Chapters 15 and 16. Here we
will be concentrating on the phenomenological consequences of charm
in deep inelastic scattering.

If the lowest mass charmed particles have typical branching ratios B
to decay weakly into a final state including a lepton, e.g. D> Kuw, then
upon crossing the charm production threshold in v or ¥ induced
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processes a “dilepton” signal will be seen. With the GIM current of
equation (11.94) the rates for seeing these dileptons will be
vtd-ctu +---

o« sin* 8. X B (11.95)
/~"++' .

vts>ctu +- -
g, cos’ 0, X B (11.96)
+
’.L o]
where €, is the momentum carried by the strange quarks (in the sea)
relative to the (valence) d quarks and is given by

_ [ xs(x) dx
Es-jxd(x) dx

Hence the dilepton signal for charm production arises roughly equally
from the valence d and sea s quarks (tan” §,~ 1/25) when a neutrino
beam is employed.

With an incident antineutrino beam the dominant mechanism will be

=5 per cent (11.97)

pH+s>c+ut 4
g, cos’ 0. X B (11.98)
I R

The W™ transferred necessarily lowers the charge at the hadronic
vertex. This forces the sea to be involved ; there is no way that charm can
appear from valence quarks interacting with # (other than by associated
production (#u-> u*d+cc+- - -) which we can safely ignore). The «x
distributions of the dimuons are shown in Fig. 11.16 (Steinberger,
1977) and are consistent with coming from the sea (Fig. 11.17(a) and
equation 11.98) and sea with suppressed valence (Fig. 11.17(b) and
equations 11.95 and 11.96).

The rate of producing opposite sign dimuons via a neutrino beam is
about 1 per cent of single muon production. Since sin” 0.+ ¢, cos® 6.~
16 (in equations 11.95 and 11.96) then B =10 per cent. More quan-
titative estimates need detailed consideration of experimental cuts and
detection criteria. The order of 10 per cent branching ratio is consistent
with the results found in e*e” production of charmed mesons (Bran-
delik et al., 1977b) and hence a measure of self-consistency emerges in
the data.

The charm production will be more dramatic in 7 induced reactions
than » reactions because § are selected (equation 11.98). The »q
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angular distribution is isotropic in contrast to the (1—y)® #q which
dominated the low-energy data. In » induced reactions the data are
dominantly isotropic both below and above charm threshold and so the

threshold effect will be less pronounced.

Events

i
|

1
]
!
-8 1

FIG. 11.16. x Distributions of dimuons produced in #N —u*u™ .. .. If these arise
from weak decays of charmed hadrons then these distributions are also the x dis-
tribution of antistrange quarks. ¥N - u " u~ is shown (-~ —-) for comparison.

/.L*
——_v
c
s
d(sin°8)
s (cos28)

(a) (b)

F1G. 11.17. Dimuon production: (a) # interacting with the sea; (b) » interacts with
sea+ (sin” 8.) X valence quarks.
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Notice that if the u quark had a right-handed couplmg to some quark,
b, with charge —3, e.g.

R.H.
pu — u'b (11.99)
then a dramatic threshold phenomenon would be expected because now
avalence quark is involved as well as the isotropic y distribution. Hence
¥ interactions can be rather sensitive tests of new quarks and especially
of postulated right-handed currents (Fritzsch et al., 1975).
In deep inelastic electroproduction (or muon production) the charm
production threshold should be seen at small x where
4 -
do_. ___ sle@te)] — (11.100)
o slu(x)+ia(x)]+s[d(x) +d(x)]+s[s(x)+5(x)]
In the case of an SU(4) symmetric sea one therefore would expect that
Ao/o =%. While this may be true as Q>— 00 (where all mass scales are
probably irrelevant), presumably at finite Q® the charm quark will be
less important (being associated typically with heavier mass scales).

—— No charm

0-32; /U}’I*//’

0-16} /:-03>x>o~0|

| WY sl

0-32} J’
0-241 0:1>x>0-03

o5 | 5 10
Q2 (Gev?)

0:48F —-—with charm *

14
al

F1G. 11.18. Scaling violation at small x compared with charm production predictions.
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Hence

AT >0, 09=26(0); (11.101)
o 3

where £ is the probability that a charmed quark is present in the sea,

c(x—>0; Q%
u,d,s(x~>0; Q%

E=

<1 (11.102)

A guess for the relative importance of charm to uncharmed quarks as a
function of Q” might be something like

M: +Q?
€ ML (11.103)
which is about 5 per cent at Q*=0 (like estimates from VMD) rising
through 50 per cent by Q?=10 GeV?. The hypothesis of equation
(11.103) enables one to compute the scaling violation effects that might
be expected as x > 0 above charm production threshold. Scaling viola-
tions similar to these have been seen in the data (Fig. 11.18) (Mo, 1975;
Anderson et al., 1976; Bharadwaj, 1977). It is not yet clear whether
these scaling violations are evidence for charm production or are of the

type expected if the quarks interact or have substructure (sections 9.4
and 10.6 and Fig. 9.13).

11.7 Neutral currents

In addition to the charge changing weak currents discussed in section
11.3 et seq., neutral current effects have been observed in ve > ve
(Blietschau et al., 1976; Faissner et al., 1976; Reines et al., 1976) and also
in exclusive processes on nuclei (Cline et al., 1976; Lee et al., 1977).

We shall analyse inclusive neutral current processes using the quark—
parton model and supposing that the current is vector and axial vector
with arbitrary amounts of right- and left-handed parts. This is in
contrast with the charged current which appears to be purely left-
handed. (A priori the neutral current could have scalar, tensor etc.
components.)
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Hence the neutral quark current may be written

j‘I:I,C. =Yy (C‘vq';nqi+ Ci\q;’)’u'YSQi)

i=udsc

Cy+Ci Cy—-Ci,

E;qm( 5 Lyt (1—75))11;

L G(Cryu(l+ys)+ Cryvn(1=v5)q:
(11.104)

From our discussion of neutrino kinematics in section 11.3 (in parti-
cular equations 11.48 and 11.49) we know that for a left-handed
neutrino interacting with a left-handed quark the distribution in y is
isotropic whereas it is (1—y)* when the interaction is with a right-
handed quark current. Hence if we consider a system of u and d quarks
(neglecting s, c and antiquarks) then for an average nucleon the charged
and neutral current cross-sections will be

z G’s

ar dy(v—>,u,_)=§xq(x) (11.105)
2 _ . G?s

dx dy (V->u )=§xq(x)(1—y)2 (11.106)

d’o _ G% Cyv+Ci\2 (Cy~— Ck>2 2}
dxdy(y_)v)_27r xq(x)i}‘l‘,‘d{( 2 ) +< 2 (1=9)

(11.107)
dc _ _ G Cy + Ci\? , (Cy—Ci 2}
(11.108)

We notice immediately that in our present approximation the x and y
dependences have factorised and so the following total cross-section
ratios immediately obtain

- a(v->v)
ov->u)

=3[(Cv+ Ca)’ +3(Cy—~ Ca)*]

=C2+1c2 (11.109)
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R =——2=3[((Cv+ C4)*+(Cy—Ca)]
n

=C2 +1C2 (11.110)

where a sum over i =u, d is implicit in Cy s (compare equations 11.107
and 11.108).

These neutral current phenomena are of particular significance in the
light of the recent interest in unified models of weak and electromag-
netic interactions (see section 15.1). Consider first the v. and e” leptons.
The left-handed component of the electron forms a doublet of “weak
isospin” with the neutrino

xL=(:i) (11.111)

L

The charged weak current may be written

+ - - (0 1 = _+
Fi=r=vde=il, o Jra=gr' e (1112

where 77 is the raising operator for weak isospin (equation 2.16).
The electromagnetic current will be

= gy (11.113)
=LY Lt 3P YuVe — 2P YuVe — ERYulR (11.114)
="(5—1) - 11.115
=xu\5 =5 YL ErVuer (11.115)

where the right-handed piece of the electron also takes part in contrast
to the weak interaction in equation (11.112).

The u quark forms a weak isodoublet with the Cabibbo rotated de
(=d cos 8 +ssin 8). Their left-handed charged weak current has the
same form as equation (11.112) where now

xL=(;9)L (11.116)

in contrast to (11.111). Their electromagnetic current will be

e~m~=['(ﬁ+l) 2 reyaun—tad d] 11.117
“ XL 276 YuXL 3uR'YuuR 3 RYudRr |€ ( . )
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If we introduce “weak-hypercharge”, Y., =Q —I; for left-handed
fermions and Y., = Q for right-handed fermions, then

o™ =e[xulls+ Yo YuXrF YeaXrVuXz] (11.118)

Clearly there are two primieval neutral currents corresponding to the
weak isospin

W5~ (ua—dd) (11.119)
and weak hypercharge
B°~ (uii +dd) (11.120)

with arbitrary couplings g and g’ respectively. The electromagnetic
current is one combination of these and its strength is e. The orthogonal

combination is a new neutral current Z° which couples (see equation
15.11)

ha— n20 [e(I;— Q sin® 8)y,x] (11.121)

where Q is the charge and 6 is an arbitrary parameter commonly known
as the Weinberg—Salam angle (tan 8 =g'/g).

Given equation (11.121) we can compute Cy 4 in this model. For u, d
quarks the left- and right-handed couplings will be

1 2
up~s— Z5in% @

1
d,~—3+1sin? @

(11.122)
ur~ —3sin’ @
dg~+1sin* @
Hence in this model, equations (11.109) and (11.110) yield
R*=3;—sin” 8 +%sin* @
(11.123)

R =1—sin*0+%sin* 6

Hence R” and R” are given as a function of one parameter, 6, and so
must lie on a curve in R*, R” space (Fig. 11.19). Data from various
experiments are consistent with 0-2=<sin” § <0-4 (Blietschau et al.,
1977; Barish et al., 1977 ; Benvenuti et al., 1977 ; Steinberger, 1977). The
solid curve is that corresponding to our illustrative analysis where
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antiquarks have been ignored. If some 10-15 per cent of antiquarks are
included (compare equation 11.56) then the curve should be shifted to
the dotted curve.

RV
FIG. 11.19. R” and R? in Weinberg—Salam model as a function of 6.

11.8 Scaling violations

We have presented arguments that the structure function Fy(x, Q2
should shift its (x) from large to small values as Q? increases if quarks
have substructure being revealed at large Q7 or if they take part in
interactions with gluons (sections 9.4, 10.6 and Fig. 9.13). The qualita-
tive effect is that at small x, Fy(x, Q%) will rise as Q? increases while at
large x it will decrease. There are indications that the data indeed show
such a behaviour (Taylor, 1975; Mo, 1975; Anderson et al., 1977). A
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quantitative comparison with the scaling violations expected in field
theories has been made by Tung (1976). Perkins et al. (1977) have
shown that the neutrino data and electromagnetic data show similar

$ep, pup
o4 bup

3log F2
3 log @2

-0-8+ |41’

i 1 | |
02 04 06 08 |
X

FIG. 11.20. Scaling violation in electromagnetic and neutrino data.

patterns of scaling violation and that the scaling violation may have
power law rather than logarithmic behaviour. Their parametrisation is

Fis, @)= Fis 09)(gz) (11.124)
0

hence rising with increasing Q® when x <% and falling when x >3. To
compare this parametrisation with data note that it can be rewritten
d[log Fa(x, Q%] _ 1 .

a[log Q% 4

This is indeed consistent with the scaling violation seen in both the
electromagnetic and weak interaction$ (Fig. 11.20).

(11.125)



12 Inclusive Production of
Hadrons and the
Quark—Parton Model

In Chapter 11 we saw how the quark—parton model made testable
predictions for the total cross-sections in lepton—hadron scattering and
e’e” annihilation. In all of this, no discussion was made of the nature of
the final hadronic state.

Interesting tests of the quark—parton model arise from inclusive
hadron production experiments like e"e” - h +anything, and e(v)N->
e(u )h+anything. In particular the production of detected hadrons h
in the current fragmentation region (defined below) of the e(v) scatter-
ing experiments is intimately related with the production in e'e”
annihilation, and there is some support that this correlation is in fact
realised in the data.

121 IN->/h...(I=e, u,v)

This process is illustrated in Fig. 12.1. The hadron and nucleon
momenta are Py, px respectively and x = Q?/2Mv as usual. There is
great similarity with the /N inclusive process discussed earlier, but now
we have an extra kinematical degree of freedom associated with p,,, the
momentum of the hadron h detected. We will work in the centre of mass
system of the current (electromagnetic or weak) and nucleon, and will
define the positive z-axis to be the direction of the current. Then we



266 AN INTRODUCTION TO QUARKS AND PARTONS

choose variables to characterise the problem:

Q3 x(= Q*/2Mv), P, 2(=pn.pn/Pn.q) (12.1)

There are two rather different regions, 2 S0. In both of these
q . pn~0(Q? while py . py is finite for z <0 but grows as 0(Q?) for

Anything
F1G. 12.1. Inclusive hadron production in lepton scattering.
2 >0. The former is intuitively the target fragmentation region and

can be represented by Fig. 12.2(a). This is intimately related to the
diagram met in the total cross-section at large Q (Figs 9.9 and 12.2(b)).

q |
(a)
P |
N ﬂhj
q
(b)
|
PN |
q Phy
(c¢)
J
PN

FI1G. 12.2. Parton model diagrams for (a) target fragmentation, and (c) current
fragmentation regions. The total cross-section is in (b) for comparison.
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Therefore one expects scaling in this region (technically, one can argue
that the light-cone dominates here).

The natural picture for 2 >0 is shown in Fig. 12.2(c) with p,
emerging along the direction of q and py . ¢ ~0(Q?). In the light-cone
formalism one can say very little about this region since it is not
light-cone dominated (the fragmentation takes place between the two
currents in the Figure). Hence the parton model has extra power here if
we define functions Dy (z, Q% pr) to represent the fragmentation pro-
babilities for (quark)-parton of flavour i to produce hadron h.

> h=(zxR 0,-zxP) >
(xPOLXP) @nAnn (XPOL P> <2x
> q=(0,0,,-2xP) < =
> C >,
> urrent N
(POL,P) Target
T, 1, Current fragments fragments
arget (a) Before (b) After

F1G. 12.3. Inclusive hadron production in the current and quark Breit frame. The four
momenta are denoted (E, pr, p..).

We will concentrate on the current fragmentation region (z > 0). The
parton model analysis of this process is illustrated in the Breit frame of
the current and the parton with which it interacts (Fig. 12.3). The
nucleon carries a large longitudinal momentum P and is treated as a
collection of independent pointlike constituents (partons). The current,
with momentum

q=1(0;0,0, —2xP) - (12.2)
interacts incoherently with a parton whose momentum vector is
p =(xP;0,0, xP) (12.3)

and so its momentum is reversed. This is analogous to the total
cross-section description of Chapter 9, and this part of the process is
described by the quark—parton distribution functions u(x) dx etc. (the
average number of u quarks in an interval dx of x).

In Fig. 12.3(b) we exhibit the fragmentation of the quark—parton into
hadrons, one of which, h, is observed. The struck parton is separated by
a large momentum from the nucleon fragments and so we shall assume
that the fragmentation is independent of the earlier current interaction.
Hence we shall assume it to be independent of x and only dependent
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upon z, which, in a frame in which the parton moves fast (c.m., Breit,
etc.), is the fraction of the parton’s longitudinal momentum carried off
by the observed hadron (Fig. 12.3). Hence

pn=(2xP;0,0, —2xP) (12.4)

and so we introduce a set of “parton fragmentation functions” D} (z) dx
which represent the probability that parton type i produces a hadron in
an interval dz about 2 (Feynman, 1972).

12.2 The quark fragmentation functions

In terms of the known quark distribution functions #(x) ... and the
unknown D (z) fragmentation functions, we can discuss hadron
inclusive production in a variety of current-induced processes, e.g.
e'e >h...,ep(n)>eh..., vp(n)>u"h...etc. We can obtain rela-
tions among these various processes due to the )., (x)D%(z) structure
and constrain the relative production rates of various hadrons by
limiting the number of independent D! () using isospin and charge-
conjugation invariance. This yields, for 7 production,

DT =D3 =Di*=D7" (12.5)
it =Di =D =Di (12.6)
DI*=D7” =Di" =Di" (12.7)

(Here, for simplicity, we have ignored any contributions from new
heavy quarks. These will in general be necessary when discussing very
high energy data, but for our present introduction we will restrict our
attention to data that are believed to be below threshold for production
of heavy hadronic degrees of freedom such as charm.)

The way these fragmentation functions enter in comparison with
data depends upon the process under study. We list these below; their
derivation is obvious.

e'e">h...
1 do(e'e">h.. .)=Zi e?[D? (z)+ D? (2)]

2
gror dz Zi é;

(12.8)

(i= quark flavours)
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(Note here that the photon produces a parton—antiparton pair, either of
which could have produced the observed hadron, hence the D; and D;
appear, in contrast to the next examples.)
ep—~>eh...
1 do Y e?fi(x)D? (z)
—(ep—=eh.. )=""FF"7"" 12.9
P ) Y. i) (12.9)

(i = quark and antiquark flavours)

(where fi(x) are the quark—parton distribution functions of Chapter 11).
vp>u h...

1 do _d®D4(x) +i(x)Di(z)

d(x) +3i (x)

(vp>uh..) (12.10)

oror dz
(where we have approximated 6. = 0 and ignored charm).
Note that the d quark turns into a u quark before fragmenting. The 3
is due to the left-handed current coupling to antiquarks (integration
over dy having been performed as in Chapter 11).

1221 wvp->u~h...

From the nature of these expressions we see that the neutrino data are a
direct measurement of the fragmentation functions for pions since from

equations (12.5) and (12.6)
D;*=D3* (12.11)

and so the d(x)+3i(x) cancels in numerator and denominator of
equation (12.10) yielding

1 d
S psun*..)=D"(z) (12.12)
Oror dz
Also
1 d

L opsutnt..)=DI"(z)=DI(z) (12.13)

Data from Gargamelle (Cundy, 1974) on the ratio of #* /7~ pro-
duction with » beams (and equivalently 7~ /7" with 7) are shown in
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l'ig. 12.4. These directly yield

D7 (2)
n@=5 (12.14)
i nd we see this is of order 3 for 0-3 <z <0-7, arising for  >0-7. That
this ratio is greater than 1 is intuitively reasonable since 77" is ud in the

+vlrtr)
* 7 /e

T

', ﬂﬁ*

| | | |
0 0-2 0-4 0-6 0-8 1-0
z

'IG. 12.4. Ratio of inclusive 7" to v~ production in v interactions and 7~ to 7" in ¥
interactions.

:implest configuration. It has been widely argued that,as x> 1, n(z) >
©0 due to the presence of the u valence quark in 77" whereas u in 77~ is in
he sea. Whether or not these data support this is unclear, since at any
inite energy 71 (z = 1) > o due to the fact that vp-> ™+ (charge 2) in
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the quasi-exclusive limit. What is of immediate interest is that
N(2)o3<z<07=21t03 (12.15)

is consistent with the inelastic electroproduction data (discussed

below), and also that the data support the implication of equation
(12.12), viz.

e

The data with 0-3 <z < 0-7 are shown as a function of x in Fig. 12.5 and
are indeed consistent with this prediction (Cundy, 1974).

0 I

FIG. 12.5. Average ratio for #°/7 for v and w#~/# " for # interactions. The data have
0-3=<z=<0-7 and are consistent with being x independent.

Data from the 15 ft Hydrogen bubble chamber at Fermilab yield
information on the production of positives and negatives separately
(Fig. 12.6) (Berge, 1975). The ratio of +/— production is qualitatively
in agreement with the lower energy Gargamelle data, namely +/— > 1
and rising as z increases, though the difference between positive and
negative production appears to be rather larger at Fermilab than the
Gargamelle data at a comparable 2. One reason may be due to the
Fermilab experiment being all positive (negative) charges whereas
Gargamelle is explicitly 7*; also there may be some contamination
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from quasi-exclusive channels that have a Q*(E,) dependence that has
to be taken into account before a proper comparison can be made.
If the hadrons are dominantly 7 and K then

(n") _ DI (2)+[d(x)Di (z)+3u(x)Di (2))/[d(x) + 3 (x)]
(n") DI (3)+[d(x)DI (z)+3a(x)Da (2))/[d(x)+3i(x)]

(12.17)

The contribution from antiquarks is believed to be very small (Chapter

* £=15-30 GeV
H| + vp->positives +

][ negatives -¢-

B

%ﬁﬁbmr T
4%

1+

dN/dz hadrons / unit 2

| ] | |11 | | ]
0l 02 03 04 05 06 07 08 09 10
z

FIG. 12.6. Inclusive production of positive and negative charge hadrons in vp inter-
actions in the 15 to 30 GeV range of laboratory energy.

11); so, neglecting them for simplicity, we have

(n*) DI (x)+D¥ (2)
(n"y DT (z)+D¥ (2)

(12.18)
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Hence

" "y .. DX DI
2:_;>§:,_; if > (12.19)

1222 ep(n)—>eh...

The analysis of inelastic electron scattering: is slightly more involved
than for neutrinos due to the contributions from all the charged quarks:

L doy \en . ) Ziefi(x)Dt()
chonz(eN ch..)= erlzf.(x) (12.20)

For ease of notation we normalise to the total cross-section (W) and
write

N"(x, z) =Y eXfi(x) D} (2) (12.21)

In their original analysis of the data of Bebek et al. (1973)
(Q*=2GeV? w=4) Cleymans and Rodenberg (1974) ignored the
contribution from all but the valence quarks, which is reasonable for
@ =4. Hence in ep—>en™ . . _they have (writing u(x)= f,(x) etc.)

N™(x,2) _$u(x)D7" (2)+3d(x)D5" (z)

N™(x,2) #u(x)DI (z) +5d(x)D] () (12.22)
_4u(x)n(z)+d(x)
T 4u(x)+dx)n(z) (12.23)

where we have used equations (12.5) to (12.7) and (12.14).

The Bebek data (1973) are consistent with scaling in the range
0-2< 2z =<0-7 and so the analysis was limited to this region for which
(n™Y/(n™)=2 independent of 2. For w =4, u(x)=2d(x) and so

_8n(x)+1

8+1(2) (12.24)

which yields n(z)=2-5, 0:2<z<0-7. This is in perfect agreement
with the Gargamelle data on 7™ production by neutring beams (equa-
tion 12.15) and so we have strong support here for the quark—parton
picture of the semi-inclusive hadron production.
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Dakin and Feldman (1973) refined and extended the above analysis
by incorporating later data in the range 0-5<Q?<2:5GeV” and 3=
w <60 and allowing for the contribution of valence and sea quarks.
They parametrised the longitudinal momentum distributions of the

quarks as follows
u(x) = uy(x)+ K(x)

d(x)=dv(x)+ K(x) .
s(x) = §(x) = i (x) =d(x) = K (x) (12.25)

where uy(x), dyv(x) represent the distribution functions for valence
quarks, and the sea was hypothesised to be SU(3) symmetric (it turns
out that this is not a very crucial assumption for their analysis).

These functions u(x), K (x) etc. were taken from the McElhaney and
Tuan (1973) fits to the total cross-section data (this is essentially the
Kuti-Weisskopf model modified to take account of the fact that
wWN/vWF <% as x> 1). (Kuti and Weisskopf, 1971; Landshoff and
Polkinghorne, 1971).

Then one has, in place of equation (12.23),

N™"(x, ) _ 4uy(x)n(z) +dv(x)+[51(z)+ 71K (x)
N7 (x,z) 4uy(x)+n(z)dv(x)+[5n(z)+ 71K (x)
The Cleymans-Rodenberg formula, equation (12.23), is obtained when

K (x)~0 (and hence uy=u etc.). The effect is to raise 7(z) slightly as
compared to K(x)=0:

(12.26)

n(zx)=3-0£06 (12.27)

(compare m(z)=2-5 when K(x)=0 as in Cleymans-Rodenberg).
Qualitatively it is obvious that this should be so since the sea populates
" and 7~ equally, and hence tends to dilute the ratio. To have the
same ratio as in the data, n(z) must be larger than in the analysis where
the sea was ignored.

Having determined 7 (z) and knowing the f(x) from the McElhaney-
Tuan parametrisation of the total cross-section data then one can
predict the x(w) dependence of the 7" /7~ production ratio using
equation (12.26). This quantity is compared with the data in Fig. 12.7.

Due to the dominance of u(x) as x> 1, more positive charge is
predicted to be forward produced.

The production from neutron targets is immediately obtained by
interchanging uy and dy in equation (12.26), while K (x) is the same as
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before (the sea has I =0). Hence from a neutron target,
N (%, z) _4dv(x)n(z)+uv(x)+[5n(z) + 71K (x)
N (x,z) 4dv(x)+n(z)uv(x)+[5n(z)+ 71K (x)

so that with n(z)=3 we immediately predict the curve of Fig. 12.7
which is compared with the data.

(12.28)

¥ inep
N
T
—o—
—o-g

0 ] L1 | |
I 2 5 10 20 50 100
w

F1G. 12.7. Omega dependence of the 7% /7 ratio in ep and en interactions compared
with quark—parton model expectations.

Note the general feature that as w - 0(x - 0) the 7" /7 ratio tends
to unity (sea dominance). Coming to smaller w the ratio rises and then
as w ~> 1 falls below 1 due to dominance of the uy quark. In general with
u quark dominance

+
w

1
—(x=>1)>—inen
T n

(12.29)

->7ninep
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A cautionary note is provided by Hanson at the Stanford Symposium
(Hanson, 1975). Plotting the 7*/# ratios against x and also W for
various Q (W is the mass of hadronic system) one cannot yet tell if (i)
7" /7 isafunction only of w, i.e. scales in w(x), or (ii) a function only of
W. The variation of = /7~ with W or x over the measured range of
parameters is too small to see a significant difference between the two.

Further orientation on the significance of these production ratios is
obtained by noting that in the photon fragmentation region at Q*>=0,
7" /7~ =0-8. This is quite different from the values 1:2 to 1-3 predicted
at moderate @ in the present model for Q% # 0.

i. Sum Rules in eN - eh. Normalising to F$" (x), the number of
hadrons h in the current fragmentation region, with momentum 2 in an
experiment done at fixed x reads

N"(z, x) = 5[u(x)D} (z) + @ (x) D} (2)]
+3[d(x)D§ (=) +d(x)D5(z)] +3[s (x) D} (z) + §(x) D (2)]
(12.31)

plus further possible contributions from charmed quarks etc. We can
simplify this messy expression by studying, for example, the excess of
7" over m~

N& (z,x)= N (z, %)= [DI ()~ DI (2)1[8(u— i) —¥d — d))(x)
(12.32)

where we used relations like D7” = D] etc. (equation 12.7). (This
expression is true in general, since further quarks with 7 =0 will not
contribute to the 777~ difference.)

Since we know from the proton and neutron charge sum rules
(equations 11.29 and 11.30) that

Jl [u(x)—i(x)] de =2 jl [d(x)—d(x)]dx=2 (12.33)

then
1
J dx[N% (3, x)— N% (z,x)] =5[DI (2)— DI (z)] (12.34)
0
Similarly on neutron targets one derives (interchanging u, d in equation
12.32)

NI (3,%) =~ N (z, %) = [DI (2)~ D3I (2)][8(d — d) —5(u — i1)](x)
(12.35)
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and so

Jl dx [NX& (2, x)— N&x (2, x)] =3[DI" (2)— DI (z)] (12.36)

Consequently, independent of z,

fda [N (z,2) = N" (2, 0))en_ 2
{dx [N" (z,2)—N" (z, ))}er 7 (12.37)

Experimentally it is more useful to integrate over all 2, and since

fdz NI (2) _[dz (do/dz)a
[dz N% (z) |dz (do/dz)%

(12.38)

then

fo da FN () [(nen—{n" Jen] _ 2
fo dx F¥ (0)[(n e —(n™ )] 7

(12.39)

where (n") is the average multiplicity of particle h as a function of x.
This sum rule was derived by Gronau ef al. (1973) but is not yet well
tested by data.

1223 e'e —>h...

In equation (12.8) we have

_L.e}[DM(z)+ Di(2)]
Zi eiz

—(e'e">h...)

(12.40)
Allowing for 3 colours of quarks
GTOT/O"L‘L =R=3 Z eiz

SO

1
0_—--d—:-(e+e_—>h .. .)=3Ze?[D?(z)+D?(z)] (12.41)
If for small z, D(z)~ 1/z (e.g. by analogy with the f(x)~1/x for the
probability of finding given quarks in the hadron) then a logarithmic
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rise in multiplicity is predicted, since on integrating over z

1 1 1
R(nh)=J d—”dz=3zefj [Df +D*]dx (12.42)

Zmin Tine dx i 2m/JQ?

and the lower limit on the z integral generates the logarithmic growth in
Q?. We have already seen (Fig. 12.6) some hint that D(z)~1/z as z >0

<Nch >
D

bt
4
+++
3L
T \ e
2 3 4 5 6 7 8 910
EomlGeV)

F1G. 12.8. Charged particle multiplicity as a function of E, ., for e"e” annihilation.

and so it is interesting to find that there may be a logarithmic growth of
the multiplicity in e'e">h ... (Fig. 12.8).

Since 0, =4ma’/3s (derived in equation 14.9) we can rewrite
equation (12.41) to read

2
e )= 3L D)+ D)

=88x3% e}[D?(z)+ D*?(z)]nb . GeV?
(12.43)

The distributions in s(do/dz) are shown (Schwitters, 1975) in Fig. 12.9
and do show the possibility of scaling for x >0-5. We do not expect
scaling for all z here because R is rising as one passes through this
complicated region. It does, however, appear that the data scale for all s
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when 2 =0-5. This, and the 2, s dependence of the scaling violation, are
nicely seen in Fig. 12.10 which plots s(do/dz) versus E. , for various z
intervals. Scaling would imply that s(do/dz) should be independent of
E. .. for any fixed z.

«Eci,..,=7-4 GeV
10 e
[
Ecm=4'8 Gev
o~
®
>
3 06900%4));
& % e
R |_¢ CpLem=3-0GeV
33 %,
s o d
"]
P
%Q
. 1 1 | 1
ol 02 06 |
P4

FIG. 12.9. s (do/dz) at 3, 4-8, and 7-4 GeV e*e” centre of mass energies.

If the entire rise in R is due to pair production of new particles
e’e” > U"U", which decay immediately into the observed hadrons, then
the final decay products at threshold should be limited to z <0-5 since
each new U is carrying half the energy. If each of these then decays,
clearly half the momentum of any single decay product cannot exceed }
of the total energy and hence 2 <0-5. For U production slightly above
threshold a few decay products can have z >0-5 but their effect will be
negligible so the argument holds true.

Bearing this in mind, look again at Fig. 12.10. For 2 >0-5, we see
scaling (independence of s(do/dz)) for the full range of 3<E., <
8 GeV. For z <0-5 the data have rescaled above 4 GeV except at the
smallest values of z. Here the finite energy means that we are still seeing
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threshold effects and so we don’t expect scaling to set in until
PEP/PETRA energies. Hence, semi-quantitatively we can understand
the observed behaviour as a combination of threshold and scaling
phenomena,

° » 0+38<2<0-44
° ™
o] - ° °
L i-e® ¢
(Y i
i 0:08<2<0-12 7 T S .
_ °
N% I~ )
g AL 1 L O . 0-48-0-52
-8 e o 05
~— 6 PYY
3’% | o YR 1 1 1 1
” Ll e o022 | I'0
L1 0 0-56-0-64
/ Ve ... ® ®
4 o T
°
R * ®* o
2l ~0-
i 0-28-0-32 05+ 0:72-0-88
Py [ Je%e 9 o
345 6 7 8 34 5 6 7 8

Ecm (GeV)

FI1G. 12.10. s (do/dz) versus E, ., for various z intervals.

Consequently we may suppose that the s(do/dz) distribution is a
superposition of “old” and “new”.

If this is indeed true, then the data at 3 GeV is due entirely to “old”
physics and moveover is exhibiting (for z = 0-2) the scaling behaviour
of the uds quark degrees of freedom. Hence we might analyse this data
in terms of the relation

1 do

Oy dz i=uds

(e'e >h..)=3 ¥ ¢.[D"(z)+Di(z)] (12.41)
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and compare with the analogous data on inclusive hadron production in
lepto-induced reactions as discussed previously.

As orientation and to simplify matters let us just make the approxi-
mation that only the u quark is important (Gilman, 1975) (it is the most
probable quark in the proton and also has the biggest squared charge by
a factor of four). Then forep—>eh...

1 do_LefiDi)

ords | Nefw D) (12.44)

and hence

! [d—a--(ep»eh+ .. .)+—o-(ep—>eh_ .. .)] =D (z)+ DL (z)
ororLd P4
(12.45)

For e*e” annihilation at v (_)2< 3-5 GeV (where by hypothesis only
the uds degrees of freedom contribute), taking uid as the largest
contributor to R, then

1 [do, , _ .., do - b
E[E(e e ->h ....)+dz(e e ~>h )]
:%[Df;*(z)+Dl‘;’(z)+D.‘-}+(z)+D2_(z)] =D} (z)+ DY (z)
(12.46)

and so finally one has the immediate comparison

1 do . _
;T—E(ep—éeh .. .)—ZO_T

leawv»m”) (12.47)

This comparison is shown in Fig. 12.11 and agreement is excellent at

large 2z where different choices for the comparison variable are less
important (Gilman, 1975).

12.3 Angular distributions of hadrons produced in e"e”
annihilation

In order to appreciate some features of the discovery of heavy
(charmed) mesons in e’e” annihilation when Vs23:9GeV and the
phenomena of scaling and of jets in e'e” - hadron+anything for
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Vs=5 GeV, it will be useful to study the kinematics for e’e” > AB
elaborating on our treatment of Chapter 11. Let us study this process in
two pieces: (i) the formation process e’e” = y along the z-axis, and (ii)
the decay vy - AB along axis 2 oriented by angle 6 with respect to the
Z-axis.

¢ Qe
® ¢ + ete” 3 GeV

(o}] 1 1 ] I

o -0
z

FI1G. 12.11. Test of scaling and u flavour dominance in ep interactions and in e’e”
annthilation at E., =3 GeV.

If E (the beam energy) » m, (which is certainly true in practice), then
the produced v is polarized transverse to the z-axis, i.e. J, = £1 (thisis
a property of the y, coupling to the e“e”). This is the essential feature
from which all the results flow and so the reader should verify this fact
for herself/himself (e.g. write Jy, ¢ with your favourite representation
of the y matrices and expand out for w =3, 1£i2. The u=0
component does not contribute since we are in the e*e” centre of mass
and so q, =0, hence q .7 =0=>qojo=10).
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The photon produced in e"e” annihilation has therefore J, = + 1, but
along the decay axis (z') will be a mixture of J,,=0, £ 1. The precise
mixture will depend upon 6 (e.g. at # =0, 2’ =z and so only J,, = =1
results). Explicitly it is given in terms of the d7,, (6) angular rotation
functions (where in this case J = J, = 1 and m, m’ are the photon’s spin
projected along the z, 2'-axes).

If A,7 is the amplitude for y > AB, with total projection of spin m'
along %', then we define

on(e'e > AB)~|ALP] (12.48)

Now
A, (8)=dnm(0)A,(0=0) (12.49)
and at § =0 we have only m = + 1 (the photon had J, = £ 1 only). For

simplicity concentrate first on the J, = +1 state. Then

‘cil_g(eJ'e‘»AB)'v L ldin(0)fon(c’e >AB)  (12.50)
m'=+1,0

where d}.; = (1xcos 0)/2, d}, =sin /2. Substituting into equation
(12.50), we find (parity kills terms linear in cos 8)

1+cos®* O\o,+0-; 4 (sin2

> > > 0)0'0 (12.51)

The case J, = — 1 yields an identical form. If we define, conventionally,
the transverse (T) and longitudinal (L) cross-sections as

do, , _ _
d_O(e e —>AB)—(

or=(01+0-1)/2; OL=0y (12.52)

and sum over initial polarizations, then
dO’ + - 2 2
a—g(e e »>AB)=(1+cos” 8)or+(1—cos” 8)oL (12.53)

AB could be a genuine two-body final state, or A could be a detected
particle while B represents the recoiling system. In general the ob-
served angular distribution depends upon the relative magnitudes of ot
and o. Clearly the angular distribution can be written (1+a cos” )
where — 1 <a < +1; this is a result of the J = 1 state that produced the
system AB. Terms odd in cos 8 would violate parity. Terms of higher
order in cos @ would require J > 1 (they could arise from e’e” >2y >



284 | AN INTRODUCTION TO QUARKS AND PARTONS

hadrons for instance and are not discussed further here where we are
concerned solely with the e’e” annihilation into a single photon).
Integrating equation (12.53) over all  we find

o =35Q2or+o)=3(01+o_1+0) (12.54)

i.e. an equally weighted sum over each of the possible helicity states of
the system AB. Note that this equal kinematic weighting of the various
helicity states arose only after integrating over all 8. At any fixed 6, or
after integrating over a fraction of 27, this equal population will not
occur.

12.3.1 e*e >pp
The transverse and longitudinal production cross-sections are given in

terms of two form factors Gg y(Q?) commonly referred to as the electric
and magnetic form factors (compare e p—> e p, Chapter 9).

or= (4—"3>2 .i(1—4"'2)1/2 . Q*G%(QY (12.55)

Q*/) 8= Q?
oL= (“Qif)z é(l —4322>1/24m2G12;(QZ) (12.56)

Notice the threshold factor [1 — (4m?/Q?%)]"? appropriate to production
of equal mass m objects in a relative S-wave. This is because the

J¥€ =1"" photon can produce the fermion-antifermion system in a
relative S-wave since

P(pp)L=(—1)""
C(pP)rs =(—D"*°

allows S=1and L=0.
The ratio of longitudinal to transverse cross-sections for pp pro-
duction is

[ 4m*> G(Q%)
or  QF G4(QY

(12.57)
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Notice that if Gg(Q?) = Gu(Q?) =1 (which would be the case for
e'e” >u"u” or any pair of elementary spin 3 particles, e.g. quark—
partons) then
ete~>qgd 4 2
(ﬁ> = gz 50 as Q> (12.58)

gT

Near to threshold one has the constraint
Ge(Q*=4m?) = Gu(Q*=4m?)

This can be seen if one writes Gg y in terms of the Pauli and Dirac form
factors F;, (which at Q*=0 are normalised to the charge and
anomalous magnetic moment of the spin 3 object). This relation may be
written (equation 9.23)

Ge(Q)=F, +2—2KF2 (12.59)
4m
GM(QZ)=F1+KF2 (1260)

and so for Q®>—>4m? we see Gg— Gy. Consequently for spin 3 pair
production near to threshold one has

12.3.2 ‘e »w*n” or DD
Production of two spinless objects implies that along their axis of
motion (2')

J.=0 (12.61)
Hence one has in this process

or(e’e” > 7w, DD)=0

and the angular distribution is that of longitudinal production

g—:(e*e“ - 7r7r, DD) ~sin® 0 (12.62)
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The cross-section is written

2 2\ 3/2
o(e’e > DD)= %(1 —%’%) |9:(Q%)[? (12.63)
Notice here the threshold factor [1—(4m*/Q?)]*? appropriate to P-
wave production of equal mass objects (the J* =1 produces a pair of
pseudoscalars in P-wave). The form factor 9£(Q?) is for production of a
DD pair and we have included the subscript E to remind us that this
production is entirely in the longitudinal mode (cf. equation 12.56).
So we find similar results for e"e” annihilation as for spacelike lepton
scattering. Namely, that for spin-zero partons or = 0 (equation 12.63)

Q%>

while for spin 3(oL/or) — 0 (equation 12.58).

12.4 Angular distributions of hadrons in e*e” - h+anything
and polarisation of the beams

The stored e* beams circulate in a magnetic field whose direction () is
perpendicular to the plane (%%) of the storage ring. After a period of
time the positrons (electrons) tend to populate the state where their
spins are parallel (antiparallel) to the guide magnetic field, this state
having lower energy than the opposite spin orientation. Consequently
the storage ring beams are polarised in the § direction. If the polarisa-
tion is 100 per cent then the photon created by the e"e” annihilation has
zero helicity along the y direction,

Iy = (12.64)

We will calculate the angular distribution of a hadron h produced by
such a polarised photon in

e’e” >y > h+anything

If the hadron emerges at angle  relative to the £-axis (the e” direction)
and ¢ relative to the ££ plane of the ring then the direction of its
momentum vector is (Fig. 12.12)

Pn= (sin @ cos ¢, sin 8 sin ¢, cos 6) (12.65)
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so that the angle B between the hadron momentum vector and the
y-axis is given by

cos B =sin 0 sin ¢ (12.66)

The expression for the angle B enables us to immediately calculate
(do/dQ)(e*e”>h...). If A is the spin projection of the photon along f,

N>
>

cos 8

F1G. 12.12. Hadron momentum vector and components.

then, since the photon spin projection = 0 along j, we have

do 2 g1 2
—~ 12.
o~ L AAL®) (1267
Parity forces |A,|=|A_] (12.68)
and so
:—g~ |A]?* sin® B +|Aq[* cos® B (12.69)

We define the transverse and longitudinal cross-sections proportional
to |A,|* and |A,|* respectively, and these are functions of Q% and p,, or .
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These functional dependences are implicit in all the following equa-
tions. We can therefore write

d
(a—a-)) =0T Sin2 B +oL COSZ B — UT+ (UL_U'T) Sinz 9 sinz ¢
pol
(12.70)

The subscript “pol” is to remind us that this is the cross-section arising
from a completely polarised photon (¢*e” beams).

In practice the beams are not 100 per cent polarised. The e* not only
couple their intrinsic spin magnetic moments with the magnetic field
but also couple to the field because they are rotating (orbital angular
momentum). This leads to a depolarising effect. The detailed treatment
of this phenomenon is complicated (Jackson, 1976a) and there is
complete depolarisation at energies satisfying

—2 E
£ C ==N

- (12.71)

where N is an integer, E, m are the energy and mass of the e (or the ™)
and g —2 is the anomalous magnetic moment. N =7 yields

E..=2E=6'16 GeV

and depolarisation is indeed seen at SPEAR at this energy (Schwitters et
al., 1975).

Let us now return to our kinematics, equation (12.70), and consider
instead completely unpolarised beams. Then since (sin® ¢) =3 we have

d .
(ﬁ)um‘ = or+ Yo — or) sin® 0 (12.72)

This is, of course, identical in structure to equation (12.53) that we
derived previously when we assumed unpolarised e* beams.

We can write down finally the cross-section for beams with arbitrary
degree of polarisation P. We have then

do do do
—=(1-P? —) +P2(—) 12.73
dQ ( )(dQ unpol dQ pol ( )

and so

%{'i= Hor+o)[1+ a(cos’ @+ P?sin® 0 cos 2¢)]  (12.74)
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with

Or— 0L

« (12.75)

ortoL

Equation (12.74) is the most general angular distribution for the
inclusive hadron production in electron—positron annihilation through
one photon. From the observed angular distributions of h one can
determine o/or(z, Q%) which contains the interesting dynamical
information. (In the model where the hadrons are the fragmentation
products of spin ; partons then o /or~1/ Q%)

In principle one can determine o/0or, or equivalently a, from the 6
distribution alone and so the polarisation P gives no additional
information. In practice since the SPEAR detector has rather limited
acceptance in 6, |cos 8| <06 (due to the open ends of the cylindrical
detector which allows the beams to enter and depart) while there is
complete acceptance in ¢, then it is easier to separate 0./ ot from the ¢
dependence, i.e. exploiting the polarised beams. This is illustrated
clearly in the data (Schwitters, 1975). Integrating over ¢ one has

£=%(0'T+O'L)(l +a cos’ §) (12.76)
dQ
and the @ distributions very poorly determine «.

The inclusive azimuthal distributions for particles with 2 >0-3 and
|cos 8] <0-6 are exhibited in Fig. 12.13 at 7-4 GeV in the c.m. There isa
very clear cos 2¢ dependence. (At 6-2 GeV there is a depolarising
resonance in the SPEAR ring as discussed in equation (12.71). Hence at
6-2 GeV the beams are “accidentally” unpolarised and an isotropic ¢
distribution emerges—Schwitters et al., 1975.)

3'\..“0’. %ntno..

I~ 2>0:3 0-1<z>0-2 - ‘ °
’. .. ..
- e o’ oq
| 1 | | | l 1 | |
-06 0 06-06 0 06 0 180 360
Cos§ ¢ (degrees)

FIG. 12.13. Azimuthal distributions of hadrons produced in 7-4 GeV e*e” anni-
hilation.
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Using the E. ., =7-4 GeV data with its clear cos 2¢p dependence we
can determine a by making a best fit to the form of do/d() once we have
obtained the magnitude of P>. This quantity is found by fitting the
distributions for e"e” - w "~ data which are collected at the same time
as the hadronic production data and as (oL/01),+.- =0 then

(:—g) =30 (1 +cos® 8+ P*sin® 8 cos 2¢)  (12.77)

+e"—>p,4'““

Hence P?is determined and found to be 0-46 = 0-05 at this energy. One
now uses this information in fitting the hadronic sample and
a(or op/07) is obtained for e'e”>h. . ..

The results for o./or (and @) as functions of z at E,,, =74 GeV are
shown in Fig. 12.14. At low 2 where the hadron h is recoiling against a
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0-81—

"od T

_I_
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I | ] |
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0-4

FIG. 12.14. o./or and a as functions of z at 7-4 GeV.
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high mass system near to threshold (it is produced nearly at rest) o and
or are almost equal. At x =0-2, where Bjorken scaling was observed
(section 12.2.3), o1 dominates, characteristic of production of pairs of
spin 3 particles (cf. u u 7).

Hence the data are consistent with the model where the observed
hadrons are emitted by spin 3 partons.

Further support for the idea that the hadrons are parton fragments
comes from a study of the multiprong hadronic events, where it is found
that these have a “jet” structure (limited momentum transverse to some
axis). This phenomenon is familiar in hadron physics and is a natural
consequence of the parton model. The picture is that at high E_,, the
spin 7 partons are produced with angular distribution typical of @ =1
and that the final state observed hadrons will limit momenta transverse
to the direction 6 in which the partons were produced. Hence two jets of
particles will be expected, the jet axis being the memory of the original
parton direction.

0:4
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T, AL L L I
"2 4 6 8
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F1G. 12.15. Mean sphericity as a function of energy compared with jet and phase space
models.
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In those events with = 3 hadrons a search was made for an axis which
minimised the sum of the squares of the momenta perpendicular to it.
For any event, having found this axis, then a quantity S called the
“sphericity” is defined (Hanson et al., 1975)

S=3TL(Gh)/25 () 0=S<1

where p', pr are the i-th particle’s momentum and its momentum
transverse to the jet axis. Events with S > 0 are jetlike while S > 1 are
spherical. Mean sphericity as a function of energy is shown in Fig.
12.15. As the energy increases one can see the increasingly jetlike
character of the events.

While much work still remains to be done here, these effects do
appear to be more than just correlations arising from energy—momen-
tum conservation and are genuine multiparticle effects. A Monte Carlo
jet model with (pr)=350 MeV/c is an excellent description, whereas
the Monte Carlo phase space is a poor realisation of the data. The
inclusive angular distributions are also well fitted by the jet model and
for E. ... =7-4 GeV the comparison is shown in Fig. 12.16 with aj. =

0-6

02

i I | |
[0} 02 04 06 08 |0
P4

F1G. 12.16. Comparison of inclusive hadron z distributions at 7-4 GeV with jet model
expectations.
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0-78 £ 0-12. The momenta of the hadrons relative to the jet.produce the
range of a values in the shaded area of the Figure.

While jets are observed, apparently in nice agreement with the
quark—parton model, one should perhaps worry here that things are
working too well. For instance, taken literally the model appears to
predict quark quantum numbers in the final state and this is not the case
empirically. If the quark—parton model is the correct description then
the jets’ observation tells us that the produced quark dresses itself with
qq pairs in such a way that (i) “conventional” quantum numbers are
detected in the final state, (ii) the dressing does not destroy the memory
of the original axis of quark-antiquark production.

What one would like to see is a consistent picture of quarks
incorporating confinement and with the jets appearing naturally. One
possible model is the massive quark model of Preparata (1975).



13 Polarised Electroproduction

13.1 Kinematic preliminaries

Inelastic lepton scattering gave information on the quantum numbers
of the partons and suggested that they could be spinj quarks. By
polarising the lepton beam and the target one can gain information on
the way the spin of the polarised proton is distributed among the
flavours of quark and the role that the gluon spins might play in
building up the proton spin. To describe these phenomena it is
necessary to make a small kinematic introduction.

The electron scattering cross-section has been expressed in terms of
the lepton and hadron tensors L,,, W,, in equation (9.28). The
unpolarised L, is symmetric in k and k', the initial and final lepton
momenta. For initial helicity +3 leptons

Ly, =3L3S+LE™ (13.1)
where
LE® = Fig, .,k k' (13.2)

Compare equation (11.43) for neutrino beams.

Consider now a polarised nucleon (with four momentum p and
covariant-spin vector s° such that s.p =0, s.s=—1. The hadron
tensor is

W=WS+wWh (13.3)
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where W& is given in equation (9.33) and

Z(V) ‘12)}
M
(13.4)

WD = ieumeg| s IMGi(v, a7+ B2 Gt 41 -

where G, are two new structure functions (Bjorken, 1966).

Notice that the contributions of G, , change sign when the nucleon
polarisation is reversed whereas W,, are polarisation independent.
Hence W, alone are probed in unpolarised experiments whereas to
extract G,, requires both polarised beam and target. This follows
because G, are in the antisymmetric piece of W,,, and so contract into
L), i.e. the piece dependent upon the lepton polarisation.

The double differential cross-sections 11,1} where the beam and
target spins are polarised parallel (anti-parallel) to each other along the
beam direction are

8a2E’2 6 ,0

o) dE,(TT Ny=— {Zsm EW1+cos EWZ] (13.5)
4a2E' , )

a0 dE,(TT N)= e {(E+E’' cos 0)MG,— Q*G,}  (13.6)

Where (13.5) is (twice) the familiar spin averaged cross-section (section
9.1, equation 9.35). Polarising the target transverse to the lepton
enables us to obtain a different weighting of the G,, G;:

d2 4 2 '
30 dE,(T —Te )——— 'sin 0{MG,+2EG,}  (13.7)

It is very important to be able to separate both of these structure
functions in order to test various theoretical models.

To appreciate the physical significance of these structure functions
let us relate the above kinematics to polarised (off-shell) photoab-
sorption cross-sections. This will also show why a total of four
independent amplitudes are needed in the description of the experi-
ment.

The total photoabsorption cross-sections are related by the optical
theorem to the imaginary part of the forward Compton scattering
amplitudes. In Table 13.1 we tabulate all possible ways the photon and
nucleon helicities can combine (one could also flip each and every spin
and obtain five more possibilities but by parity these are related to the
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TABLE 13.1
Forward Compton helicity amplitudes
Before After
VTV - - — -l — AN - - -
J.=+1,0 J.=+%; J.=%3 J.==1,0
Intermediate

Initial state state Final state

Yv P I Yv P
(A) +1 +3 +3 +1 +1
(B) +1 -3 +3 +1 -3
©) 41 - +3 o+
(€) 0 +3 +3 1 -3
(D) 0 +3 +3 0 +3

tabulated set). Since we are looking at forward Compton scattering
with equal mass particles then the configurations C and € are related
by time reversal and so we are left with four independent helicity
amplitudes

W1(1/2),1(l/2)) Wl(—1/2).1(—1/2), WO(I/Z),O(I/Z), Wl(—l/Z),O(l/Z)

where our notation is W;;; with i(i’), j(') the initial (final) spin pro-
jections of the photon and nucleon. The relations between these helicity
amplitudes and the electroproduction structure functions are

Wi=2:Wiamaam + Wicupicun) ~ 03, + 01 (13.8)
(1+ 2%/ QYW ~ W(=WL) = Wousz00/~ T2 (13.9)

2 —1 T T
vMG,—-Q°G,= 2(W1(1/2),1(1/2) - Wl(—l/Z),l(—l/Z) ) ~ 032012
(13.10)

\/2_(,22(MG1 +vGo) = Wiciyz00/2 ~ 012 (13.11)

where the o are the photoabsorption cross-sections into states with
J. =1, and with transverse (helicity + 1) or scalar (helicity 0) photons.
A more detailed discussion of the kinematics can be found in Dombey
(1969, 1971) or Hey (1974a,b). For the purposes of our parton model
discussion we will focus attention on the transverse asymmetry

T T 2

o1 =03,  —Q G+ vMG,
T T

o2t o3, Wi

A=

(13.12)
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From equations (13.5), (13.6) and (9.46) verify that (Dombey, 1969,
1971)

(do/d0 dE) (M=) _

(do/dAdE)Y 11+ 1) Yii-e?4 (13.13)

where £(Q?, v, 0) is given in equation (9.47) and we have neglected
longitudinal photon contributions. The cross-sections are for lepton
and hadron spins parallel and antiparallel. From equation (13.13) we see
that the experiments directly measure A. We shall concentrate on this
quantity because it has a fairly immediate physical interpretation being
directly related to the (virtual) photon—target interaction.

13.2 Physical interpretation of A in the parton model

Consider a proton with J, = +3 denoted P'. A photon—proton collision
occurs along the colinear z-axis. For a transversely polarised photon
J. = £1 and so the absorption has total J, =2or3:

y(J.=+1): ¥ +P'>o0y,

) (13.14)
yU:=-1): vy +P >0
Now consider a photon—quark interaction. If the quarks are mov-
ing along the z-axis (hence k= 0 in the proton), then the photon—quark
collision is colinear and the transverse photon will necessarily flip the S,
of thé quark with which it interacts (since L, =0 for a colinear
collision). Hence
1 ?
Y t4.~>4q
\ (13.15)
nwtq ->q :

but y'q* and y"q" cannot interact, and so with equation (13.14) we see
that

03/2~7TPT~2 6’i2¢11
(13.16)
127 ’)’lPT"’Z eiqu
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hence

‘ Ti2— 32 ) el [‘LT —qul
Tiatois Yiellql +qu] ( )

The probabilities ', g, are for quarks with spin parallel (antiparallel) to
the target.

As a qualitative example consider a proton with spin J, = +3 built
from three quarks. If there is negligible L, in the system then two
quarks will have S, = +3 and one S, = —3. Hence the quarks spins will
be dominantly aligned along the direction of the proton’s spin and so we
expect that A > 0. To quantify A we need a model for the distribution of
flavours (hence e?) among the ¢’ and q, probabilities. If we take a 56,
L, =0 wavefunction for the proton (Tables 3.7 and 4.3) then the
probabilities to find u’, u;, d’, d; in the proton will be

u'=3, u; =3, d'=3, d; =3 (13.18)

For the neutron u' isreplaced by d' etc. (compare equation 11.7). Hence
from equation (13.17) we have (Kuti and Weisskopf, 1971)
e_G-HHG-D s

A =6+ o (13.19)

1

and similarly for the neutron one finds

o _36=H+30-9)_ 13.20)
1 +i6+D |

For the unpolarised ratio one finds from the denominators of equations
(13.19) and (13.20) that o"~/o"" =% which checks the arithmetic since
the unpolarised proton and neutron have been taken as uud and ddu
respectively, the sum of squared charges being in the ratio 2:3.

It is instructive to see how this naive picture satisfies the sum rule of
Bjorken (1966):

1
lg—é=j d‘—x[A"P(x)FQ’P (x)—A"N(x)F3N (x)] (13.21)
3 8v 0' X
From equation (13.20) we have that A" =0. The [, (dx/x)F3" (x) is
given by Y, eZ (equation 11.38) which is unity for uud. Hence the sum
rule is satisfied if ga/gv =3. From the discussion in section 6.4 we see
that this is indeed the correct magnitude for g./gv given our model with
an L, =0 three quark 56plet nucleon. In that discussion we saw how
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ga/gv is reduced from § by angular momentum or quark transverse
momentum effects in the nucleon. In turn these effects will reduce A"
from 3. Since ga/gv is a coherent property of the nucleon then its
reduction from 3 tells us about {(o,) of the quarks when integrated
over all momentum fractions x. The polarisation asymmetry A" shows
how (o, (x)) is distributed in x. This may become clearer when we
derive Bjorken’s sum rule using the parton model.

We will study the difference of proton and neutron structure
functions and so will consider only u and d valence quarks. Recall that
in unpolarised electroproduction (equation 11.37)

7 [F5° (%)= F5 (x)] = 5[u(x) — d(x)] (13.22)

The coherent constraint that (2I;(proton)) = 1 yielded a quark sum rule
1

IE(ZI§)=J dx [u(x)—d(x)] (13.23)
0

and so, on combining equation (13.22) with equation (13.23), we found
a sum rule for the target

1
d
| 2 - e e =1 (13.24)
0

From equation (13.17) we see that, for a given quark flavour,

Ax)(q"(x) + qu(x)) = (¢"(*) — qu(x)) (13.25)

Since q(x)= q'(x)+ q,(x) in the unpolarised case, then defining §(x) =
q"(x) — qi(x), we have by analogy with equation (13.22) that

x AT FS ()~ AN F5 (0] =3 —d(x)]  (13.26)

In place of equation (13.23) we use the coherent constraint that for a

proton with J, =+3, 2L,0,) = ga/gv and hence we obtain a quark sum
rule

gr/gv=_2I0.)= J dx [i(x) — d(x)] (13.27)

in place of equation (13.23). Finally, combining equation (13.27) with
(13.26) yields

1 A ld P eP eN eN
Ei_f j T FY (0~ AN ()] (13.28)
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which is Bjorken’s sum rule. Derived this way we see that it is the spin-
dependent analogue of the Gottfried or squared charge sum rule for
unpolarised scattering equations (13.24) and (11.38).

If AN and AT each receive contributions only from u and d flavours
(i.e.if G, d, s, §, etc. are in an unpolarised sea) then we can form sum
rules for proton and neutron individually. If g, d, s, § are unpolarised
then the J, of the nucleon is built from the u and d flavours alone. Hence

(o,)= Ll dx [ (x)+d(x)] (13.29)

Consequently we can combine with equation (13.27) to derive two
quark sum rules:

L‘ dxﬂ(x)=%[(a,,)+§—A]

v

. . (13.30)
J dx d(x) =—[<az —g—A]
0 2 8v
Since
xTAP(x)FSF (x) = 4 (x) +3d (x) (13.31)
then from equation (13.30) we have
1
[ dx P P 5 1gA
—A° 5 =— +- == 13.32
Jo x A (x)FZ (x) 18<0-Z> 6 gv ( )
and similarly for the neutron
rl 1
A% 4Ny FSN () = (0, ) — 82 (13.33)
Jo X 18 6gv

The difference of these yields Bjorken’s sum rule (equation 13.28). If
ga/gv=3%o.) then
1
J d—afA’N(x)FEN (x)=0
x
’ (13.34)

Notice that the simple model equations (13.18, 13.19 and 13.20) indeed
satisfy the separate sum rules with (o.)=1. In general there will be
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gluons in the proton and these may carry some amount of (J,) in the
polarised target. Also the sea may be polarised. These phenomena can
be taken into account by replacing (o) in equations (13.29) to (13.34)
by (o**"**) (see also Sehgal, 1974; Ellis and Jaffe, 1974; and Gourdin,
1972).

In all of the foregoing discussion the quarks have been assumed to
have kr=0 (equation 13.15 et seq.). A quark described by a two-
component spinor x' at rest is described by the four-component spinor

E+m x'
T — =
1 V( 2E ) P+ (P.+iP,)x: (13.35)

E+m

if it is boosted to momentum P, .. By explicitly acting on this spinor

with
(0. 7)
'Yt —O+ 0

one sees the effect of absorbing a photon with J, =1. There is now a
nonvanishing amplitude for y"q" (contrast equation 13.15) due to the x;
in the lower components carrying transverse momenta (P, ).

To exhibit the effects of the transverse momenta we can consider the
quark asymmetry (13.17) for a single flavour of quark. In the original
case when kr=0 then this A“***=1. In the case of kr# 0 then from
equation (13.35) we see that

(E+m)P+Pi=pr _, _ p%
(E+m)*+P2+p5 E(E+m)

A (quark) —

(13.36)

Notice also that

2
1 N1 PT 13.37
(@'lexla=1- 5o (1337)
and so the sum rule for this quark target follows. Embedding this quark

in a general target pr and E will in general be functions of x and hence
A(x) will replace A in (13.36). Then

§=J dx [(uf(x)IO'zluT(x»—(dT(x)‘O.z|dT(x)>] (13.38)

and so the sum rule in equation (13.34) follows where now (o) is given

by (13.37) or ga/gv by (6.90).
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13.3 x - 1 behaviour

The unpolarised data suggest that the u quark dominates in the x > 1
region (Chapter 11). The x dependence of A = (01,2, — 03/2)/ (012 — T32)
will tell us whether it is u’ or uy that is preferred as x> 1. If the
unpolarised data attain the bound of %, i.e.
N N

Tg1/2 + T3/2 1

—— 13.39

0'11)/2 -+ 0'13)/2 4 ( )
then both o1,/0}/, and o3),/0%, must separately reach this bound
since the o are positive and only one quark is contributing. Explicitly if
u' and u; dominate over d'd, etc. then

(0'1/2+0'3/2)N_) UT+U¢

13.40
(0'1/2 + U'3/2)P 4(UT + Ul) ( )
olp_W 2 W (13.41)
oy 4l oy, 4uy )
Hence
T
AN= =T (13.42)
u+ul

This equality arises as a consequence of single flavour dominance. If
u" also dominates over u; then AN = A" 1 modulo gluons or angular
momenta contributing in this region.

Notice that there is another reasonable way in which the asymmetry
could attain the maximum of unity without the unpolarised ratio
reaching the bound of 1:4 (Farrar and Jackson, 1975). If there is no
orbital angular momentum in the nucleon and if gluons are absent as
x =1 then the 1:4 bound implies that there is only one quark parti-
cipating (the u quark) and that it carries all the target spin (i.e. the
remaining quarks have net spin of zero). This is the physical reason for
the maximising of the asymmetry. All that is required to maximise it
however is the weaker demand that S, =0 for the spectators. In this
case the interacting quark still has the same spin orientation as the
proton but has a probability to be a d' and not just a u’. The resulting
ratio for the unpolarised cross-sections in this case becomes

SN (13.43)
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as follows. From the wavefunctions of Table 3.7 verify that

P __ 242 N _ a2 P _1p2 N _ p2
0'3/2—3A, 0'3/2—14, 0'1/2—33, ogi,=8

(13.44)
where A and B are the amplitudes to find the diquark with S, =0 or 1.

Hence
. VB 2
oY A*+B? /

= (13.45)

o’ §A2+%Bz&
3
7

the SU(6) result arising when A = B but the minimum is now 3 when
the A =0. In a group theory sense the above is SU(6) broken down to
SU@B)xSU(3).

The reason why we have dwelt on this x > 1 behaviour is that there is
no fully satisfactory understanding as to why the unpolarised cross-
section ratio should fall below 2:3 in this limit. If the nucleon is a
three-quark structure then any pair of quarks can have I =0 or 1. If the
I = 0istheonly combination present, then the third quark must carry the
isospin of the target, and hence be a u in the proton and d in the neutron.
This yields a ratio of 1:4 for the cross-sections but has just pushed the
problem to a different place—no reason being given for the suppression
of the isovector diquark component.

It is plausible that the coupling of the quarks and gluons in the
nucleon may prefer the diquarks to be in a given state of spin as a
function of . If one could show that as x - 1 the diquarks prefer to have
S =0 then from the SU(6) nature of the wavefunction in equation
(4.29) one would immediately have that the diquarks have I =0 and so
the 1:4 ratio would arise.

In the laboratory frame a spin—spin force between pairs of quarks
splits the A and nucleon masses (sections 15.2.2 and 17.2). The nucleon
mass is pulled down relative to the mean of N and A due to this force.
The s.s force pulls down quark pairs in S=0 more than S=1
(analogous to the 7 being lighter than p). From Tables 3.7 and 4.3 we
see that the u quark isinan S = 1 pair more than S = 0, in contrast to the
d quark. Hence in the rest frame the u quark contributes a greater
amount to the nucleon mass than a d quark. In general this will yield
(x).>(x)s. However it is not clear how this picture survives a boost
P, > cosince the S, = 0 components of S = 0 and 1 get mixed up. Farrar
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and Jackson (1975) argued that quark—gluon interactions cause the
S=1,8, =1 diquark component, rather than the full S=1 diquark
system, to be suppressed as x > 1. A summary of the x > 1 phenomena
as a function of the diquark spin states contributing is given below.

AN AP l.TN/O'P

S =1and S =0 equiprobable (SU(6)) 0 3 :
S. =1 suppressed (S=1,S,=0and S$=0

retained) 1 1 3
S =1 suppressed (S =0 retained) 1 1 i

As x > 0 we expect the ¢4 sea to dominate and the polarisation to tend
to zero (Kuti and Weisskopf, 1971). If the naive 56plet model works
empirically for x =3 (as in the unpolarised case) and the asymmetry
tends to be large as x > 1 then predictions for A”"(x) follow like those in

W
e FE/C+
<
O ———————————————————————
)._
- | | !
Ol 02 05 |

X

FIG. 13.1. Data on A”"(x) compared with quark model predictions (Kuti and Weis-
skopf, 1971; Close, 1974a).
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Fig. 13.1. The simple quark model again appears to be in good
agreement with the data (Alguard et al., 1976).

13.4 Inclusive hadron production in polarised
electroproduction

In equation (12.23) we saw that the relative rate for 7~ production in
the current fragmentation region with a proton target is

N™(x, ) _4u(x)n(z)+d(x)
N™ (x,z) 4u(x)+d(x)n(z)

where 11(2)=D7" (z)/DI (z) is the relative probability that a u quark
fragments into 7+ or 7~ and empirically is of order 3 (equation 12.27).
As x> 1 the u quark dominance causes N™ = 12N" . When x =3, u =
2d in the unpolarised case and so N™ =2:5N"".

In polarised scattering we expect that when x =3thenu':u,:d":d, =
5:1:1:2. Since from equation (13.16) we recall that 03/21,2) probe q,a)
respectively then

(13.46)

(N”*> _ 4u'(x)n(z)+d"(x)
N™ )iz 4u'(x)+d'(x)n(z)
while the ratio for J, =3 has u' replaced by u; and d' by d;, (z) being
polarisation independent for the spinless pion. Then when x =3 we

expect
N\ (N"*) e
( N,,_)m_ L (), = (13.48)

which is only a small polarisation dependent effect. If as 2 » 17 (z) > o©
(equation 13.14 et seq.) then a dramatic effect may be observed. In the

. 1 + - .
unpolarised case for x=3 as ¥ >1, N™ /N™ =8, whereas in the
polarised cases as ¥ > 1

N™
- 20
(N" )1/2—) ’

Hence the forward production of fast pions should depend strongly on
the polarisation. Similar calculations can be performed for the neutron.
One can take into account the sea contributions as x = 0 and predict the
m* /7 rates as a function of x and polarisation (Heimann, 1977).

(13.47)

(N "+) ;z 13.49
N‘ﬂ_ 3/2 ( . )



14 Large p,. Phenomena

In deep inelastic electron scattering the basic interaction was seen to be
between the electron and point structures in the target. These pointlike
constituents (partons) appeared to have the same quantum numbers as
quarks.

Hadron-hadron scattering is more complicated than electron—
hadron because:

1. Both particles are composite whereas the electron is already a
pointlike probe.

2. In electron interactions the scattering mechanism is known to be
photon exchange. In hadron interactions the scattering
mechanism is less clear. For example at high energies and small
momentum transfers Regge trajectories are exchanged, the nature
of the exchanged trajectory depending critically on the quantum
numbers of the particles involved. For larger momentum transfers
the picture is less clear and cuts play a role.

At high energies and very large momentum transfers the hadron
interactions do appear to be more simple. The interaction appears to be
due to a hard scattering of the hadron constituents and some qualitative
similarities to electron—proton scattering emerge.

We shall describe some of the theoretical models for large pr
processes based on the idea that large-angle scattering comes about as a
result of a hard scattering of the hadronic constituents (partons).
Obviously we will be interested in the question as to whether these
partons are again the quarks that manifested themselves in the lepton
scattering.
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14.1 Basic picture of a large py process
A typical example of a large pr process is A + B~ C +anything where

the detected particle C has large momentum transverse to the A—B
axis. Kinematically we have the situation shown in Fig. 14.1 where

8

FIG. 14.1. A+ B~ C +anything.

pr=|p|sin 8. If s =(pa+ps)* then it is conventional to define xr=
2p+/V's. In the centre of mass frame of AB one has

)
t[=(ps—pc)’]= —%xT tan (14.1y
and
)
u[=(pa—pe)’]= —%xT cot 5 (14.2)
so that
’?“E % (14.3)

Finally one defines € = M?/s where M is the missing mass of the
“anything” in AB - C +anything.

If s, t,u, M?, pr are all large (i.e. larger than m%.s,c) then one may
hope that no intrinsic mass scales are governing the dynamics and that
the basic scattering is described as in Fig. 14.2.

The essential hypotheses are:

i. Soft fragmentations A > a, B> b, ¢ » C, d - hadrons occur where
the fragments carry finite fractions x of the parents’ momenta. It is
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supposed that these scale, i.e. fi =f2(x) etc. and that the trans-
verse momenta are limited.
ii. All the large pr then arises from the hard 2 » 2 scattering ab - cd.

One might hypothesise that abed are quarks. If so we can calculate
the cross-sections AB - C +anything if we know:

a. The quark distributions m the hadrons % (x)
These describe the vertices in Fig. 14.2(a), (b), and in principle can be

determined from deep inelastic electron scattering since (Fig. 14.3(a))
x F3t = Y, i IfA= proton or neutron this is feasible in practice. If

— 7

: Sdxtfix) :

| [

, |
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| l

4 |

| |
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| X

e

- 7 —
| 12 |
b | | |
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| | _ l
| [ a1 Unit |
| JSay ) | | probability |
L _ o _

FI1G. 14.2. AB~ C +anything at large pr arising as a result of fragmentations A -
a...,B-b..., hard scattering of constituents ab > ¢d, recombinations c > C...,d >
hadrons.

A = 7, K some further assumption may be required. Alternatively one
might hope to learn about these distribution functions a posteriori from
the data.
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b. The hadron distributions in a quark D} (z)

These control the vertex in Fig. 14.2(c), and can be determined from
e*e” > C +anything (Chapter 12; Fig. 14.3(b)).

(b)

FIG. 14.3. Inelastic electron scattering and e’e” - C +anything viewed as large pr
processes (compare with the template in Fig. 14.2). (a) A~ a. .. followed by ea > ea.
(b) e*e” > c< followed by ¢ -» C +anything.

c. The hard scattering subprocess ab - cd

Given knowledge of the distribution functions (a) and (b) then a model
for ab - c¢d will completely specify the cross-section for AB - C +any-
thing. Conversely, data on AB - C + anything will enable us to extract
the behaviour ab -> ¢d and hence learn about basic quark dynamics and
the nature of the strong interactions. We can therefore visualise the
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large pr arena as one where the scattering of quark beams is being
investigated.
The cross-section explicitly becomes

d 1
Eron ™| 480260 [ 9200 B @ ca)] [ ax i)
d*plap-cx %

(14.4)
The exclusive process ab - ¢d can be rewritten using
do § do
— =—3[(a+b—c)—mil— .
&Eplassca [(a+b=c)y'=m.] dt labsed (14.5)

where a =p, etc. and s =(a+b)*=2a.b=2xyA . B=xys. Similarly
1% = xzt and u* = yzu. Hence

do J dor
d&’plap-cx x dy dz 2 (*)f2 (y )fc ¥ ar dt
1 ¢ .
s'= xys w s s

where a sum over all possibilities is implied.

14.2 Hadron production at large p+

As a consequence of the basic assumptions (1) and (2) the following
behaviours follow just from kinematic considerations and are indepen-
dent of the quantum numbers of a, b, ¢, d:

a. The 2-2 process ab->cd is necessarily coplanar. Hence
supplemented with the assumption that pr is limited in A - q,
B~ b, ¢ > C we expect that AB - C + anything will be coplanar.

b. There will be a jet of particles on the same side as the trigger particle
C.

c. There will be a jet on the opposite side due to d - hadrons.

d. There will be a low pr background of particles coming from
“A—a” and “B—b" and moving along the A and B directions.
These particles will look like those in an “ordinary” small pr
collision of A and B at energy \/;,educed = \[s—ZpT.
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A summary of the data bearing on these points is as follows:

a. If the z-axis is the AB collision axis and «x the axis defining p then
noncoplanarity is measured by studying distributions in p, of those
events with large p.. It seems that

C«%~ P (‘<f>i>)

where (p,)~ 300-500 MeV. Since we expect a in A and b in B to have
pr limited by about 300-500 MeV then the observed {p,) is consistent
with originating there and the ab - ¢d indeed being coplanar.

b and c. There is some evidence to suggest that other high pr
particles follow the trigger and is an effect not entirely due to resonance
production. Also there is some evidence supporting a correlation of
rapidity on the opposite side to a high pr trigger.

More detailed discussion of these points can be found in Sivers et al.
(1977). For our present purposes it is sufficient to note that they do
appear to be present in the data and hence the basic kinematics suggest
the hard scattering mechanism to be realised. This means that it is now
meaningful to concentrate attention on the nature of abcd (are they
quarks?) and the dynamics of the hard scattering ab - cd.

14.2.1 THE HARD SCATTERING ab - cd

What do we expect for the behaviour of the ab - c¢d large pr process?
This will depend in particular upon the nature of ab - c¢d ; mechanisms
suggested include quark—quark scattering, quark-hadron scattering,
quark—antiquark fusion and quark interchange. More recently quark—
gluon and gluon-gluon scatterings have also been considered (Cutler
and Sivers, 1977; Combridge et al., 1977).!

In order to gain a feeling for the behaviours expected for each of these
it will be useful to return to some calculable familiar hard scattering
processes like eu >eu, ep>ep, ep>eX, e'e > u”. We will expli-
citly compute the large pr cross-sections for the “elementary” processes
and discuss their relation with the first three hadronic subprocesses
suggested above (the quark interchange will be discussed separately in

! Gluon—gluon fusion for producing charmonium states has been suggested by Einhorn and Ellis
(1975).
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section 14.6). Having done this spadework we can insert the cross-
sections for the elementary processes into the full diagram for AB > CX
and so calculate E(do/d*p)|as>cx from equation (14.6).

14.3 Some familiar large pr examples

1431 eu-eu

This is the template for gq - qq in Fig. 14.2. We have seen in equation
(9.58) that

2, 2
,$ tu

1
do_, 0 et (UD) (14.7)

dr

at large s, t, u.
The e'e” > u ™ (template for gq fusion) then follows at once and
we find

do 2+ u’

2 L
-d—t=217a K —>32f(t/s) (14.8)

Notice the scaling behaviour, namely that the dimensionless quantity
s?*(do/dt) is dependent only upon angle (f(#/s)) and not energy at large
5, t, u. Integrating equation (14.8) over d(#/s) yields

47ra”
3s

olee »uu’)= (14.9)

1432 em—>em

This differs from eu »> ep in its angular distribution (compare F; in
equation 9.71) and the presence of the elastic pion from factor F.(t).
Hence

do , US .,
—=2ra’——F2 14.10
dt 2 s’ ® ( )

At large t we suppose that
F.(t)~t™N
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and so

do 1 1

:1—;9;5 sz—Nf(t/s) (14.11)
The dimensionless s2(do/dt) now has an energy dependence s>V at

large s, t, u for fixed angle. The scaling behaviour of eu > eu is now
broken by the pion form factor (which in turn is a measure of the
nonpointlike nature of the pion—i.e. it is a ¢ composite state). It is
probable that N, ~1.

The spin averaged elastic electron—proton scattering cross-section
has a similar form but now Np ~ 2. The proton’s form factor is related to
its composite nature just as in the pion example. The higher value of N,
hence more dramatic fall off in ¢ or s, is probably related to the fact that
the proton is a composite of (at least) three quarks whereas the pion is
only two (gq). Indeed it has been suggested that the spin averaged
electromagnetic form factor of a system with a total of N quarks and/or
antiquarks should behave at large t as (Matveev et al., 1973; Brodsky
and Farrar, 1973, 1975)

F(t)~t'"N (14.12)

Hence mesons with N =2 have a t~' behaviour while baryons with
N =3 have dipole ¢~> dependence. The pion form factor is consistent
with a 7' behaviour at large |¢| both for >0 and t <0 (Fig. IV.C.2 of

Sivers et al., 1977). The quantity t*Gy(t) for the proton is shown in Fig.
9.3.

14.3.3 ELASTIC MM-MM MESON SCATTERING
The ex and eM elastic scattering had different energy dependence at
fixed angle due to the presence of the meson form factor. In turn, the

photon exchange contribution to MM -> MM will be related to eM -
eM. Hence

d
* 3 (MM~ MM) ~ | Fa(1)(t/s)

~s*Ng(t/s) (14.13)
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If M is a pion then N ~ 1 yields

do

T (7 —> ) ~ s °g(t/s) (14.14)

whereas for a proton N ~ 2 yields

S (00> p0) ~ R (1/5) (14.15)
At large angles there does appear to be evidence supporting this energy
dependence (Fig. IV.B.1 in Sivers et al., 1977) but the magnitude of the
observed cross-section is too big for photon exchange. Perhaps a vector
gluon is being exchanged? In fact various models give s ' behaviour
(see, e.g. the quark counting rules in section 14.3.4).

14.3.4 QUARK COUNTING

In the scattering of two elementary fermions, e.g. ey - e, the dimen-
sionless quantity s*(do/dt) was seen to be a function of angle and not
explicitly of energy at large s,t, u. For every additional elementary
fermion in the amplitude we saw that the amplitude dies by one
additional power of s. The quark counting ideas applied to large-angle
scattering of composite systems AB - CD state that the energy depen-
dence at fixed angle is governed by the total number of quarks or leptons
(Matveev et al., 1973; Brodsky and Farrar, 1973, 1975). Explicitly

3—(:(AB > CD) ~ s? Na¥Ne*NeNo)f(4/ )
=s"Nf(t/s) (14.16)
and so we have
euw>en: N=2
eM->eM: N=4 (any meson)
eB->eB: N =6 (anybaryon)

(14.17)
MM->MM: N=6

MB-MB: N=8

BB>BB: N=10
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as the slowest energy dependences for each process since NI™" =1,
M5in =2, N§" =3, Where available, data do seem to support these
counting rules and we shall utilise them when making hypotheses for
the s-dependence of subprocesses inserted into Fig. 14.2 for (do/dt)
(ab - cd).

For elastic scattering the target must not break up. If one constituent
is given a large kick then the system will break up unless all the other
constituents recoil along with the struck one. The larger the number of
constituents the smaller will be the chance that the whole system recoils
along with the struck constituent. Hence the elastic form factor dies
faster with g the larger the value of N (Fig. 14.4).

g

FIG. 14.4. Large t scattering of electrons on increasingly complex systems.

The mathematical formulation of this has been given by Matveev et
al. (1973). The dimension of a single particle state vector is m ™" if
relativistic normalisation is used. If this state is resolved and seen to be
an n-constituent system then its state vector may be written

lay=VN,|n,) (14.18)
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and the dimension of N will be
[N]=m?*"") (14.19)
in order that the m ™' dimension of |a) is preserved.
Since the elastic differential cross-section for ab - ab is given by
—(ab >ab)=s"?|(ab| T |ab) (14.20)
then

(NNb)’Z—(ab*ab § 7\ (nans | T |nams) "= Fon (s, 1) (14.21)

and the dimensions of either side are
m et D (14.22)

Matveev et al. then hypothesise (“automodelity hypothesis”) for
s,t=>00,t/s fixed that all dimensional constants are contained in N,,.
Hence the right-hand side of equation (14.21) depends only on kinema-
tical variables s and ¢ but not on any dimensional constants. Hence
under a change of momentum scale:

pi=>Ap
s—))\zs} i=a,b (14.23)
t>A%t

this quantity must transform homogeneously with the relevant dimen-
sions. Hence

Fau(A%s, A% t)y= A" "0F (s, 1) (14.24)
and so
da- —2(ng+np—1)
—d—t-(ab >ab)—>s fas(8/s) (14.25)
The energy dependence is a function of the number of constituents, the

angular dependence is a priori undetermined.
If particle a is elementary, e.g. an electron, then n, = 1 and so

(i—(:(eb >eb)>s ", (t/5)

> 1742 mg L, (t) (14.26)
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Defining the spin averaged electromagnetic form factor of system b
conventionally (cf. equations 9.17 and 9.22) as

do  _, 2
a~t |f(2)] (14.27)

then

t—=>00

fy—>t" (14.28)

hence ¢! for a meson and 72 for the proton. Further development of
these ideas can be found in Broksky and Farrar (1975), Blankenbecler
and Brodsky (1974), Sivers et al. (1977).

14.3.5 ep—>eX

In section 9.2.7 we showed that this cross-section can be written
(assuming scaling with 2xF; = F; etc., equation 9.71)
Edo_s d’c _2a® s"+u’
&p wdtdu t* s(s+u)

Fy(w) (14.29)

and so at fixed t/s, u/s (note w = (s +u)/—t) the behaviour is

Edo 1
dTpU~? (t/5) (14.30)

and the s dependence is that of elementary ex (or e-quark) scattering
(equations 9.59 or 14.7) in contrast to the s ° of elastic e-proton
scattering. It is this scaling behaviour (viz. s*(E do/d’p) being dimen-
sionless and independent of energy scales) that suggested that inelastic
electron—proton scattering occurs by the elementary subprocess eq > eq
(section 9.2).

In the quark counting picture we can now see an intuitive picture of
scaling in deep inelastic electron scattering. In the elastic eA scattering,
which is coherent, the target reveals itself as a system of three (or more)
quarks and the fast fall off of the cross-section with s (or ) results
(equation 14.11). In the incoherent inelastic process only individual
quarks reveal themselves in the target. Hence the number of operative
quarks is smaller than the coherent case and so the slower sort depen-
dence obtains.



318 AN INTRODUCTION TO QUARKS AND PARTONS

14.4 Specific models for ab -» cd and AB - CX

In section 9.2.1.1 we calculated the cross-section for the elementary
process eq - eq and inserted it into the full diagram eA - eX and hence
“predicted” scaling. It is this same idea that we will exploit in the
hadronic collisions AB— CX, namely inserting the subprocesses in
hadronic diagrams so as to predict the behaviour of the hadronic large
P process.

144.1 qq->qq

One contribution to this process will be the single photon exchange and
from the ex - eu calculation we see that

do
s* 5 (49> 99)1, = f(t/s) (14.31)
Hence (Berman et al., 1971)
E do 1 (t u) 1
==fl-,-)=—FgX 14.32
d3p AB~CX SZf s’s Pfrg( ™ 9) ( )

Exchange of a single vector gluon will therefore give p7", M =4 as the
only difference from the photon exchange example will be the gluon-—
quark coupling constant a, replacing a = 3.

The data seem to suggest that M is larger than 4, and this has raised
questions as to whether gluon exchange is operative. Clearly if a
coloured gluon is exchanged then there must be further flow of colour if
colour singlet hadrons are produced in the final state.

We can admit the difficulty of calculating the qq scattering and
instead extract it from the data. Within the hypothesis of qq - qq one
can make predictions that are independent of do/dt (e.g. particle
production ratios, correlations etc.). The reader interested in this is
referred to Field and Feynman (1977) and Feynman et al. (1977).

1442 qM—>qM

In ew >ex and qq - qq, we found (do/dt)~s™> and hence a p7*

behaviour in AB - CX. These results followed from photon or vector
gluon exchange or from lepton—quark counting.
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4

In eM »>eM and gM - gM we will analogously expect do/dt ~ s~
and hence

E— ~pTf(t/s) (14.33)
d’plap-cx
This is in agreement with the observed power dependence for pp -
7 + anything (section I1.B of Sivers et al., 1977).

There seems to be little motivation for this model other than to fit
the faster power dependence by replacing one pointlike quark by a
composite meson. What is not clear is why one should restrict oneself to
elastic scattering and not also gM - qM *. If the latter is allowed then
the subprocess ab - cd will be the inelastic gM - ¢ +anything in which
event one will presumably again find s > and pr* (by analogy with
ep - e +anything having the slower dependence on Q* thenep—>ep, i.e.
the inelastic scatter again sees the quark structure of the meson M and
so effectively qq - qq reappears).

The particle ratios in the final state will be similar in this model and

the qq = qq.

1443 q3-> MM : QUARK FUSION

qq = v~ qq will have s> behaviour like e'e” >y > u"u~. Generalise
this to gluon instead of photon and gq > gluon— qq is still s7%. The
quark-lepton counting also gives s 2. These results are trivial since
qq - qq 1s just like qq - qq turned on its side (s <> t) (cf. ex > eun and
e'e > u’u, equations 14.7 and 14.8).

Similarly q§ - MM will be expected to have an s * behaviour (like
gM - gM and so again will be a viable candidate for the observed p7°
behaviour of (E dcr/dsp)|,w*c‘__. This mechanism has been investi-
gated in detail by Landshoff and Polkinghorne (1973a,b,c, 1974).

A similar criticism applies here as to the previous example of
qM - qM : Why does qq - qG not assert itself and generate p7* ? One
possibility is that the subprocess is still at relatively low energies on the
quark scale and “coherent” gM - qM, or qG > MM, are at present
dominant whereas at (much) higher energies the basic (incoherent)
quark scattering will show up and p7* will emerges

A process where qq annihilation can indeed be isolated is when a
lepton pair is produced. The basic subprocess here is g§ > ui and the
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s~ of this shows up as an m™* (s=m?2,) dependence in the mass

distribution of the lepton pairs. This is known as the Drell-Yan
process and is of particular interest in that it can be explicitly calculated
in principle (Drell and Yan, 1971).

14.5 An example of gg fusion: the Drell-Yan process
pPp->u ...
In the production of lepton pairs at high pr with invariant mass away

from the prominent vector mesons one is presumably studying the large
pr production of massive photons. The basic parton subprocess is

r————

L__—_JJ |
r 1 -
| L
o I

I

|

L 1

FIG. 14.5. ppo>u*u™...viagd>u"n".

hypothesised to be g3 -y~ w '~ (Fig. 14.5). The cross-section
(equation 14.4) is very simple to write down
do

dm?

d
AB-outu” - g J dx dy f:: (x)f&B (y) d"(:-z (qq. - M+IL _)

(14.34)

The cross-section for g§ > ™ will be e times that for e’e” -
u ™ (equation 14.9)

do
dm?*

. . _ Ama?
CURd T )=We§3("l2_5) (14.35)
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Hence
do .
dmZ(AB—)“’ “’ . ‘)
' A B 4ma’ , 2
=1 | dxdy fA@IE) Sy e26(m’—syz)
a Y0 m
1) f2ly) 4ma’el (1
szjdx dyle®) [aO) dmace 5(———‘—2) (14.36)
a x y Im xy m

We therefore have two levels of prediction:

i. The cross-section is predicted to scale as

, do

d
e (or m’ ﬁ) ~ f(m?/s) (14.37)

m

ii. If A and B are protons then the quark distribution functions f3(x)
can be obtained from analysis of the inelastic lepton scattering
data. Hence the absolute size and energy dependence of
(do/dm*)(pp—>u 1™ .. .) can be predicted.

The J/¢ discovery has stimulated experimental studies of pp—>
I*1” .. .atlarge s with large m* and one can begin to compare the results
with small m? small s data, hence testing the scaling prediction (equa-
tion 14.37). An analysis by Lederman and Pope (1977) suggests that the
data are consistent with this (see also Antreasyan et al., 1977).

With better data one may eventually hope to extract the sea antiquark
distributions fz(x) since the valence quarks’ f,(x) is well determined
from lepton scattering data (at least for x = 0.3). Also one could envisage
making an absolute computation of the cross-section (equation 14.36).
In this connection one should note the role that colour plays. Inclusion
of colour decreases the predicted cross-section relative to that without
colour. This is because

ng "'Zfi(x)

and

do
dm?

~;fa(x)f:(y)’Vl"“z(x)Fz(y) (14.38)
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without colour whereas if there are N colours these would read

do
dm?*

FANEL® and SN AWR0)~p RORG)  (1439)

The crucial feature is that in the production of q(q) there is a factor of N
for colours at each vertex which is already included in F, measured in
deep inelastic lepton scattering. However, only the N combinations
where flavour and colour match can contribute to the q§ > u ¥ ~, hence
the overall depletion in coloured quark models relative to uncoloured.

14.5.1 p—p COLLISIONS AS q—§ COLLIDING BEAMS

The Drell-Yan process pp—~>u "1™ . . .is an example of annihilation of a
quark in one proton with an antiquark of the other. Can high energy pp
collisions simulate e"e” annihilation physics due to the g7 annihilation
mechanism? If the proton beams each have energy E in the centre of
mass then quarks in the beam have energies between 0 and E GeV
(0=x=<1) with (x)=0-2 to 0-3, and hence (E) = E/4. The antiquarks
are dominantly at small x, say (x)=<0-1, so (E)=< E/10. Hence the qq
collision is centred on (E/10)(g) +(E/4)(q) so that in the ¢4 centre of
mass the q¢ beam energy is 1/¥V40=1/6 of the proton beam energy.

Violations of scaling, such as are found in deep inelastic lepton
scattering, may have profound implications for ultra-high energy pp >
I"I” ... predictions. As {Q?) increases the structure functions F,(x) die
at large x and grow at small x so that (x) decreases (section 9.4). This
will affect predictions for large Q” Drell-Yan production. This is
particularly relevant to pp>W*W™ . . . searches if my =60 GeV. Dis-
cussion of scaling violations in this process have recently attracted some
theoretical interest in the literature (Hinchliffe and Llewellyn Smith,
1977).

14.5.2 SINGLE LEPTON PRODUCTION pp—>u’X
There are many sources of leptons at large pr. One particular source of

current interest is charmed particle production in pp collisions with
subsequent semileptonic decays of the charmed states. A “background”
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to this will be those leptons which are one of a Drell-Yan pair, the other
being not detected.
The basic subprocess qq = u@ has cross-section
do _ _ t*+u®
3 (93> pit) =2ma’ — eq

or equivalently

aq 2+ 2
3 st u—Sm2ma?! 54” (14.40)

3
d plag»uz 7

The inclusive cross-section for ¢g » uX is identical in form with this,
where =m” now includes m% instead of m?. If we neglect all masses and
insert the subprocess into the full diagram we can immediately calculate

FIG. 14.6. stu scaling of subprocesses in g4 fusion.

the cross-section for pp—> u* +anything. Note that the s, ¢, u of the
subprocess have scaled with respect to the overall s, ¢, u as (Fig. 14.6)

S=2Pq. g = XYS§
t=—=2p,. u =yt (14.41)
u=—2p;. u=xu

This leads to the cross-section

Ed
dspa(PP > 1 X )breliyan = 2 J dx dy fa(x)fa(y) %5(303}.? + yt + xu)

2y2t2+x2u2
(xys)*

Rewrite the § function as (1/5)8[xy +y(#/s) +x(u/s)]; note that #/s
and u/s are functions only of x1, 8 and that p% = tu/s = sg(xr, 8), then

X 27ra (14.42)
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we can rearrange equation (14.42) into the form

do

d’p

. 1
(PP~ 1" X)pv =;4—F(x"r, 0) (14.43)
T

andso p1 (E do/d’p) is predicted to scale (i.e. a function of x and angle
only).

15.5.3 DRELL-YAN ANNIHILATION WITH MESON BEAMS

A rather direct way of investigating if it is ¢ annihilation that indeed
generates the massive muon pairs is to compare the rates for dimuon
production with incident 7" and 7~ beams. If one uses an isoscalar
target (e.g. carbon) then the ¢q annihilation predicts that for large
dimuon masses

7 Copu . w1
T Cou"u ... 4

(14.44)

This is essentially because 7 *(ud) produces photons by annihilation of
the d with a d quark in the target while 7 (dd) produces it by G
annihilating with u. The ratio of the squared charges is 1 :4 and in an
isoscalar target d and u quarks are equiprobable; hence the ratio of 1 :4
for the production.

More quantitatively one can predict the x = M?/s dependence of this
ratio. Since X,X; = M?/s then for small M?/s quarks and antiquarks
from the sea (in either 7 or nucleon) will give the dominant contribu-
tion and so the 7% and 7~ beams will have equal probabilities to
produce the photon; hence

T Coutpu ... m¥ss0

T Contn .. (14.45)

For large x(=0-1) the valence quarks will dominate and the ratio of
1 :4 will obtain. As x is increased from zero to moderate values a gradual
transition in the ratio from 1 to 3 should be seen if the g annihilation
into a photon is the operative mechanism.

The data are shown in Fig. 14.7. There is some indication that this
mechanism is indeed operative. Notice that at the masses where pro-
minent vector mesons are produced (e.g. J/¢) the ratio becomes unity,
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showing that here it is the meson rather than a photon which produces
the muon pair.

With this indication of support for the ¢4 annihilation mechanism
one can calculate the production ratio with 7™ beams on arbitrary
nuclei. Consider a nucleus with a protons and B8 neutrons. As usual
d®(x) represents the probability for a down quark in the proton etc.

N
j -
b
~
i
h -
b

0-25+

1 1 | |
0 | 2 3 4 5
M., (GeV)
FIG. 14.7. Ratio of cross-sections for " C->u*u™.../#7C>p u"... (Smith,
1976).

Then since 7 *(ud) selects out d quarks while 7~ (da) selects u,

7 (@P+BN)»u*u™ .. () = ad”(x)+ Bd™(x)
7 (@P+BN)>u ™ ... 4(au”(x)+ BuN(x))
ad®(x)+ Bu®(x)
= 14.46
e pd ) )
To say more requires knowledge of d/u(x). Since this ratio can lie
anywhere from zero to infinity one has a range of values 8/4a (when
d=0) to a/4B8 (when u=0) for the #*/7  production rates. For
isoscalar nuclei @ = 8 and so the 1:4 obtains independent of d/u(x).
For other nuclei the ratio will depend upon d/u(x).
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As an example consider hydrogen (¢ =1,8=0). Then as x->1
where d/u(x) > 0 (Chapter 11) we expect the ratio will tend to zero (the
7" cannot annihilate) while as x - 3, where 2d = u, the ratio will be 1:8.

14.6 Constituent interchange

A contribution to the scattering cross-section for the interaction of two
composite systems will be the exchange between the systems of one or
more of their constituents. Examples include interchange of electrons
in atom-atom collisions and possibly interchange of quarks in hadron
collisions. Blankenbecler et al. (1972) originally hypothesised that the
different normalisation of the cross-sections for large angle pp - pp and
PP - pp might be accounted for if quark interchange was the dominant
mechanism in large-angle scattering. Encouraging support for the
model came from the discovery that the angular structure of K'p—> K*'p
and pp - pp appears to be consistent with the model calculation if the
proton is treated as a quasi two-body system comprising a quark and an
elementary diquark “core” with spin 1 and coupling to the quark with a
Y. vertex (i.e. the proton—quark—vector core vertex conserves helicity
asymptotically). If a scalar core had been used then the angular
distribution is altered but the s™ dependence at fixed angle stays the
same.

The diagrams calculated by Blankenbecler et al. are shown in Fig.
14.8. Matveev et al. (1974) employed dimensional counting and argued

FI1G. 14.8 Constituent interchange diagrams in pp - pp in the quark (——) plus core
(~~4)model.

(s (sv)

(ut) (v}

X
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that the (ut) graph dominates the interchange amplitude because the
(st) and (su) graphs are absent in leading order (where no antiquarks are
present in the proton). Hence their angular dependence is different
from that of Blankenbecler et al.

In general these models predict that the energy and angular depen-
dences factorise

%‘;(pp-mp)*'s‘NG(cos 6)

A detailed description of these models is given in section V of Sivers
et al. (1977). This work is also recommended as a detailed introduction
to large transverse momentum processes and contains an extensive
bibliography of both the phenomena and theoretical works. The appli-
cation of the nonperturbative covariant parton model to large pr

physics is described in the earlier review of Landshoff and Polkinghorne
(1972).
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FIELD THEORIES OF WEAK-
ELECTROMAGNETIC AND STRONG
INTERACTIONS, NEW PARTICLES
AND RECENT DEVELOPMENTS






15 Introduction to the
Phenomenology of Non-Abelian
Gauge Theories

In recent years two dramatic developments have taken place in high-
energy physics, both of the first order of magnitude in significance and,
moreover, apparently intimately linked.

First of all, on the experimental side, has been the discovery of a new
spectroscopy of hadrons associated with the existence of a fourth
flavour of quark (charmed quark). Initially, in November 1974, two
groups independently announced the discovery of a massive metastable
meson called J or ¢y (Aubert etal., 1974; Augustin et al., 1974). This was
the first clear evidence for the charmed quark, and is a 33, state of cc.
Within a few months a spectroscopy of these states with hidden charm
(cc) had been revealed. In the middle of 1976 the first evidence was
found conclusively proving the existence of hadrons with manifest
charm and the spectroscopy of charmed particles is now slowly
emerging.

What makes these discoveries even more dramatic is the fact that
theoretical developments in the preceding years had anticipated and
indeed required them. In order to appreciate some of the features of the
charmed particles whose discovery and properties are described in the
following sections we will first make a brief and superficial survey of the
theoretical developments that bear on this topic. These are the dis-
coveries that non-Abelian gauge field theories appear to play a crucial
role in high energy physics ('t Hooft, 1971a,b, 1972; Gross and Wilczek,
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1973a,b; Politzer, 1973), both in connection with unifying the weak and
electromagnetic interactions and also the possibility that coloured
quarks might interact by exchanging coloured gluons and hence
generate a field theory of strong interactions (quantum chromody-
namics or QCD) (Fritzsch et al., 1972, Weinberg, 1973; Gross and
Wilczek, 1973b).

Having made the theoretical introduction to the non-Abelian field
theories we shall discuss the phenomenological consequences of them
with particular regard to hadron spectroscopy and the emerging data on
the charmed particles.

15.1 Non-Abelian gauge theories of weak-electromagnetic
interactions

A major theoretical development recently has been the realisation
that non-Abelian gauge field theories may play a role in high-energy
physics.

As a first example we cite the discovery that a unified field theory of
weak and electromagnetic interactions could be formulated (Glashow,
1961; Salam and Ward, 1964; Weinberg, 1967; Salam, 1967, 1968)
which satisfied requirements of gauge invariance, renormalisability etc.
('t Hooft, 1971a,b). The phenomenological support for such an idea is
now very impressive and will be described in the first part of this
section.

Feynman and Gell-Mann (1958) successfully hypothesised that the
vector part of the charged weak interaction (W™ emission or absorp-
tion)' is related by an isospin rotation to the isovector piece of the
electromagnetic interaction. In a world of four quarks and four leptons
the left-handed components of these fermions form doublets of this
“weak isospin” (SU(2).)

() () (5) (5). 5.0

which characterise their weak couplings. Here c 1s a fourth flavour of
quark originally invented to introduce a symmetry between the leptons

! The idea of W* vector partners of the photon appears to be due to Schwinger (1957).
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and quarks. Furthermore

dg=d cos 6.+ssin 0,
(15.2)
se=s cos 8,—d sin 8,

are the eigenquarks of weak isospin, in contrast to s,d which are the
eigenquarks of strong interactions, the angle 6. being the Cabibbo
angle.

The interactions with charged W bosons (which are the I;= =1
members of a weak isotriplet) then cause left-handed transitions
between v.and e, », and i~ in the lepton sector and between u and d
or s (amplitudes cos 6. or sin 6. respectively) in the quark sector. With
the hypothesised charmed quark, then, the orthogonal combination of d
and s quarks also takes part in the weak interactions, the d and s
coupling to the ¢ quark with amplitudes —sin 6. and cos 6. respectively.

Glashow (1961) extended the idea of weak isospin by introducing a
U(1) degree of freedom called weak hypercharge. The resulting model
has an SU(2)w & U(1) structure (Glashow, 1961; Salam and Ward,
1964). The leptons and quarks are distinguished by their weak hyper-
charge, related to electrical charge by

Q=Yutlu (15.3)

in the left-handed doublets.

The multiplet structure of the right-handed fermions is controver-
sial. There is good evidence against the charged weak interactions
having a right-handed component connecting u and d or s quarks and
V., withe™, u " leptons. If there are only four leptons and quarks then it
appears that the right-handed fermions are scalars under weak isospin
with hypercharge and charge

Q=Yu (15.4)

However, if further heavy leptons or quark flavours exist, then it is
possible that these could exist in doublets containing u, d,s in the
right-handed sector (e.g. Fritzsch et al., 1975). This is a question to be
settled experimentally.

The model of Glashow (1961), Salam and Ward (1964), developed by
Salam (1967, 1968) and Weinberg (1967), postulated that the weak and

electromagnetic interactions occur through coupling of the fermions to
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weak isospin and weak hypercharge gauge vector bosons W*, W~, W°
and B; specifically

La=gTvizui) Wre(Svvar)s  s9)

where g and g’ are a priori arbitrary coupling strengths.

If all interactions are invariant under weak isospin and hypercharge
gauge transformations and all particles and gauge bosons are massless
then the theory will be renormalisable. The resulting field theory is
called “non-Abelian” because the gauge fields do not commute (cf.

section 2.2.1.4) (Yang and Mills, 1954)
[VVi, Wl] = l'sijka

The empirical problem is that m, # 0 since it is not seen in neutron
B-decay nor in K decay. More recently the non-observation of
significant scaling violations in weak interactions (Chapter 11) suggests
that the W is more than 10 GeV in mass.

The above model’s possible relevance as a physical theory came about
when ’t Hooft (1971a,b) proved the conjecture of Weinberg (1967) and
Salam (1967, 1968) that if the particles and bosons gained masses by the
mechanism of spontaneous symmetry breaking (Guralnik et al., 1964;
Higgs, 1964a,b; Brout and Englert, 1964) then the theory remained
renormalisable. After spontaneous symmetry breaking the %’ and B
become mixed yielding states

A =cos OwB +sin Ow W5
Z° = cos OwW's—sin OB

where Oy is known as the Weinberg angle. The fact that A couples to the
charge, and that the charge is conserved, implies that A remains
massless and hence this is the physical photon. In contrast the currents
(charges) to which the Z couples are not conserved and the Z gains a
mass, probably of the order 70 GeV (Weinberg, 1974).

We will formally write the neutral piece in £, (equation 15.5) as

gW3%+ ¢'BY (15.8)
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Then substituting in equations (15.6) and (15.7) for the fields A, Z and
constraining the couplings by

g =g tan Oy (15.9)

the neutral interaction becomes

: _ & (T3 _ o2
Qg sin Oy, .A+COS 0WZ( > Q sin OW) (15.10)

Rewriting g sin @y =e then this becomes

O +—2 Z(%—Qsinz ow) (15.11)

sin 20w

The first term is the familiar electromagnetic interaction. The second
term is a new neutral current predicted by the theory.

At the very least one has for the first time a renormalisable field
theory of weak interactions. The observed weakness of the weak
charged interaction relative to the electromagnetic strength is under-
stood if the W have masses of order 75 GeV (G~ g°/m% with g>=
47a). The masses of Z and W™ are related by

m% = m3 cos® Ow (15.12)

and so the Z is predicted to be more massive than the W* (Weinberg,
1974).

The immediate prediction of the theory is that weak neutral currents
should exist, e.g. vp—> vp as partner of the familiar yn-> u p. The
discovery at CERN in 1973 that such neutral currents exist in Nature
was the first hint that such a theory is relevant to the real world (Hasert
etal., 1973; Benvenuti et al., 1974). The second feature of these neutral
currents is that they empirically conserve strangeness. The status of
neutral and charged weak currents is summarised below

AS=0 AS#0

W= charged vn->up K> u*y

Z° neutral vp->vp K'Au*u~
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The weak neutral current connecting do with dy appears to give rise
to unwanted strangeness changing neutral currents' of form
ds sin @, cos .. However, if the u and c quarks are"degenerate in mass,
the neutral current connecting s, with s, exactly cancels the unwanted
ds sin 6, cos 6. term and no effective d <> s transition can be induced in
any order. The observed suppression of strangeness changing neutral
currents K; » u "™, mvv etc. requires only that the u, c mass splitting
is small on the scale of W boson masses (Gaillard and Lee, 1974).

The suppression of strangeness changing neutral currents requires
the existence of the charmed quark whose weak interaction is®

c<>scos #—dsin 6 (15.14)

(Glashow et al., 1970). The consequences of this are that a whole new
spectroscopy of particles will exist containing one or more charmed
quarks. The lightest of these must be limited to being at most a few GeV
in mass in order to understand the suppression of strangeness changing
neutral currents.

The discovery of the ¢ particle in 1974 was the first evidence for a
fourth flavour of quark, specifically the ¢ being a cc combination.
Before entering into the phenomenology of charmed particles and the
evidence for them we will give the theoretical background to the
second place where we believe that non-Abelian gauge field theories
may be relevant, namely in the strong interactions. This will then
provide the complete theoretical background against which we may
compare the emerging phenomenology of the new particles.

16.2 Quantum chromodynamics: a non-Abelian gauge field
theory of strong interactions

The gauge field theory uniting the weak and electromagnetic inter-
actions is non-Abelian due to the fact that the gauge bosons carry

! The problem of strangeness changing neutral currents in the SU(2) X U(1) model with nonzero
Cabibbo angle was commented upon by Salam and Ward (1964).

2 Gell-Mann had already suggested that a fourth fundamental field might exist and have a weak
current of the form in equation (15.14) (see footnote 3 in Gell-Mann, 1964). This idea was
developed by Hara (1964). However, these fields were postulated to have charges of zero or minus
one and the parallelism with the leptons was commented upon. Bjorken and Glashow (1964) built
a model based on these four fields and invented the name “charm”. This has little relation with
the modern concept of charm. Their fields had integer values of baryon number and hypercharge
and charm was carried by three of the four fields. This gave rise to integer charges through the
modified Gell-Mann, Nishijima and Nakano relation which became Q = I3+ Wy +0).
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flavour and are coupled to the weak isospin and hypercharge of an
SU(2)wx U(1) group structure. This non-Abelian gauge field theory
has been evocatively named “Quantum Flavour Dynamics”, an obvious
extension of the Quantum Electrodynamics contained within it. The
QED coupling to electrical charge is a U(1) coupling, e. In QFD the
SU(2) x U(1) structure involves also 2 X2 matrices, T, describing the
couplings of the SU(2) portion of the flavour flow (in direct analogy to
the way the Pauli 7 matrices appear in the isospin exchange in nuclear
forces). This was seen explicitly in the Langrangian (equation 15.5).

The idea that each flavour of quark appears in any of three colours has
been exploited to formulate a non-Abelian gauge field theory of strong
interactions. The gauge bosons carry colour and if the three quark
colours generate an SU(3).oi0ur group, then the gauge bosons couple via
3X3 N matrices (analogues of the 2X2 7 matrices in the SU(2)ic0spin
example). The resulting theory is called quantum chromodynamics
(QCD). If the SU(3)coiou is an exact symmetry so that the three colours
of any particular quark flavour are degenerate, and if the coloured
vector gluons are massless then the theory is renormalisable. It is hoped
that quark confinement will be a consequence of this theory and hence
part of its potential significance.

Before developing the theory we will survey the evidence suggesting
that quarks indeed come in three colours.

1. The large magnitude of the cross-section for e"e” annihilation
suggests that the quarks are coloured. Specifically below charm pro-
duction threshold

T ¢ Thadrons » [ %udsuncoloured
R= e*e sputp~ =zei = . (1515)
O QeD i 2 uds in 3 colours

Upon crossing charm production threshold one expects an increase in R
of § for uncoloured charmed quarks or % if they have three colours. The
observed increase is of order 2 to 2-5, one unit of which is due to pair
production of 2 new heavy lepton 7 of mass =2 GeV (Perl et al., 1977).
There is no evidence for a second heavy lepton threshold in this region,
so the remaining increase of 1 to 1-5 is presumably due to the charm
degree of freedom. This is consistent with ¥ and hence a charmed quark
with charge % (squared being %) in three colours.

ii. There is a theorem (Adler, 1969; Bell and Jackiw, 1969) which
states that the rate for 7° to decay to two photons can be calculated
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exactly by coupling two photons and an axial current to a quark loop.'
The amplitude is then proportional to Y I'se?, the I5 being due to the
isovector axial current and the squared charge arising from the coupling
of the two photons. The sum is over all quarks (in general all
fundamental fermion fields) in the triangle. The data require this sum
to be of order 3. For uncoloured ud quarks we have

Z 1382=%%_é)=% (15.16)

whereas for three colours this becomes 3 due to the sum now being over
each and every colour.

iii. Hadroproduction of lepton pairs (the Drell-Yan process pp -
w u”+-+  section 14.5) has a cross-section whose magnitude can be
related to the F,(x) measured in deep inelastic lepton scattering (Chap-
ter 9). The lepton pair is the decay product of a massive timelike photon
produced when a quark in the proton annihilates with an antiquark of
the same flavour in the other proton. The cross-section will depend in
particular upon the x distribution of the antiquarks in the proton and
this explicit behaviour is controversial. Modulo this uncertainty one can
calculate the cross-section.

If the g and q each can exist in N colours then the probability that
they produce a photon (hence that they have the same colour) will be
1/N times that if no colour degree of freedom were present. Thus the
predicted cross-section will be 1/ N, smaller with N, colours than if the
quarks were uncoloured.

Whether or not N, = 3 fits better than N, = 1 will not be entirely clear
until the g(x) distribution and also nuclear physics effects are better
understood (most experiments have involved nuclear targets).

iv. Inspectroscopy of baryons we have met (sections 5.1 and 8.1) the
classical reason for inventing the coloured degree of freedom for quarks.
The nucleons are fermions and hence require antisymmetric wave-
functions, yet in an uncoloured quark model their wavefunctions are
symmetric. This is readily seen by considering the A™" made of three up
quarks in a total state of spin 3 along the z-axis. This state clearly has a
wavefunction which is totally symmetric and by the SU(6) symmetry

! Note that the coupling of f, of 7° to the divergence of the axial current 8,4, is a measured
number (Gasiorowicz, p. 580 et seq.). Hence there is no 1/v N colour normalisation factor from
the 7° wavefunction present explicitly'in the amplitude and so the rate is proportional to N*.
Contrast with n.—> vy (G. Kane, 1977, section 16).
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this implies that the nucleon has a totally symmetric wavefunction. In
order that the nucleon should have an antisymmetric wavefunction one
invents a further degree of freedom for the quarks, namely colour. With
three colours available for each quark one can form a totally antisym-
metric wavefunction for the A™" as follows

A++(u£u£u€()£ RBY

v. Further hints that colour may be relevant come from the obser-
vation of semileptonic decays of charmed mesons which appear to be of
the order of 10 per cent each into e v, and w” v, (Brandelik et al.,
1977b). Within the framework of a quark model if the weak decays are
triggered as follows

c<>s(ed, uP, urdg, upds, ucdc) (15.17)

and furthermore if the amplitude for each of these is the same, then
one expects that the semileptonic decays to electron and muon are equal
and are each one fifth of the total. The nonleptonic decays will be 60 per
cent due to the three colour degrees of freedom. The data suggest that
the strong interactions enhance the nonleptonic decays somewhat
leading to 80 per cent of the total.

There is also rather good evidence that a heavy lepton, 7, exists with
mass of order of 2 GeV and with leptonic decays of order 20 per cent
into electron and neutrinos and again 20 per cent into muon and
neutrinos (Perl et al., 1977). This is as expected with three colours of
quark since the decay is triggered as in Fig. 15.1(a).

T Ve Tt .
N
;>’\AAC ( w)

Vve€, Vu b

Vr .
> = (3)E)(3)
(Ua)n'y'a (b)

(a)
F1G. 15.1. (a) Heavy lepton decays *+ - v +leptons, 7> v+4qq4. (b) 77v - hadrons,
7%v > leptons.
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If one twists this Figure round, forming Fig. 15.1(b), then we can
imagine it as 77» > W™ > all hadrons and so

wp»_ T v=>hadrons
R =—7m———Nc—3 (15.18)
is the analogue of R™ ~hdrn = N 3. o2
vi. Colour provides a way of motivating why the interquark forces
saturate the three-quark system so that gqq are low-lying states whereas
qqqq etc. are not seen. This is described in more detail later.

15.2.1 COLOUR SINGLET HADRONS

When coloured quarks are viewed on a short time scale the effective
quark-gluon coupling tends asymptotically to zero (asymptotic
freedom). Conversely, when quarks are separated from each other by
large distances the interquark force grows. It has been widely specu-
lated that this may provide permanent confinement of quarks.

Heuristically a coloured quark polarises the vacuum about it with
emission and absorption of coloured gluons and quark pairs. From this
many-body soup the colour singlet combinations crystallise out with
low masses, the other states having large masses, probably infinite, and
hence do not appear as observables in the laboratory. We will attempt to
illustrate these ideas in a rough and ready way while bearing in mind
that no one has yet satisfactorily proven a mechanism for confinement.

If the quarks form the fundamental triplet representation of an SU(3)
group of colour then the following colour representations will ensue for
the particular combination of quarks and antiquarks listed.

q:3

7§:3®3=108

79:3®3=6D3
997:3R3R3I=306@3D15
999:3Q3X3=10808D10 (15.19)

Notice that only ¢4 and gqq .contain SU(3) colour singlets. If we
invented a rule that only colour singlets have low masses then we could
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easily understand why qq and qqq occur in Nature and why g, qq,
q4q, . . . do not. Of coutse, what we are doing is replacing one puzzle
with another: namely the puzzle of quark confinement has been
replaced with the puzzle of colour confinement.

A possible clue as to why colour singlets may lie low in mass comes
from nuclear physics (Lipkin, 1973). If one takes two nucleons, then of
the three possibilities nn, np, pp only the isoscalar (SU(2) singlet)
combination is bound—the deuteron. The binding of this state and
pushing up in energy of the I = 1 states comes about as a consequence of
isospin exchange between the nucleons. Analogously the exchange of
coloured gluons between the quarks can yield low-lying colour singlets.

First of all we will recall why the isospin exchange selects the I =0
combination from the two nucleon system. The electromagnetic inter-
action in hydrogen is proportional to the charges e;e, of electron and
proton. This product is negative and hydrogen is bound. By analogy the
exchange of isospin between two fermions has #; ~1I, . I,. In order to
calculate the expectation value of this isospin interaction we note that

‘ 211 .IZE(Il‘*‘Iz)Z—I%—I%

-3,1=0

_)<211'IZ)EItot(Itol+1)—%%—%%-) +%,I=1

(15.20)
Consequently the interaction for isospin zero is bound whereas for
isospin one it is unbound and so the isospin zero, or SU(2) singlet
nucleon combination in the nucleus, lies lower in mass than the
unwanted SU(2) triplet, or isospin 1, combination.

By analogy we can consider the exchange of the coloured gluon
between the coloured quarks. The interaction in this case will be of the
form

¥, ~F, .F,(F=3\=colour SU(3)3 X3 matrices) (15.21)

and by analogy with the previous example we can calculate the expec-
tation value and it gives (cf. equation 5.45)

QF, . F)y= AL —A2=Ai=A%-2)i=)], -3 (15.22)

(the A? is the Casimir operator for SU(3) and for a triplet or antitriplet
has the magnitude 3 whereas for a singlet it is 0). For an N body system
by analogy the interaction has the form

%} =z F;.Fj (15.23)

i)
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and one in this case finds
(Hr)> A —3IN (15.24)

The energy of a sy’stem of quarks will then have a contribution from
the quark masses and a contribution from this gluon exchange potential
and this total energy will be given by

E = Nm,+ V(F,.F) (15.25)

Then, inserting the expectation values of the colour gluon interaction,
we obtain for the energy of the system the following expression:

E=N(m,—3V)+ VAL, (15.26)

The energy of the system is, of course, nothing more or less than the
mass of the hadron built from these quarks.

Now imagine that the quark’s mass tends to infinity (which will of
course kill quarks as observables). Furthermore let

Mg sco

V=3m —s (15.27)

then this will give the possibility of finite masses for quark—antiquark
bound states due to the infinite potential cancelling the infinite quark
masses. The energy of the system is then found from equations (15.26)
and (15.27) to be given by

E=3A%m, (15.28)

A% is 0 for a colour singlet state but is greater than 0 for any colour
nonsinglet state. Consequently the quark mass being infinity means
that the energy of the system will be infinity for any colour nonsinglet
state. Only for the case of colour singlets will the energy go to zero.
Hence in this rather simple example we see that one can send certain
unwanted states to infinite masses, while keeping the wanted colour
singlet states with zero (i.e. finite) mass.

If we return to equation (15.27) and let the potential now be given by

V=3i(m,—¢) (15.29)
then the energy of the system will be given instead by the expression

E = Ne+3A%,(m,—¢) (15.30)
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As before the colour nonsinglets will have infinite energy but the colour
singlet energies will now be given by

E=Ne (15.31)

Phenomenologically, the quantity € has the following magnitudes for
different flavours of quarks

£uwa~350MeV; e.~500MeV; £.~1500 MeV
(15.32)

These quantities are effectively the energy that the quarks carry inside

the colour singlet hadrons or “effective masses” of the quarks (see also
Chapters 17 and 18).

FIG. 15.2. A QCD topology which does not factorise into A; - A;.

Clearly there is no reason to believe that this example is in any
obvious way relevant to Nature since the binding of quarks will involve
contributions from diagrams like Fig. 15.2 which are not like those
covered in the above argument. However, we have at least found a
model example where the colour degree of freedom can push certain
unwanted states up to infinite masses while retaining other wanted
states with low masses.

Note in particular that the above required the interquark forces to be
infinite in order to send the nonsinglet states to infinity. If we had done
this in a purely ad hoc way then we would have been at a loss to explain
why one can at the same time have quasi-free quarks in deep inelastic
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phenomena. The beauty of the asymptotic freedom in the non-Abelian
colour gauge field theory is that we can naturally reconcile these two
disparate effects.

15.2.2. COLOUR AND HYPERFINE SPLITTINGS IN HADRON
SPECTROSCOPY

We noted in the previous section that in colour singlet hadrons the
quarks have effective masses € and hence we would expect that typical
meson masses will be of order 700 MeV and baryon masses 1050 MeV
when all quarks are in their ground states.

In hydrogen the spin dependent, or magnetic, interaction between
the fermion constituents generates a spin-dependent contribution to
the energy which manifests itself in the hyperfine splitting of ’°S; and 'S,
levels. The former is higher than the latter and photoemission in the
transition between them yields light of 21 cm wavelength.

Analogously the quark-vector-gluon exchange including colour
generates both the correct sign and relative sizes of meson and baryon
spin-spin splittings. In particular we shall see that in the absence of
colour the baryon mass splittings would have the wrong sign and also
the A— N magnitude would be larger than p — 7.

First we will see how the relative magnitudes of baryon and meson
splittings are unsatisfactory in the absence of colour. The spin-depen-
dent interaction in the case of mesons has the form

(28,.8,)=S(S+ 1)—%
> AEy =+3A:17 (15.33)
—3A:0

and hence the pseudoscalar and vector are separated by a quantity 2A
(where A has dimensions of energy whose magnitude is not yet
specified). Similarly for the baryons the form of the interaction is

(2(8:.8,+8; .8:+8S,.8:))=((S;+8$,+8;)>— 8} — 8- §%)
=S(S+1)-2
> AEy =+3A:3"
—3A 5" (15.34)
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3+

and so 3" and 3" are predicted to be separated by an amount 3A.
Empirically the baryon splittings are smaller than the mesons whereas
the above is predicting the opposite.

A second problem concerns the signs of the splitting. The calculation
above took no account of the fact that in the meson case ¢ —q were
involved whereas in the baryon it was g — ¢. Heuristically we can see
that the sign is correctly predicted in the meson case and wrongly for
baryons. Recall that in hydrogen the dipole—dipole electromagnetic
interaction is written

e162

Hss~—1. P2~ — S,.8; (15.35)

mym;
Here e, , are the electric charges of the particles and hence the strength
of their couplings to the vector photon. For two identical particles
e1e;=e>>0 while for particle-antiparticle e,e, = — ¢2<0. Hence the
interaction becomes

Ess~ —8,.S, for particle-particle
) (15.36)
Ess~+8S,.S, for particle-antiparticle

For this reason the *S; is more energetic than 'S, in hydrogen.
By immediate analogy the vector-gluon interaction will have the form

Es,s ~ -‘Sl .Sz for q—q (15 37)
+Sl .Sz fOl'q_‘q-

and so the meson phenomenology was satisfactory in sign but for the
baryons one is now predicting that 3" is more massive than 3.

Consequently we see that there are two problems with the hyperfine
splitting if colour is not included. Firstly, the relative magnitude of
baryon and meson is not satisfactory and secondly the sign of the baryon
splitting is not correct. Both of these problems are remedied when the
colour degree of freedom is introduced. The splitting pattern in the data
with uncoloured gluons and coloured gluons is summarised in Fig. 15.3.
The reason that coloured gluons give satisfactory phenomenology is
entirely due to that fact that the coupling between coloured quarks in a
colour singlet baryon is of the same sign as between coloured quark and
coloured antiquark and half of the magnitude. This is the crucial feature
and we shall now prove this.
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In the electromagnetic case the S, . S, interaction was multiplied by
e1e; which took account of the electrical charge in the photon exchange.
In the case of quantum chromodynamics the interaction will instead
have F; . F, to take account of the “colour charge” in the colour gluon
exchange. We must therefore calculate the expectation value of

2F, .F,=(F,+F,)*—F;—F?

first of all for g in a colour singlet (i.e. meson) and secondly for ¢q in a
coloured antitriplet (i.e. a baryon). In a colour singlet'qqq state, any qq
pair must be in 3 of colour if they are to form a 1 on combining with the
third quark.

A —

——

Mass

33 0- iy on

(a) (b)

FI1G. 15.3. Hyperfine splittings of mesons and baryons (a) without colour, and (b) with
colour.

In the colour singlet meson we have that

(2F1 .F2>=0—A(23)—/\%§)

=3 (15.38)

where A% is the Casimir operator for an SU(3) triplet or antitriplet and is
equal to % in either case.

In the case of a baryon we have almost the same thing as before except
that in this case the quark pair in the baryon are in the coloured
antitriplet and hence

(2F, . F,)= /\<2§) —2A (23)
=—A2
3 (15.39)
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Hence

(Fl . FZ)qq in baryon — + %(Fl . FZ)qd in meson (15 -40)

in contrast to the uncoloured case where the gq and g¢ had equal
magnitude but opposite sign. The coloured degree of freedom therefore
gives satisfactory phenomenology, namely 3* more massive than 3* but
split by less than 17 and 0™ mesons (Fig. 15.3).

From this discussion we have seen that the hyperfine splitting
patterns of baryons and mesons are satisfactorily dealt with in quantum
chromodynamics. A quantitative discussion of this phenomenon, in
particular the relative magnitudes of the hyperfine splittings in the
nonstrange, strange and charmed spectroscopies, will be given in
Chapter 17 after the charmed particles have been introduced.



16 The New Particles

16.1 Charmonium

The dramatic discovery (Aubert et al., 1974; Augustin et al., 1974) of
the J/¢ vector meson with mass 3095 MeV in November 1974 opened a
new chapter in high-energy physics. This particle was seen as a distinct
enhancement in the e’e” mass spectrum in pBe—>e’e” +anything at
Brookhaven and in e"e” > hadrons at SPEAR. Apart from its high mass
it had the remarkable property of being metastable, its width to e"e”
being 4:8 +0-6 keV (which is typical of vector mesons), whereas its total
width is only 69+ 15 keV (for a 3 GeV state one would have a priori
anticipated a width of some hundreds of MeV).

Within a few days a heavier vector particle, ¢'(3684), was discovered
in e”e” annihilation. It had similar properties to the (3095), namely
conventional leptonic width ([ =2-120-3keV) and narrow
hadronic width (I'y = 225+ 56 ke V). Moreover about 50 per cent of the
¢' decays contain ¢ in the decay products (¢ - ¢, ¥m) and some 20
per cent are radiative decays to heavy metastable states y of masses
3-4-3-55 GeV.

These states have all the properties expected of the cC spectroscopy
associated with a fourth flavour of quark (charm). The ¢ and ¢’ are
1°S, and 2°S, states of cC while the x states are probably 1°P, .

In such a spectroscopy one naturally expects that n.(1 'Sy) will exist
below the ¢. This state may have been found in ¢ > yn.—> yyy. The
observed states between 2-7 and 3-8 GeV are shown in Fig. 16.1
together with their possible J*© and ct assignments. These will be
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discussed in more detail in subsequent sections. Experimental details
apd extensive references can be found in the bibliography cited at the
end of this chapter.

\ y(3772)
s (3D
2Mo N v(3684) .

2%s

X (3550),

p
X(3510)3p°
x(3455)? !
2s, X(3418)5,

Mass

X (2830)

| | |
O—+ 1= O++ |++2++

F1G. 16.1. States observed in 2:7-3-8 GeV mass range and possible cC assignments.

16.1.1 THE OKUBO-ZWEIG-IIZUKA (OZI) RULE

The lightest charmed particles ci have masses of order 1:8-2 GeV
(sections 16.4 and 16.5). The ¢", " (cT) states above 4 GeV in mass can
pair produce charmed mesons (Fig. 16.2(a)). Such states have widths of
several MeV, typically hadronic in magnitude. The states ¢, ¢’ however
lie below threshold for charm pair production so that the ¢ decays into
uncharmed hadrons by disconnected quark diagrams (Fig. 16.2(b)).
This situation is analogous to the ¢ (ss) which readily decays to strange
pairs KK but whose decay to 37, by disconnected quark diagrams,
appears to be suppressed.
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Motivated by the suppression’

I(¢~3m) _1

I'(¢p >KK) 5 (16.1)

a rule was invented (OZI rule, Okubo, 1963; Zweig, 1964b; Iizuka,
1966). Transitions are forbidden if they are described by a diagram that
can be cut by a line which does not cross any quark line and originates
outside the hadrons. The OZI rule is not exact since ¢ does decay to 37
and the ¢ does decay into hadrons. However, the rule does appear to be
better satisfied in the case of the ¢ than the ¢ (probably due to its
greater mass). Also the ¢, x, ¢’ system is very useful as a laboratory for
studying the breaking of the OZI rule since all of these states lie below
charm production threshold.

u
u

<.

C;a

u

(21N g}

0

ol o

(b)
FIG. 16.2. (a) ¢"->DD. (b) ¢ - uncharmed hadrons.

(a

As we will see in section 16.5 the properties of the charmed quark c in
the ¢(cc) system and in the charmed particles D(ci) etc. are in accord
with those anticipated in the non-Abelian gauge theory of weak and
electromagnetic interactions (quantum flavour dynamics). This has in
turn excited interest in the possibility of non-Abelian gauge theories of
the strong interactions (quantum chromodynamics). Several features of
the charmed spectroscopy fit in with this latter theory. In turn QCD
provides a well-defined mechanism for violating the OZI rule. Quarks
and antiquarks in a meson can annihilate producing gluons which in
turn produce qq pairs, e.g.

¢t~ gluons - ui, dd, s§ (16.2)

The way in which this happens for 7., ¢ and x decays can be quantified
in QCD if the charmonium system is similar to positronium.

! Note that phase space favours ¢ - 3.
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Qualitatively we can describe the QCD approach to the OZI rule as
follows. The processes ¢ »pm and ¢ - pm are described by the
diagram of Fig. 16.2(b) where solid lines are coloured quarks and wiggly
lines are coloured gluons. A diagram with n hard gluons will have rate
proportional to [a,(s)]" where a,(s) is the quark—gluon coupling
constant which is a function of s, the squared mass running through the
gluons. If a(s) is small then the amplitude will be small and so ¢ - p7
and ¢ - pm will be suppressed. In QCD the asymptotic freedom
property implies that a,(s) decreases as s increases. Hence a,(s = m?3)
will be smaller than a.(s = m3) and the greater inhibition of - pr, or
in general ¢ - ordinary hadrons, can be understood.' Empirically we
shall see that a (s =m3%)=0-5 while a(s =m?%)=0-2.

The same remarks can be applied to the hadronic decays of 7., x
states and ¢'. In the latter case phase space allows the decay ¢' - Y7 to
occur. This process is Zweig rule violating and in the quark—gluon field
theory can proceed by a diagram like Fig. 16.3. The dipion system has
an invariant mass that is less than 600 MeV and so the gluons that
produce them will be soft. Consequently a,(s) is small and this process
should not be strongly inhibited. This appears to be qualitatively true,
the width of this process being larger than the total width of ¢'—
ordinary hadrons.

A similar contribution to ¢’ decay is ' > n¢. This process has a
width of about 10 keV (4 per cent of all ¢’ decays) which appears large
given that phase space inhibits it (P-wave) and that n is dominantly
octet.” It may be that 7 contains some c¢ and so this decay takes place by

% ~

1T+

F1G. 16.3. Quark—gluon diagram for ¢’ - Y.

! See, however, the footnote number 27 in Appelquist and Politzer (1975a) where it is noted that if
the c¢ annihilates into a large number of gluons then each may be soft enough that a, is large and
the coupling is in the strong regime. The perturbation approach and dominance of the three
gluon mode is therefore questionable. No completely satisfactory resolution of this question yet
exists in the literature. It may be possible to justify the three-gluon dominance by appealing to
Kinoshita’s theorem (Kinoshita, 1962).

2 The ¥(cc) and ¢'(cc) are SU(3) singlets.
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an OZI-allowed diagram without suppression. The possibility that 0
and 1’ contain cc will be discussed again in section 17.6.

These singly disconnected topologies are known as “first forbidden”.
Examples in ¢ decays include wf and ¢f' in addition to mp etc.
Diagrams which are twice disconnected are known as “doubly forbid-
den” (Fig. 16.4). Examples include ¢ = f@, f'@ (the wdff’ system being
ideally mixed, viz. f' and ¢ are s§ while w and f contain only ut and dd).

wl v

(a)

o O

-

QQ QiR

(b)
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m

FIG. 16.4. (a) Doubly forbidden processes ¢ - fé, f > wmr. (b) ¢ > $S*, S* > 7.

Are doubly forbidden decays suppressed relative to singly forbid-
den? The data bearing on this are shown in Fig. 16.5. The data for
¢ > ¢ or KK are shown as a function of the 7 and KK invariant
masses. A clear f peak is seen in ¢ > w7 (i.e. ¥ > wf) but none is seen
in ¢ > ¢ (i.e. g5 ¢f). Similarly in y > KK and [’ peak is seen but
no such enhancement occurs in the ¢ > @KK mode. Hence ¢~
of, Aof'.

One might conclude that ¢ > ¢mr7r will in general be suppressed
relative to wrr since the former would be doubly forbidden. However
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some care is needed. Imagine that one produces a state A which is not
ideally mixed. If we write ull to denote utu +dd then in production

Y > (s8) + A(s9)
(16.3)
¢ - w(ui)+ A(uun)
The A is a physical eigenstate:
A =cos 8 ss+sin 6 ui (16.4)

and so can decay into KK or 7. Consequently ¢ - ¢ or KK can be
quite significant if the m,.,, or mxx is at a resonance mass.

W——>¢n*w-

,f‘qﬂnurgﬁ\ﬂ\

Events/50 MeV bins

1 | 1
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My

W—+¢K+K—

ﬂﬂnrﬂ'\l'l

/’ ¢—>wK+K

o g

5100 IOOO ISOO 2000

FIG. 16.5. ¢ > ¢7m, KK data as functlons of the 77 or KK invariant masses.
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From the data one can hope eventually to extract information on the
s§/uil content of states A. As an example we cite the $*(990) which is
clearly seen (?) in @77 and hardly seen at all in wsrr. This suggests that
S* has significant s§ content. The possibility of extracting information
on the quark content or existence of &£ (1200) also raises itself. Much
more data are needed before such a programme can be systematically
carried out. One begins to see here the possibility of using the ¢ as a
laboratory for learning about old-fashioned meson spectroscopy.

Finally there is the possibility of OZI-allowed decays ¢’ = yx, x = y¢¥
etc. The decays ¢' > yx have a sum total of around 60 keV which is
about 25 per cent of all ¢’ decays. The decays ¢ > 1y, 7'y and 7’y have
also been seen. The widths

FN'y->ny)=55+12eV

(16.5)
I'y->n"y)=152+117eV

for individual two-body channels are quite sizeable. This might support
the notion that 7 and 7’ contain some cc, the n' being more dominantly
singlet having the greater amount of c¢, which accounts for its greater
production. Compare with 7%y which has width

T(y~>m’y)=5+3eV (16.6)

This is in fair agreement with the naive vector-meson dominance
prediction
Ty > m'y) =3l (Y >7’p)=1eV (16.7)

and hence is consistent with Zweig single disconnection. The 77y and
1’y are 50 to 150 times more abundant than 77°y. This may be due to c¢
in the i, ', or due to SU(3) singlet photon couplings being enhanced
relative to the SU(3) octet. This latter seems unlikely since ¢’ - yy have
canonical widths (0(keV)), and involve SU(3) singlet photon couplings.

We now will make a quantitative investigation into some of the
preceding qualitative remarks. We begin with the ¢, x decays via
coloured gluons in singly forbidden OZI topologies.

16.2 Charmonium decays in quantum chromodynamics

The production of noncharmed hadrons in the decays o1 cC states like
¥, n., x will be radiative (e.g. ¢ - v - hadrons) or violate Zweig’s rule.
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The mechanism proposed in quantum chromodynamics is that
the cc first annihilate into gluons, the gluons then produce
noncharmed quarks and antiquarks which in turn comprise the
familiar hadrons.

It is supposed that the gluons are quasi-free (i.e. propagate as if
Abelian, no three gluon vertices being present) and fragment into
hadrons with unit probability. If, in addition, the quark—gluon coupling
a, is small then lowest-order perturbation theory can be used and the
matrix elements will be related to the analogous QED annihilation of
positronium into two or more photons (Appelquist and Politzer,
1975b).

We collect here the positronium annihilation formulae into photons
for L =0 singlet and triplet states, mass M, and R(0) is the radial
wavefunction of the fermion—antifermion state at the origin.

1 4a’ 2
I'('Se~> W)=M—21Rs(0)| (16.8)

re Sl-ww)——(ﬂ' —9) |R Wl (16.9)

The reader interested in the derivation of these formulae should consult
Chapter 12 of Jauch and Rohrlich (1955). For the P-waves the deriva-
tive of the wavefunction at the origin occurs in the positronium
annihilation

256 o’
TCPo>yy) == 1oIREOF (16.10)

Mo\*
re¢ Pz-wy)——l“( Py w)(M—Z) (16.11)

The derivation of these results can be found in Alekseev (1958). The °P,
and 'P, discussion will be deferred.

First we study the S-wave states of c¢, the 'So(n.) and *S;(¢). If the
charge of the quark in the ¢ is ¢, then for N colours of quark

2.2

s . 4a
I'y-ee)=—"—7— 3M2

IR ©)] (16.12)
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The decay of n.— vy is given immediately from equation (16.8) and for
N colours of quark' with charge e,
4a’e
Fme=>yy)=—rm— Mz [R o) (16.13)

(the n.and ¢ have the same radial wavefunction). Then independent of
the number of colours we have the prediction

F(nc_) 'YY) 2 ( M~b>2

————-=3eo\ — 16.1

I‘(w_) e+e— eQ M.,,’c ( 4)
If e, =% (charmed quark) and m, .<m then

F(n.>vyy)=iT(y->e'e) (16.15)

If m,.=2-8 GeV then this predicts some 8 keV for this decay mode.
The data on 7.~ yy will provide a good test for ¢,’s magnitude, or the
extent to which 7, contains more than just cc.

The decay 1. - hadrons proceeds by the intermediary of two gluons.
In QCD with a, the quark—gluon coupling strength at the . mass, the
prescription is to make the replacement in equation (16.13)

a’et>%a? (16.16)
and with N =3 in QCD we obtain

Fne~ gg)=> ]‘(4"’ 2(m) R O) (16.17)

(equation 16.16 is derived later in equation 16.40). If the gluons turn
into hadrons with unit probability then this formula gives the total
hadronic width of the n.. Comparing with equation (16.13) we find

I'(n.- hadrons) _2 af(m2)52<%>2(2/_3>4 (16.18)

T(n>vy) 9 a’el 8 €

From this we can predict the 1. width once «, is known, or conversely,
knowing the width, then a,(m?.) is obtained.

The decay mode ¢ - hadrons requires a three-gluon intermediate
state (section 16.2.1.1). The *S; >3 gluons decay is obtained from

! A c@ state made from uncoloured quarks will become 1/ N -]\-J(c.c,) with N colours It is this 1/ VN
normalisation whnch causes the widths to be proportional to N and not NZ. Compare and
contrast the 7° - vy in Chapter 15 of Kane (1977).
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equation (16.9) by the replacement

a3_)5af
18

(derived in equation 16.45). If the gluons create hadrons with unit
probability then

(16.19)

0 .
I'(’S; - hadrons) = 8‘;—77(772 -9) ;;2

Compare this with the width for *S; >e*e” (equation 16.12) and we
have

|R.(0)[ (16.20)

I'(y >hadrons) 5 2 al(m,) 2/3\?
T(Ww—>e'e) —1817(7r 9 a’ (eq> (16.21)

The data give
I(Yy>e'e)=48+0-6keV
I'(¢ - hadrons) = 69+ 15 keV

and so, if e, =%, we find from equation (16.21) that
a,(my =3 GeV)=0-2 (16.22)

This quark—gluon coupling is indeed small enough that our lowest-
order perturbation theory is justifiable. In passing it is interesting to
compare this result with the ¢ meson. Clearly from equation (16.21) we
can obtain

I'(¢ > nonstrange hadrons) T'(y>e’e”) 3

I'(¢ > hadrons) 4T(p>eTeT)

as(m¢)
as(mlll)

(16.23)

(the 1:4 being the ratio of strange and charmed quarks squared
charges). The ¢ leptonic width is roughly four times the ¢ and so the
ratio of hadronic widths is directly a measure of [a,(m,)/a(m,)]’. This
yields

a(my=1GeV)=0-5 (16.24)

Comparing with equation (16.22) we see a beautiful realisation of the
asymptotic freedom in the theory, the coupling constant at 3 GeV being
only 40 per cent of that at 1 GeV. Hence it is argued that the asymptotic
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freedom of the quantum chromodynamics theory is responsible for the
OZI rule becoming better at high masses, and so the narrow width of
the ¢ emerges.

As a test of this theory of the OZI rule one can compare the widths of
n. and . From equations (16.17) and (16.20) we have that

I'(n.>hadrons) 277 ai(n.)
['(¢ > hadrons) 5(m2—9) al(y)

(16.25)

Inserting a,(m,) =1 and taking a,(m,.) = a.(m,) then
I'(n.— hadrons) = 80I'(¢ » hadrons) =7 MeV (16.26)

Consequently the 7. is much broader than the ¢ but still much smaller
than “typical” hadronic widths of order hundreds of MeV at this sort of
mass. Comparing equations (16.15) and (16.26) (or inserting a,=0-2
into equation 16.18) we expect that

T>vy) _p
I'(n.— hadrons)

(16.27)

A final feature of S-wave decays concerns the radial excitations ¢’ and
N¢. Since production of ordinary hadrons and e‘e” both involve
annihilation of the cc at the origin then

I'(y' > ordinary hadrons) T'(¢'>e*e)
I'(¢ > ordinary hadrons) T'(¢>e*e”)

~04  (16.28)

Common channels in ¢ and ' decays do appear to be consistent with
this. A

The annihilation of P-wave positronium into two photons has been
studied by Tumanov (1953) and Alekseev (1958). Making the substitu-
tion a”—> a’e} then the two photon decays of the P-wave cC system are

4 1024 a’el, |
F(Xz"Y‘Y)=EF(Xo" =" p [REO)  (16.29)

where | R 5(0)] is the derivative of the P-wave radial wavefunction at the
origin. With the colour substitution (equation 16.40) of

I'2g) _ 2a]

TZy) 9a’eh (16.30)‘
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then

4 128 a?
T(x2—>gg)= EF(xwgg =—

5 M*
which is the result found by Barbieri et al. (1976a). The reader
interested in the detailed derivation should consult the work of Jackson
(1976b). The 4:15 ratio is a combination of a spin-orbital Clebsch
coupling (3) and sin* @ versus isotropic decay distributions ().

The decay width of these *P, ¢ states depends upon |R 5(0)|* which has
dimensions of mass to the fifth power and so is strongly dependent upon
the explicit details of the potential. Typically magnitudes of the order
0-05 to 0-1 (GeV)® have been estimated (Eichten et al., 1975 ; Barbieri et
al., 1976a; Jackson, 1976b). These predict widths of the order of 0-5 to
1 MeV for I'(P,) and 2 to 4 MeV for the °P,.

A final question in the P-wave concerns the decay of the axial vector
mesons J7¢=1""and 1*".

A state with J7© =1"" cannot decay into two massless vectors (in
particular two photons). This is known as the theorem of Landau (1948)
or Yang (1950). This in turn has implications for the two-gluon decay of
the P, (contrast the *P,,). The two photons (gluons) have polarisation
vectors €, , and the relative momentum of them is k. Any possible final
state wavefunction will be linear in €, and €, and transform as a vector if
the total state has spin 1. The only three possibilities are

|R%(0) (16.31)

1. €, X €,
. (g,.&)k (16.32)
ii. kX (€, X¢€,)

The first is antisymmetric in the two photons and so is the second (since
k->—k). The final possibility satisfies Bose—Einstein statistics.
However the transversality condition k . € =0 kills it and so the two
photon annihilation is forbidden. If gluons are massless then °P, - two
on-shell gluons is forbidden.

The decay of 'P,(J*¢ =177) will be into three gluons symmetrically
coupled in colour (dy) and the *P,(J*¢ =1"") will decay by three
gluons antisymmetrically coupled (f;;).' Hence naively one expects the
total widths to be much smaller than the *P,, brothers (which only

YA c=-—state decays into three photons by charge conjugation. The photons are trivially
symmetric in colour, hence the gluons must also be. Conversely the c= +decays require
antisymmetry in colour.
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required two gluons). However the *P, decay can take place into two
gluons if one is on and the other off mass shell (or if both are off shell).
Barbieri et al. (1976b) find that this process has a logarithmic diver-
gence. Similarly the three-gluon annihilation diverges logarithmically.
Their results are for the annihilation contribution to the axial widths

1"\ 1/ 128 , 4m?
F(r—) 377<320/3>M4|RP(0)| log z_arr (1633

where M is the system’s mass and 2m the fermion constituents’ total
mass. In the zero binding limit there is a logarithmic divergence.
Comparing those results with the calculation of the *P, decay yields for
the annihilation contributions

TCPy) 4 &, 4m®

TCPy) 97 Eam’—M> (16.34)

and
F(lPl)_l_Qg_il 4m*

TCPy) 27 7 & 4m’—M* (16.35)

Similar logarithmic effects may be expected from nonleading graphs in
the *P, and °P, decays.

This brings into focus some of the questions that need further study.
If quarks have large masses m (which is not the case for u, d, s but might
be all right for charm) then the lowest bound states’ characteristics may
be well approximated by the short distance Coulomb type of force.Ina
Coulomb potential (e.g. hydrogen) the binding energy in the Nth
quantum state is

2

8N?

E{’ =- (16.36)
For Coulombic binding in the qq system a - ja, (compare sections 15.2
and 17.3, in particular equations 15.38 and 17.34) and so

My =2m|1 L (4. 16.37
v=2m 8N2(3as>> (16.37)
If N=1,2 are the ¢(’S;) and ¢'(2’S,) then either one has a small a,
and large 2m, or small 2m and large .. In the former case one has a large
binding, which violates the weak binding assumption. In the latter case
the large a, violates the Coulombic bound state picture and no hope of
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perturbation theory can be realised. Therefore it seems that the
charmed system is not yet massive enough for the Coulomb picture to
apply. However it may be valid for heavier quarks (b,t...) and
gives some predictions for ¢ and y annihilations which can be tested
empirically.

16.2.1 RELATION BETWEEN HADRON AND PHOTON DECAYS

The qq annihilation into photons is a function of a =e¢?/47 and the
quark charge e,. The annihilation into coloured gluons involves a,=
g2/4m and the Gell-Mann 3 X 3 matrices A corresponding, at each gluon
emission vertex, to the SU(3)co10ur representation of the particular gluon
emitted. The relative rates for N photon and N gluon emission will
then be given by contraction over the SU(3) A indices.

16.2.1.1 N=2

The diagrams for c¢ - 2 or 2 gluons are shown in Fig. 16.6. The colour
labels 1, j=1, 2, 3 (red, blue, yellow) and the initial cC being a colour
singlet requires the colour label of ¢ and ¢ to be the same.
Photo-emission does not change the colour of the quark, hence the §;
colour space contribution at the upper and 8! at the lower vertex. Gluon
emission in general can change the quark colour. A member of the gluon
. 3]
| =—>—Tq v VVur

iY

e y
SW

| ——— NN

(%),
2 /i

FIG. 16.6. c&—2v or 2 gluons.
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octet (a =1...8) will change colour i to colour j and couple with a
factor (A,/2)}, one of the 3 X 3 matrices of Chapter 2.

Apart from the overall scale of the gluon—quark coupling strength
(a,) to that of the photon—quark (eZa) the only differences in the two
matrix elements are the above colour factors. Hence

M(2g) _ a0 (AJ2i0/2)_ o, 16u

= o 16.38
MQ2y) eéia 66! ela 3 ( )
where in the last step we used
Aq ﬁ) _1
Tr(2 ) = > (16.39)

which follows from the commutation properties of the A matrices. (Add
together equations 2.45 and 2.46 and remember that the A are trace-
less.)

To compare the rates one must also include the crossed diagrams
(Fig. 16.6(b)). Due to the 8,, the gluons are identical particles just like
the two photons. Hence all counting of states is the same in the two cases
and so the ratio of rates can be immediately computed by squaring
equation (16.38). Since ¥, 8,,6“ = 8 then

2 a?
I'2g)/T(2y) = 3 a%el (16.40)

Notice that this result depends only on the colour indices and not
upon angular momentum properties etc. Hence it applies equally well
to 'Sq as to P-waves etc. Finally we note that states with ¢ = + can decay
into 2y and hence also into 2 gluons (except if J¥=1" or 17, section
16.2). A c¢= + state can also decay to 3 gluons if any pair is coupled
antisymmetrically (f;) in the colour labels (this degree of freedom is
absent for colour singlet photons).

Two colour-octet gluons cannot couple to a colour-singlet state with
c¢=—. This is most easily seen by considering G parity (section 4.1.1)
generalised to SU(3). The two gluons will necessarily have positive G
parity and hence the colour singlet state must also have positive G
parity if it is to couple. For a (colour) singlet then the (colour) isospin is
clearly zero and hence the charge conjugation must be positive if its G
parity is to be positive. Hence the ¢ = + colour-singlet can decay into
two octet gluons, whereas ¢ = — needs at least three.
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The analogous argument in flavour SU(3) forbids the singlet ¢ to
decay to the octet K"K~ but allow KK* since K and K*(890) have
opposite generalised G parity. The ¢ can decay to K*K™ due to its octet
component.

16.2.1.2 N =3

States with ¢ = — decay into three gluons coupled symmetrically in
colour (analogous to the fact that the decay into three photons is trivially
symmetric in colour). Hence, in the analogous notation to the N =2
example, we have

M@Bg)  al? [(A/2)i(Ae/ Dh(Ae/2) sy
M@y) ea™? 51618k

(16.41)
Symmetrising the ab labels in the colour case we have
"_ﬂi) _1 ({)‘_ ﬁ}’&)
T(zzz 2""\12°202

and since trace A =0 then from the commutation relations in equation

(2.46) we find that

As Ay 1 1
E Tr ({ 2 2 } E) = '8' TI' dabcAb/\ dabc&,c (1642)
Insert this into equation (16.41), square it, use the fact that
Y ()’ =% (16.43)

abe
(which follows from Table 2.1) and verify that
I'Gg) 5 ai
I3y) 54 a’el
The *S; > 3y width is given by equation (16.9) multiplied by 3e$ (the 3

is for colour). Hence the three-gluon decay width is obtained from
equation (16.9) by the replacement

(16.44)

3_)5012
(44
18

(16.45)

as asserted at equation (16.19).
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16.3 The charmonium spectroscopy

16.3.1 THE x PARTICLES

If ¢ (3-1 GeV)and ¢'(3-7 GeV) are respectively the 1 °S, and 2 *S, states
of a cC system, then one expects that c¢ states 1 *Pg; , should exist with
masses less than or of the order of the ¢’ mass (e.g. (i) the spectroscopy
of uds flavours suggests that P-wave qq states are of order 500 MeV
heavier than the S-wave; (i1) a harmonic oscillator model would predict
the P-wave states roughly midway between the 1S and 2S levels) (see
also section 16.3.3). The 3Po.1.2 states have positive charge conjugation
and hence can be produced in radiative decays of ¢'(3-7 GeV) if they are
below 3:7 GeV in mass. Up to four narrow states in the mass range 3-4

40+ Ll '
20—
nfy
20+ 7t rKKT
v
c
Qo
>
w |0+

-

wtat or KYK™

3.2 34 36
Mass (GeV)

FI1G. 16.7. x peaks in ¢ - yx, x = hadrons.
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to 3-6 GeV have been found in ¢’ radiative decays and one therefore
immediately wonders if they are indeed the P-wave states 07", 17, 2™+
and possibly also the 2 'Sy(n.).

Three of these states (x(3410), x(3500), x(3550)) have been seen as
narrow peaks in the modes (Fig. 16.7)

' yx
|—> 27, 4, mmKK . .. (16.46)
Evidence for them is also seen in
' yx
|—> 4 (16.47)

The invariant masses of the yiy systems are shown in Fig. 16.8 which
appears to show the three previous states as well as a new state y (3460).
How do we know which photon came first and which is to be combined
with the ¢ to form the y mass? The ¢’ is produced at rest in the

03
¥y, x
> 7,y
°
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°
> [ J
& o2l b
= o
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- °
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°
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PR BT = s B L
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FIG. 16.8. Invariant mass of y¢ in ¢' - yx, x = y¢¥ showing possible evidence for four
X states.
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laboratory (e*e” centre of mass) and will produce a photon of well-
defined energy in association with a given yx state. The y state is now in
motion and on decaying into vy produces a photon whose frequency
will be Doppler shifted depending upon whether the y was moving
towards or away from the detector. Hence for a x of zero width, the first
photon will have a fixed energy while the second will be spread over an
energy range. This effect is already visible in Fig. 16.8 (in particular the
x(3460) state).

The four y states are also visible as enhancements in the spectrum of
photon energies measured in ¢’ - v +anything. From these data the
branching ratios for ' - yx have been determined (Feldman, 1976;
Whitaker et al., 1976):

B.R.(¢' > yx(3410)) = (7-5+ 2-5) per cent
B.R.(¢' > yx(3460)) < (0-8 £ 0-4) per cent
B.R.(¢' = yx(3500)) = (9 + 3) per cent
B.R.(¢' = yx(3550)) = (8 £ 3) per cent

(16.48)

The existence and quantum numbers of x(3460) are still unclear
(Chanowitz and Gilman, 1976) and we shall not discuss it further here.
The properties of the other y states are consistent with their assign-
ments as 07*(3410), 17(3500), 2**(3550).' We will describe the evidence
for this and refer the reader to recent reviews for further details (see the
Bibliography for this chapter).

The 07, 17", 2™ states can each be produced by E1 (electric dipole)
radiative transitions from the S, ¢'. The phase space for such tran-
sitions is proportional to |p|* and hence increases as the x mass decreases.
The width for ¢’ > yx is also proportional to the spin J of the y as
follows:

Ty > yx)x< @2+ Dlpl’ (16.49)

Since the widths to each y state are consistent with being equal, then
this suggests that the lowest mass (largest p°) has the lowest spin etc.
and hence the ordering 0**(3410), 17%(3500), 2"*(3550). The angular
distributions of the photon in the ' - yy transitions are also consistent
with this assignment (section 16.3.2).

! Compare with the mass splittings of light mesons, section 5.3.1.
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The x(3410) and possibly also x(3550) are seen to decay into 77 or
KK (Fig. 16.7). Parity forbids a state J7=1"" to decay into two
pseudoscalars, so these states are not 17", The angular distribution
of e’e” >y + x(3550) appears inconsistent with 0" and so we again find
consistency with 07(3410), 27(3550). The x(3500) is not seen decaying
into 77 or KK and is consistent with a J7¢ = 1** assignment for this
state.

1632 e'e >y’ >yx

The angular distribution of the xy production in e"e” > "> yx gives
information on their spins and parities.
Returning to equations (12.50) to (12.53) we have

d
d—: ~2 |din (0)*|Anl® (16.50)

where A, is the amplitude for the yx system to have net projection of
spin m'=+1,0 along the z'-axis (yx axis). Invoking parity conser-
vation,

do

E~%(l +cos” 0){JA >+ |A_|*} +sin® 0]A ] (16.51)

It will be useful to rewrite this in terms not of the total m' but instead
in terms of the x helicity. Since the 7 is real then it has helicity =1 so we
can construct a Table of the helicity amplitudes.

m A, A, Amplitude

| 1 0 Al
-1 2 A}

1 1 -2 AT,
-1 0 A}

-1 1 Al (16.52)
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The angular distributions may be rewritten

d
£~;¢(1 +cos? O)[|AL2+| AL+ )AL +]AT P
+sin? 8[|A*+]AL, [ (16.53)
Then from parity |[A",.|=|AL.], so finally
d
0 (L cost AL AP 425t OIAF (1659

which describes the angular distribution for ' yx in terms of the
amplitudes for x to have helicity 0, 1 or 2.
For y with J =0 only A, exists so that:

do ,
*i—~14cos’ )
0 10 cos” 6 (16.55)

For J, =1,2 we must know the relative importance of the different
helicity amplitudes. This is a question of dynamics.

It is stated widely that in the charmonium scheme the resulting
angular distributions are

0"": 1+cos’@
1"*: 1-3cos’ @ (16.56)
2" 1+3%cos’ @

We shall describe the derivation of these results below. It is interesting

to compare these with the data. If do/d@ ~ 1+ A cos® 6 then (Feldman,
1976, and Perl, 1977)

x(3410): A=1-4%0-4
x(3500): A=0-26+0-5 (16.57)
¥(3550): A=0-22+0-4

Hence x(3410) is consistent with J7© = 0"*. The 3500 and 3550 are in
turn consistent with the 17" and 2*" expectations.

In the calculation of do/d@ in the charmonium model the essential
feature is the assumption that

27°S1(qq) > 1Po12(qq) +y (16.58)
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where q > gy or § > @y by flipping the L, (orbital angular momentum
projection) of the quark. From this the angular distributions follow at
once.

Consider the emission of a photon with J,,=+1 from ¢’ with
J.==1,0(ithas J, = =1 only but along 2’ it can have J,- = 0). Then the
matrix element, where subscripts denote ]/, can be formally written

(X012l 75™ [¥101) (16.59)
The quark spin structure contained in this is
(1 8.0 0]t S.) (16.60)

since the photon is not flipping the spin. In the orbital space we have the
structure

(1 1)1 1j0 0) (16.61)
since the photon flips L, and carries L =1 to go from S- to P-wave ¢q.
Hence the y has (JJ,|LL,; SS,) as

J,1+8.]1 151 8,) (16.62)
and so the amplitudes A{,s. have relative magnitudes given by the

ratios of these Clebsch—-Gordan coefficients. Consequently squaring
these Clebsch—Gordans we have

for [ =2, |A,[*:|A\|*:|Alf =6:3:1 (16.63)

for J=1, |A,f:]A,)*=3:3 (16.64)
Substituting into do/d#@, the (1+ A cos® ) with A =—1 and 3 arise
immediately.

There is no general reason why the L, flip should dominate. A
general approach can be based on the assumptions:

a. ll”(z 351)X(1 3P0‘1,z) of qu,

b. q has spin 3,

c. (@)~ q(q)y triggers the transition.
The assumption (c) with (b) means that the y <> g has spin 0 or 1 only.
Hence (section 7.3)

js™=AL,+BS.+CS.L,+DS_L.L. (16.65)

is the most general form of j$™ (S., L. refer to AS, =1, AL, =1
respectively). Since we are interested in S to P transitions then the last
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term cannot contribute since it has AL, =2. A, B, C are singlet
operators under the spin group and depend upon spatial wavefunctions,
potentials, quark masses etc. and are supposed to be essentially the same
for all the y states. The Clebsch—Gordan coefficients for the AL, term
have been calculated above. By analogous procedure the Clebsch—
Gordan coefficients for BS, and CS,L. can be calculated.

The resulting structure of the helicity amplitudes becomes:

A, 6(A-C)
J=2 A, 3(A-B)
A, (A-2B-C)

~ A, 3(A+B)
I=1 "4, 3a-cC)

J=0 A, 2(A+B-C)

Without further knowledge of A, B, C we can say very little.

To go beyond these discussions and calculate the absolute widths
' > yx requires commitment to a potential model. The calculations
will then parallel those of N* - Ny (Chapter 7). For explicit discussion
in the harmonic oscillator potential see Jackson (1976b). A linear
potential has been investigated by Eichten et al. (1975, 1976) and
Barbieri et al. (1976c¢).

16.3.3 THE cc POTENTIAL

At short distances when r (the qg separation) tends to zero one gluon
exchange (OgE) is assumed to be dominant and generate a Coulomb-
Fermi-Breit potential. The phenomenological consequences of this are
discussed in sections 17.2 and 17.3. At large distances multiple gluon
exchange and gluon splittings (Fig. 16.9) are believed to generate an
effective confining potential V(). In a world of one space and one time
dimension (2D QCD) then V(r)~r, a linearly rising potential.
Whether this result also obtains in the real world is not yet known. What
can we learn about V,(r) by studying the spectrum of states?



THE NEW PARTICLES 371

If V.=0 then the familiar Coulomb spectrum (Fig. 1.1) would
emerge. The phenomenological absence of a continuum (free q or ¢
states) shows that V_# 0. The harmonic oscillator potential V (r) ~ r*is
much loved by quark model devotees (e.g. Chapter 7) and its spec-
troscopy is shown in Fig. 1.1. Clearly the ¢, y spectrum is rather similar
to this (1p at 3-4-3-6 GeV about midway between 1s at 3-1 and 2s at
3:7 GeV:the 1d at 3-77 is almost degenerate with the 2s ). The 1p and
1d are both slightly higher than in the oscillator spectrum and this may
be due to the residual effect of the Coulomb OgE potential (Fig. 1.1) or
to nonharmonic V. (r).

F1G. 16.9. Gluon exchanges which generate a non-Coulombic (confining?) potential.

The ordering of the low-lying levels in a potential V (r) has been
studied by Martin (1977) and by Grosse (1977). In general E(1p)>
E(1s) due to the repulsive centrifugal barrier for L=1 in the
Schrodinger equation. E(1p) < E(2s) and E(1d) < E(2p) if

3
i. a%(rZVC)>O for all r (16.66)
dv.
N e |
i. lim 2rV +r P 0 (16.67)

and so follow for N >0 if V(r)~ r". The Coulomb potential (N = —1)
has E(1p) = E(2s) and E(1d) = E(2p).

We have noted that it phenomenologically appears that E(2s)<
E(1d)(*S,(3684) and °D,(3772)). This follows if, in addition to the
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constraints in equations (16.66) and (16.67), one also has
d [1 d ( dv.
drlr dr

If V ~r" then this requires 0 < N <2. The harmonic oscillator poten-
tial with N =2 has the 1d and 2s degenerate.

The spectroscopies of the harmonic oscillator and linear potentials
are compared with the emerging data in Fig. 16.10. In this Figure the

)] <0 forallr (16.68)

3s,2d, g
.7
__: -
;_—_—/
2p, If
4'0§ ?—- e
3 | o g
o -
p N
S v « 25
= L
— Ip
3-5fF >_—\
v _ Is _ ____ls
p
3'0’— ! E ‘g [
£5 S 22
X "2 @ = E - oS
— co3 g2 o E=
95 €3 c R
o0l JO ] I o

F1G.16.10. Comparison of harmonic oscillator and linear potentials with the emerging
spectra of cc states.

levels have been scaled to give the observed ¢’ — ¢ mass difference for
the 2s— 1s interval. It is clear that only above 4 GeV does a significant
difference emerge among the potentials. When we take the linear plus
Coulomb potentials and incorporate the spin-dependent splittings
(Chapter 17) the pattern of levels will be as indicated by the arrows.
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We have followed the evocative procedure of Jackson (1977) by em-
ploying long arrows to represent J°° =17~ states (directly produced
in e*e” annihilation), the middle length arrows to represent states with
C = +1 that can be reached by single photon emission from the 17~
states and the short arrows to indicate C = —1, J ¥ # 1™ states (which are
difficult to observe in e"e” annihilation).

The states indicated by the long and medium arrows in the energy
range 2:7 to 3-8 GeV appear to have been found (see this chapter’s
bibliography for details), namely 1'Sy(2:8?), 1°S,(3-1), 1°Py(3-41),
1°P4(3-50), 1°P,(3:55), 2'Sy(3:462?7), 2°S,(3-68), 1°Dy(3:77). In this
entire mass range it is possible that all but the 1 'P, state have been
discovered' within less than three years of the initial discovery of the
J/¢ (3-1 GeV). Possible ways that one might hope to isolate the 1 'P,;
state are discussed in Segre and Weyers (1976).

The 1 'D, state may also be expected to exist in or near to this mass
range. If its mass is greater than 3-8 GeV then it will decay strongly into
charmed hadrons and will not easily be visible. It has been suggested
that a large spin—spin splitting might have caused this state to exist as
low as 3-46 GeV and hence to be the y(3-46) (Harari, 1976b). Possible
problems with this interpretation of x(3:-46) have been raised by
Jackson (1977).

Information on the potential at the origin can be obtained in principle
from a study of the leptonic widths (equation 16.12). In practice this
will be difficult since the ¢ at 3772 MeV and at 3684 MeV are so near in
mass that one expects them to be mixtures of 2 °S, and 1°D;. Since the
wavefunction at the origin vanishes for a D-wave state then naively one
expects the *D, to decouple from the lepton decay

I'CD;»e*e)=0

The leptonic width of 3772 MeV is about 0-4 keV in contrast to the
2:1 keV for 4(3684). These suggest that the #(3684) is dominantly 2 *S,
with a small 1°D, admixture. The conclusions are complicated,
however, by the fact that the threshold for producing charmed mesons
(section 16.4) is at 3730 MeV and so these states will also couple to DD

(charmed mesons) which affects the I'*° calculation (Eichten et al.,
1976).

! Problems with a 'Sg assignment for y(3-46) are raised by Chanowitz and Gilman (1976).
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In addition to these complications one must also recognise that the
*D, can couple to e*e” through a nonvanishing second derivative of the
wavefunction at the origin (Jackson, 1977)

4a’e’ 2

MZ

Rp(0)
M2

F(3D1 -> e+ei) =

(compare equation 16.12 with three colours).

16.3.31 Mass dependence of the potential and leptonic widths

The leptonic decay of a vector meson, V = "], occurs as a result of the
q and ¢ annihilating and producing a virtual photon. The annihilation
amplitude will be proportional to R,(0), the ¢¢ wavefunction at zero
separation, and also the quark charge.

First consider the latter contribution. For mesons containing a single
flavour of quark then

2 -
_ | 5:¢(cT)
(qanle)OCei—{_%: 5(5)
For isospin states like the p and
1,
uii+dd 12 (1 V2
) -5G+(53) -
V2 V2R3t 3
N

Hence if we regard the mesons as containing effective quark charges e,
the leptonic width will be proportional to (e,)* so that ¢, 3, 15, 3 for ¢/, ¢, @
and p.

If we neglect the masses of the leptons then the width will be

- IR.O)I*
NG )=4a2e§——w
That this expression is plausible may be seen as follows. The |R,(0)[* isa
probability density and therefore has dimensions of (mass)’. The width
has dimensions of mass, hence an [M ~?] factor is needed. The vector
meson mass is the only mass scale in the problem and hence [M %] =
M.
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If p, w, @, ¢, all had the same mass then their leptonic widths would
be in the ratio of the quark charges and hence 9 :1:2 :8. As their masses
are in fact rather different, their leptonic widths will be a function of
the dependence of R,(0) on the quark masses. This will be a function of
the potential at the origin, in particular how the potential’s short-range
behaviour causes the wavefunction to scale as a function of quark mass.

For a potential V(r)~r" then |R,(0)” scales with the quark mass as
m*/®*N) Taking the quark mass to be proportional to the vector meson
mass:

F(V_)l+I—)x[L](2N+1)/(N+2) (16 69)

el v
Before confronting this with the data we should derive it in order to
exhibit the implicit assumptions.

The (coloured) quark is the source of a (chromodynamic) field. We
shall suppose that the resulting interquark potential is independent of
the masses and velocities and is a function only of their spatial separa-
tion. Consequently this is a nonrelativistic picture. The Schrodinger
equation may be written

(2t vin} vt = Eutr)

where V = Ar" and A is a constant, independent of mass. Now scale all
lengths » > Ar and hence

V2
{ZmA2+AA NrN} Y(Ar)y=EY(Ar)

or equivalently
{(VP+ A2mA NN (Ar) = 2mAPEY (Ar)

Imagine that we had already solved this equation for some mass m,
and wished now to solve it for another mass m,. We could do this
immediately by scaling out the explicit mass dependence. Thus from
the potential we can see that the distances scale as m ~/®"™ and

{(V2+ArNYg(Ar) ~2m NV E NV Eg (Ar)

which implies that energies scale as m~?*™ hence like m for a
Coulomb, m ' for linear and m ~"/? for harmonic oscillator potentials.
If the spectra of Fig. 1.1 were normalised to agree with the ¢’ —¢
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separation of about 600 MeV where the m.=1:5(GeV), then the
separation for Y'—Y(m, =45 GeV =3m.) will be given by this same
figure but with the abscissa scaled by 3,37", 37" respectively.

There is some evidence to suggest that Y(bb?) exists with a mass
approximately three times that of the ¢ and also that ém(Y'-Y)=
Sm (¢’ — ) (Innes et al., 1977). Equal spacing independent of mass can
be achieved if one has a combination of Coulomb and linear (or
oscillator) potentials, or if one has a logarithmic potential. That a
logarithmic potential gives energy levels whose separations are
independent of the mass scale can be seen immediately since r > Ar in
the potential just shifts the logarithm:

V(Ar)=log (Ar)=log r +log A = V(r)+ constant

and so the energy levels are shifted by a constant amount when m, is
replaced by m,.

Since distances scale as m in the " potential then the
probability density | R, (0)]> ~ (length)~ will scale as m*'**™’. Therefore
equation (16.69) follows immediately.

Since we have explicitly neglected mass-dependent potentials (such
as the magnetic contributions in the Fermi—Breit Hamiltonian—equa-
tion 17.35) then a test of this equation needs a nonrelativistic situation.
This may have some chance of success in the case of massive quarks
such as are relevant in the ¢ and Y spectroscopies. However it is almost
certainly not applicable to the light quarks present in the pw and ¢. If
one ignores this caveat and applies it to pw¢ and ¢ then the data suggest
that " /¢ is almost mass independent (a best fit suggests N ~0to —3
in V ~r" at short distances).

—1/(2+N)

16.4 Charmed particles

The three quark flavours uds formed a fundamental triplet represen-
tation of SU(3) whose weight diagram in I3— Y space was a triangle
(Fig. 2.3). Incorporation of a fourth quark, ¢, with charge , isospin and
strangeness zero and carrying one unit of charm, generates the
fundamental quartet representation of SU(4). The weight diagram is
now a pyramid (Fig. 16.11).

In SU(2) the weight diagram is simply a line with two ends. The
three sides of the SU(3) triangle show the three SU(2) subgroups
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(I, U, V) contained within the fundamental SU(3) representation.
Similarly the four triangles forming the sides of the pyramid show the
SU(3) subgroups (uds), (udc), (dsc), (usc) contained in the basic SU(4).

c

S
CM
I

F1G. 16.11. Fundamental representation of SU(4).

3

16.4.1 MESONS

In SU(3) the mesons formed from ¢q fell into nonets (singlets and
octets):

3®3=108
With the new quark generating SU(4) we now have
4®4=1®15
and so seven new states should exist. Clearly these are:
i. Three states with charm+ 1 forming a 3 of SU(3)
ca (D% or (D)
cd (D*)or (D) (16.70)
cs (F")or (F™)
ii. Three states with charm— 1 forming a 3 of SU(3)
cu (D% or (D)
¢d (D)or (D™ (16.71)
¢s (F)or(F™)

»
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i1i. A state with charm zero (“hidden charm”) which is a singlet of

SU@3):
cc  (m.)or (¥) (16.72)

This latter state could be mixed in with the SU(3) singlet components
of 7 and i’ (or @ and ¢ in the vector case) or it can exist separately. In
the former case i or n’ (w or ¢) would necessarily have some cc content
themselves.

The meson multiplets are shown diagrammatically for 0~ and 1™ in
Fig. 16.12.

F+ FH*
DO D+ DO* D+*
Ko K+ KO* K+*

w

1r_ A P pOe @ ot
v

K™ Ko K=* Ko*
D™ Do C[ Y D-* 50*
F- 5 F*

FI1G. 16.12. Pseudoscalar and vector meson multiplets in SU(4).

16.4.2 BARYONS

The gqq baryons in SU(3) formed multiplets with dimensions
3IRI®3I=1D8D8D10

The Young diagram techniques immediately show that in SU(4) the
dimensions will be

4®404=4020D2020 (16.73)

Hence the octets gain twelve charmed partners while the symmetric
decuplet gains another ten. There are now four antisymmetric possi-
bilities in place of the one in SU(3). The nature of these new states can
be readily seen by explicit construction.
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With charm of one there are six possibilities, three of which are
manifestly symmetric in the two noncharmed -quarks and three which
can be either symmetric or antisymmetric in that pair (compare Table
3.6). The symmetric states form the set in the first column of Table
16.1. There are three states with charm of two units and one state with
charm three (analogue of ()™ in the strange quark world).

TABLE 16.1
Charmed C = +1 baryons
S cuu
pong c(ud +du) Al c(ud —du) strangeness 0
3?0 cdd
S* c(us+su) A~ c(us—su) strangeness — 1
s° c(ds+sd) A c(ds—sd) ge
T css strangeness —2
6 3

As we have already discussed in Chapter 3, any state can be written in
a totally symmetric fashion. Hence there are 10 symmetric possibilities
to be added to the old symmetric uncharmed decuplet and so there
results a 20plet of states in SU(4). This forms a pyramid with four
floors, charm zero, 1, 2, 3. These floors contain triangles with respec-
tively ten members (charm zero), six (charm 1), three (charm 2) and one
(charm 3). Hence

20s=1006D3D1 (16.74)

is the SU(3) decomposition of the symmetric 20plet of SU(4). The
lowest mass examples of these states will be the 3 partners of the A.
In Tables 3.2 and 3.7 we have noted that a mixed symmetry
wavefunction can be written for a three-body system if at least one label
is distinct from the other two. This is true of the charm = +1 sextet and
of the charm = +2 triplet. Three of the charm = +1 states have all three
labels distinct and hence give three further mixed states. Hence

20, =8 (6D3)P3 (16.75)

is the SU(3) decomposition of the mixed symmetry 20plet of SU(4)
which contains the familiar octet representation of SU(3) in the
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uncharmed states. Note that the 6 and 3 are both charmed + 1; there is
no charm + 3 state here.

At present there is no universally accepted nomenclature for these
particles. One system due to Gaillard et al. (1974) is for the strangeness
Zero:

cuu, c(ud+du), cdd are CT*, CT, C?
c(ud—du)is C§

Here C stands for charm and the subscript denotes the isospin of the
u, d diquark system. An alternative system is to call these states =}, 2
22 and A by analogy with their strange counterparts. We use this
scheme in this book.

For the strangeness — 1 states with charm + 1 we have S*S°and A*A°
for the symmetric or antisymmetric noncharmed pair respectively.
Finally the strangeness minus two is called T°.

The three states with ¢ = +2 are named X; ", X3, X/, the subscript
denoting the flavour of the uncharmed quark. The former pair are
sometimes named =" and E having two charmed quarks and being
analogues of the familiar strangeness minus two = states of noncharmed
spectroscopy.

Pictorially these states are shown in Fig. 16.13. The familiar octet
hexagon of (uds) SI‘J(3) is exhibited and charm increases vertically in

++
i X

X
c
’[ ZY \/ (3)
I3

x¥

C=+2

P STAG 3t

N P

8

=i =°¢

F1G. 16.13. SU(4) 20plet containing the SU(3) noncharmed baryon octet.
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the three-dimensional Figure. With charm+ 1 we have the 6 and 3
immediately above the octet and highest with charm+2 is the triplet
(Xuds)-

We now complete the Figure to form the truncated tetrahedron in the
three-dimensional plot of I,, ¥ and C (weight diagram) which is
essentially Fig. 16 of Gaillard et al. (1975). This is displayed in Fig.

16.14.

~,

~

]
]
!
]
!
]
|
i
]
|
P

FIG. 16.14. Truncated tetrahedron weight diagram for the 20plet of SU(4) containing
the nucleon octet.

The truncated tetrahedron has four hexagonal faces each one
representing one of the four SU(3) subgroups of SU(4) formed by uds,
udc, usc, cds. In Fig. 16.15 we explode the truncated tetrahedron to

manifestly expose these hexagons, the three-quark subsystem asso-

ciated with each one also being shown.
Finally the three charm+1 states with three different quark labels

can combine with the charm zero uds to form four totally antisymmetric
states. The lowest mass examples of these will be the 37,3 partners of
A(1405 and 1520). The weight diagram is in Fig. 16.16.

16.5 Weak decays of charmed hadrons

We noted in section 15.1 that the weak interaction charged current
involving the charmed quark triggered transitions

c e« scos 6.—dsin 0,

(16.76)
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in contrast to the analogous transitions for up quarks
u <> dcos f.+ssin 6, (16.77)

where 6. is the Cabibbo angle = 0-23 radians. We can refer to the cos 6.
amplitude as Cabibbo allowed and the sin 6. as Cabibbo forbidden since

udc
XY Xt
++
X3 St Xu
0 ¢
C
X3
=t
30
N
To
Ss !
cds 5 ucs

m

FIG. 16.15. The SU(3) subgroups of the 20plet.

in the rates tan® 8, = 5. We see then that the hadronic selection rules for
the charm changing transitions are:

1. Cabibbo allowed c<>s:

AQ=-AS=AC; AI=0 (16.78)
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1. Cabibbo forbidden c<>d:
AQ=AC, AS=0; AI=} (16.79)

Since the dominant decay of a charmed quark is into a strange quark,
then strange particles should be an important feature of the charmed

uds
cds cus

O

I3

cud

F1G. 16.16. Antisymmetric quartet of baryons in SU(4).

decay products. For example

D%(c) —5 K(s) + 7+ (16.80)
will dominate over the Cabibbo suppressed

D°(cii) —% 7~ (i) + 7 (16.81)

Indeed a clear peak in the K™7r~ mass distribution has been seen at
SPEAR ine*e” » K 7" +hadrons with a mass of 1:863 GeV. This state
may also have been seen decaying into 7~ 7" (6+5 £ 4) per cent as often
asinto K™77". In the above theory of the charmed weak interactions one
expects

0 +_—
%5;72—_:% =tan” 6. X phase space = 4 or 5 per cent

(16.82)
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This neutral state can also decay
D%(cii) —5 K%(sd) + 7~ (did) + 7+ (16.83)

and this decay has also been observed. The observation of D° decaying
into two pseudoscalars (Kr) and also three pseudoscalars (K7r7r) shows
that parity is violated in the decay (analogous to the old  — 7 puzzle in
K- 27 and 37r). This confirms the weak interaction nature of the decay
mode.

A very clear pointer to the weak current equation (16.76) comes from
the decay of the charged partner of the D°. Here

D*(cd) —5 Ko%sd) + 7+ (16.84)
or alternatively
D*(cd) 5% K~ (si) + 7 * (ud) + 7+ (16.85)

This latter decay pattern is particularly remarkable in that a negatively
charged K is produced from a positively charged initial state. This is
quite distinct from the decay of a K** which would produce a K*.
Experimentally

D'>Kmtmt (16.86)

has been clearly seen with a mass of 1-868 GeV. The similar final state
K*7 7~ shows no enhancement at this mass and these observations all
point at the veracity of the c<>s transition.

The above data and further studies (Nguyen et al., 1977) support
these as being the 0™ mesons

D%cii) 1863-3+0-9 MeV
N (16.87)
D*(cd) 1868:3+0-9 MeV

By studying the data on e’e” - D+ other hadrons, evidence for the
possibility of the vector partners has been found. Their masses are
(Perruzi et al., 1977)

D 2006+1:5MeV

(16.88)
D** 2009+ 1 MeV
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The separation in mass of D* and D is some 140 MeV, noticeably less
than K* and K or p and 7. This phenomenon is expected in the
hyperfine splittings that arise in quantum chromodynamics (Chapter
17).

To complete the charmed meson picture we need the states F*(cs)
and F**(c8). Having replaced a U or d by an § one anticipates that these
states will be about 150 MeV more massive than the D and D* and hence
about 2:0 and 2-1 GeV in mass. Possible evidence for F(2:03 +0-06)
decaying into nar has been reported by Brandelik et al. (1977a). These
authors also claim evidence for F*(2-14+0-06).

Bibliography
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17 Hadron Mass Shifts in Field
Theories

17.1 Fine and hyperfine structure in atomic and quark physics

In the hydrogen atom the massive proton sits at the centre of mass. The
coupling of the electron spin with its orbital angular momentum about
the centre of mass is called spin—orbit or § . L coupling. The strength is
proportional to the inverse square of the electron’s mass and generates
fine structure splittings of the energy levels (see any standard atomic
physics or quantum mechanics textbook).

The coupling of the electron spin with the proton spin is known as
spin—spin or S .8 coupling. This strength is proportional to (m.m,)™"
and so is much smaller than the strength of L .S couplings. The
resulting splittings in the energy levels are called hyperfine structure.

In the S-wave (S.L)=0 and the fine structure is absent. The
electron and proton couple their spins to S =0 or 1 and the (S.S) in
these two states differs giving two energy levels, ’S, and 'S,. Radiative
transitions between these levels yield the famous 21 cm wavelength
signal.

In higher waves, P, D, F . . ., both fine and hyperfine structure occur
leading to a rich spectrum.

In positronium the (S . S) and (L . S) have comparable magnitudes
since there is no massive proton suppressing the former relative to the
latter. Similarly in quarkonium (the ¢4 mesons) one may expect
analogous splittings to occur. We have made some phenomenological
discussion on the spin—orbit splittings in section 5.3; here we will
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concentrate on the quantitative aspects of the hyperfine or spin-spin
splittings.

The splittings arising from quantum electrodynamics, i.e. photon
exchange between the quarks, will be at most a few MeV. These
electromagnetic effects will generate mass differences between 7* — 7°,
K*—~K° etc. and are discussed in section 17.5. However, they cannot
explain the large separation in mass of 7 and p. If the quantum
chromodynamics picture is correct then vector—gluon exchange will
generate hyperfine splittings proportional to the quark—vector-gluon
coupling. If this coupling is much stronger than the electromagnetic,
then the S .S splittings could easily be tens or hundreds of MeV.
Indeed, typical S .S splittings (p — 7, K¥ —K) do appear to be quite
sizeable, and we may hypothesise that they have their origin in the
vector—gluon exchange.

In section 15.2 we saw that the qualitative behaviours of the 38,-1S,
and 3" —3" splittings of mesons and baryons could be understood in
quantum chromodynamics, and noticed in particular the crucial role
played by the colour. We will now study some of the quantitative
aspects of this model.

17.2 Spin-dependent mass splittings for baryons
17.2.1 THE A—-N SYSTEM

The A and nucleon N are made of three quarks q(=u, d) in overall
S-wave with spins coupled to 3 or 3 respectively. The mass separation of
300 MeV between these states is hypothesised to be a manifestation of a
quantum chromodynamic hyperfine splitting. The splitting will be
proportional to the product of the quarks’ colour-magnetic moments
defined in analogy to their electromagnetic moments. As discussed in
section 15.2 the interaction (with correct sign) has then the form

%s_s =_CZ Z Fj .Fij .Sk/8j€k (171)
ik
where F, 8 are SU(3) colour and SU(2) spin matrices respectively, and &
the effective mass of the quark. ¢” is a positive constant with dimensions
mass cubed, related to wavefunction overlap (see section 17.3), and will
not enter further into our discussion.
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If we set £4=¢, then for the A— N system we have

2 2
©(S:.8,+8S,.8:+8S,.8y) (17.2)

Hos T3

since (F;.F,)=—3% (equation 15.39) for each and every j, k. By
exploiting
81 . Sz+81 . S3+Sz . S3 E%{(Sl+SZ+S3)Z_S%—S§_S§}

we have that

$:5.=3
S1.8,+8,.8;+8,.8,=4S(S.+1)-H=1 S 2 (17.3)
T4i0cT2
where S, is the total spin of the three-quark system. Hence
2
AEy =(s.s)se_y = ;—zs 12 (definition) (17.4)

17.2.2 THE AS3* SYSTEM

We will now compare this A— N splitting with the ASZ™ splittings. If
we replace one of the quarks in the A by a quark of a different flavour, 1,
where i=s, ¢ ... then we obtain 2{(igq). The nucleon has the quarks
pairwise in either / =1 or 0, and upon replacing the third quark by i
yields respectively 2;(iqq) or Ai(iqq) states.

For the choice i=s we have the familiar states

2i(sqq) (1385);  Z.(sqq) (1193);  Au(sqq) (1115) (17.5)

We see that the act of substituting a strange quark for a u or d quark
has:

1. Increased the mass of the three-quark system by around 150-
200 MeV.
2. Decreased the 3" —3" mass splittings.

3. Split the A(L =0) and Z(I = 1) states.

It is easy to see qualitatively how these three effects are related. For
the strange quark

€.~ £.+ (150-200 MeV) (17.6)
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thus the increase in mass relative to N or A. Since the hyperfine
splittings are inversely proportional to the quark masses, then the
3* —(ZA) will be in turn less split than the A— N. Finally, the overall
spin—unitary spin symmetry of the wavefunction (section 4.2 and Table
4.3) requires that the nonstrange pair in A have spin 0 and in the X have
spin 1. This will lead to different spin—spin expectation values for the
two states and hence to different masses.

We will now study this quantitatively. For ease of notation we write
;= c/¢; for any quark, and hence

%s‘s = - Z F,' . Fij . Sk/vle-Lk (17.7)
i#k
Since (F, . F.) = —3 for any pair of quarks, we will study
2
Hs.s = +§ Y misiS; . Sy (17.8)
i*k

Imagine the 2.2 or A; made of a quark flavouri=s, c...and a pair
of quarks (“diquark”) of flavours u or d. T'aking quark number 1 to be
that with flavour i then the spin—spin interaction may be written

%%s,s = /.LiSz . S;+p,qp.,-Sl . (Sz+S3) (17.9)

where u, denotes either of p, or wg which we shall assume to be equal
by isospin symmetry of the vector gluon—quark interaction. To evaluate
the expectation values of these products of spin operators we write

S =S, +8,+8; (17.10)
and square it. This gives
82, =Si+(S,+85)*+28, . (S, +85) (17.11)
and so
28; . (S2+83) =8 — ST~ Shiquark (17.12)

The desired expectation value is now immediately found to be

(28, . (S2+83)) = St S+ 1) —2G+1) = Sa(Sa+1)  (17.13)

where S.. and Sy are the magnitudes of the total and diquark spin
angular momenta.
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The expectation value of S, . S; is similarly obtained by noting that
Si=(S,+8S:)°=85+83+28,.8S; (17.14)

Hence

2(S; .83y = Sa(Sa+1)—2.3G+1) (17.15)

We now combine equations (17.13) and (17.15) with equation (17.9)
to obtain the total spin-spin contribution to the energy (mass) of the
system. It reads

3 S4(Sq+1) 3 3
SEss =i P2 D) 545+ 1= Su(s.+ ) -3)

2 2 4
(17.16)

where S,= S, =30r 3 for £, A or =¥ respectively and Sy = S giquar =0
or 1 for A or X, 3* respectively (recall that the spin—isospin symmetry of
the wavefunctions—Chapter 4—requires the I = 0(1) diquark to have
spin=0(1) in the totally symmetric 56plet and so the £ and A have
differing diquark spins). Hence we have

(! :
3Essy = b=p2 i ptmami{—1 (17.17)
A -3 0
The mass splitting are therefore
3F -3 = o (17.18)
= A= (g — 1) (17.19)

(where the particle symbols here refer also to their masses), while the
combination

22;“+2i_
3

Ai=3ug (17.20)

ts independent of u; (Federman et al., 1966).

Note in particular that the observed difference in the masses of X, and
A, forces u, # u,. To quantify these splittings we should compare with
the 3" —3" splittings when i= g, that is the splitting A— N. From the
above example one can set w;=u, and recover our earlier result
(equation 17.4)

A—N=u? (17.21)
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This has finally brought us to our desired formulae with which we
can compare the known masses. We have

-3 Mi
= 17.22
Li—A 2 ILq—P«i)
== 17.2
A-N 3< e (17.23)
¥+ 3.
2—2'3—2-:—’— A;=3%A— N)=independent of i (17.24)

That £¥ — 3, is smaller than A — N requires u. < u, (equation 17.22).
This in turn causes the X, to be heavier than A, (equation 17.23), as is
empirically observed. The magnetic moment of quark i being inversely
proportional to the quark mass, then it is reasonable that u,<pu,
correlates with £,> ¢, and hence ¥ > A,

A diagrammatic representation of these formulae is shown in Fig.
17.1. If e,~¢€, then Z, and A, are nearly degenerate. For &, 00
however it will be £, and =¥ that become degenerate.

The pattern of the splittings in the (AZZ*); system indeed appears to
be realised in the data and is an example of the insights into quark

%
4 2 $*(1385)
=&(2480)
B s3*
300 3, (2420) |
s, (193) 200
s 2250) l
N SA At ) Al A
€= €yq € 7€ €€ €=00
—
increasing

F1G. 17.1. Hyperfine splittings of (AZ2*); system as ¢, increases from exact symmetry
(€i=¢,.4) to infinity.
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dynamics that are emerging with the discovery of heavy flavours
i=strange and charm. If further heavier flavours are discovered then
the 2*3 degeneracy and 200 MeV splitting from the associated A will
be a clear-cut prediction to be investigated.

What is even more interesting is that, on top of the above qualitative
successes, there is a significant amount of quantitative consistency in
this picture.

17.2.3 QUANTIFYING THE SPIN-SPIN SPLITTING AND ITS
EFFECT ON BARYON SPECTROSCOPY

This vector gluon exchange picture has been investigated in some detail
by de Rujula et al. (1975). For the mass of the u, d quarks they choose
336 MeV, this being motivated by the idea that the anomalous magnetic
moment of the quark is small and hence that

=mproton2
TS 336 MeV (17.25)

A possible meaning of this effective mass will be discussed in Chapter
18 on bag models (see also section 15.2.1, equation 15.32).

The observed ratio of A— N to ¥ —X, masses yields, by equation
(17.22), that

£,=3€, (17.23)

and hence that
£,=510 MeV (17.24)

We see that this gives
g.,—&,=170 MeV

which is of the order of the mass splittings between the A”—3X* — & —
Q)™ members of the decuplet. Furthermore the SU(3) prediction

#(A) 1
L Sy 17.25
w(P) 3 ( )
is modified to read
A 1
p@)_ les_ 5 (17.26)

w®)  3e,
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which is in much better agreement with the data (—0-24+0-02)
(equation 17.20) than without the inclusion of the quark mass effect. As
a final check on the consistency we can compute the expected 2—A
mass difference. The above quark masses predict

S—A=99 MeV (17.27)

to be compared with the observed 75 to 80 MeV.
For the charmed states (2AX*), one inserts

£~1-5GeV (17.28)

into the formulae. This magnitude is consistent with the (cc) at
3.1 GeV, the observation of charmed mesons D(cq) with masses around
1-85 to 2GeV (=1-5+0-34 for ¢ and §=1,d) and also with the
charmed baryon A (cqq) with mass of 2:26 GeV (=1-5+0-34+0-34 for
c and ¢qq) (Knapp et al., 1976).

Having parametrised . we find the important ratios of the different
flavour masses to be

g, 1 e, 1

e (17.29)
and hence

Boo5,Besg (17.30)

Me M

These ratios are all that we need to quantify the spin—spin mass
splittings of the charmed (EAZ*). compared to their strange analogues
(EAZ¥),. We have from equations (17.18) and (17.19) that

(2*—2)c=%(2*—2)5=60 MeV (17.31)

s

E—A)=ErTles Ay =2(Z-A).=160 MeV  (17.32)
Mo s

This pattern is quite different from the strange system and is consistent
with the emerging data (Knapp et al., 1976; Cazzoli et al., 1976; Dalitz,
1976).
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17.24 THE =*-= SYSTEM

If g =u or d then states with two quarks of the same flavour, but
differing from u or d will form a system E*E;(iiq). If i=s then the
familiar strange baryons E,(1320) and E¥(1535) are relevant. If i=c
then EJ"(ccu), EJ(ced) occur (called sometimes X, X 3).

We can calculate the hyperfine splittings by using the techniques of
the previous section and the wavefunctions of Table 3.7. It is quicker to
note that = is in the same U-spin multiplet as 2. and so these states are
related by replacing d<>s or g <>i in general. Then on making this
replacement in equation (17.18) we have

Ef—Ei=uip, =3F-3, (17.33)

which is interesting because naively one might have expected the = split
to be smaller due to the extra strange (massive) quark.

For the strange states this relation is satisfied to within 10 per cent,
which is all we should expect as we have ignored electromagnetic
effects, quark kinetic energies etc. which can contribute a few MeV to
the masses and may be sufficient to explain the 10 per cent mismatch. It
will be interesting to see how well this prediction fares in the doubly
charmed baryons.

17.2.5 MASSES OF OCTET AND DECUPLET BARYONS

To summarise the phenomenology of baryon masses we present here
the contributions to the masses of the 56plet 8 3 and 10 3* baryons
arising from the u, d and s quark masses and the spin—-spin couplings for
coloured vector—gluon exchange between coloured quarks. We write

TABLE 17.1
Octet and decuplet masses
N: 3e—g*ul A: 3e+giul
3% 3 +Am—ig(Auap— p}) S*: 3 +Am +3g Qs+ ul)
A% 3e+Am—giul
= 3e+2Am —igt(dpqu.— un?) =*: 3e +2Am + 382 2uap.+ 1)

Q: 3e+3Am+g*ul
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e,=¢+Am where e =¢,4=335MeV. If g is proportional to the
quark-gluon coupling strength then, from equations (17.3), (17.4),
(17.17) and (17.33), we have for the masses the expressions in Table
17.1.

If Am=0 and g=0 then the supermultiplet would be mass
degenerate (exact SU(6)) with a mass of 3¢, and thus around 1100 MeV.
This is illustrated in Fig. 17.2(a).

B 0(1685)
20620) A
| 5530)
oeor H(1440)
i *(1380)
B A (1330)
3 A(i230)
: - $(1180)
E NA(1080) AGNO)
3e
1000} \_M
2e >

OT' () (b) (c)
FI1G. 17.2. Mass splittings in the L =0 56plet. Strange quark masses split the
1100 MeV supermultiplet (a) into four levels distinguished by strangeness (b). In (c)
hyperfine splitting separates the J =% 10 and J =3 8 and also 2° and A.

Now switch on the mass difference between strange and nonstrange
quarks, Am =180 MeV. This separates the states of different strange-
ness by equal amounts (Fig. 17.2(b)). We are not making an attempt to
find a “best fit” to masses; our intention is only to illustrate schematic-
ally what is going on. Hence, for example, the masses used here are not
exactly the same as elsewhere; instead they are chosen as nice round
numbers to facilitate rapid assimilation.

If £,4~360MeV then £,~540MeV and so we take u,/poa=
€.4/€:=3%. Now switch on the spin-spin splitting by having g # 0. We
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have chosen for simplicity g?u% = 150 MeV and hence g*uZ =66 MeV,
g’uns =100 MeV. The 10 3" states are pushed up while 8 3* come
down in mass and the A are split.

17.3 Fermi-Breit Hamiltonian in QCD

With the simple picture developed above, the pattern of masses is
already well reproduced. One could clearly improve on this by intro-
ducing further parameters, e.g. optimising u,/t.4, including kinetic
energy effects ~1/m? etc. Within the philosophy of quantum
chromodynamics the fermion—vector gluon Hamiltonian will be of the
same form as that familiar in QED.

This has been investigated in some detail by de Rujula et al. (1975)
who write the strong and electromagnetic part of the Hamiltonian in the
form

p?

H=L(r,r,. )+Z (m,+7+ )+ 2 (2QiQi+ka)S;;
) (17.34)

In this Hamiltonian L is the universal interaction binding the quarks
whose positions, masses, momenta are respectively r;, m;, p;. S; is the
two-body interaction which de Rujula et al. take to be Coulombic. The
electromagnetic piece involves @ and is proportional to the quark
charges Q; while the colour gluon exchange has coupling strength ka,
where k = —% for mesons and —3 for baryons (compare equations 15.38
and 15.39). ,

Neglecting relativistic corrections the two-body Fermi-Breit and
Coulomb interaction S; has the form '

Su—-l_ 1 (pi-pj+f.(f.pi)pj) 5 (r )(_+_1_+16s s)

[e| 2mm,\ Jr| [t m; m; 3mm
1{1 —1->< s+—1—[2>< §;—2rX
2|rl3 ZrXpi. mlz rXp;.s; mem; EXPi.Si—arXp;.s;
6(s; . -
—2s,. s,.+(i-|-r;)l—§‘°3’——‘l)]} (17.35)

Here r =r;—r; and s; is the -th quark’s spin.
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The hadron masses are the expectation values of this Hamiltonian
placed between the hadron SU(6) wavefunctions W(r,r,r3). For S-wave
states the L. S(r X p . s) interactions give no contribution. Writing the
expectation values of the spatial operators of kinetic energy:

p?
a= <~1r0 £ qf0> (17.36)
Coulomb interaction,
1
b= <‘I’0 — \I'o> (17.37)
|12
Darwin—Breit interaction,
P Petriz. (T
¢ =%(qf0[r‘zp‘ Pot fiz . (£iz p‘)pz]\lfo) (17.38)
|tz
and finally the point interaction,
T
d= E(‘Polas(rlz)qu& (17.39)

we have the first-order mass formula for the S-wave baryons,

M=Mo+Y I:Ami+a<—l—— ! )]

m; Mua

+Z(aQiQ;—%as)[b— ¢ —d(—17+—1—+16—si—§)] (17.40)

2
i>j m;m; m; m; 3mi . m;

where M, is the eigenstate of

2
Mo=3L(rr,.. .)+Z(mud+ P ) (17.41)
i 2-”1ud

which gives the degenerate SU(6) supermultiplet’s mass. This yields a
four-parameter mass formula. The contributions proportional to Am; =
m;—m,qand the S . S interaction have already been djscussed in section
17.2 and gave a good description of the S-wave baryon states.

A detailed discussion of the phenomenology flowing from the four-
parameter formula (17.40) and the full Hamiltonian (for p . . . states) is
given in de Rujula et al. (1975).
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17.4 Spin-spin splitting and meson spectroscopy

We have seen how the spin—spin splitting appears to be manifested in
the (AZZ*); baryon system and, in particular, how the splitting depen-
ded upon the mass scale of the flavour indexi=s, ¢ . ... We now look at
the effect of this spin—spin interaction in the meson system where it will
separate the masses of quark-antiquark states with spin S =0 or 1. The
most immediate application therefore will be to the 0™ and 1™ states
which are L=0; S=0o0r 1.

In a meson made of quark-antiquark flavours ¢;q; the spin-spin
interaction is proportional to the magnetic moments of the two quarks.
Hence the 0717 splittings for two different flavour combinations will be

(V=P)i _ mip;
= 17.42
(V_P)kl M ( )

where V and P refer to vector or pseudoscalar and the subscripts denote
the flavours contained in them. Particular examples are

(K*—K)su=f(p—w)w (17.43)
(D*—D>w=%<K*—K)su (17.44)
(F*~F), = f(D*— D).. (17.45)

Hence, since u, <, < M, We expect
(F*—F)<(D*-D)<(K*-K)<(p— ) (17.46)
which is qualitatively true:
?<(2:01-1-86)<(0-89—-0-49) < (0-77—~0-14) (17.47)

Quantitatively the mass splittings are again in remarkable agreement
with the data since the ratios u,~3%u. and u.~ 3u, yield

(K* = K). ~ 50 — 7)uu (17.48)
(400 MeV) (630 MeV)
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and

(D* = D)oy ~ 3(K* = K), (17.49)
(150 MeV) (400 MeV)

The F* —F splitting is therefore predicted to be
(F* = F).,~%(D* - D)., ~ 100 MeV (17.50)

If thisis true in Nature' then the dominant decay of F* will be into F+ 1y
since m, > F* —F. Observation of this monoenergetic photon would be
clear indication of this pattern of mass splittings.

17.4.1 A PROBLEM FOR MESON MASS SPLITTINGS

The spin—spin splittings so far discussed have been for hadrons carry-
ing manifest quantum numbers such as isospin, strangeness or charm
or, in the baryon case, baryon number. The empirical success might
lead us to expect that the same pattern of splittings should emerge for
mesons which do not carry the above manifest quantum numbers, e.g.
' wdn.y . . .. However one should be cautious because one can now
anticipate a new class of contributions, namely the annihilation of the
qiq; into gluons, which will destroy the simple pattern in equation
(17.46). Indeed, if the 7. is confirmed to be at 2-85 GeV (Wiik, 1975)
then

¥ —n.~ 350 MeV (17.51)

which is of the order of K* — K or D* — D in sharp contrast to the gluon
exchange prediction

(¥ — M)e: ~ 3(D* — D). ~ 30 MeV (17.52)
which predicts 7.(3:07 GeV).

There are several excuses that one can invent here. Not only is there
gluon annihilation as already mentioned but the precise ut, dd, s§, c¢
content of the mesons concerned can be played with. This is currently
an area of active research. Some questions related to this are discussed
in section 17.6.

! Brandelik et al. (1977a) claim evidence for F(2:03 +0-06 GeV) and F*(2:14+0-06 GeV).
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17.5 Electromagnetic mass shifts

17.5.1 MESONS

The electromagnetic contributions to the hadron mass (energy of the
quark system) can be thought of as being of three kinds: (i) elec-
tromagnetic contributions to quark masses, e.g. m, # mq, (i) Coulomb
interaction between any pair of quarks ~ e;e;, (ii1) magnetic interaction
between any pair of quarks ~ e;e;/m;m;, where e;;, m;; are the charges
and masses of the i and | quarks and the total contribution to the
system’s energy will arise after summing over i and j.' The role of each
of these can be well illustrated by studying

a7 —w’=4-60 MeV
K*—K’= —4:0£0-13 MeV (17.53)
K¥ —K%* = —4-1+0-6 MeV

Notice that for kaons the charged state is lighter whereas for pions it is
heavier.

The 7" (ud) contains the same number of u and d quarks as does the
ﬂo[(uﬁ—dc—i)]/\/Z. Consequently dm(u—d) does not contribute to
Sm(mw* —m°). To lift the 7" 7° degeneracy the interactions (i1) and (iii)
above are necessary. These contribute to the m*° masses amounts
proportional to the product of the constituent quark charges. Since
m,~mgy we will lump together (ii) and (iii) and if (1/R) is the mean
separation in space of the ¢ and ¢ in the pion, we then have for the
7*(ud) a contribution proportional to 1/R) (i.e. e,ea{1/R)), whereas
for °[(uli —dd)]/v2 one has —%(1/R). Hence

7t —m°=X1/R) (17.54)

which is satisfyingly of the right sign and fitting the observed mass

difference yields
(1/R),=92MeV (17.55)

For the kaon system the mass difference becomes
—K*(us)+ K%(d§) = —m.+ma—(1/R)x(+5)
=Amg,—¥K1/R)x (17.56)

! Some results in section 17.5 follow from the weaker assumption that two-body forces contribute
and depend on the quark flavours independent of ¢; and ¢; (Rubinstein, 1966).
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where we have again lumped together the Coulombic and magnetic
contributions. Since m.,>m,4 then u,<p,q and so the magnetic
contribution to the kaon system differs from the pion case. This can be
dealt with by regarding it as effectively causing (1/R)x #(1/R), in
equations (17.54) and (17.56).

The magnetic interaction being spin dependent will in general give
different magnitudes for the electromagnetic splittings in pseudoscalar
and analogue vector isospin multiplets. The data in equation (17.53) are
consistent with the magnetic interaction being negligible. However
recent data from Aguiler-Benitez et al. (1977) claim that K*°— K** have
a mass difference of 7-7+1:7 MeV, rather larger than the pseudoscalar
case. This suggests that the magnetic interaction has an important role
to play (a conclusion which is supported by recent results on charmed
meson mass splittings). For simplicity of presentation we shall ignore it
and always include (ii) and (iii) together. However, you should perform
the exercise of checking the role of the magnetic term in equation
(17.56) explicitly to clarify the extent to which it can manifest itself in
the data. In particular for charmed mesons where u. < p4, it can play an
important role.

If we supposed that

(1/R),={(1/R)x=9-2 MeV (17.57)
then from the observed excess of 4 MeV in K° over K* we have

Am,= —7 MeV (17.58)

and so the d quark is heavier than the u. This is qualitatively in
agreement with the fact that the neutron has an excess of d quarks over
the proton and is heavier.

For the pseudoscalar charmed mesons we have

D*(cd) — D°(ci) = my—m,+(1/R)p+%) (17.59)

Both the Am,q4 and the interaction contributions work towards increas-
ing the D" relative to the D°. If (1/R)p=(1/R). x then an excess of
13 MeV in favour of D" is expected (de Rujula et al., 1976; Ono,
1976a,b; Lichtenberg, 1975, 1976). However, since w.<pu.q the
magnetic contribution from the charmed quark is suppressed so that in
effect we have

(1/R)p<(1/R).x (17.60)
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and hence the D* — D° separation is probably less than 13 MeV. Also
one may expect D** — D™ to differ from D* —D° (Ono, 1976; Lichten-
berg, 1975). The data suggest that D" is heavier than D° but the
absolute magnitude is not yet settled.'

It is important to note that there are two parameters in this problem,
Am.qand (1/R), reflecting the two 0(a) mechanisms. From the 7* — 7°
we deduced (1/R),. The Am only arose when we assumed that
(1/R)x=(1/R).. In the light of the anomalously small pion mass it may
well be that this is not a valid assumption. All that we can safely
conclude from K*— K’ is therefore that

Ama,=my—m,>0 (17.61)

since (1/R) is necessarily positive. Hence the conclusion that D" is
heavier than D° is unavoidable in this approach.

17.5.2 BARYONS
The nucleon system has neutron heavier than the proton by 1-5 MeV.
In the quark model one has

n(ddu) — p(uud) = Ama, —%1/R)x (17.62)

This again fits with the Amgy, >0 but would disagree with the value
—7 MeV (equation 17.58) and (1/R)x =(1/R),=9-2MeV (equation
17.57). ’

To obtain a value for {1/ R )yaryon We can study a system that receives
no contribution from Amg,, namely

IET+27)—32=3(1190+1197:3)—1192-5=1-15 MeV (17.63)
The quark content and consequent energy shifts are
Yuus+dds)—uds=3(1/R)s (17.64)

with the result that
(1/R)s=2-3 MeV (17.65)

!Perruzi et al. (1977) report Am(D*—D%=5-0+0-8 MeV, Am(D*" —D*°)=2:6+1-8 MeV.
This suggests that equation (17.67) gives a better estimate of Am(ud) than equation (17.58).
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The 2™ — 32" mass difference is +7-3 MeV. In the quark model this
becomes

—3*(uus) +Z7(dds) = +2Amg, + (1/R)(—3[NS]+3[SS])
(17.66)

where [NS] and [SS] are the photon exchange contributions between N
(nonstrange) and S (strange) quarks. The magnetic interaction being
proportional to m;; or m_' may cause these to differ, and (1/R) may do
s0 also. If for the moment we take them equal we have that

Amg, =45 MeV (17.67)

These values for {1/R) and Amg, also give a good fit to the kaon for
which
—-K"+K°= +Amgy,—1/R)= +3-7MeV (17.68)

to be compared with 4 MeV. The neutron and proton are also predicted
to have this mass difference whereas the neutron is only 1-5MeV
heavier than the proton empirically.

One other piece of information on electromagnetic mass splittings
within the baryon 8 comes from Z~ and E° where =~ is about 6-4 MeV
heavier than Z°. In the quark model

E(dss) — E(uss) = Ama, +(1/R)E[NS]) (17.69)

with Ama. =45 MeV and (1/R)=2-3 MeV the predicted 6 MeV is in
excellent agreement with the observed 6:4+0-6 MeV.

To test how well this picture of the electromagnetic mass splittings is
working it is useful to form combinations where Am, {(1/R)nn;,
(1/R)ns; and {1/R)sg all drop out. First, if the Amg, were the only
contribution, then from equations (17.62), (17.66) and (17.69) one
would have

(n—p)=E -E)=33" -9 (17.70)
(1-3)  (6-4£0:6) (4x£0-4)

which do not fit well with the data shown beneath. Including the
(1/R)ns1.iNNana iss) then there is one combination of masses that is
independent of the magnitudes of these parameters. This relation
(Coleman and Glashow, 1961) is

h—p)+E  -F)=(E" -3 (17.71)
(7-7+0-6) (8+0-8)
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and fits perfectly with data. This success, with the failure at equation
(17.70), clearly shows the importance of the photon exchange.

One can also obtain relations between electromagnetic mass split-
tings in the decuplet and octet if the magnetic term is negligible.
Examples include

—A"™+A"=3(n—p) (17.72)
(7-9+6-8)=(3-9)
and
A" =A"=(p—n)+(E"+27-23°% (17.73)

The splitting in the decuplet between Z~* and =% has the same form as
that in the octet (equation 17.69). Similar remarks apply to £** and 2 *
(equation 17.66). The value of (1/R) might differ in the decuplet and
octet since for the magnetic term the (S . S) differs and is reflected in
(1/R)in our notation. The values of the electromagnetic mass splittings
in 8 and 10 are (in MeV)

l 8 10
E-=|6 3 (17.74)
-3t 8 4

so the absolute magnitude in 10 appears smaller, the ratio of 8 and 10
being the same.

As a final testing of this picture we can make estimates for the
splittings of charmed baryons to supplement our earlier discussion of
charmed mesons. It is straightforward to obtain

-3 +3r=Amge—¥1/R) (17.75)
and
—3i430=—-8"+8"= —A*+A’=Amy,—31/R) (17.76)

The interesting feature common to these two results is that they involve
the difference of two positive quantities and so the result is very
sensitive to the actual magnitudes chosen for Am and (1/R). For
instance if Amy, =7 MeV and (1/R)=9-2 MeV (cf. discussion of equa-
tions 17.57 and 17.58) then 2.7 <X!. However, if instead we chose
Amg,=4-5MeV and (1/R)=2-3 MeV (cf. equations 17.65 and 17.67),
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then 2" <X!. Clearly the charmed baryon masses will give us a good
indication as to the relative importance of the photon exchange and
quark mass contributions.

17.6 Gluon contributions, pseudoscalar and vector meson
masses

The hyperfine splittings between 0™ and 1™ mesons seem to fit well with
QCD calculations (section 17.4) except for the case of ¢ and 7. (section
17.4a). A possible reason for this failure is that a new topology can
contribute here, namely cc - gluons > c¢¢. This was not possible in all
other examples, e.g. pmr have I = 1, K*K have strangeness, D*D charm
and only the SU(3) singlet states can be affected. Another consequence
of this is that light quarks can be mixed into the  or n. by

ccergluons > qq (17.77)

and so the ¢ and 7. might not be pure cc.
For the case of the 17 mesons this mixing seems to be negligible (v
and ¢, section 4.4). For the 0™ mesons the question is still under debate.
We shall not discuss the 0717 splittings further, but will study the
effects of the annihilation contributions to the 0~ and 1™ nonet masses

individually.
The quark mass matrix with three flavours may be written
2 0 O
M=[0 2u 0 (17.78)
0 0 2s

acting on the (uii, dd, s§) basis and we are approximating m, = m4. If ud,
dd, s5 can annihilate with an amplitude A, which we assume to be SU(3)
invariant, then there will be an additional contribution to the mass
matrix

A A A
H=|A A A (17.79)
A A A

The unitary singlet

1 -~
1 =T3(uﬁ+dd+s§) (17.80)
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will have a mass
M(1,1)=3A+3(4u+2s) (17.81)

where A does not contribute to the 8 masses nor to the singlet—octet
mixing. If A - 00 then the singlet is sent up to infinite mass and the octet
will satisfy the Gell-Mann—-Okubo formula (section 4.4).

If m, # m, then there is a mixing between singlet and octet

(1,1|M|8,1)= \/_(uu+dd+sslM|uu+dd Zss)\/-

=é?m s) (17.82)

and so the physical states will be singlet—octet mixtures. The mass
matrix for the I = 0 states in an (|8,1), |1,1)) basis becomes

1 V2

—(48 +2u) —3—(11 —s)

——-(u —s) 3A+=(4u+2s)

3 3
Hence for the pseudoscalars

N

l(4K — ) '2—(77 K)

Moo= zJ' (17.84)

—(77 K) 3A+§(2K+7T)

and the eigenvalues A, will be the physical n, ' masses. Similarly for
the vector mesons 7 - p, K- K* and A, are the w, ¢ masses.
Solving the algebra for the eigenvalues yields

A+A,=3A+2K (17.85)
(from the sum of the diagonal elements) and
A, =2Kr—m*+ A(4K—7) (17.86)

from the determinant.
If A =0 then we find A;A, = 2K which is well satisfied for the vector
states (section 4.4)

¢ +w =2K* (17.87)
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This suggests that the annihilation is negligible in the vector nonet and
this is supported by the ¢(ss) and its Zweig forbidden decays being
small (i.e. s§ mixes very little with uii, dd). For the pseudoscalar mesons
the prediction 7 + %' =2K is not satisfied (equation 4.100) and hence
A #0 there.

Since we have four states (wKnm') and three free parameters
m,, m,, A then one relation can be found independent of the unknowns.
This is obtained by eliminating A in equations (17.85) and (17.86) and
yields the sum rule (Schwinger, 1964)

(m+7n")4K—7)—3nn' =8K*—8Km + 37’ (17.88)

Inserting the pseudoscalar masses yields 1-22 GeV? on the left-hand
side and 1-95 GeV? on the right. Hence the pseudoscalar masses do not
fit well for any value of the SU(3) singlet A and three quark flavours.

The analogous sum rule for the vectors is of course well satisfied
because we have already seen that A =0 gives an excellent result
(equation 17.87). .

One suggestion (de Rujula et al., 1975) has been that A might be a
mass-dependent quantity. In asymptotically free gauge theories (which
emerge naturally in the QCD theory) A—>0 as (log M)™™ with
N =2or3for J =0o0r 1 where M is the mass. In fitting the eigenvalues
of equations (17.85) and (17.86) to (550) and 7'(960) de Rujula et al.
find

A(550) =630 MeV
A(960) =83 MeV (17.89)
Hence A is large and decreasing with energy. A similar analysis for the
vectors yields
A(w)=7-2MeV
A(d)=54MeV (17.90)
Hence for vector mesons A is seen to be small (as expected—section 4.4
and equation 17.87). These results are in accord with the colour gluon
QCD theory since the 17 annihilation term involves three gluons and
hence is expected to be smaller than the pseudoscalars. Moreover the

decrease of A with increasing mass in the 0~ (and even the 177) is
anticipated from the asymptotic freedom of the QCD theory.
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Since we now know that a fourth flavour of quark exists then we
should allow for the possibility that the ¢¢ may mix into the mesons
n,m’ via the gluon annihilation. Hence consider in general the
consequence of including an extra SU(3) singlet component |R) in the
wavefunctions (R being defined as containing no ui, dd or s§ pairs).
Then the SU(3) singlet state which mixes with the 8, I = 0 will be

cos

v3

(uii +dd +s8) +sin @ |R)

(17.91)

The resulting change compared to the previous calculation is that:
1. The singlet mass (equation 17.81) becomes

la)=cos a|l)+sin a|R)=

COS2 o

44+
3

(4u+2s)+ (sin” @)R (17.92)

2. The singlet—octet mixing is now (2\/2/3)(u—s) cos a (constrast
equation 17.83).

Consequently
75
%(41(— ) 23—2(7r —K) cos a
M, o= 17.93
I=0 2\/-2“ ( )

1
T(fn'—K)cosa n+n’—§(4K-—7'r)

where in the element corresponding to the singlet mass we have
introduced the 7’ eigenvalues by exploiting the fact that the sum of the
eigenvalues is equal to the sum of the diagonal elements. The deter-
minant is given by the product 77’ and the resulting sum rule is

(n +n")4K—7)=3nn' =3(4K—7)*+§(7m —K)* cos’ &
(17.94)

In the limit @ - 0 we recover the previous discussion where R was
not included. Indeed the sum rule in equation (17.94) collapses to the
old equation (17.88).

Inserting the observed masses yields cos”a =1 (or % if quadratic
masses are used). The latter is interesting since if |[R)=|cc) then

1 -
1)=—=(ut+dd+ss—3cc 17.95
l \/-1—2( ) ( )
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leads naturally to this magnitude of cos . We have of course assumed
that there is no mixing of (8, 1) with the orthogonal state

(cos= V: %)

la'y= —sin a|1)+cos @|R) === }(uii +dd +s§+ct)
(17.96)

The conclusion appears to be that 7, n’ may contain significant c¢
contributions. This would have interesting consequences in ¢ and x
decays since the , ” can be produced through their c¢ content without
violating Zweig’s rule (e.g. ¢’ > ¢m(cc)). This is surveyed by Harari
(1976a). A problem may arise with decays of the y states which may
produce n and 7’ pairs without inhibition and hence the narrow y
width may be problematic. All of these problems would be avoided if
the solution to the »m’' mass problem is the mass dependence of A
(equation 17.89; de Rujula et al., 1975).

For the cC solution an interesting relation has been noted by Karl
(1976). The radiative decays ¢ > n(n')y will be proportional to the
amount of cc in these pseudoscalars. Apart from phase space

I'y-> n'y)z (COtZ 6) = 3n'—4K+7
L —>ny) 4K—m—3n

Experimentally the radiative ratio is about 3 (Braunschweig et al., 1977)
and this is compatible with the right-hand side.

(17.97)



18 Quarks Confined to a Sphere:
The MIT Bag Model

We have seen that there is good reason to think that strong interactions
might be described by a non-Abelian gauge field theory (quantum
chromodynamics). At very short distances the quark—gluon coupling
tends asymptotically to zero and hence gives some possible justification
for the phenomenological successes of the parton model. At these
distances the dominant interquark force will arise from single gluon
exchange and the resulting patterns of hyperfine splittings in hadron
spectroscopy are not inconsistent with this.

It is plausible that as the interquark separation grows, then the
interquark force will also grow in such a theory. We have seen in section
15.2.1 how this might cause quark confinement and yield only colour
singlet states with finite masses. In a hypothetical world of one space
and one time dimension explicit calculations in QCD have shown that
the interquark potential rises linearly with the separation 7, and hence
the desired confinement ensues ('t Hooft, 1974).

This result is easily understood intuitively. In a world with three
space dimensions the lines of “electric” force emanating from a charge
spread out over the surface of a Gaussian sphere covering 47r” at
distance r from the source. Hence E(r)~1/r* and so V(r)~1/r, the
familiar Coulomb potential. In a world with only one space dimension,
however, the field lines are constrained to a line and so E(r) = constant.
In turn therefore V(r)~r.

Consequently this result is an artefact of the particular dimen-
sionality chosen. A proof that the confinement arises in the real world is
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still awaited. In the absence of such a proof, and detailed knowledge of
the behaviour of the interquark forces at large distances, it is not yet
possible to do complete calculations of hadronic phenomenology in
QCD. What has been done so far is to assume some form for the
confining potential (A7, wr” . ..) and to proceed from there.

I one restricts attention to massive quarks, such as the charmed
quark, then nonrelativistic potential models like these might have some
justification. For light quarks the situation is less clear. One approach in
the latter case is to consider a system of light quarks (or even massless
quarks such as are manifested in deep inelastic scattering) and demand
that they be confined to a sphere of radius R. As R - o an unconfined
free quark model will emerge. For finite R one will see what
phenomenological consequences may flow from the act of confining the
free quarks. These consequences are in many cases very interesting and
encouraging.

18.1 Free quarks confined to a sphere

If spectroscopy had not been studied and all that we had to support the
quark idea was deep inelastic scattering then we would believe that the
quarks were free pointlike spin 3 particles. We would also know that the
quarks do not appear outside the proton, so therefore we take the Dirac
equation for a free fermion of mass m

A (x) = mi (x) (18.1)

and solve it in a region of space bounded by a sphere of radius R (section
11 of Akhiezer and Berestetski, op. cit.).

There are two classes of solutions with j =3 corresponding to the two
parity states S,,,; and P,,, characterised by the values of Dirac’s quan-
tum number k = +(j+3) = x1. These solutions are

V()R-

$=N . (18.2)
VR e
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NEE e
=tz

where N, N' are normalisation coeflicients, U,, is a two-component
spinor for angular momentum m projected along the z-axis of quan-
tisation and w is the energy given by

and

(18.3)

2\ 1/2
w=(m*+33) (18.4)

since x is the quark momentum in units of 1/R.
If one studies the nonrelativistic limit @ —m = 0 then only the upper
two component spinors survive. Under a parity transformation

Yo —— iy (18.5)

in the upper components and so these are the positive and negative
parity solutions (S and P states) with j= L+3=3. On the other hand
notice that in the relativistic case only j, not L, is a good quantum
number and the upper and lower components have opposite intrinsic
parities.

It is reasonable to suppose that the ground state hadrons are spheric-
ally symmetric and that the quarks will consequently be confined to a
sphere of radius R. Demanding that no current flows across the surface
of such a sphere constrains the possible values of w, hence quantising
the system’s energy levels. We can easily see what the w values can be.

If n, is the outward normal to the sphere then no current crossing the
boundary implies

n“ gy =0 (18.6)
This equation can be satisfied if
—tyun g =y (18.7)

since this requires

iWy.n=4¢ (18.8)
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and hence

S =iy . n)W =4 (iy.n) =~ (18.9)

Clearly then ¢ =0 and hence n . yryy =0.

Having formulated the boundary conditions as in equation (18.7) we
can substitute into it the solutions ., (equations 18.2 and 18.3) and see
what constraints are forced upon w. Writing out equation (18.7)

explicitly at » = R yields
N

(18.10)

leading to the constraint

jalx) =\ (:i:)jo(x) (18.11)

Now if j1(z) = Ajo(z) then tan x = z/(1 — 2) and so in our case

tan x = x/(1 —mR —m*R*+ «?%) (18.12)

where we used w = (m*+x?/R?)"? (equation 18.4).
The analogous solution for the ¢., mode is

tan x = x/(1 —mR + m°R*+x%) (18.13)

When m - 00 (nonrelativistic limit) one has

tan x = -0 or tanx=u« (18.14)

1-2mR

respectively having solutions x = 7 or ¥ = 0. This leaves only the ¢_,
configuration as physical (the S/, solution) and the x = 7 value is the
familiar result from the Schrodinger equation.

The ultrarelativistic extreme (m — 0) yields the transcendental equa-
tion

tan ¥ = x/(1 —x) (18.15)
and for the lowest modes the solutions are

Yoa(x=2:04);  di(x=381) (18.16)
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For arbitrary m we exhibit in Fig. 18.1 the solutions x as a function of
the mass for the solution ¢_;.

A single quark of mass m confined to a sphere of radius R therefore
has energy

w = (m*+x*/R?"?

When in the lowest mode x(mR) is given by the curve in Fig. 18.1 and
one can think of @ as the effective mass of the confined quark since as

m r- ————————————
30
T 2sh
=

2:04 >

L | L | N I

2 4 6 8 10

mR

FIG. 18.1. x(mR)eigenvalue of equations (18.10) and (18.12) yields the momentum (in
units R™") of a fermion mass m confined to a sphere radius R.

R - o0 then @ - m. This quantity w therefore plays the same role as the
€ in our phenomenological formula equation (15.32) =340 MeV for
u, d quarks and around 550 MeV for strange quarks. For a system of Nj;
quarks with flavours i, j and masses m;; the total quark energy will be
(compare with equation 15.31)

E =Y Ni(m? +x”/R*"*
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18.1.1 THE MIT BAG AND HADRON MASSES

As it stands this system is clearly unstable since increasing R decreases
the energy monotonically until R =00. Hence there is no automatic
confinement in the model. To prevent this expansion and confine the
quarks ad hoc one could introduce a “pressure”, B, which stabilises the
system. This is the essential feature of the MIT bag model (Chodos et
al., 1974a,b; de Grand et al., 1975; Johnson, 1975).

The total energy will become

R3
E(R)=ZM(m?+xZ/RZ)”2+Bi’—T3— (18.17)

and equilibrium will result when E(R) is minimised, hence dE/dR = 0.

The scaling phenomenon in deep inelastic scattering suggests that
the mass of the u, d quarks must be small. So to simplify the formulae
let us go to the extreme and set the masses to zero.' The energy of the N
quark system becomes

NXx2:04 47R’®
= +

B 18.
E R 3 (18.18)
since x(0) = 2-04 and so

oE ., INX2-04

3R =0=47R"B R (18.19)
with the consequence that

x 2.04)/4
_(Nx2:04 (18.20)

4wB)"*

It is obvious from dimensional arguments that the size will decrease
as the fourth root of the inverse pressure. The equation (18.20) has
quantified this in terms of the number of massless quarks in the system.
We can substitute into equation (18.18) and relate the mass (energy) of
the system to the pressure

My =3447B)4(N x 2-04)"/* (18.21)

! See also Leutwyler (1974) who proposes that quarks are (nearly) massless. His motivation is
rather different from that here.
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or to its size
—_ (18.22)

Equation (18.21) implies that feeding in more quarks' increases the
mass in such a way that

Meson M, (2) /4 3
—_— | = ~ — 1 .
Baryon M, \3 4 (18.23)
If N=3 and M = M ,,ion then from equation (18.22) we find
R=16fm (18.24)

is the size required to generate a proton mass from the massless quarks.
This mass has come from the quark’s kinetic energy and from the
confining pressure. These have generated an effective mass of some
340 MeV per u, d quark even though their mass as R - ©© may even be
zero. Similarly a strange quark with mass =100 MeV unconfined
obtains an effective mass £ (w) =550 MeV when confined to a sphere of
1-5 fm radius.

18.1.2 MAGNETIC MOMENTS

We saw in the nonrelativistic example that the quark and the proton
have the same magnetic moments (scaled only by their overall electrical
charges). To fit the wp=2-8 Bohr magnetons with a nonrelativistic
Dirac quark (for which w, = e/2m,) requires m, =340 MeV. However
one cannot justify this for a physical proton, i.e. one where the quarks
are confined to a region R instead of being genuine free quarks. The
magnetic moment of a quark with wavefunction ¢ in a region r <R is
given in general by

1 -
7 =—J dserj=—J d’rr X (Yy)e (18.25)
Irl<R 2 )<k
The result u = e/2m, is obtained only when m, »1/R (1/R being the

characteristic momentum of the particle confined to R). To satisfy this

! Whereas fixed pressure yields My <N 3/% fixed radius yields My o N. This latter gives
correspondence with the approach of Chapter 17.
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one must either let R - 00, which is the unconfined free limit, or let m,
be very large in which case the quark must have a large anomalous
moment and contact is lost with the deep inelastic scattering
phenomena. Therefore there appears to be an inconsistency in treat-
ments like those described in Chapter 7.

For quarks with mass m confined to the sphere radius R we can
explicitly calculate u from equation (18.25). Substituting the wave-
functions in equation (18.2) into equation (18.25) yields (Allen, 1975)

@ =——f(mR) (18.26)
ZMQ
with
1 4wR +2mR -3
fmR)=3mR S R —2wR + mR (18.27)

(recall that w = (m*+x*/R%"? with x/R the momentum of the
confined quark). We can check that as mR - 00 then f—»1 and the

nonrelativistic result emerges. In the other limit mR -0 we have
wR =x(0)=2-04, and so

f—>%mR xX1:22 (18.28)
Hence
u~exX(0-2)R (18.29)

is the magnetic moment of a confined massless quark.

Note that as R > 00 so u - o as 1/m in line with one’s expectation for
a free particle. What is important is that a massless confined Dirac
particle has finite magnetic moment (essentially because its effective
confined energy w is non-zero). The magnetic moment as a function of
mR 1s shown in Fig. 18.2.

To appreciate the significance of this result it is instructive to
compare it with the phenomenological QCD approach (Chapter 17)
which assumed that u = e/2¢ with £ =340 MeV (our w).

Confining a massless quark in a sphere has yielded for us
LU

'u_Zw 6

For a quark with a large mass m > @ and SO fv.; = tocp. Hence the
phenomenological recipe u ~e/2w agrees with the spherical
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confinement always to better than 20 per cent. Since we expect that
quantum fluctuations might affect the bag results by this order of
magnitude anyway, then for spectroscopic comparisons it is simpler,
and equivalent, to use the phenomenological recipes of section 17. This
is illustrated again in section 19 for the spectroscopy of q°q’ states
where the recipe approach agrees well with explicit bag calculations
(Jaffe, 1977a,b; Jaffe and Johnson, 1976).

e/2m

m=finite

© R 0

FIG. 18.2. Magnetic moment of a Dirac particle, mass m, confined to a sphere radius R.

In the explicit bag model, we can take the result of equation (18.29)
and, equating the quark magnetic moment with that of the proton
yields, for massless quarks

1
2R =——"— 18.31
0-2R 660 MeV (18.31)
and hence R =1-5fm. This shows beautiful consistency with our
previous result in equation (18.25) that flowed from the proton mass. If
we set m, > 0 then ., decreases and R >1-5 fm. Hence a sensible recnlt
for the size of the system is only consistent with the proton magnetic

moment if the quarks are light.



QUARKS CONFINED TO A SPHERE 419

18.1.3 ga/gv

If the operator for g,/gv is
(PT|Z; T:SileT)
<PT|Zi T lNT>

then the SU(6) wavefunctions for the nucleon (section 4.2) yield a value
3 for this quantity. In view of the empirical value being =1-1, several
excuses have been offered over the years. Originally one idea was that
the strong interactions renormalized the intrinsic ga for the quark so
that at quark level one had ¥y, + Rvy,ys as the current with R =0-7.
Another approach has been to retain the vy, + 7v,7v;s structure at quark
level but to take relativistic corrections into account (Bogobliubov,
1968).

As an example consider a quark moving independently of the other
quarks in a scalar radially symmetric potential. The wavefunction is
then

(18.32)

fr)Un ) (18.33)

b= <ig(r)0' .tU,

where U, is the two-component quark spinor and f, g are functions of »
that depend upon the specific form of the potential. The upper and
lower two components of the four-component spinor have L =0 and
L =1 respectively. Consequently the matrix element of quark spin

(qlo.lq) (18.34)

(which is unity for a quark with spin up in the nonrelativistic case) is no
longer unity for the relativistic vase since the spin can be down in the
lower component. Hence the result becomes

ga/gv=3(0.) (18.35)

where (o,) is the expectation value for the spin z—projection of the
relativistic quark. Since the total angular momentum for each quark
satisfies

Je=30.+1, (18.36)
then for a quark with j, =3 we have
(0.)=1-28 (18.37)
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with

_[ublgods|  _ i lg(nPrtdr
[Uuodr limie HIFOF+Plg(rPir dr

and in the last step we have supposed all the quarks to be in S-states.

Bogoliubov put the quarks in an infinite square well potential and
calculated ga/gv=1:1. The MIT bag is a modern version of this and
has considerable similarity to the Bogoliubov model in this cal-
culation,

For massless free quarks confined to the cavity and in the lowest
mode, the wavefunction is given in equation (18.2). Comparison with
the wavefunction for the general spherically symmetric case yields

é

(18.38)

fr) = Nf’—:—'"ijo(%) (18.39)
g(r)=Nw;mij1(%) P2 (18.40)

with N the normalisation coefficient such that
j drr(lf(n)f+le(nP)=1 (18.41)

For massless quarks this yields

3o 17u(re/R)P* dr _ 2x—3

6= - ; = 18.42
T dr A utrs/ R+ 1/ P/ RO b= 1) 4
where x = 2-04 for the lowest cavity mode. Hence
gr 5 [ 2x—3 ]
==11- =1-1 18.43
gv 3 3(x—1) ( )

in excellent agreement with the data.

The 30 per cent deviation from the result g,/gv = 3 is due entirely to
the lower components of ¢, being sizeable for the cavity-confined
massless quarks. As a function of quark mass ga/gv ranges from 1-1
(m =0)to3 (m = ). As an exercise one can calculate g,/gv as a function
of m by using the full wavefunction at equations (18.39) and (18.40) and
find the best value of m to fit the data (ga/gv = 1-25). This has been
done by Golowich who found mR =1 (Golowich, 1975).
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We can check the related phenomenology of the mR =1 case. This
yields x =2-4 and hence wR = (x*+m’R?)"?=2-6. If ,4=~330 MeV
(as required for reasonable mass or proton magnetic moment
phenomenology) then 1/R =130 MeV=1-6fm. Hence the proton
radius is quite able to accept a value m, 4 = 100 MeV in place of zero.' In
turn the strange quark mass will have to be about 300 MeV (i.e. some
150 to 200 MeV heavier than the u, d quarks) and hence m.R =2-5 and
x=2-7. This yields wszx/ﬂ——— 520 MeV as the phenomenological
effective mass of a strange quark.

18.2 Gluons in the bag and hyperfine splitting

In the QCD model we showed how the exchange of coloured gluons
generated a splitting of mass between nucleon and delta and between 0~
and 17 mesons. In the MIT bag qualitatively similar results will be
found. The main difference is that the overall scale of the splitting (the
quantity AEy in equation 17.4) is arbitrary a priori in the earlier
approach: here it can be related to the quark—gluon coupling constant
a. which can be calculated from other phenomenology in the bag
model. Furthermore the treatment is now relativistic.

The resulting expressions for the flavour dependence of the spin-
dependent mass splittings are algebraically complicated as a result of
the integration over the spherical cavity; however they are the same
(modulo 20 per cent effects) as the naive prescription of section 17 and
hence the resulting systematics of the splittings are almost identical in
the two approaches. We will see this later and first describe the cavity
calculation.

We will work to lowest order in . and hence no self-gluon couplings
will contribute since all such diagrams are of higher order. This has the
consequence that the gluons act as if they were eight independent
Abelian fields and hence the problem is analogous to one of con-
ventional electromagnetism in a cavity.

In the gluon exchange process the quarks remain in the lowest cavity
mode and so the vertex current is time independent. Hence we are
dealing with conventional electro- or magnetostatics.

! This magnitude has also been found by Jaffe and Llewellyn Smith (1973) using quite a different
approach. However, see also Leutwyler (1974).
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The colour magnetic interaction energy between a pair of quarks is
AEy=—4my. Y Y J’ d&’rBi(r) . B(r) (18.44)
a=1,8 i>j Ybag

where By is the colour magnetic field generated by the i-th quark in the
system and the colour index a runs from 1 to 8. The colour magnetic
field in the bag satisfies

V xBf = j*
V.B=0

where j{ is the i-the quark’s colour current. This is

}r<R (18.45)

i'=q ar’q;
_3 S a 1 3
=——’rx(hA,'ﬂi(r)/r (18.46)
4
where w{ (r) is the i-th quark’s scalar magnetisation density when in the

lowest cavity mode. When integrated over the bag this yields the quark
mode’s magnetic moment wu(m;, R) given by

1 1{ 4wR +2mR -3
20 3 2(wR —1)+m/w

L w!(r)dr = u(m, R) =

5 1
18.
(6 to 1) o (18.47)

The equations (18.45) and (18.46) can be integrated to determine
B{(r) and is a standard exercise in electromagnetic theory. However we
must demand that no colour gluon crosses the boundary of the bag and
this necessitates inclusion of a boundary condition

rxY Bi=0, r=R (18.48)

The resulting Bi(r) that also satisfies this condition is

Bi(r) = (”‘(’:’" ')) (370, . )~ o}

+);:< (:;R) +2 J w(r )) (18.49)
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where w(m;, r) is the integral of wi(r') to radius r and

!

R4
M= Seuie) (18.50)

This result is familar from electromagnetic theory, apart perhaps from
the presence of terms in the final brackets whose origin is the boundary
condition in equation (18.48).

Having found the colour magnetic field at position r originating from
the i-th quark we have for the interaction energy with the j-th quark:

Bl ) - A MO

3
r

A A
o;.f0o; .t~ o0}

a

AJAS
+
o ol ()|

p(miR)
R3

+2£ dr )} (18.51)

The structure of this equation is already familiar from the two-body
Fermi-Breit interaction (compare equation 17.35). For the S-wave
states the first line gives no contribution. Integrating over the bag we
obtain finally the total magnetic interaction energy

AEy = 3a, Z Z (A?O‘;) ) (Aiao_i){#(mi, Rl)el-;f(mi, R)

R
+2 J %u(m;, ) (m;, r)} (18.52)

If the second term in parentheses were absent, since u (m:R) =1/2w;
the form for AEy in equation (18.52) would be identical to that of the
QCD development in equation (17.35). However the second term
introduces a multlpllcatlve correctlon itself dependent upon (w;w;)”"

For baryons 'Y, A .A = —% and for mesons it is —%, so with N—
1, 2 for mesons, baryons we have

iy R i R
AE, = N8a. Z o; .o,-u(m I);:(m )
where [ is the parenthesis in equation (18.52).
To obtain a feeling for the order of magnitudes here let’s take
massless quarks where u =0-2R. Then 7(0,0)=1-5 and so the A— N

I(mR,mR)  (18.53)

! Note that A = 2F; compare equations (15.38) and (15.39).
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splitting will be' (recall (& . &) = +3 for A and —3 for nucleon)
0-04
AE,, =48acTX1‘5 (18.54)
Hence if R =1 fm = (200 MeV) ' then
AEy ~570a, MeV (18.55)

The observed separation of nucleon and A then requires a,=0-55.
For a state composed of quarks with arbitrary flavours and masses we
will rewrite equation (18.53) to read

where

MﬁE&[u(maR) u(m;R)

R R R

and u(m;R)/R = (2w;R) ™", the exact expression being given by equation
(18.47). The quantity RM;;/8a. is exhibited in Fig. 18.3.

Toillustrate the use of the Figure, and to compare the results with the
QCD we shall calculate (* —2)/(A— N) mass splittings. This ratio
essentially probes the ratio of strange—nonstrange to nonstrange—non-
strange couplings. In QCD we took w, =500 MeV and w, 4 =330 MeV;
hence

] I(m.R, mR) (18.57)

2* - 2 Wy 4 2
=—"=— 18.58
( A—N>QCD fim, 3 ( )
If, in the bag, we take m, =0 then
M, R 0-18
e 18.59
8a, 3 ( )

with m,~ 300 MeV and m.R ~ 2-5 so that the interaction with massless
u, d quarks at m R = 2-5 yields
MR _ 0-12
8a, T3

(18.60)

and the ratio of 2:3 is again obtained."

" That I(0,0)= 15 can be seen by comparing equation (18.57) with Fig. 18.3.
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If instead we take m, =100 MeV so that mR =1 then M,.R/8a. is
reduced to about 0-13/3 (lower curve in Fig. 18.3). The interaction of u
and s will have to be interpolated from these curves but will be nearly
the same as assuming both u, d are of the same mass and mR =2:5. The
ratio of 2 :3 still arises at this qualitative level.

0-2

3

One quark mass m
and one quark massiess

/

RM,;/ 8a.
o

\7\\

- Both quarks mass m

F1G.18.3. RM;/8a.,the magnetic interaction between confined quarks with masses m;

and m;. When one quark is massless the upper curve is used, m denoting the other

quark’s mass. The lower curve is for both quarks having the same mass, m. The curves
for unequal massive quarks may be estimated by interpolation.

Hence phenomenologically the same results approximately arise for
the magnetic separations in this explicit model as in the QCD model
with phenomenological masses ¢ employed for the magnetic moments.
The reason is that the flavour dependence in equation (18.53) is
dominantly in the u(mR)u(mR) (=1/ww; as in QCD) and only
weakly in the I(m:R, mR). Consequently a similar phenomenology
emerges.

Detailed calculations have been reported in the literature and there
are some finer details such as the R dependence of different hadrons,
volume energy etc. that cause contributions to energies (Johnson, 1975,

1977; de Grand et al., 1975).
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18.3 Act of confinement

The quarks in a bag carry both electric and colour charge. Gauge
invariance necessarily requires that electromagnetic and colour gauge
fields (photons and gluons) are also present. Consider first the familiar
case of electromagnetism.

Gauss’ theorem applied to the surface implies that

4wQ=J’V.EdV=IE.dS

where Q is the total electrical charge of the system. Hence if the system
of quarks has net charge non-zero then lines of electric field necessarily
cross the normal to the sphere. Conversely, if the photon field were also
confined to the sphere the total charge would necessarily be zero.

Consider the chromodynamics case which is analogous to the above.
If the demand that no quark current crosses the boundary is supple-
mented by the demand that colour gluons are also confined then
application of Gauss’ theorem implies that the system have zero colour
charge. Hence the introduction of a pressure B that counterbalances the
flow of colour flux automatically requires the system to be colour
neutral. If colour symmetry is exact then the system must be a colour
singlet.

Notice that the quark confinement arises as a result of colour
confinement. The imposition ad hoc of a boundary condition that
confines the coloured gluons has, by Gauss, confined the coloured
quarks. A dynamical origin for this boundary condition has not been
presented.

18.4 Glueballs

The boundary condition that no colour current flow across the bag
surface allows only colour singlet states to exist with finite masses. In
addition to qq, qqq states one expects that colour singlet states contain-
ing only gluons will exist (Jaffe and Johnson, 1976). Such states are
often referred to as “gluonium” or “glueballs”.

The possible modes for a massless vector field confined to a cavity are
discussed in many books on electromagnetism. For any value of the
total angular momentum J =1 either transverse electric (TE) or trans-
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verse magnetic (TM) modes exist with parities (=)’ "' and (=)’ respec-
tively.

The boundary condition n,F,, =0 (F,,=0d,4, —3,A,) leads to the
equation of constraint for the TE modes

x
11—«

tan x =

(x being the momentum in units of 1/R). The lowest value of x
satisfying this is 2.74 (contrast 2-04 for the spin3 case in equation
18.16).

If we neglect any gluon self-coupling then the mass of an n gluon
state with all the gluons in the lowest mode, and with the same radius as
an n quark state, will be

M (n gluons) 2-74 4
M(n quarks) 2-04 3

since M o (nx) in equation (18.22). Hence the colour singlet state (TE)?
will be about 3 times as massive as the mean (gq) ground state; thus

M(TE)?=960 MeV

In the lowest mode two J © = 1" gluons will couple to a total J ™ =0"" or
VAR

For the TM modes the transcendental equation has x =4-49 as its
lowest solution. The two-gluon state with the same radius as (TE)* will
therefore have a mass

4-49
TM)*=—(TE)*=1600 M
(TM) 2.74( ) 600 MeV
The possible /™ are again 0"" and 2.

A two-gluon state (TE)(TM) can also exist with J™=0"",1"",27"
and masses 1290 MeV (before any spin-dependent splitting from gluon
exchanges).

The two-gluon colour singlet states have charge conjugation C = +1.
Colour singlet states with three gluons have C = +1 (diy) or C =-1
(fii)- The lowest mass states are (TE)® with J™ =0%",1"",2"7,3"" and
mass

2-74

(TEY’= mx 1100 MeV = 1400 MeV
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(where we compared with the mean mass of qqq, N and A, taking
account of the different mode frequency x = 2:74 as against 204 in the
spin-3 case).

If the ideas of QCD are correct then colour singlets of pure glue must
exist in addition to the qq, qqq states. A priori they could be just a
continuum and not show any peaks. In the bag model however there are
eigenmodes of the glue in the cavity which generate a rich structure in
the 1 to 2 GeV region. Some of these states have /™ =17 and may be
seen in e’e” annihilation. Since the glue is electrically neutral its
coupling to e'e” must be via a qq loop (Fig. 18.4(b)). The decay to
hadrons consisting entirely of ¢¢ combinations will be diagrammatic-
ally as in Fig. 18.4(a). Hence as an estimate

I'(glue>e’e”)
['(glue > all)

which suggests that J/¢ (3-1 GeV) is not a glue ball.

K E
=
(a) (b)

FIG. 18.4. Gluonium decay to (a) hadrons, (b) e*e”.

0(a?)

The phenomenology of glue balls is in its infancy and seems likely to
be much discussed in the immediate future. The mixing of glue with, in
particular, massive quark states (e.g. ¢, ') has been discussed by Jaffe
and Kiskis (1976).



19 Multiquark Hadrons

19.1 ggJ and gqq states in QCD

In section 15.2.7 we saw that a system of coloured quarks interacting by
exchanging octets of vector gluons would have an overall energy or mass
M(n)=nM,+ V(A 2:—3n) for n quarks and antiquarks with A2, the
colour SU(3) Casimir operator for the representation of the n quark
system. If

V =m,—¢)
then

M (n)=3mA b +3e (Gn —Aler) (19.1)

The values for A %, for various SU(3) representations have been given in
Table 2.2. Since A2, =0 only for colour singlets, then in the m, > o
limit only colour singlets will have finite masses. The finite mass colour
singlet states will be

M(n)=ne (19.2)

Phenomenologically £ =350 MeV for u, d quarks, =500 MeV for s
and =1500 MeV for ¢ quarks and approximately 400 MeV is to be
added for each unit of L excitation. Hence typical masses of colour 1
states are

M (qq)L-0o~ 700 MeV(mp); 800 MeV(KK*¥); 1000 MeV(nn'd) etc.
(19.3)
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while
M(qqq)L-0o~ 1100 MeV (NA)

M (qqq)r-1~ 1500 MeV (N'*) etc. (19-4)

These are qualitatively all right. The F.F s . s coupling in the gluon
exchange then shifts the energy levels of different spin states in the same
supermultiplet.

We recall that (F,.F,);=-% and (F;.F,);=—% The former is
relevant to the gluon exchange between ¢4 in a colour singlet meson and
the latter between qq in a colour singlet baryon (since the remaining q is
necessarily 3 of colour and so the gg must be in 3 if an overall gqq singlet
is to be formed). The fact that the signs are both negative caused 0~ to
be lower in mass than 17 and ;" lower than 3" while the respective
magnitudes of A .A and s.s caused the shifts relative to the mean

multiplet energy to be

07 —A; 7T—3A
(19.5)
17+3A;  3'+3A

Phenomenologically therefore A is approximately 300 MeV and hence
M (ui, dd)o- ~ 400 MeV

M (ut, dd),- ~ 800 MeV (19.6)
M (uud)y+ ~950 MeV
M (uud)z ~ 1250 MeV (19.7)

which are in good first-order agreement with the real world.

19.2 Colour singlet g?G* mesons

After qq, the simplest meson system that can have colour 1 quantum
numbers is gg4q (denoted ¢°7°). Given the above mass estimates then
the ¢°q> S-wave masses will be of order 1400 (u”a?) to 2000 MeV (s’5?)
before the spin-dependent splittings are taken into account. The ¢°q” in
S-wave can couple to J”=0"1"2". These values of J* can also be
attained by qq in P-wave where the above rules will lead one to expect
masses of order 1100 MeV before spin-dependent splittings.
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After spin-spin splitting is included, the state of lowest J tends to be
pushed down in mass. Jaffe (1977a,b) has shown that in the ¢*3* the 0*
state is lowered by a greater amount than is the 0" in g4. Consequently
the 0*qq and ¢°3° states may be of the same order of mass. Indeed it has
even been suggested that the 0" states £(700) S*(993) §(976) may be
q’q? and lower in mass than the qq states (Jaffe, 1977a,b).

19.2.1 CHARACTERISTICS OF ¢?3> DECAYS

We have met the idea of decays which are OZI forbidden (requiring
several gluons to enable the decay to arise (Fig. 19.1(a)) and OZI
allowed (where a single qq is created and only one gluon is needed (Fig.
19.1(b)). In the case of g°q> mesons there can exist a class of diagrams

S

(@) Superallowed

D

(b) Allowed

=

(c) Ist Forbidden

(d) 2nd Forbidden

F1G. 19.1. Hierarchy of decay diagrams in quark-gluon models.
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which we may denote “OZI superallowed”. If phase space allows it the
q°@* can simply collapse into qq + qq as in Fig. 19.1(c),(d).

One can imagine a limit where the quark—gluon coupling is set equal
to zero. In this case diagrams of OZI forbidden or allowed topologies
will have zero amplitude and hence all qg states will be stable and hence
of zero width. The OZI superallowed diagrams will still exist in this
limit and so the q°g” states will have finite width.

In the real world the gq states have finite widths. The OZI super-
allowed decays may be expected to give rise to extremely broad states
which may be difficult to identify as true resonant states. However if
q°q’ states are low enough in mass then the superallowed decays may be
kinematically forbidden or suppressed and these states will have widths
typical of qq states. A particular example of this is in the case of the 0"
q°q* nonet.

Jaffe (1977) has shown that a 0" nonet ¢°3” is expected to exist with
rather low mass due to the large spin—spin splitting. In a specific model
(the MIT bag)' the masses of these states are predicted as follows, and
compared with candidate states:

M r
uidd (650) ... €(700) 660+ 100 640+ 140
1 -
—s8(uii+dd) (1100) ...S*(993) 993-2+4-4 40-0+7-4
V2
udss etc. (1100) ... 8(976) 976:4+5-4 46:9+11-2
us dd etc. (900) . k() ~ 1300 broad

The £(700) = ul dd can fall apart into 77 without inhibition. The
very broad width of this state is therefore natural. The $*(993) and
8(976) mass degeneracy is natural as both contain ss. Furthermore the

~~_K
FIG. 19.2. (a) S*(ssud)-» KK. (b) S*(ssud) > .

! Our mass formula equation (19.2) corresponds to assuming a fixed bag radius (equation 18.22).
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excess of some 300 MeV in mass over ¢ is natural due to the extra pair of
strange quarks. The S* can fall apart into KK whereas m requires a
topology like Fig. 19.2(b). Hence the dominant decay mode is to KK as
observed but the KK threshold is so near that the S* width is
consequently narrow. Similar remarks apply to the 8§ (976) whose width
is similar to that of S*.

19.2.2 WHAT IS THE FLAVOUR CONTENT OF THESE
MULTIPLETS?

A qq system can be in 3 Q) 3 = 6@ 3 representations of SU(3) of flavour.
The explicit content and charges of these multiplets are

uu: 3
—1-(ud+du)' H i( d—du): 3
\/E : 3 \/-2- u u): 3
dd: -3
Lus—su):
—(us—su): 3
\/E 3
1
\/—é(us+su): 3
—I—(ds+sd)' -3 i(ds—sd)- _2
V2 ' ’ J2 S
ss: -3
6 3

Notice the charges}, 3, —5 characteristic of 3 (like a single q) as against 3.
The 6 is symmetric and 3 antisymmetric under interchange of any pair.
Just as 1 and 8 states with similar isospin and charge can mix in
producing the physical states (e.g. @ and ¢) so can the 3 mix with the
three analogous states in the 6. For ease of notation we shall imagine that
they are ideally mixed qq, 3, and qq, 3, are shown in hypercharge — I,
space in Fig. 19.3(a),(b). The resulting nonet of ¢°§” is then in Fig.
19.3(c).
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Hence a nonet contains at most two strangeness carrying q or 4. An
18 contains at most three and the ss§§ occurs only in the 36plet.

The Pauli principle limits the possible number of allowed J *, flavour
combinations. In the next section we will see that a J* =0" nonet can

siud @

@ ussd

ussd @

2
>
*

duds

l

(c)

duus

F1G. 19.3. Weight diagrams for: (a) gq in 31 (b) 47 in 3; (c) nonet of ¢%3".

- 1 -
exist. The three neutral members are (uudd)=¢; ?25§(uf1 +dd)=S¥*;

1 - -
\/—zs§(uﬁ —dd)=46; udsd =« whose phenomenology has already been

discussed.
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19.2.3 WHAT STATES OF ¢°§* ARE ALLOWED BY THE PAULI
PRINCIPLE? -

A pair of quarks can have

Spin=0or 1 (19.9)
SU(3)8avour = 3 01 6 (19.10)
SU®B)cotour =3 0r 6 (19.11)

In each of these separate cases the first option is antisymmetric and the
second symmetric under interchange of the labels. The Pauli exclusion
principle allows only antisymmetric combinations under interchange of
all labels. Hence under Spin &) SU(3) &) SU(3) the qq can be as in
equation (19.12).

'ASS S$=0,6,6 5=0,6,6
SAS S$=1,3,6 S=1,3,6
SSA S=1,6,3 S$=1,6,3 (19.12)
AAA S$=0,3,3 5=0,3,3
qq aq

All possible pairings can now take place between qq and qq consistent
with overall colour 1. This leads to the following states

(0", 6; R(0,8) x6-0",36

0,6)Q(1",3) 6x6-1%,18

(1%,3)Q(0",8) 6x6-1,18

14, )HQ1%3) &x6-0",1%,2,9

1*,6)Q (15,6 3x3-0%,1%,2",36 (19.13)
(1*,6)®(0%,3) 3x3->17,18

©0%,3)®0%,6) 3x3-1",18

0,3)R 0,3 3x3-0%9

where the total spin-parity S-wave states are shown in the final column.
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Hence
JF=2": 9,36
JP=1": 9,18, 18* 18, 18* 36 (19.14)
JP=0": 9,9* 36,36*

is the sum total of states allowed in S-wave.

19.3 The spin-dependent splitting of g2g° states

Asin previous examples (sections 15.2 and 17.2) we wish to compute the
expectation values of the gluon exchange interaction

1% 1%}

between any pair of q or ¢ in q:1q.q3q+ where A has dimensions of mass
to set the scale. We will illustrate this for the case of the 9 with 2%, 1" and
36 with 2%, 17. These states are

9=(1",6.):,Q(1",6.)5; and 36=(1",3.)6, R (1%, 3.)e,

First let us separate J into two pieces, one involving qq or §q and the
other involving qq. Then

4H

A =’_[A| .Azsl .Sz+/\3 .A4S3 S4]_[A1 .A3Sl .S3+A2.A4Sg .S4

+A1 A8 S+ A5 458, .85 (19.16)

The expectation values of the first set of bracketed terms are immediate.
Since ¢q,9; and {344 are each in spin 1 then

(sl ~Sz>=<ss -S4>=% (19-17)

Similarly, since the dimensionality of their colour group represen-
tations are known, then

4 .
31n 6,

<A1 ./\2>=<A3.A4>= (1918)

—8in 3.
In order to compute the (S; . S;A; . A;) in the second set of bracketed
terms we need to know the total spin and colour group representation of
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the gq pairs. A priori we do not know these but we can find out what
they are by recoupling the spins (colours) to answer the question.
If q.1q2 couple to ja, ¢394 t0 j5 and j4 and 5 to J

[(7: & 712)ia & (3 & js)isliaciz-r
= Y keo[(1 @ is)ic @ (12X is)inlicoin=y (19.19)

i,C.i.D

then what are j¢ p and coeflicients kcp such that q,4; couple to )¢, g2q4 to
ip and j¢ with jp couple to J ? We will answer this in detail in a moment.
First we shall look at a very simple example, namely the 2" states.

l+
If{q‘qz') } and 1"Q® 12" (19.20)

then clearly when all ¢ and § are in relative S-waves

.
{Z‘Zf:l_} and 1" Q152" (19.21)
244

is the only possibility for the g spins, i.e. the ¢4 are in vector (V) spin
states.

For this particular example, therefore, all pairs qq, g4 or qq are in
spin 1 and hence (S;S;) = for each. Hence

%: —%<Z Ai -Aj> = —%(Al . A3+A2 . A4+(A1+A3) . (A2+A4)> (19.22)
i#]

E_%</\1.A3+A2./\4+A?46.Ang> (19.23)

where A, B refer to the qq systems 13 and 24. Now for any pair 1, j we
have

20 A =AL—AT-Af (19.24)
and so
AL A3=3A4—-2)%)
Az As=3(A%—2A2) (19.25)
Aa Ap=3At—A%—A%)
(since /\Zq E/\ﬁ— =+ for 3. or i). In the sum we have finally

(H)=—16 3% —4ADA= +3 (19.26)
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since A2, =0 for a colour singlet system. This result is independent of
A% individually, these having cancelled (equation 19.25) as a result of
the factorisation which in turn was due to the spin couplings all being
maximally stretched to 2*. Therefore one necessarily predicts that the
9(6. ®6.) and the nine-dimensional analogous subgroup of the
36(3.®3.) will be degenerate in mass. This will be hard to test,
however, because the (H ) is positive which means that these states have
been shifted up in mass relative to the mean mass of the supermultiplet
and so we may anticipate that they will be very broad, decaying by
Zweig superallowed modes.

From the guide in section 17 we expect A =300 MeV and hence these
2" states will be shifted up by some 200 MeV relative to the mean mass
of 1400 (u*G%). Hence we anticipate

2*(ut dd etc.) ~ 1600 MeV
2*(ut sd etc.) ~ 1750 — 1800 MeV (19.27)
2"(udss . ..)~1900—1950 MeV
for the 9 states. In the 36 representation 2 states also arise with masses

2*(usss . ..)~2050—2100 MeV}

- (19.28)
27(s8 s8) ~2200—~2250 MeV

These orientations all agree, to better than 50 MeV, with explicit
calculations in the MIT bag model (Jaffe, 1977a,b).

19.3.1 SPIN RECOUPLING IN ¢%3%- (¢3)(qd)

The spin and colour recoupling are straightforward to calculate. We
will give explicit examples for one case and quote the results for the
others which should be checked as an exercise by the reader.

We label (4192);.4(§384)1.5 <> (9:d5)1.c (924410 Jap will be 07 or 17
while Jcp are 07(P) or 17 (V). Then

[Ja ® Jsl; = [aPP+BPV +yVP+8VV], (19.29)
~ and the object is to find aBy8. The results are
(0" ® 0" ) =3PP+3VV (19.30)

1I"@ 1) =VV (19.31)
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(1" R 1%, =4PV + VP) (19.32)
1" Q1" =3PP-LVV (19.33)
1* Q0% = —XVP—PV)+XVV)  (19.34)
0" R 1)+ =Y VP—PV)+3VV (19.35)

The result (equation 19.31) is obvious and was already used in the
derivation of equations (19.27) and (19.28). We will exhibit the deriva-
tion of equation (19.30).

The spin 0 state of two spin ; objects is given in Chapter 3. Coupling a
spin 0 pair with another spin 0 pair yields a state

Yuidy — dyuz)(usds — dsus) (19.36)

which necessarily has total J”=0" when in S-wave. Coupling
(13) ® (24) to yield J * = 0" means that (13) and (24) can both be 0" (P) or
both 17(V). In the latter case the three combinations of JM =
(11,1-1), (1—1, 11), (10, 10) are possible. We first need to know the
particular combination that corresponds to 0”. From a table of
Clebsch—Gordan coefficients for 1 Q) 1 >2 @ 1 @ 0 each with J, = 0 we

can solve to obtain

(0+,]z=0)=\%{(1, —-1)+(=1,1)—(0,0)} (19.37)
(1+,]z=0)=\/ié{(l, -1)—(-1, 1)} (19.38)

((ANA =O)=\/L6{(l’ —1)+(~1,1)+20,00}  (19.39)

where only the J. values are quoted in parentheses in an obvious
notation. From equation (19.37) and Chapter 3 we can write the VV
wavefunction that corresponds to 0. We have for aPP+8VV that

[(13) ® 24)]o = %(ulds — dyus)(uzds— douy)

8
+ _[U1U3d2d4 + d]d3U2U4 - %(Uld:; + d1u3)(uzd4 + d2U4)]

V3
(19.40)
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Comparing this with the [(12) &) (34)]o+ state (equation 19.36) yields

1 V3
a—z and 5—? (19.41)
and hence
1. V3
[0 @ 0" =5PP+=-VV (19.42)

The other entries in the list can be obtained by a similar procedure
using the equations (19.38) and (19.39) as necessary.

19.3.2 COLOUR RECOUPLING q23*- (¢q)(aq)

We can label the SU(3) colour group by UDS (ultraviolet, deep purple
and silver) and the 6, 3 representations can be written by analogy with

the SU(3) flavours of UDS, Table 3.6. The coupling (3. &) 3.); is then

1 - - = - _ - = =
_[%(UlDz— Dle)(U3D4 - D3U4) + %(Dlsz - S1D2)(D3S4 - S3D4)
V3

+3(S,U,— U,S,)(8:U0,— U55,)] (19.43)

In the (¢q)(qq) this will be a linear combination of (1.&X) 1.);. and
(8. 8.)1... Hence it must equal

A _ - = _ _ ~
g(UlUS + D1D3 + 8153)(U2U4+ D2D4 + 8284)

UDDU +USSU+DSSD+DUUD+SUUS +SDDS
B
+-—=

V8 +3(UU-DD)(UU -DD)

+§UU+DD-285)(UU +DD-2S5)

_ > (19.44)
Equating terms yields A = 1/+3 and B= — 3
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It is simple to perform the analogous computation for (6. &) 6)1..
The resulting recoupling Table for overall colour 1 is

1L.®1. 8.8,

3.03. 143 -V

6.06. Y@ 1/V3 (19.43)

Knowing these colour recouplings and the spin recouplings enables
the calculation of the A . As . s involving the gluon exchange between ¢
and § (the second set of terms in equation 19.16). Hence the mass shifts
relative to the mean supermultiplet mass can now be calculated for each
of the states in equation (19.13) and compared with the results of Jaffe
(1977a,b).

Some care is needed when discussing the 9 and 36 0 states and the 18
and 18 states since each of these can be formed in more than one way.
For example the 9, 0* can have qq in 6., or in 3., (equation 19.13). The
physical eigenstates will be linear combinations of these. This is
discussed in detail by Jaffe (1977b).

A general discussion of gqqgq states with both charm and strange
quarks has been made by Lipkin (1977).



20 Quark-Lepton Unification

When I began writing this book four flavours of lepton and three
flavours of quark were well established and theorists expected that a
fourth flavour also existed. The first clear evidence for this fourth quark
emerged in November 1974 and its existence was confirmed by the
discovery of charmed hadrons in 1976. The properties of this quark
appear to be those required if a renormalisable non-Abelian gauge
theory of weak and electromagnetic interactions is realised in Nature
where the left-handed quarks and leptons are in doublets of SU(2) x
U(1). In a sense this discovery has closed a chapter in high-energy
physics. In the future the charm discovery may well be seen as a pivotal
one in that it has added weight to the suspicion that non-Abelian gauge
theories may be relevant to weak, electromagnetic and strong inter-
actions and this in turn raises the question as to whether a grand
unification of all three of these may be achieved. Secondly it seems
possible that it might signal the start of a new era where hadron
spectroscopy is superseded by quark and lepton spectroscopy and
profound questions are now being raised as to the possible connection
between quarks and leptons.

20.1 Quarks and leptons

The leptons appear to have many properties similar to the quarks
manifested in deep inelastic phenomena (they are structureless spin 3
fields with V— A currents). One suspects that there may be some deeper
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connection between them but a tantalising puzzle exists: Why do
quarks have fractional electric charges and come in three colours (hence
confined?) while leptons have integer charges and are colour singlets?

A necessary condition for a pure V— A theory to be renormalisable is
that (Bouchiat et al., 1972)

YQ=Y QO+ Y Q=0 (20.1)
i quarks leptons

For a (v.e”) lepton doublet ), Q;=—1. The constraint in equation

(20.1) is therefore satisfied by the quark doublet (u, d) for which, in

three colours
Y Qi=3G-3=1 (20.2)

If the constraint (equation 20.1) is fundamental then we see that three
colours of quark require the quark to be fractionally charged (or vice
versa) if leptons and quarks form doublets.

As far as we know a satisfactory universe could have been built from
just these four building blocks of fermions and our everyday
experiences would have been the same as in the real world (apart from
esoteric phenomena like the pion lifetime and CP violation). Yet for
some reason Nature is not satisfied with v.e” but repeated itself by
invoking v,u . The constraint in equation (20.1) is satisfied by Nature
also providing a second generation of quarks in the left-handed doublet
(c,s).

The discovery of a heavy charged lepton (77) (Perl et al., 1977) now
brings us to the possibility that there exists a third generation of leptons
(and quarks?). If the previous pattern is repeated and this new lepton
has a weak coupling

()
T /L

then the constraint (equation 20.1) will no longer be satisfied. It can be
restored if we add a further doublet of quarks

(5)

b/L

occurring in three colours and with the familiar (3, —3) electrical
charges.
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This gives potentially great significance to the discovery of Y
(9-5 GeV) in the summer of 1977 (Herb et al., 1977) which suggests that
the b quark probably exists with an effective mass around 4:5 to 5 GeV
(see, e.g. Ellis et al., 1977). Searches are now planned for the first
evidence that a t quark exists and there is a firm belief that its associated
spectroscopy will emerge in experiments at the next generation of
accelerators (PEP and PETRA e*e” colliding beams at SLAC and
DESY respectively). One attractive feature of six quark models is that
CP violation can be accommodated rather naturally. If the weak
charged current of the quarks is written

T=@,58%.. )yu(l=ys)U Z (20.3)

where U is a unitary matrix, then for a 2 X 2 matrix (two quark doublets)
all elements of the matrix can be real

U cos @ sin 0)

AN—sin@ cos @

(20.4)

where 6 is the Cabibbo angle. For 3 X3 one can no longer absorb all
phases into the phase convention for the quark fields and the matrix
may be written

Cy 8;C3 $183
— 1] 1]
U= —S1C2 C1C2C3 8,283 e' C1c253+5203 e (205)

(5 18
—8$1S2  C182C3 + C2S3 e' C18283 — C2C3 e'

where ci(s;)=cos 0(sin 8,),1=1,2,3. The three Euler angles 6,
generalise the conventional Cabibbo angle 8 giving all possible mixings
between the (u,d):(c,s) and (t,b) doublets. The phase & leads to
CP-violating effects in the K®—K° system. A quantitative discussion of
this and empirical limits on the angles 6,,3, 6 are given in Ellis et al.
(1977). The original observation that CP could be violated in this way
was made by Kobayashi and Maskawa (1972) two years before even the
charmed quark was discovered.
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20.2 Grand unification

Is there a large multiplet of fundamental fermions which contains both
quarks and leptons? Are the non-Abelian vector gauge theories of weak
electromagnetism (SU(2)xX U(1)) and the SU(3)(QCD) of strong
interactions both embedded in one large gauge group?

As a first example we will look at just the SU(2)xU(1) weak
electromagnetism where the gauge fields are the weak isotriplet W*™°
and the singlet B°. The coupling of the electromagnetic current and the
isotriplet are related by e = g sin 6w (equations 15.10 and 15.11) and
hence

sin 6,y = U "la) (20.6)

<41]3|Q>

In SU(2) X U(1) this angle is arbitrary. If the SU(2) X U(1) is embedded
in a larger group G (SU(3) is an obvious example but the following
remarks are true in more generality) then the ratio in equation (20.6) is
fixed. It is (Fritsch and Minkowski, 1975)

sin® 8w =Y I%/Y Q? (20.7)

where the sum is over all the fermions in one irreducible representation
of G>SUR2)xU(1).

As an example consider a V—A theory with the (v.e) and (u, d)
doublets of left-handed fermions and the right-handed fermions in
singlets of the SU(2) X U(1) group. If these are all in a single irreducible
representation of G then

Z I§| = (Ig)u+d+e+v =2
T Q? =20(BF+ [+ (-1 =¥

(only the left-handed fermions contributed to ¥ I3 but both left- and
right-handed appear in ). Q7, hence the overall factor of 2 there). Hence

sin® Oy =3 (20.9)

(20.8)

If the right-handed fermions were also in doublets (vector theory) then
EI)w=2C I3 (20.10)
and so

sin” Oy =3 (20.11)
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This result presumably only has meaning in some symmetry limit. In
the real world this symmetry is badly broken. Within the framework of a
particular grand unification scheme based on the group G =
SUGS)2SUR)x U(1) X SU(3).o (Georgi and Glashow, 1974), Buras et
al. (1978) have estimated the amount by which this result should be
renormalised in the real world. They claim that the theory yields
sin® @y =0-2 which is in fair agreement with data (see Fig. 11.19).

In conclusion we give a few examples in the SU(5) superunification
scheme to illustrate the sort of ideas and patterns that emerge in such
models.

The fundamental representation is a quintet which has the following
decomposition into SU(3)cotour and SU(2)gavour:

5=@3,1)+(1,2)

The product of two fundamental representations is immediately given
by the Young diagrams of Chapter 3

X = +

5x5=15+10
15=(6,1)+(1,3)+(@3,2)
10=3,1)+(1,1)+(3,2)
and the SU(3) X SU(2) decompositions are also shown.
How are the fermions classified ? There are fifteen left-hand_ed states,
namely the three leptons v.e"e” and twelve quarks (u, d, G, d in three

colours apiece). These can be accommodated in a 10 and 5 of SU(5) as
follows

(20.12)

5=@, D+, 2)=(dL+ (¥, e ) (20.13)

10=@3, 1)+ (1, 1)+ (3, 2) = @)+ (e + (u, d)
(20.14)

The gauge bosons belong to the 24-dimensional regular represen-
tation of 5X5=14+24. The SU3)XxSU(2) colour-flavour decom-
position is

24=(8,1)+(1,3)+(1, 1)+ (3,2)+ (3, 2) (20.15)
[ —
gluons W™ y



QUARK-LEPTON UNIFICATION 447

The familiar flavour singlet colour octet of gluons (QCD) is seen as are
the colour singlet bosons of the weak electromagnetic theory. In
addition there are twelve bosons predicted which carry colour and
flavour. These can cause transition between leptons and quarks, e.g.

(u, d)L[3,2] > (e") 1,11+ X 3, 2] (20.16)

Hence lepton and baryon number are not separately conserved and the
proton can decay p—~>e' + for example. This can be suppressed if
these “leptoquark” bosons are very massive, say 107'° gm!

A final theory must go far beyond this. There is no need for further
generations of quarks and leptons and even if one puts them in ad hoc
there is no reason why they should be Cabibbo mixed. One extension of
the SU(5) scheme is to the group SO(10). This has a sixteen-dimen-
sional representation which contains both 10 and 5 in its SU(5)
subgroup. Hence all the left-handed fermions and antifermions in a
given generation can be accommodated in a single representation.

o
T T7TTTT

mg/my
o
I

B>

my My "m—> ®

a=as

FIG. 20.1. Possible pattern of mass ratios of Q = —1 leptons and the associated Q = —3

quarks as a function of lepton mass. At grand unification mass where @ = a, (=) the

lepton and quark masses are equal. At low masses a, (=0-2)> a(=13) and the quark
mass is bigger.
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As a final comment on the SU(5) scheme we return to the paper of
Buras ef al. (1978). At the grand unification mass one has

m.=mg, m, = m,, m, = my (20.17)

Buras et al. study how these predictions are affected by renormalising to
physical energies. With the muon mass and m, = 1-9 GeV as input and
using a,(Q*=10 GeV?)=0:2-0-3 (compare Chapter 16) then the

results are
m,=(0-4—-0-5) GeV, my, =5 GeV

if there are six quark flavours. This is in remarkable agreement with the
observed strange mass scale and the observation of Y and Y’ at around 9
to 10 GeV. This may be a hint that a deep symmetry between quarks
and leptons is indeed present in Nature. If heavier quarks and leptons
exist then it is possible that lepton—-quark mass equality will become
realised (Fig. 20.1).

Only twenty years ago the search was on for the correct group
structure of hadrons. The multitude of hadrons that were found had
properties consistent with there being a deeper layer of matter contain-
ing quarks, originally proposed as a raison d’étre for the approximate
SU(3) flavour symmetry observed in the hadron spectrum. Today we
believe that the quarks, and leptons, are fundamental and that the weak
electromagnetic and strong interactions are described by some group
which contains SU(2) X U(1) and SU(3).c10ur as subgroups. The search
is now on for the correct group structure. At least five leptons and
fifteen quarks (five flavours in three colours) appear to exist. This
compares with the number of hadrons known at the time SU(3) was first
proposed. Are we now entering an era of quark and lepton spectroscopy
which will ultimately take us beyond the quark?



Bibliography

There are many gaps in this book. Some readers will want more
background offered to them while others will wish for more details
about various topics. To help remedy these deficiencies I give some
suggestions. The works quoted are primarily those from which I have
learned something at some time. There are numerous other similar
works which the reader can find in any good library.

A general introduction to the field in which the quark model fits is S.
Gasiorowicz, “Elementary Particle Physics” (John Wiley, New York,
1967). Also there is “Photon—Hadron Interactions” by R. P. Feynman
(Benjamin, New York, 1972). This book also gives a detailed exposition
of the role of the parton model in high-energy physics.

One of the few works specifically addressed to quark modelsis J.J.]J.
Kokkedee, “The Quark Model” (Benjamin, New York, 1969). My aim
has been to extend the base on which these books were written and to
bring out the developments of the subsequent decade. Kokkedee’s book
covers some topics in strong interactions that we have not discussed
here, e.g. quark additivity and total cross-sections, high-energy two-
body processes at small momentum transfers and the question of
nonrelativistic motion for massive deeply bound quarks. It also
contains seme reprints of early papers.

A recent summer school addressed specifically to quarks is reported
in “Fundamentals of Quark Models” (Proceedings of the 17th Scottish
Universities Summer School in Physics (Eds I. M. Barbour and A. T.
. Davies), University of Glasgow, Scotland, 1976). This includes a
detailed description of the Pati Salam model and attempts that are being
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made to investigate quark confinement using gauge theories quantised
on a lattice. There is also an introduction to dual string models of
hadrons. Some of the problems concerned with quark confinement, in
particular the role of colour, are described in “Colour Symmetry and
Quark Confinement” (Proceedings of XII Rencontre de Moriond (Ed.
J. Tran Thanh Van), CNRS, France, 1977).

The background to unitary symmetries and group theory is
described in many places. Some examples include:

P. Carruthers, “Introduction to Unitary Symmetry” (Interscience,
New York, 1966).

M. Hammermesh, “Group Theory” (Addison-Wesley, Reading,
Massachusetts, 1963).

M. Gell-Mann and Y. Ne’eman, “The Eightfold Way” (Benjamin,
New York, 1964).

H. Lipkin, “Lie Groups for Pedestrians” (North-Holland, Amster-
dam, 1966).

As an introduction to gauge theories see:

J. Iliopoulos, “An Introduction to Gauge Theories” (Lectures on the
CERN Academic training programme, 1975-1976, CERN report
76-11, CERN, Geneva).

I apologise to my colleagues who have been inadequately referenced.
To give a full and just bibliography would require a companion volume
and it would be out of date as soon as it was completed. To remedy this
in part I refer the reader to some articles in the review series “Physics
Reports” (section C of Physics Letters, published by North-Holland,
Amsterdam). These articles have a very extensive list of references to
their particular corner of the field. I also hope that this list will aid the
reader who has been stimulated to pursue some item in more detail than
it was covered here.
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LipkiN, H. J. (1973). Quark models for pedestrians. 18, 175.

ROSNER, ]. (1974). Classification and decays of resonant particles. 11, 193.

GREENBERG, O. W. AND NELSON, C. A. (1977). Colour models of hadrons. 32,
1.
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functions
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Young diagrams, 47

G

ga/gv, 107, 109-110, 117, 119, 419-
421

Gauge bosons, 237, 332-337

of grand unified theory, 446—447

Gauss’ theorem, 426

Gell-Mann-Nishijima relation, 38,
336

Gell-Mann—-Okubo mass formula, 77,
406



472

Generations, quarks and leptons, 443,
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GIM current, 225, 336, 381-385
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Gluons, 4; see also
chromodynamics;
monium; Zweig rule
coloured, 10
coupling to quark, 351, 355, 357,
361-363, 448
exchange, 303-304, 341-347, 370-
371, 392
glueballs, 426-428
momentum, 233-234, 243
vW, generation, 229-230
scaling violation, 196-198, 221
scattering, 311
Zweig rule violation 75-76, 349-
364
Good operators, 105-106, 206
Gottfried sum rule, 236, 300
G-parity, 27, 56-59, 65
Grand unification, 445-448
Gross—Llewellyn Smith sum rule, 235

Quantum
Char-

H
Hadron scattering, 306-327
Hadron size
in bag, 415-418, 421, 425
in harmonic oscillator, 121
relativistic quarks, 412—421
Handbag diagram, 209-210, 266
Han—-Nambu model, 161-167
Hard scattering, 309-312, 318-320,
326; see also Constituent
interchange model; Large pr
Harmonic oscillator
baryon spectrum, 81-86
configuration mixing, 115-119
linear potential comparison, 7, 372
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*Py model, 120-125
photoproduction matrix elements,
139
potential, 7, 11, 364, 370
Heavy lepton, 254, 339-340, 443,
447-448
Helicity amplitudes
algebraic electromagnetic inter-
actions, 141-142,146-147,152
Dy3(1520), 133-142, 146-147
electroproduction, 140-142
ee” annihilation, 283, 287
L =1 baryons, tabulation, 137, 146
meson decays, 123-125
*Po model, 120-125
photoproduction, 133-142, 146-
147
Y' > yx, 367-370
radiative width, 133
Helicity conservation, 188-189, 282
¢ dependence, e'e” annihilation,
282-283
O'L/UT, 184, 188
y distribution, 240-241
High pr, see Large pr
Hook rule, see Young diagrams
Hypercharge, 31, 36, 44; see also
Weak hypercharge
Hyperfine splitting, 89, 372-373,
386-399, 421-425; see also
Fermi-Breit Hamiltonian
in atoms, 386
in MIT bag, 421-425
in QCD, 11, 344-347, 386-399,
404, 421-425
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quark mass dependence, 388-399
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Ideal mixing
pseudoscalars in QCD, 405-409
vector mesons, 65-67, 72-75, 79,
405-409
Impulse approximation,
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Inclusive particle production, see also
Fragmentation functions
ine‘e”, 268, 277-293
in large pr, 306-312, 318-326
in leptoproduction, 265-276, 281,
305
Incoherent scattering, 183-189, 194,
317, see also Impulse approx-
imation
Infinite momentum frame, 105-106,
111-113, 117-119, 190, 199-
206, 213-216, 267-268
Intermediate vector boson, see Gauge
bosons, W boson
Internal excitation, of gqq system, 82
Isospin exchange, 341
Isospin symmetry, 18, 25-26, 268; see
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189-191,
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Jacobi’s identity, 30
Jets, 291-293, 310-311
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K* > Ky, symmetry breaking, 64, 68
Kinematics
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electron scattering, 172-182, 185-
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Kinematics—continued
neutrino interactions, 237-239
polarised electrons, 307
Kinetic energy, of quark, 396-397,
414, 416
Kobayashi-Maskawa model, 444; see
also Six quark models
Kogut—Susskind model, 196-198; see
also Scaling violation
Kuti-Weisskopf model, 228, 274,
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Valence quarks
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Landshoff—-Polkinghorne
208-211, 213-216
Large angle scattering, see large pr
Large pr, 306-327
A matrices,
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quark—gluon couplings, 361-363
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production, see Drell-Yan process
tensor L,,,, 174,177,222,237,294~
297
unity with quarks, 442-448
Leptonic width 251, 373-375; see also
Charmonium; ¢ meson;
Vector mesons '
glueballs, 428
and ¢ hadronic decays, 357-358
quark mass dependence, 374-375
wavefunction at origin, 355, 357—
358,374
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Light cone, 267, 451
Light quarks
MIT bag, 411-421
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photoproduction of
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model,
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Linear potential, 7, 11, 370, 410-411
harmonic comparison, 7, 372
Lipes model, 153-155; see also Rela-
tivistic quark models
L., 174,177,237, 294-297
quark and os/oT, 222
Logarithmic potential, 376
Lowering operators, see Raising and
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Magnetic dipole transition, 130
Magnetic interaction, spin flip, 13
Magnetic moment
baryons, 62-64, 127-130
charmed quark, 68, 391-394, 398—
399
M1 transition, 64-70, 130
in MIT bag, 416-418, 422
neutron and proton, SU(6), 62-64,
128
quark, 64-70, 127, 387, 391401,
416-418, 422
strange quark, 129, 391-399
Mass, see also Effective mass
charmed quark, 391-395, 398-399
matrix for pseudoscalars, 405-408
in MIT bag, 411-421
potential, dependence on, 374-376
splittings, see also Fermi-Breit
Hamiltonian; Hyperfine
splitting
baryon ground state, 394-395
electromagnetic, 70, 387, 396,
400-405
in L >0 supermultiplets, 88-92,
386
3-A, 71-72, 388-395
SAZ* system, 391
strange—nonstrange, 18, 71-73,
94-395
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Mass—continued
vector—pseudoscalar, 71,398-399
strange quark, 129, 388, 391-395,
398-399
u, d quarks, 129, 411-421
Massive quark model, 157-158, 191,
211-213, 293
Massless confined quark, 411-425
effective mass, 416, 429430
energy, 414-416
ga/gv, 419-421
magnetic moment, 416-418
Melosh transformation, 107-110,
132, 145
Mesons, 5, 19, 55
charges, coloured quarks, 164-167
decays in *Py, 123-125
nonets, 19, 55
qq, 5, 86-89
SU@B)xXSU(3), 112
SU(6)s.w classification, 100
MIT bag, 115, 411-428, 432, 438
confinement, 415, 426
ga/gv, 419-421
gluons, 421-428
hyperfine splitting, 421-425
magnetic moment, 416—418, 422
mass
hadron, 415-416
quark, 411-416, 429-430
Mixed symmetry state, 40, 42, 46,
60-61, 81, 379-382
Momentum sum rule, 221, 233-234
Moorhouse selection rule, 63, 130-
131
Mott cross-section 175-176, 189
Multiplicity, e*e”, 277-278
Multiquark hadrons, see qqdq
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Neutrino interactions, 236246, 451
charm production, 255-258
comparison, electromagnetic, 231—
232
cross-sections, 236, 238, 244
hadron production, 269-273
kinematics, 236-241, 244
neutral currents, 259-263, 335-336
parity violation, 238
scaling violation, 263-264
sum rules, 235
y distributions, 236, 239-246
Neutron target selection rule, 134
New particles, 348-385
Non-Abelian field theory, 218-221,
331-347, 350, 410, 451; see
also  Asymptotic freedom;
Quantum chromodynamics;
SU@2)xU(1); Weinberg—
Salam model
Nonperturbative parton model, 208—
211, 213-216
Nonrelativistic
interaction, 116, 131
quark model, 126, 411-412
Bethe—Salpeter comparison, 158
Dirac equation, 412413
photoproduction, 131, 147-148
quark momenta, 115
reduction,
axial current, 116
Dirac equation, 412-413
electromagnetic, 116
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Normalisation, 97, 172, 315
Nuclear analogy, scaling, 223-226
Nucleon
current representation, 109
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Octet
mass formula, 77
qqq representations, 46
Old-fashioned perturbation theory,
199-206, 213-216
)" (omega minus)
Pauli statistics, 9
w ~> 7y, 65-66
Orbital angular momentum, SU(6) X
0(3), 5, 80-92
Orbital flip, 139, 369
OZI rule, see Zweig rule
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*Po model, 102-103, 119-125, 155
157
P-wave
baryons, 81-83, 86, 89-91
mesons, 86-89, 364-366
charmonium (x), 364-366
Parafermions, 159
Parastatistics, 9, 159
Parity,
antiquark and SU(6)w, 98-100
baryons in SU(6) X O(3), 81-85
e'e” annihilation, 283-287, 367—
368
glueballs, 426427
qq, 86-89
X decays, 367
Partons, 4-5, 169-327;
Pointlike partons
covariant model, 208-211,213-216
distributions, 214-215, 246-248
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field theory, 216-221
hadron production, 265-293
infinite momentum frame, 199-

206, 213-216
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Partons—continued
lepton scattering, 169-198, 223-
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momentum distribution
Drell-Yan, 320-325
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nonperturbative model, 214
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neutral currents, 259-263
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310, 320-327
quarks, see Partons,
menology
resolution, 12-14, 219-221
theory, 199-206, 213-217
Pati—Salam model, 168
Pauli matrices, 23
matrix elements, 64, 65
SU(2) subgroups, 30-31, 37
Pauli principle, 9, 159, 435-436
¢ decays, 67, 350, 357; see also 1deal
mixing; Vector mesons; Zweig
rule
Photoabsorption
cross-sections, 180-181, 221-222,
296
quark interaction, algebraic, 145,
152
Photon
colour transformation, 165-167
vector meson, 69-70
Photoproduction of resonances, 126
Pion
7"~ 27, colour, 162, 337-338
Pion production
B- wm, 123
exclusive, 285-286, 312, 314

pheno-

SUBJECT INDEX

Pion production—continued
inclusive, 268-277, 305, 307-309,
319
' - ymm, 351
Planar diagrams, 74-76; see also
Zweig rule
Pointlike partons, 4, 12-14, 171, 191-
197; see also Current quark
dressed in QCD, 229-230
protons in nucleus, 223-226
relation to scaling, 191-197, 219-
221
structure functions, 180
Polarisation,
ine‘e”, 286-290
electroproduction, 294-305
real photon, 132
Positive parity baryons, 81, 83-85
Positronium
charmonium analogy, 355-364
decay formulae, 355
energy levels, 5
photon—gluon comparison,361-364
Potential, 355, 371-373, 375-376
Prepartons, 12-14
Pressure, bag, 415
Pseudoscalar mesons; see
Charmonium
charm, 377-378, 384-385
masses, 77-79, 405-409
mixing in QCD, 405-409
radiative processes, 6470
¢ meson, 348-354; see also Char-
monium; Zweig rule
colour, 166-167
decay theory, 354-364
e’e” production, 251
glueball, 428
leptonic width, 251, 348, 355-358,
428
& comparison, 357
radiative decays, 354

also



SUBJECT INDEX

@', 251, 254, 348-349, 351; see also
Charmonium
x production, 364-370, 373
¢", 349-350

Q

QCD, see Quantum chromodynamics
QFD, see Quantum flavour dynamics
q4,
fusion, 311, 319-325
parity, 86-89
potential, 7, 370-376
qqqq mesons, 429-441
Quantum chromodynamics, 9, 336—
347, see also Asymptotic
freedom; Colour; Gluons;
Non-Abelian gauge theories;
Zweig rule
charmonium decays, 354-363
confinement, 191, 410, 426
glueballs, 426-428
grand unification, 445-448
hyperfine splitting, 387-399, 404,
421-425, 436441
ideal mixing, 405-409
pseudoscalar masses, 405-409
scaling violation, 196-198, 218-
221
in two dimensions, 191, 410
Zweig rule, 76, 349-363, 426-428,
431-432
Quantum flavour dynamics, 337, 350;
see also SU2)x U(1)
Quantum numbers of quarks, 39
Quark, see also b quark; Charmed
quark; Down quark; Frag-
mention functions; Partons;
Sea quark; Strange quark; Up
quark; Valence quark
Charges :
coloured quarks, 160-167, 443

477

Quark—continued
deep inelastic, 226-227, 232-
233,236
deep inelastic, 226-227, 232-
233,236
e’e” annihilation, 253-255
Han—Nambu model, 161-162
inclusive hadroproduction, 268—
269, 273-277, 281, 305
leptonic widths, 251, 374-375
polarised electroproduction,
298, 305
relation to leptons, 443
fragmentation, see Fragmentation
functions
fusion, see qq fusion
Gell-Mann and Zweig hypothesis,
20
meson cloud, 126
pair creation, see 3Po model
partons, electromagnetic
226-233
scattering, see also Electron scat-
tering; Form factors, Struc-
ture functions
constituent interchange model,
326-327
counting rules, 314-317
g-meson, 319
qq, 308-312, 318
qq fusion, 319-325
spin, see also os/oT
deep inelastic scattering, 185,188
e’e” annihilation, 286, 291
eq->eq, 186-189
SU(2), 43
SU(6), 54-62
substructure, 12-14, 171, 219-221
dressing in QCD, 229-230
nuclear analogue, 223-226
transverse momenta
cut-off in parton model, 216, 308

data,
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Quark, transverse momenta—con-
tinued
configuration mixing, SU(6)w,
103, 115-118, 143-144
confinement, 115, 419-420
ga/gv, 115-117, 301
large pr, 308
polarised electroproduction,
297-298, 301
os/or, 222
SU®)w X O(2)L,, breaking, 101,
103, 118
Quasi-elastic peak, 193-195, 223-226
constituent charges, 225-226, 230-
231, 235-236
nucleus, 224

R
R, see Electron—positron annihilation,
os/oT; Weinberg—Salam
model
Radial excitations, 86, 358; see also '
decays in 3Po model, 123
Radiative transitions
baryons, 126-168
colour, 166
n-n' mixing, 69-70
explicit models, 126-168
mesons, 64-70, 166, 348, 364-370
Radiative width, helicity amplitudes,
133
Raising and lowering operators, 24
Regge behaviour, 248, 306
Regular representation, 18, 28-30,
52-53
Relativistic quark models, 147-155,
157; see also FKR model,
Lipes model; Massive quark
model
Renormalisability, quark charges,
443
Resonance photoexcitation, 130-142,
146, 149-157

SUBJECT INDEX

Reverse angle, 478

p = Yy, comparison with w - 7y, 67

Right-handed quarks, 258, 333, 445;
see also SU2)xXU(1)

S
S*(990), see also Scalar mesons
in ¢ decay, 352-353
qq4q state, 431-432, 434
Scalar mesons
qq, 86-89, 430-431
q9q4q, 430-432, 435-436, 438-440
X, 358-360, 364-367
Scale invariance, see Scaling
Scaling, 4, 12, 171, 189-197, 223-
226, 251-253, 312; see also
Scaling violation
¢"e” annihilation, 250-255
fragmentation, 266-267, 279-280,
282
kinematic conditions, 224, 226
nuclear analogue, 223-226
relation to pointlike, 191-197,223—
226, 251-253, 312-313
Scaling violation
charm threshold, 258-259, 278-
280
data, 263-264
Drell-Yan, 322
field theory, 196-198, 255
form factor, 192-195, 223-226,
251-254
Kogut—Susskind model, 196-198
quark—gluon field theory, 12-14,
219-221
resolution, 12-14, 192-198, 219-
221, 223-226
target size, 192-195,223-226, 251-
254,313
Sea quarks, 196-197, 227-246; see
also Valence quarks
distribution, 228, 246-248, 321
Drell-Yan, 321



SUBJECT INDEX

Sea quarks—continued
duality, 227
fragmentation, 268, 270-275
large x, 248-250
momentum, 243-244
polarisation, 300-301, 305
small x, 229, 232-233, 242, 247-
248
valence dressing, 229-230
y distributions, 240-243
Selection rules
Moorhouse, 130-131
neutron target, 134, 142
os/or
quark—parton model, 184-185,
188-189, 221-222, 285-286
spacelike, 184-185, 188-189
timelike, 285-286, 289-293
3, 2%, A masses, 388-395, 424
Single quark interaction
Melosh transformation, 113-115,
369-370
photoabsorption, 126, 143
¢' - yx, 369-370
Singlet, see also Colour singlet
octet mixing, 69~70, 78, 405409
representations, 46, 50, 52-53, 55—
56
Six quark models, 443—444, 447-448
Small distances
a.g1n QCD, 11
S0O(10), 447
Spectroscopy, 5-12, 17-21, 54-61,
70-73, 77-92; see also Bary-
ons; Charm; Charmonium;
Mesons
baryons and colour, 338-339
Sphericity, 292
Spin, see also Quark spin
of x, 349, 364-368
-flip
matrix elements, 127-131

479

Spin—continued
Moorhouse selection, 130
photoproduction, 139
-orbit interaction
L >0 mass splittings, 88-92, 386
neutron target selection rule, 142
photoproduction, 134, 137, 142,
147
recoupling, 438-440
Spinor
boosts, 96-97, 105-106, 117-119,
143-144, 301
in cavity, 411-413
Dirac and Pauli, 96, 103, 115-119,
301, 411413, 419
normalisation, 97, 172
Spurious excitations, 82
Square well, 420
Strangeness, 18-19; see also Mass
splittings, Strange quark
Strange quark, 5, 38; see also Cabibbo
angle; GIM current; Mass
splittings; Sea quarks
in bag, 414, 425
charm production, 255-256, 332—
333
effective mass, 392, 395, 421
K* > Ky, 64, 68
magnetic moment, 129, 391-399
momentum, 233-234
in sea, 196, 232-233
vector meson masses (ideal mix),
72-73
Strong interactions, 18, 20
field theory, see
chromodynamics
Strucfure constants, 23, 32
Structure functions, 179-198; see also

Quantum

Partons; Fragmentation
functions

current absorption cross-sections,
181, 238
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Structure functions—continued
electromagnetic interactions, 226—
233
fixed x, W behaviour, 182-183
neutrinos, 231-234, 236-238
parton model, 187, 215
polarised, 295-297
scaling, 183, 187
violation, 191-198
sum rules, 234-236
Sum rules in quark—parton model,
234-236, 276-277, 298-301
SU(2), 21-30; see also Quantum

flavour  dynamics;  Pauli
matrices; SU(2) X U(1); Weak
isospin

breaking, 25

representations, 21, 40-44

as subgroup, 30-31, 37

SU(@3), 30-36; see also Casimir

operators; Colour; Quantum
chromodynamics

A matrices, 30
representations, 44—46
subgroups of SU(4), 36-37, 380,
382-383
SU@4), 36-37, 51, 377-381; see also
Charm
SU(5), 446-448
SU(6), 54-62, 94
SU(6)w, 95-119; see also Melosh
transformation
breaking in *Po, 119-125
vertex symmetry, violation, 137
SU@2)xU(1), 261-263, 332-336,
443-448
SU(@3)xSU(@3), 110-119, 303
SU(6) X O(3), 80-92
decay vertex failure, 95
SU(6)w X O(2)L.., 101-104, 107
violation by pr, 143-144
Symmetries, 17-37; see also SU(N)
listings

SUBJECT INDEX

Symmetry breaking, 64, 68-69, 77,
129; see also Mass splittings;
Strangeness; Strange quark

Superallowed decays, 431-432; see
also Zweig rule

Symmetric quark model, 80-86, 159-
160

colour, and statistics,
338-339
Symmetric states, see also Symmetric
quark model

in O(3), 83

qq, 45

qqq, 40, 42, 46

in SU(4), 379-380

in SU(6), 56, 60-61

Young diagrams for SU(N), 48
Symmetric wavefunction

matrix elements, calculation of, 62

159-160,

T

Tensor interaction, 89, 91; see also
Fermi—Breit Hamiltonian

Timelike excitations, 148

t quark, 444, 447-448

Transverse momentum, see Large
pr; Quark transverse
momentum

Triplet of SU(3), 20

Twisted diagrams, 74-76; see also
Zweig rule

U

U(6) X U(6), 93-95

U(12), 105

U-spin, 127, 394

Unified field theories, see Grand
unification; SUR)xU(1);
Weinberg—Salam model

Unitary symmetry, 21



SUBJECT INDEX

Up quark, 5, 6; see also Cabibbo
angle; SU(2)x U(1); Valence
quark

dominance,
inepande’e, 281
as x> 1, 227, 245, 248, 275, 302,
305
Drell-Yan, contribution to, 324-—
326
effective mass, 392
in MIT bag, 411-428
momentum distribution, 246-250
polarisation of, 298, 302, 305

. Upsilon (Y), 444

\Y

V-spin, 31
Vacuum polarisation, 10, 11, 218,
229, 230, 340
Valence quarks, 196-197, 227-250;
see also Sea quarks
distribution, 228, 246-248
Drell-Yan, 324-326
duality, 227
fragmentation, 270-275, 305
large x, 229, 242, 247-250
momentum, 243-244
number in proton, 243-245
sum rule, 235
x -1, u dominance, 228-229, 245,
326
y distributions, 240-243
Vector mesons, 19
glueballs, 428
leptonic width, 251, 373-375
radiative decays, 64-70, 354

481

A

W,., see also L,,,
electromagnetic, 178-180, 294-297
os/or computation, 222
W boson, 237, 332-336, 446; see also
SU(2)x U(1)
Weak-hypercharge,
445
Weak-isospin, 261-262, 333-334, 445
Weight diagrams, 45, 164, 434
Weinberg angle, 262-263, 334-335,
445
Weinbeig—Salam model, 262-263; see
also SU(2)xU(1)

262, 333-334,

Y

Yang-Landau theorem, 359
y distributions, 240-243, 256, 260
Young diagrams, 47-53, 60, 446

Z

Z°, 334-336, 446; see also Neutral
currents; SU(2) x U(1)
Zweig rule, see also Charmonium
disconnected diagrams, 74-76,
349-353, 431-432
dual unitarisation, 75
gluons, 75-76
nonplanar diagrams, 75-76
@ decays, 73-75, 407
qq4q decays, 431-432
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