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Preface 

of tbis book: to describe in concise form 
I.UlI'Ylllii.l tandU1~g of the nuclear many-body J)f(',*~. 

enormous of material 
over the wt few decades may be divided into two ......,...., ........ 

concentrate on the pbysical phenomena. 
rotations, vibrations, or large-amplitude 

and treat each or them using a variety of theoretical mel.hods; 
stress the methodology and technical aspects of tbe dirferent 

used to describe the nucleus. We have chosen the 
MC:onO avenue. The structure of this book: is thus dictated by the different 

theory. ttme-dependent Hartree-Fock the
generator coordinates, boson expansions" etc.-rather than by the 

of the present theories have, of course, already been presented in 
tex.tbook.s. In order to able to give a more rounded. picture, we 

either briefly review such topics (as in the case of the liquid drop or 
or try to give more updated versions (as in the cases of 

<1I1Oi.711111oY\\,.,UIl' or the random phase approximation). Our essential aim, however, 
more modem &I DQEDOn eJC<E)4J1i.1UJGJ,. 

CQ()TdlL.Dates. time-dependent Hartrce-Fock, semiclassical theories, etc. 
either never been seen, or at best had little detailed treat· 

book form. 
essential1y directed towards students who have had a 

n ..... , .... ,""' course in quantum mechanics and have some basic under-
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standing of nuclear phenomena. Our intention has been to cloae tbe gap 
between the usual graduate lecture course and the literature presented in 
scientific journals. We have therefore put as much emphasis as possible on 
clarity, and to this end often go into quite extensive mathematical detail. 
We hope that the reader will tbus be able to rederive many of the formulas 
presented too much diHiculty. 

Originally our idea was to make an updated translation of an existing 
book on Nudear Models by G. Baumgartner and P. Schuck [BS 68a]. 
However, we soon found that theoretical nuclear physics bad evolved so 
rapidly over the Last decade that a completely new book was called for. 
Neverthelesl~ the reader will find some remnants of the original book .• for 
example, in Chapter'S 2 and 6. The editing of the present work has been 
undertaken by Springer-Verlag, to whom we are grateful for their very 
constructive collaboration. 

We are indebted to many of our colleagues for innumerable discussions 
and helpful remarks. In the first place, we wish to express our thanks to R. 
R. Hilton for his most ca.refuJ reading of the entire manuscript, and for 
pointing out the way many conceptual and linguistic 
errors. 

SpecificaUy~ we are particularly grateful to the following people for 
clarifying discussions on a number of topics: for the rotational problem in 
nuclear physic:s-R. Arvieu, L. Egido, R. M. Lieder, H. J. Mans, E. 
Marshaiek, J. Meyer-Ier-Vehn, J. O. and F. S. Stephens; for 

Permi aDd its applications to coUective nuclear 
W. Wild; for the deecrip-
uSing boson expansion 

."'1L4W""'''''t T. 

for the aenerator ~1'Ii!'il'!1 

Ooeke~ Holzwarth and P. 
Hartree-Fock approach-K. 

for methods in nUC;:IClU" DDVlIlCiI--J 

BellatdlSOla. .. R. K. Bhaduri, M. Bracl4 M. Durand. H. 

Thanks ate also due to L. Egido for a careful 
to S. for a of the on botOD GXI;JeIlUQC~n .. 
~ Bhadun. M. Brack, M. Duran<L and O. Holniarth 
of the on IeDHC .... 1C&.l IIMUKldl;. 

Our nuclear phylio education Munich group~ 
we are happy to be able W. Brenig. 

H. J. Mana. H. Schmid~ the patience aDd 
have Dum_CUI dlleullk ... we have had 

by ODe of 
UflI.mC)DIIL. for whclle support 
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us have to 
,",VI_III!.U".;) at Insutut Sciences 

Physique Nucleaire, Orsay; and the Centre 
We hope they win not mind if we thank them 

ruhion. 
help and collaboration it is almost inevitable in a book 

miJc.onccptions will still remain; naturally, they are 
However, suggestions and from our 

welaJ'meG for some future edition. 
tbe the we 

_~"UIU like finalJy to thank our many for their valuable 

MlN'lrunlro J 980 

P. Ring 
Schuck 
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lbe Liquid Drop Model 

Introduction 

(tDM) of the nucleus was historitaUy 
pn:;IP05eU as an explanation of the different properties of the 

it has regained interest in recent times, we with a 
this phenomenological model. Some aspects of model 

up the course of the book and explained from a more 
of view. In this chapter we foUow to a large extent the 

as given in the texts of, for example, A. 
[EO 701 A. de ShaHI H. [SF 741 

Mottelson [BM 75]. 
the nucleus as a liquid originally came 

saturation properties (see below) 
a very low compressibility a wen 

as we shall it is misleading to take this 
other respects a nucleus does not 

to an ordinary liquid. for instance, the mean distance of two 
a liquid is roughly given by the value at which the 

minimum value, which for nuclei would be 
nuclei are, on the average, -2.4 fm 

tff"....,..,,,,.,.. as compared with an ,..,..l1llft6 

statistics and a nuc1eus is thus a quantum fluid. 
prevents the nucleons from coming too close to one another. 

events are very scarce in a quantum nuid, an 
fluid they are predominant 
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Consequently, the mean free path of the nucleons a B'CUl'Wt:I-cllI.le 

(or moderately excited state) nucleus is of the order of 
dimension and resembles, therefore, apart from the a non-
interacting gas. fact has some drastic consequences that are ...... IlI""""Il~ 
droplets of ordinary For instance, we want to mention that in a 
vibrating nuclear drop (dynamical) quadrupole deformations] the 
momentum distribution of nucleons may be influenced by the defor-
mations; it can be whereas the velocity distribution in an 

fluid isotropic. These peculiarities of a quantum 
be treated more detail in Chapter 13. Here, instead, we shaU 

of the LDM idea.. since it is very useful 
in describing overaU of the nucleus and in inlToducing many 
concepts of collective phenomena in nuclear physics in a simple way. 
is the main purpose of chapter, where we will not bother about 
specific differences an ordinary liquid drop and a quantum drop. 

1 .. 1 The Semi-emplrlcaJ Formula 

One quantity that should, according to the discussions above, vary 
smoothly with mass is the binding energy per particle. In 
total binding energy B(Z, N), where Nand Z are the number of 
and protonli, grows with number of nucleons, At in 
way that the binding per particle B(N, Z)/ A stays fairly "'vJ. ...... ~u 
for nuclei with more than twelve nucleons: 

B(Nt ) 

A 
(1.1) ~ - 8.5 [MeV /nudeon]. 

> 12 

the binding energy per nucleon being aD1Pf(l'XlIIlI.I.e1 
following qualitative way: If the U'LU'WJJJ6 

comes from the interaction energy of 
combinations, then the total binding energy SD(JIUHl 

of all possible as i' A 
ftllllll'Tll,f"I'."" should 
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develops at 
COIlIlP4lllllO to the nuclear forces, quite 

OO£lIlOeraUOJlI it becomes clear why there can only a .......... , ........ 
the range of onc 

rRU,melrn we have not taken into account surface effects and 
They have to be treated separately. as we shaH see. Neglecting 

we expect that the total binding energy linearly with A, as 
(1.1). 

The saturation property also explains qualitatively the found 
(by. for instance, electron scattering, I'-mesonic 

76D, that is, the roughly constant density of nucleons 
Ducleus and the nucleus's relatively sharp surface. the 
as a sphere with a constant density and a sharp 

R-'oA 

the parameter '0 has empirical1y the value 

'0" 1.2 [trn J. 

(1.2) 

( 1.3) 

In Fig. I we see the dependence of the binding energy per nucleon on 
mass number A in more detail. \ 

Up to about A -1 we get a steep rise until B/ A MeV; at A we 
obtain the maximum of a little than 9 MeV. The binding energy 

g LM("V] 
A 

~ fm] 

Qualitative explanation of nuclear saturation as a subtle difference 
and 



-9.0......----------------------. 
B/A 

(MeV) 

-8.5 

-ao 

-7.5 

20 50 200 250 A 

IIlM1:nI" 1.2. Experimental values of B / A for p-stable odd-A (0) nuclei and the 
curve using a mass formula similar to Eq. (1.4). (From [Ho 75].) 

nucleon then drops slightly until at A -250 it is about 7.S [MeV]. This is 
due to the increasing influence the Coulomb of the Of(]'{OfllJl. 

There have been many attempts to reproduce the behavior of B / A as a 
function of N and Z. The best known formula of this kind is the 
semi-empirical mass formula of Belhe and Weizsacker [We 35, BB 36] 

1 (N - Z)2 
B(N,Z)-QvA+os.lfl/3 A1/l +°1 A -8(A), (1.4) 

where one obtains by a fit (see also [MS 66, My 69, MS 69D: 

Qv= -15.68; Qs = 18.56; Qc .. O.717; 0,-28.1 [MeV] 

{ 

34· A - 3/4 for even-even} 
8(A)= 0 for even-odd nuclei 

- 34· A --3/4 for odd-odd 
(1.5) 

In Fig. J.2 we see that one obtains quite good overall agreement with the 
experimental curve with these kinds of semi-empirical mass formulae. 

The physical meaning of formula (1.4) is the foUowing. The fint term is 
usually called the volume term, beca:ue it is proportional to A I ex R J with 
Eq. (L2n The reason that the value of av is not -8.5 [MeV] as in Eq. (1.1) 

the foDowing. In order to get the value - 8.S, one has to average a 
wide of A, and other tenus (as, aCt and 01) are positive and DOt 

secclno tenn is proportional to A 2/3 (ex R~, and is therefore called 
'llVJ"'I'IfJIf"§ term. It from the fact that the nuc1eons dose to the 

to the total binding energy. One can calculate from 



I111I1"nll"'" tc~DJ;ton coefficient a defined as the surface 
Eq. (1.3): 

(J .6) 

account the Coulomb repulsion of the protons. It 
by the charges to be uniformly 

0fJ4!01r.IlD _'_II'1.*,,1 of such a system is propor-
UVI_ to and inversely proportion"al to 

radius. 
Since the protons repel one another, it would be energetically more 

for a nucleus to have only neutrons-if there were no Pauli 
principle. A proton decaying into a neutron must enter a state above the 

Fermi leveJ (see Chap. 2). whicb is energetically unfavored. The 
_n_' .. ",u baLanc.e of tbe neutron excess N - Z is taken care of in the fourth 

of Eq. (1.4), the so-called symmetry energy. It cannot depend on the 
of N Z. In the Fermi gas model [SF 74. p. 127 one can sbow that 

it is proportional to (N - Z)2/ A. The quadratic dependence of the binding 
energy on the proton-neutron mau difference is experimentalJy very wen 
confirmed. Only tbe base of the experimental parabola is different 

to whether we are considering an even-even. even-odd or odd-odd 
nucleus. Tb.is due to the so-called pairing effect, as we shall see in 

6, and is taken care of by the last term in Eq. (1.4). 
Some aspects of the semi-empirical mass formuJa will be discussed again 
Chapter 13 in the context of the Thomas-Fermi approach to nuclear 

pbysics. 
It should be noted that Eq. (L4) gives only an overalJ smooth fit to the 

binding energy as a Function of A, and that locally there are strong 
deviations from it (see Fig. 2~2)t mostly due to sheU effects., which will be 
diJcussed in Section 2.9. 

1.3 Defonnatlon Parameters 

to now, we bave only studied static properties of the Jjquid drop model. 
In the following. we will assume that the nucleus has a sbarp surface· 
which must not necessarily be sphericaJ t and we imagine it to undergo 
dynamical shape or surface oscillations. 

Before we can investigate these oscillations, we have to parametrize the 
in lOme way. One possibility to descnbe it by the length of the 

radius vector pointing from the origin to the surface 

R-R(O,CP)-Ro(I+aoo+ f ± a~Y¥(iJ,4t») (1.7) 
>t"1 IA--). 

where Ro is the radius of the sphere with tbe same volume. Such a surface 

II Myers and Swiatocki [MS 69. 73) bne given up this UlumpLion and introduoed II. reUDea 
liquid drop model with a diHuse surface, to-called "droplet model" rNi 721. 



, 
it 

we that 
high. we require that the volume 

(1.8) 

This defines the oonslant aoo- Up to second order, we 70] 
. 1 
000"'" - -. 2: 

417 A> 1, '" 

term A - I describes mainly (at least for fNIIII111III'fIt'\" of 
whole The parameters a I" can be fixed by the 

comcides with the center of mag 

J/dJr=O. 

alp 

both aoo and a I,,' since we 

two separated 
It iii muJtivlllucd. 

---

... _ ..... 

I 
r 
I 
\ 

(I.BO) 

3 

ocmpolc (A - and heu-
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on [he parameters tl~. is the fact 
under a renection of the coordinate system and 

coordinate In order for to be the 
1_''l.V1 (- t under a parity transformation, 

a rotation of the coordinate system 
(J, y) Eq. (5.2.1 

(1.11) 

functions of the rotation and 0'Ap. are 
in the new system. 

sure that the radius R in Eq. (1.7) real, we have to use 
( and get 

( 1.12) 

time '""ViP.". behavior of the Q""", 

the surface of general multipolarity, we 

(i) symmetric defonnations. Choosing the ..... ~ 
we find that vanishes except when tJ 

aM are usually P>. . 
In the case of quadrupole deformatjons (A 2)~ we have five parame-
ters tl),;.t. Not aU of them describe the shape of Three 
determine only the orientation of tbe drop in 
to the three Euler By a suitable rotation, we can 
the body-fixed characterized by axes 1. which 

with the principal axes of the mass distribution of the 

. cos)" 

I fJ . 022- _. '8m)" (1.13) 

which we have 

(1.14) 
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and 

In Fig. (1.4) the A· 2 
fJ. y. We see that 

8R I - R (; I 0) - -
SRz"'" R( 'I' '1') - Ro. Ro 

SR) s; R (0. 0) Ro·Ro 

~"""""'3 

~-l) 

(1.15) 

in the polar coordinates 

prolate spheroids with the 3~ 1 

pcos( y-

fJ COs( y 

fJ cos 

), 

)t 

under 
describe 

......... "'OILJ..U.,..... by 



(1.16) 

We have to remember, however, that the parameters p and y (witb 
(L1) only exactly ellipsoidal shapes in the of small 
/:i-values also Eq. 1.88). 

1 .. 4 Surface Osclllatioas About a Spherical Shape 

The first kind of excitations are dynamical shape, or surface, oscillations. 
dynamical variables are in this case the parameters which describe the 

lurface, Le., the surface coordinates a~ (A;> 2) of Eq. (L7). They are 
oonsidered to be functions of time: a~(t). For the low-lying excitations 
ooe can expect that they produce small oscillations around tile sl>hericaJ 
equilibrium shape with a7;,l.l - 0, and th.at the Hamilton function 
H colJ that describes thjs process is of a harmonic osciUator form [Bo 52]: 

-T+V ~ L {B,.IaA.-1 2 +C>..\aA,JJ1 1
}, (1.17) 

.\.1' 

Here tbe parameters of inertia B;., and of stiffness Cit are real constants. 
in fact.. the only quadratic fonn which is invariant under rotation 

Ind time reversaL'" 
Following the usual rules of canonical quantization (see for instance, 

lEG 70. p. 4OD, we obtain the quantized form' (see Appendix C) 

= L hO>.( B;;B7;,I.I + i) (1.i8) 
),.p 

with the frequencies 

_ ( C>. )1/2 
OA B>. . (1.19) 

The operators B7;,I.I obey Bose commutation rules 

BApI BA·,.· -0; [ B"". BA'II' 6"A;':~WA' (1.20) 

and have a corresponding Bose vacuum 10) such that B7;,I.I10)2:0. The Boson 
opera.tors B7;,I.I are related to the coordinates O:>..,a and correspondjng rno
men ta '"A,.. by 

( )

1/2 

a~-~:- (BA; ( tBA-FA)' (1.21 ) 

WA,JJ- i( ~BADA)'/2« - )'B.,.+_". - BA,l)' 

·The time operation III gal detlil by (Me 61] IlDd it ill 
lhIt in a system without !Ilpill. U '\life bave here. reveru1 CiO'I'TCSpollds to complex 

cxmju.ptioo. 

tODe should not ml)l up the openlloO B¥ with the iD.~rtia puame-Iers B),. 
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o 0----0 .. 

FI&-e I's. Harmonic energy spectra for the quadrupPle 0 -2) and octupo1e 
(;\ - J) sunate ~DUlJLllUIl_ 

From the above considerations, it foHows that for each A we a 
UIIVA~J"" spectrum of surface vibrations as illustrated in I 

From the fact that a~ and B';; behave like tensors under 
rotations of the coordinate system (Eq, (1.1 1), (Ed 1)]) we know 
the commutation relations of tbe angular momentum with B'; 

lind that the onc-oorlOn ... ,. ..... '''''''' 

-B~IO) 

bave angular momentum J - A and z-component M - p. with 
To construct multi-boson states we have to use tbe 

momentum coupling [Ed 57] and also have to 
with more than two bosons are symmetric under 
of them. For instance, we get. for 
hosons (A - the three combinations 

IJJW)- " ~ Cp~,.:JBi;JB2;310). 
VA. PIIl2 

states with 1= (,3 vanish identically because of 
coefficients· [Ed 57~ Eq. (3.5.14)] 

C 2 2 J = ( _ )1 C '2 'J. J 
II-1I"lM "'l1' I M' 

under an exchange of ILl and 1-L2. 
many spherical nuclei show in their spectrum a 

state and, at roughly double the excitation energy, a so-caned 
triplet (0+,2+,4 +) is, up II little 

The constants BA C). can be calculated 
aOJl)cDIO on flow with the 

to postulate the of the 
thiI point we should apin what 

(1.22) 

(-t· 

(1.23) 

the 



13 we will investigate this point in detail and show that 
a Fenni liquid and not an ordinary liquid plays 

role. The simplest about the flow pattern of the 
we can that it is irrotational, i.e., rot v(r) = 0, where v is the 

field. We shall aJso study the justification of this point in Chapter 
the let u.s take it for granted and thus have: 

V(I)- - V<I>(r}. (L24) 

is that of incomprf:ssibility. which is quite well 
for It means that the density inside the nucleus is 

and we get from the equation of continuity 

Vv-O (1.25) 

from (1.24), 

(1.26) 

most general solution of Eq. (1.26) regular at the origin can be 
in the form 

(1.27) 

small deformations we have the boundary condition that the radial 
iLlUUlJ'Unent of the velocity is, in lowest order, given by: 

a . 
Vr - a, ~ = R at r;;;;; Ro. 

with Eq, (1.7), yields the folJowing relation between the coefficients 
d>.p. and CI¥, 

d I R l~>'" 
).,p,= - A 0 nAp' ( 1.28) 

kinetic energy of the surface vibrations is given by 

m p ( .,,2(r) d J, = m p (IV4t12 d 3r= m p! tp-VlP ds. 
2 Jv 2 Jv 2 is 

p is the constant density of nucleons with tbe mass m. Using the 
fonnu1a for sphericaJ harmonics [Ed 57~ Eq. (5.9.17)] and [Ed 57, 

(5.9.13) and (5.9.16)] we arrive in the approximation of small defor
(integrating over a. sphere). in the following expression for the 

Rgmp '" la>.,Jz 

T- 2 ~ A 
Aft 

with (1.17) yields the mau parameter 

pmRg 3 1 
B" - h - 417h A ' mRo . 

(1.29) 

(1.30) 

Por oscillations a.bout a spherical equilibrium shape the DlUI pal'l.D1eter is 
not a function of "'; this would not be so for a deformed nuclear drop. 



Model 

of the Betlle-WfJdSlleller ""'_"'Ill. 
tJy aDd pairing ---

Because of the usumption of incompressibility, it is tempting to say that 
the volume term does not depend on the deformation. Tb.it is, howevert 

only true for ordinary fluids, and we will see in Chapter 13 how in 
quantum nuids the volume term can depend on a: in a quite subtle fashion. 
In the usual treatment of the liquid drop model [8M 53, EO 70}, however, 
the volume term is not taken into account, and therefore the defonna.tion 
energy has only two pans. resulting from the surface and Coulomb terms 
in Eq. (1.4). As we will discUIS in more detail in Chapter 13 this will be 
sufficient for the monopole and the dipole resonance but not for reso
nances of other muJtipoiarities. 

The deformation energy is defined as tbe difference between the energy 
of the deformed and spherical drop: 

V{a) - Es(a)- Es (0) + Ec(a)- Ec(O}. (L31) 

The surface energy is given by the product of the surface with the surface 
tension a [Eq. (1.6)]. With techniques similar to those used in the deriva
tion of Eq. (1.29), we find up to second order in a~ [Wi 64, Chap. 2]: 

Es(a)= a£ ds= E$(O) + ~ t (h-l)(A+2)RJol (1.32) 

The Coulomb energy Ec is the sum of interactions between 
volume elements dJ'1 and d 3

'2 [Wi 64] 

III d 3'I d3'2 ,1 3(A -1)(ZeY :2 
Ec(o:)=(Ze) Ir,-rll - Ec(O)- 2 ~ 21T(2A+ I)Ro la"",l· 

v 

pairs of 

(1.33) 

From (1.32), (1.33), and (1.17), we thus get the stiffness coefficients (A ;;.. 2): 

'1 3(A - I) (Ze)2 
C,\ =(A-I)(A+2)Roo- 2'»'(2,\+ 1) Ro . (1.34) 

In principle, we are Dowable to calculate nuclear spectra from Eq. (1.19) 
and the coefricienu B" C". It out, however, that the reproduction 
of spectra the test for a nuclear model. A quantum 
mechanical state represented by a wave function. Electromagnetic mo-
ments and transition depend strongly on the wave functions 
and provide a much better We therefore first discuss such quantities 
before theory with experimental data. 

In Appendix B the clectromapetK proportiel of a 
nucleus is shown~ The euential quantities are the electric and magnetic 
multipole operators. 

The electric multipole operators are in the limit of long (low 
transition given by [Eq. (B.l8)1 

Q>.p. = e Ivpp(r)rAY ~(9, 4» d 3
,. 
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l
(9,+), 

to 1!eQ:md .,..,..... .. ,.. in tl~ (with (Ed 57, Eq. (4.6~3)D 

3e 
2!! -

491 

_(lA_I +_1 )_(lA_4_1.,,_+ __ +_') ( ~ ~)}. (1.35) 

magnetic multipole operators are given by [Eq. (B. 22)] 

J({~tA=- ~1 JV<rXj(r»(Vr>'YA,a)d1r. 

in the case of the mus parameters~ we could again use the assumption 
A 

of irrotational now to define the current density j and express M"A,. by CM,\,ti 

and flAil' (see [Da 68. Chap. 6D. However, we will restrict ourselves to the 
of M I opera tors, which form a vector 

M1={3 ;.. 
4r. 

Since we have no spins in the system, we get for the magnetic dipole 
moment 

1 ( Z ( eh.. i fJ= )}fXj) dJ,.::a A 2mc Jv(rx m'f) d
l
,. A 2mc I = gR JJN (1.36) 

with the gyromagnetic ratio of the rotor 

Z 
gR - A . (1.37) 

calculation of lifetimes and transition probabilities requires the knowl
of BE'A.- and BMA-values {see Eq. (B. 73») defined by 

B({!}X. 1')=2//+1< {~}III'> '. (1.38) 

M I-operator (1.36) conserves angular momentum, M]· 
transitions are forbidden in this modeL The most i.mportant transitions are 
.El-transitions. 

AI. an example, we calculate the BEl-value for the transition from the 
aae-boson state B~ 10) to the ground state 10). Expressing a. by the 
operators B~ and B1; (1.21), and using the wave function (1.22), we get to 
timt order in the alp! 's 

B( E2, 2t ~O+) - ( ;". zeRJf 2B~fJ., . (1.39) 



14 The Liquid Drop Model 

Before we compare these theoretical results of our model with experi
mental data. we must discuss which levels in the excitation spectra of 
nuclei would be appropriate candidates for such surface vibrations. We 
restrict the following discussion to 2 + states. For other angular momenta 
similar considerations apply. 

Figure 1.6 shoWl schematically the structure of the 2+ spectra. They 
have a discrete part and a continuum with resonances. Among the Olllc:relle 

lines one 2+ level is usuaUy very low in energy. With a few exceptio'DI it 
the lowest excited state in each nucleus and, as shown in Fig. 1.6, it carnes 
a large BE2 i.e., it has a high transition probability to the ground 
state (see Appendix B). The measured BE2 are for spherical nuclei 
roughly ten to twenty times Larger than one would expect from a pure 
single-particle transition [Weisskopf urnt, see Eq. (8. 85)1. 

1\ 

b 
"" d -
I 

N 
IJJ 
a:J 

E 

FIpre 1.6. Scbematic representation of the 2+ spectra in nuclei. ordinate 
gives the BE2 values for the discrete levels and the density of the BE2 strength in 
the resonance region. These quantities measure the transition probability to the 
ground state. The units are arbitrary. 

The low· lying 2 + states therefore have collective character, i.e., many 
particles contribute and they have very often been interpreted as surface 
quadrupole vibrations. Figure (1.7) shows the energy Er · for the lowest 2+ 
state In even-even nuclei. One observes large shell effects (see 2). 
Only the average trend is given by the Liquid drop model with irrOtilbonal 
flow [Eqs. (1.19) (1.30) and (1.34)}. The absolute value is off by Ii faetor of 
five. The reason for this failure wiU become dear below. 

Experimentally. it has been found thal there is a strong correlation 
between the BE2 value of the rirst 2+ state and its energy E2~ =02 [Or 62]: 

E2i'B(E2,2+~O+)~(25±8)7 [MeV e2 fm"]' ( lAO) 

Tb.is empirieaJ relation holds for all the throughout 
(1 the 

diffenmt.1'he !IInT'il"W1j'I,O' 

they be 
states which have the character of 
Eqs. (1.22), (1.21), and (1.35) we see that the quadrupole 



Surfa.ce Oscillations: About a SpheriCAl Shape IS 

20 1.0 6() fD 100 120 1&0 1m 
I."."._ 1.7. The energy of Lhe firsl 2'" state in eyel1~"eyen n\ldei The nuclei with 
\;IUi~ neutron or proton sheUs are marked by open circles. (From [NN 65].) 

vibration can be represented in linear order in a as: 

p.) = a2IJ IO) a: Q2~IO). (1.41 ) 

overlap of an arbitrary state with the quadrupole surface vibration 
therefore proportionaJ to its BE2 va]ue: 

ex: B( E2l ,~O), ( 1.42) 

the probability that it can be interpreted as such a vibration is given 
by the percentage to which it exhausts the sum rule 

(1.43) 

Only if one state exhausts this sum rule to a large extent is it meaningful to 
call it a quadrupole surface vibration. 

In Section 8.7 we will discuss in great detrul the sum rules and how they 
A 

can be evaluated. It is evident that in a model where the state Q1I.,.I0) is an 
eigenstate of the system, like the model we are now investigating, this state 
exhausts the sum rules completely, because all the other states are orthogo

to it. 
Experimentally, it has been found that the low-lying 2+ state usually 

exhausts about 10-20% of the sum rule. The major part is exhausted by the 
retonances in the continuum [see Fig. (i .6)], the so-called giant resonances. 

Such giant resonances for different I values have been observed. The 
famous the giant dipole resonan.cc 0-) which has been well known 
more than 30 years and lies at an energy (see Fig. 1.8) (for more 

__ u," see Chap. 13): 

(1.44) 



we shaU see in Chapters 8 and 1 
neutron and proton enl"l""'?'" ... 8ftu .. "" 

the present simple model. 

COITeiOOliJQI to a 

the last ten years., further 
most important example 

resonances have been observed. The 
giant quadrupole resonance. It lies 

at (see Fig. 1.8) 

• if. -1/1 MeV] (1.45) 

and exhausts in part S2+ sum rule. 
It seems, therefore, 

the quadrupole surface 
reasonable to interpret rClOBance as 

model in this form not able to 
From Eqs. (LI9). (1.30), and (1.34) we get 

Oza:A -1/2, 

far. The liquid drop 
tbe proper A -dependence. 

whicb nOl the experimental value (1.45). In Chapter 13 we 
will see that tbe reason this deviation comes from the fact that tbe 
potential energy correspond to tbe total binding energy of 
the liquid drop [0 I), (1.34)]. This total binding energy is, however, a sum 
of intrinsic kinetic The fact that (at least, for 
deformations) the energy depends on the deformation 
been neglected (1.34). can be understood simply as an effect or 
long mean free path of the nucleons and the uncertainty principJe i which 
states that in an nucleons along the Ihort 
higher momenta than the long axis. An momentum 
distribution, however, yields a kinetic energy than a IIInh"an4'1l 

Since aU particles are affected, it a volume effect which ¥VJlI441~1;!I_ 
general over the given in (1.34). In Chapter 13 we win 
give a this point. 

resonance as a 

Ex/Mev 

30 

15 

100 150 200 250 A 

I'!fl<l"rllnl of giant dipole and the ~ __ ... 
mau number [Wa 73]. 
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so far has been 

the hannonic approxima-
validity the of very small 

amplitude$~ one has to take 

." ~ a , .... 
the corJres~l()nClJna 

calculated from a microscopic 
can adjusted 10 experiment or 

theory (see Chap. 9). 

1.5 Rotations and 

1.5.1 The Bohr Hamiltonian 

pure Liquid drop model has a stable equiljbrium onJy for spherical 
mrfaces. As we shall see 2.8) it can happen as a c,onsequence of 

the potential V(a:) in the 
finite non-vanishing values of a - ao' 

such cases the nudeus can a ground deformation. 
In this case, the nucleus can exhibit rotations which can be described by 

a"" in the laboratory frame. We 
ones: This kind of rotation will not 

because we cannot distinguish the 
one m our variables aiyl.' 

rI ..... ·....... a system with an axis of 
is by a wave function which is an 
momentum operator I" and any 

only a The rotating system ha~ therefore, 
same wave function as the ground state, and the energy. 

does not mean that there are no degrees of freedom in the 
SVl,lte1n that can be excited (for degrees of freedom) 

carry angular parallel to the symmetry ws. Such a 
VIM,,,","",,,,," however, we do not call collective rotation. 
Since in almost all nuclei the quadrupole degree of freedom a 

fundamental role, we the following considerations to the ca.se 
:\-2. 



18 The Uquid Drop Model 

After this we 
instead of the variables "2.1& (I' - - 2, - i, 0, + (. 2). We 
the Hamiltonian (1.1 Only (1.17) 
the form: 

P. "I) 0)2 p."I)-an . (1.46) 

1bis c,orresponds to a quadratic 
n1l"1l"l1""'."" ............................... Po t 

deformation. 
Microscopic calculations potential 10000UO",g,..".". 

dei. well pronounced 
yu-
ones, and we of our Ulzt"",IJ,.1l'i)I\,j'U 

The next of the kinetic (1.17) to 
the body-fixed Applying (1.11). we to differentiate the 
variables 01'0' Oll, and 0 with rp~l"_l'" to the time. Since the derivation is 
quite lengthy, and the intention this not to be we 
simply give the result (for the example~ [EG 70 Vol. I, 
Chap. 5D for the 52]: 

! 2 fJ 2yl) (1.47) 

with 

T _1 
I'O! 2 

where w. is the angular velocity 
functions of (j and "I given by 

~Ii: - 482 p2Sin2( 'Y 

In C8..o;e we have fixed 
rotor with the moment of inertia . As soon as we 
and "II the rotational and vibrational 
the defonnatjon dependence of the .. u ..... 'u ....... 

longer have a pure rotor. In 
system caD be T_' .... U, ............... rI 

harmonic spectrum. 

c 

angIa O-(a. 
li,;UlU.lp this DODlenclalUnI 

and 9" are 

(J .48) 

energy of a 
nanlges of fJ 

by 
we no 

of fJo = 0 the 
a 

II and y. 
poIIibie, UK 
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are not the ;uo .... +~- of inertia of a rigid rotor. (1.30). we get from 
(1.48) the ........-" •• u.n ...... irrotational moment of 

Ie). 817=1. 

... " .... .....,.."..... of inertia a rigid body with the same 

(1.49) 

In the r-dependence (Fig. 1.9), 9in vanishes about tbe symmetry 
axes. 

4:'1'11,.....,. a dependence on the 
much less with fJ mam 

of a sphere). 

~j whereas 
of inertia 

experimental moment of inertia can be found from the 
energy of the nrst 2+ state of a rotational band [see Eq. (1.64)] 

=3/ + [MeV-I]. Applying the rule (1.40) and the 
formula (1.74) for the BE2 value, we get a between the 
defonnation parameter f3 and the moment 

27 A 4
/

3
, fJ"· Z = __ ,4 ::=:.:: _____ _ 

80",2 0 £r' . BE2 

f3 l A 
~ 400 MeV-I]. (1.50) 

case or well defonned nuclei (P-O.2 -0.4), is usualJy 
by a factor of 2-3 than values. On the 

side) the values of ~n& are a factor of 2 too large: 

that the flow structure 
", .. ",u,-.. On the other band, it 

(I I) 

the nuclei is certainly not 
not a rigid rotor~ either. 

step is again a quantization of classical Hamiltonian (1.47). 
well known that there is no unique prescription ror the quantization of 

Hamiltonian in the general case [Me 61]. The ambiguity comes 
the ordering noncommutable operators. III Commonly one 

the Pauli prescription [Pa 33], which calculates the Laplace opera-
"'-UilJ!illiIU ..... 'O. If the kinetic energy has the form 

(L52) 

ULoIIl'UUU problem is found in fMD 73). 



--==-y -y 

FIpre 1.9. The y--depeadenee of the irrotational ) and the riaid (~~ momenta 
of inerti.a for fixed values of 11 

tben c-Orresponding quantized form is· 

• ~2 . a 
H"in - - - L g-I/2_ gl/2(g 

2" at Ij 

where g is the detenninant and g I is the inverse of the matrix 
Applying this prescription to tbe Bohr Hamiltonians (1.46) 

we obtain: 

-8
2 
[p-. a~( p' a~) a (. 3 a)] -..;..-- sm y-

p1sin 3y ay . ay 

+ f ro(+ V( p, y). 

where the rotational energy is found to be 
"2 ;z "'2 • II 12 I J T--+-+ 

rot 29 
I 

( 1.53) 

(1.41), 

( 1.54) 

(1.55) 

The operators I: are the projections of the total angular momentum i 
reprel4:ntc~d in the Euler angles onto the body-fixed axes (for lee 

Appendix A). Figure ( •. 10) shows the total angular its 
components iz - M and I~:;: K. The eiaenfunctions of J'l, by 

I/MK)- ';21+
2
1 D&.l..0). (I 

811' 
HcoU t jl and i, commute. of the COIleC1tlve nAlDII" 

-To !lee lhat the Hamiltonian (1.53) d Hermiuu" OIR lwI t.o take into acootml .. vnI'l_ 

d(, ... dEt· 



l 

3 

figure 1.10. The relation ...... rw....... total angular momentum I and projec-
tion M onto the laboratory l. and its projection K onto the body-fixed -"-.... , ...... , .. 

tonjan (1.54) have the form 

( fJ, 

The triaxial rotor Ii 0011 invariant under 
the point group D1, one classifies the eigenstates 
according to the of this group, and one can 
derive from this some properties of the spectra [Da 68]. 

One example is the of 1800 around the ] 

( 1.57) 

which is equivalent wi tb respect t~ the 2, 3-plane together 
with a parity 
eigenfunctions 

with H 001] and we .. our 

11i'~) (I 

Using relation (A.24) or Appendix A, we find that 

(P,y)=(-l g-K(fJ,y)· (1.59) 

If we require, the same way, symmetry with respect to 

~=e~iJ, (1.60) 

we get 

(1.61) 

.. All we shllll !lee in (l1.l23h the microscopic in~ic wave function of the 5y,stem is 
an eigenstate or wilh eigcWvaJue + I (see aJ5Q I So 76 bD. 



1.5.2 The Axially Symmetric Case 

The Hamiltonian Hooll (1.54) is still very general. We 
10 of very pronounced minima in the potential surface at AAUlU-

ly symmetric deformations (J JIG f30 and )' -0. We expect 
small vibrations of the nuclear surface. Expanding Trot -

around the point {1= PO! y=O, we obtain in zeroth order the 
of an axially symmetric rotor with the moment of inertia -!.( ~Ol 
1i~o, 0), 

j'2 j'l 
T ' :. 
~Ol- (1.62) 

First-order terms are proportional to the deviations (f1- 110) and y. They 
mix rotational and vibrational degrees of freedom (rotational-vibrational 
coupling tenns) and will be neglected here. The only remaining term in 
HeoU that still couples rotations and vibrations is i; 12§J' It cannot be 
expanded, since ~J vanishes for y -0. However (as T~l), it commutes with 
i 1 and K is therefore a good quantum number. 

We now have to distinguish 

{O K = 0 bands (IJ =: 0). I n case, the rota tiona! and vi bra liona] motions 
decouple. The wave function or the type 

Ii'~o>- go( p, y)I/MO). (1.63) 

They are eigenfunctions of the rotational part of the Hamiltonian (J 54). 
~'I-symmetry (1.59) requires the spin sequence J -0, 2, 4~ .... A detailed 
investigation of the vibrabonal part of H ~On rEG 70, Vol. I. Chap. 6) shows 
that it easier to bandJe in the variables a 20 and au (I. (3). In step 
one neglects terms in the potential V(a lO , an,). which couple two 
degrees of freedom. In this the motion in the (usually 
called ~-vibration) decouples rrom the motion in the coordinate 
aUy called y-vibration). Axial symmetry with r~pect to 
preserved by the .a-vibration (quantum number n,}' but 
1'"¥ibraooD (quantum number n,,). Both typeS of motion are 
lively Fia. 1.11. 

:5U1Ja1mIlIOltKl OD each vibrational state ("'s n..,) a fOOIIIOIW~ .... 
pven by (see [BO 70. Vol. I, Chap. 6D 

"a 
E~(l)- £"",(0)+ "2§1.(/+ t) (1.64) 

o 
with the bud bead 

E~"r (0) -/h..Jp (n, + 1/2) + Iiw ... (2n ... + I), 
nfJ - 0, I, 2, ... I n., - 0, I, 2, .. , t (1.65) 

where w{J and Wy are the frequencies of {J- and y-vibrations. 

wfj = (C201 B2)1/2 Wy = (Cn / B2)1/2 
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even-even In 

u IJ-band'" (n/1- J. 
go and wp, w1 

data. 

(1.58)1 we see that the 

(1.66) 

and symmetries «1.59) and (1.61» give the selection rule: K 
be even. Such K -FO bands have, therefore, the sequence J I 

+ I, I I . The motion in "20 (/l-vibration) can again be 
However, the term i 3/2g l - 1 couples the 
rotation around can easily understand 

if we that a l-vibnu.ion can be as a superposl-
of two rotations of a triaxial nucleus but with 

opposite [8M 75, p. 6561. 
The !;pectrum is obtained [EG 70, Vol. I) Chap. 6] 

,,2 
1\;_ fly (I) - EK • ".' fly (0) + 2C}o (I (J + I) K 2) (1.67) 

-2 

I I I I I I 

-2 

p · ... ibrcuion 

Fl&ure I.U. Scbematic.al representation of 
0.3) (1,2) planes. 

I I , 

I I I 

h 

I I I 

I I I 

-2 

-2 

by Ii cut along 



). (L68) 

In fact, such bands bave also been observed, the so..called 
#"y-band" in many deformed nuclei. which has the quantum numbers 
K - ., 0. n't - O. This y-band has the vibrational quantum number 
"'r = O} one is not aHowed to apply picture of no 
vibration case. It would correspond to y imply g,.O. which 
would forbid a rotation with K+O. Only the quantum mechanical zero 
point vibration in the y-direction makes possible. 

1.12 shows the qualitative of collective (A lIE 2) 
deformed and spberical Lt. ........ ""',.. 

nuclei have a harmonic In deformed nuclei 
rotational bands built on the ground state, on the 

.B-vibrational state K - 0, nil - I. n., - 0, and on the y-vi bra tiona I state 
K == nJJ ;;;; n't == O. However, these pure cases are not exactly in 
nature. In fact, we already observe in spherical nulcei a splitting of the 
two-boson triplet (0+, 2 + ,4 +) and in the deformed deviations from 
the J(l 1) law. is also a wide range of transitional nuclei in 
between two limits. Going from isotope to one can some
times observe a gradual transition from a vibrational to a rotational 
spectrum (for instance, in the Os region [SOO 76D. This indicated by 
dashed in Fig. 1.12. 
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C1eIICnII)IlCIn of deviations from the I· (l + 1) law, one 
A, 

aa::ount the rotational-vibrational coupling terms in H roU 

by g« in powers of the ( fJ - fJ~ and 
64. 65, 66, ASP 68]. rotation-vibration interaction 

momen t of inertia of a band and corresponds to a 
nUClCIJ shape under the influence of the rotation (stretching 

-"IF ....... ,.'!. However, there abo exist quite different excitations of nuclei in this 
_., ...... , regio~ for two quasi-particie states and pairing vibrations 

Chap. 8), which have a much stronger innuence on the rotational 
I.IIL£JI'I1'" and which are not taken into account in this simple model of a 

sw:faoe OIciliations. 
Before we leave tbis section. we want to discuss very brieny how to 

electromagnetic moments and transition' probabilities. In Eqs. 
and (1.36) we defined the electric multipole and the magnetic 

operator in the coordinates Cl'¥' They are obviously written down 
the laboratory system. In a deformed nucleus it is usually very easy to 

calculate the moments in the intrinsic system. To get the moments in the 
laboratory frame-the experimentaJ values--one has to apply the transfor
mation (L 11) of spherical tensors: 

(1.69) 

Since Q mlr does not depend on the Euler we get from [Ed 57. Eqt. 
4.6.2 and 5.4.1] the reduced matrix elements with respect to 11MK): 

K, <2.10'11 - ~ Q;;:~( - )/,- K'«21, + 1)(21, + 1»'/2( _:: ;, ~J 
(1.70) 

We restrict ourselves now to pure K-bands and calcu1ate only intraband 
E2-transjtions (fly. = n"fJ' nil.:=!!!. np). For the reduced matrix element we find 

A. b 
(npflyllK Qt Ilnpn.,1:zK) 

~-Jl~'Il Q.(nR. n,)t(2J,+I)(2J,+J) (_)/,-K( \ ~ i). 
(1.71) 

where Qo(nJJ' n.,.) is the intrinsic quadrupole moment of this band. In the 
ground state band with fixed p.value. and y =0 we have [Eqs. (1.13) and 
( l,35)] 

{if6W 3 1 P Q - - -Ze·R· o 5 49'1· 0 • (1.72) 

From (B.73) and (1.11) we obtain, for example, for the so-called stretched 
BE2-values in a rotational band, 

B(E2 1 +2~1)= Q2_
5_IC 1+ 2 2112 (1.73) 

I 0 16'7T j{ 0 K ' 
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which, for K =- 0 bands, gives 

B(£2,1+2-)/)- QJ (1.14) 

For the spectroscopic quadrupole moments Q = J16'1f /5 (IIKI 11K) 
[Eq. (8.32)}, we get 

3K2-1 ·(1 + I) 
Q=Qo (21+3)(1+ I) . (1.75) 

The quotient of Q: Qo is the expectation value of Dtit- Picos /1) in the 
state M -1. This means that one cannot measure the internal quadrupole 
moment Qo, but only the value averaged over the rotational motion. In 
fact. Qo is not a physical Its definition depends 
introduction of a body-fixed system which moves with the nucleU$ and 
a model cbaracter. For the band head we usually have 1- K. That meaDl 
the spectroscopic quadrupole moment Q of ground states with 1-0 
vanishes and we can get information about Qo only for the ted slaaes 
(for instance, by the reorientation effect in Coulomb excitation [BE 68), 
which gives the sign and the absolute value of QQ). Another way to 

the absolute value of Qo is the measurement of the B(E2)-values 
(1.73) in the transitions within a band. Recent measurements up to high 

110""'''''''' [WCL 16, HIE 18] have shown that in many deformed nuclei 
the value of Qo stays fairly constant within these bands, even in caaes 
where the spectrum deviations from the l(l + 1) character. This a 
hint that thest deviations are not caused by the change of deformation 
(stretching effect). 

1.5.3 The Asymmetric Rotor 

rotational-VIbrational interaction model discussed. so far b.u OR die 
of a I)'m.fI1etric rotor. Further attempts to explain the deviations from the 1(1 + I) 
law I.Dd the low~ JOroDd 2+ states in many audei hive been UDdertakaI by 
Davydov aL pictl.ll'e of a pure triu.i.al rotor (OF 58, DIl DI S9, DI 
6SbJ. As I. Rep do consider the vibrational ucrtahODI 
only the rotational cDeII)' (I.SS). With the moments of ......... t'l1III 

.~ klJj-l udoae tul ~ it for an of '1-
faclOr can be ~ 10 as kl reproduce the lint 2+ Ita .. 
symmet:riol and '-2 (LS9 1.(1). the wave functiom haw 

Ii'~>- ~ 8K{l/MK)+(-)IIIM-K)}. (1.76) 
x-a, 1. ...• 

Piga.re (1 J 3) the com::spoDding energy cipnva.tuea. For 'Y - 0° and l' - 6()0 

oae ptl 1(1 + 1) spectrum. EVeD for oae ptI 
deviatioas of this form. Howw_, additioaal 2"'. 3 +, .. + come dOWD in 

at«gy. It is a of thiJ structure to hiye a second 2+ 
Altboup OM tul, willa mcb a model, reproduce quite the «1m_uti 
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lOme regions of the periodic table (for for the Os·isotopes). strong 
otJJ1!lCbom can be raised to it: 

(ii) pronounced minima in energy 
y-defOfIllltion have not been found. 

uNAJly only very 
[KB 68. ASS 69. GPA 78~· 

In recent yean. have found new 

(i) Experime.ntaJ data 

one has to include 

tbat could justify I. stable 
calculations for such 

valleys in the y direction 

because: 

can be very well repro. 
duced by a of a ........ 1' ......... AcvmrrU"frlt' rolOr Chap. S 
and [MSD 14. 

(0) Theoretical C&U;UlltUOllS 1.7 and [ALL 76D 
show Lbat 

One can get a roup estimate of nuclei by 
a lDAltimal triaxiality (y_30e

). In this ,.,. = ~gl- ~go (go is moment of 
inertia at y -0). and we haye symmetry about the I (in kinetic energy). The 
projection a of J on to this axis is a good quantum one 

(4/'(1+1)- 0.77) 

• Wilc:1s aDd Jean (W J 56] proposed l model whi(:h is completely 'Y-wh, - 0 in 
( 1.-'6). 

80 

60 

20~~ 

°00 
y 

Fipre 1.U. The energy eigenvalues of a deformed, 
hydrodynamic moments of inertia. (From [Me 75].) 

rotor with the 
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and requires J and a to be evert. I 
lowest energy (the so-called u)TUt" level) has a - J. 
with a=: J - 2, then a - J - 4. and so on. Therefore. we haw I. of 
characterized by the "wobbling" quantum number 11- a [BM 1~). 

ca.1culate that the states with the same n are by Wp 
probabilitia.. We pt spectrum from (1.11): 

E,.(I)- (I(/+4)+3n(2/-n». (1.11) 

However, one has to keep in that the structure of the spectrum (Pia- t 13) 
depends drastically on the l'-<iependence of the moments of inertia. There the 
hydrodynamal have been used. For the riaid body val11eS the ~ 
would certainly look quite different. 

1 .. 6 Nuclear 

Up to now we have studied only small vibrations around the equilibrium 
shape i.n the Liquid drop model. Shortly after the di~overy of nuclear 
fission, auempts were made to understand this phenomenon using the 
concept of the nuc1ear drop [MF 39, Fr 39, BW 39]. 

In fact, a uniformly charged classical drop is only stable against fission 
(and spberical) if the Coulomb energy does not exceed a certain critical 
value. The Coulomb repulsion to defonn the drop. the particles then 
being, on the average, further apart. The surfac,c energy, on the contrary, 
being proportional to the surfac.e of the drop, wants to keep it spherical. It 
is thus a subtle process of baJance between these two effects (each being 
several hundred MeV in magnitude), which tells us whether there will be 

or not. according to a classical calculation. Of course, for such 
nasion process, involving large deformations, one must go beyond the 
harmonic approximation in the foregoing [BW 39J. 

The first step in describing the procel8 [HW 53) is the of a 
suitable set of deformation parameters. we call a. It to be 
general enough to describe the deformations that occur. and 
Swiatecki res 62, 63), for took as many as 18 muh.ipola.ritia into 
account for the calculation of symmetric shapes of the form 

R-Ro(l+ ~aIPI(COS8»). (1.19) 
1-1 

This allows one to describe very general shapes. On the other hand, if one 
knows qualitatively the behavior of the droplet in the procea, ODe is 
int.erated in introducin& u few parameters as pouib1e. oee aIao 
W1UIim to describe fragments, the set (1.79) iI the 
mor&t suitable one. Por a of the OM 

~:1I8.t [NS 65 t Ni n]: 

(i) a parameter c, which describes in some way the length of the major 
semi-axis at the be-ginni.ng of the fission process, and goes over into 
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t.l4. Some shipes in a suitable parameteriZAtion {c, II}. Solid Lines sbow 
symmetric shapes. Dotted lines have a nonDvanishing asymmetry parameter O';f" 

(Taken from rBDJ 72].) 

the distance between the separated fragments (elongation coordi
nate); 

(ii) a parameter It which characterizes the thickness of the neck between 
the fragments in formati.on (neck coordinate); 

(iii) an asymmetry parameter u" which measures the deviation from 
symmetry in the mass distribution of the separating fragments (in 
the case of asymmetric fission) (fragmentation coordinate). 

Figure L 14 shows an example for such a parameteriz.ation [801 72J. 
In the next step, one has to calculate the Hamiltonian in the parameters 

a. The first part is the polelliiai energy V(a). One usually measures it in 
units of the surface energy· of the corresponding sphere and gets 

V(a) - (Bs (a) - 1)+ 2x' (Be(a) - I). ( 1.80) 

where Bs and Be are the surface energy [in units of Es(O)] and Coulomb 
energy [in units of Ec(O)-HeZi / ROJ. They are calculated as in Eqs. 
(1.32) and (1.33). However, now one can no longer suppose small deforma
tions and must carry out the integrals exphcitly. Bs and Be depend only on 
the geometry. The only parameter that characterizes the nucleus is the 
so-caUed fissibility parameter x. We find 

Ec(O) Z2/A 

x- 2Es(O) .. (Zl/A)cril ' (1.81) 

ill M we have d:iacuued earlier, lhe pote:DtiaI meqy can have I ~ume dqxndmce 
CCC'TeIpooding to the intrinsic k:iMtic cmeIl)'. For the Ia.rp defOl"DiAbom implied in I.he 
procaI !he dyuamica can. bowever. haw u importa,Dt eRect 00 Yea): Usually OM UII1II.'DeIII 
that the process of spontaneoua ill &0 slow thill the nocloom have time to adjul 
mommtum di,tribuuOD in 1\I.Ch .. way that it liva minimal IOtal eneray at cub deformation.. 
T'b.iI momefltum dis.tribution roone. the rphmcaJ one. (For a more deuiled dlIIc·UlIIDILm 

of thia point.. ItlCIO Chap. 13.) 
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where 

h-L,= (1.82) 

The calcwations of Cohen and Swiatecki [CS 62, 631 show that the eu1ICSt 

way to deform the nucleus the quadrupole and 
nuclear drop in general stays spherical or Therefore. we 
already decide. at zero deformation. whether or Dot OCCurs acoord~ 
ing to whether the curvature of the potential surface at the origin in 
the quadrupole direction is positive or negative. however. we bavt 
already calculated in considering the Bohr Hamiltonian (1.17)] up to 
quadratic terms. we see that the coefficient C1 [Eq. (1.34)] 
is given by the difference of the surface and the Coulomb part of the 
deformation energy and C2 starts to go negative for [Wi 64J 

~2 =( ~l" or x I. (1.83) 

This means that the droplet stays stable and spherical for Z 2/ A 
;$50 or x < I. For x 1. it immediately. This can be verified 

in gIVIng charge on a mercury drop. 
For lJlU the formula (l.4) a Coulomb energy Ec(O) - 830 

MeV and a surface energy Es (O),.S20 MeV~ for the plrameter~ 

we therefore obtain x~O.8. which a t)'-picaJ value for the mass region 

FIpre 1.15. Perspective plot of the liquid drop model e,llet1Y lutf&ee of ~. II 
describes the ud (' the necking degree of freedom. (from [BDJ 12].) 
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steeply. 
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drop model cannot describe 
fission is thus due to the 

we get the two 
We see that it develops 

energy falls off 

Cohen and Swiatecki [CS saddle-point shapes for 
with the ansatz (1.79). are shown in Fig. 1.16. 

meaning of these saddle-point is that for a given x the drop 
would inevitably undergo fission if one, elongates it a 
little bit more; conversely, it would fall back into its spberical shape if it 
was shortened a little bit. Going over the along a line of steepest 

the ·"bottom" of the valley defines a path. 
The length along this path is usually called the coordinate J, Figure 
1.17 shows schematicaHy the potential energy along coordinate. 

The fission barrier E, IS typically a 5-7 MeV high. (This 
shou1d be compared to several thousand MeV of total binding energy). Far 
out, the slope of the curve is due purely to Coulomb repulsion of the two 
droplets and thus falls off quite steeply for 

Xa 05 x;:: 06 

1.16. Saddle-point shapes for various values of tbe 
(CS 63].) 

x:::0.7 

........ ' ..... "'. x. 



1.17. Scbematic representation of the ,.!II!t1,n.'" bamer. 

The next step in a dynamical description of fission would be the 
calcwation of the kinetic energy (i.e .• of mass parameters, which certainly 
depend on the deformation [HD 7], Gr 71]. Since the hydrodynamic 
model has not given good mass parameters for small we 
can.not expect that it would work here either. We see in Section] 2.3.7 
how one usuaBy ca1cwates such quantities. 

The final step would be a proper quantization solution of the 
resulting Schr6dinger equation. It goes far beyond the scope of this chapter 
to discU$S such problems detail. We only wish to mention that one 
usually calculates the lifetime for spontaneous fwion from a WKB for
mula for a one-dimensional barrier penetration [Wi 64]. An essential 
ingredient of this formula is the shape of the V(s), as m 
Fig. 1.17. 

Unfortunately, the liquid drop DO way quantitatively 
delcribe fissio~ one of the major that the drop always 
filliOOl into two equally heavy fragmenb, in fact quilt 
often fiHion into unequal masses Prom fact that 
the barrier is a small number obtained from the difference or two 
huge we see that nuclear III extremely 

we can imagine that., for quantum like shell 
"'lI'lI"iN"rlil in the single particle motion (see 2.91 may very much affect 

1.7 StablUty of Rotating UquJd Drops 

We have.... 1.5 that amoq the vibRtioal of il liquid drop about a 
spbericallW'filCC tbere ate rotation-like moUOM. In onIa' to decouple them from 

botWn!!YI!T. we required stable can only be 
aplained by quantum med:w.UcaJ shell effoctl. In flc~ OAe f'mda rotational spectra 

the In UItlmption. 
Heavy ion allow the transfer of very large IlUDOunts of angular 

momentum (up to 80~ iOOA) to a nucleus. At such high excitat;o~ one should 
expect that quantum effects no longer play any role, and one can then ask bow a 
cLus:icalliquid drop ha.ving such angular velocities behaves. 



ICCtiOl1l. we are tbere:forc oaly interested in the purely problem of 
drop with a aharp and Ii certain 

.. _ .... ' ..... ' .. !111!ft11111"VV '''''''''lI!Lvw:::a under rOu.bon around a fixed axis in space. We are not 
and therefore look for the stable shapes in this 

to something about the flow structure in this drop. and we 
rotation; i.e., the moment of inertia is given by 

( 1.84) 

the distance of the volume d 3r from the rotational axis. As we see 
Section 3.4. this aMumption is very reasonable, because one expects the nudear 

moment of inertia to approach the rigid value for angular momenta. 
The problem is very similar to the old astronomical, problem of graviLating and 

bomolCllcous rotating ma ... There the attractive force is the 
Jfavitation. which has the same structure (but the opposite sign) as the Coulomb 
force, and a surface force is neglected. with Newton, this problem b.u 
been studied by many famous (for a historical review, see [Ch 69, 
Chap. lD. 

One of the reswts is that a. gravitating droplet without surfau;e tension bas, for 
vanishi.ng angular velocity w. a spberical shape. With w > 0, it assumes first exact 
oblate spheroidal shapes where the rotallonaJ axis is an axis of symmetry 
(Mac/aurin .shtIpes). For increasing w it flattens more and mort, up to a certain 
angular velocity fIJ" For c.rvalues larger than flJJ. a new type of stable shape 
developslll-triaxial ellipsoids (Jacobi slwpa)-and the drop rotates around the 
ihorttst priocipaJ axis. This point, w/> is c~led a bifurcation point, because for 
(i1 > WJ the Maclaurin shapes are still stationary. but they are no longer minima in 
aU degrees of freedom [Ro 67]. One caJjs this st!'cular/y unJtable. However. in 

rotating !)'Items (gyrostatic systemJ) without friction fon::es., they can 
I. stable motion (ordiltlUJ :liability) fly S8]. Followiq the Jacobi lhapa 

fOr higher c.rvalues, one reaches further bifurcation points.. New shapes of stability 
daweJop and finaUy the droplet dilinlegt"l.tel. 

Cohen, Pluil, and Swiatecki (CPS 74] inVettigated the problem of Irtability for 
the rotating nuclear liquid drop. They looked for the statiOlWY surfaces of the 
energy 

£(0:)'" Es(ex) + Ec(a)+ Elf. (ex) 

- Es(O)(Bs(a) + 2x· Bc(ex) + yBjt(O:)). ( 1.85) 

In addition to the surface (Es) and the Coulomb (Ed energies (see Eq. (1.32) f.). 
we now nave the rotational energy at an angular momentum J: 

(1.86) 

The moment of inertia iJ given by Eq. (1.84): g(O)= tMRa. In addition to Ihe 
fiuibility pan.meter x, which mealUmi the relation of Coulomb I.Jl.d surface 
energy. there is now the parameter 

_ £.(0) __ 5_ 1f1(J. _1_R::2/1A -7/3 (1.8'7) 
y Es(O) 1671 omr~ 14 7/ 3 ' 

• This corresponds 1.0 II. S«.()lld-order phase lransition [OR 761. 
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which I'lXUWU the relation of rotation ud lIin .. I' ...... energy. "fhe x 
y are determined by the properties by the angular momet'ltum 
one is intensted in; apin. the rest iI pure ~metry. 

The result of these investigations [CPS 14] is that the nuclew beh.va IImWitIY 
to the gravitating droplet At low angular momenta (1091 y.vaJua), oae PII 
flattened. shapes with axial symmetry around the rotational axil. They an: 
HiJw $.J and look similar to euct spheroids (Maclaurin They nmWn 
stable up to a critical value YI. which oorresponds to the Jacobi peilll. The value of 
YI depends on x. For very heavy nuclei x 0.81 the for >)'1' For 
the rest of the nuclei a new kind of stable shape ThCle are 
lhr;lIgel'- Knox shapes [B K 61] and are to the Jacobi f' or very J.arp 
angular momenta, these shapes get neuly ax.i.aJly I)'UI.IMtric around an WI 
perpendic'war to the symmetry and finally Dec::ODllC .... ,.., .... ,LT ... ................. 

(YII)' 
These calculations involve a Large number of deformation parameters. One can 

describe the same features under the restriction of pure elliptOidal .b.a:pes. whose 
half-axel Qt. al' 0, are given by the two parameters fJ and 'Y*: 

Q.- Ro exp { If Il={ y-

'Ibis definition guarantees volume conservation. 

·We bave UMd tIM 
quadnJpole dlformatiou 
,wfl.Cl b aD u:.ad tUilPlOid 
Wheeler (HW S3]. It 

o 01 
P 

Q4 06 

} 

Prolate 
OS 

(Ie "'" I. 2. 3). ( 1.88) 

1.:0 

Gllll 
10111 

-y 

,tpn 1.11. The equilibrium shapes (in tennl of fJ anA. y) of a rotating liquid drop 
as a function of angular momentum I. Since the I-axis is the axis of rotation. we 
need negative y-va)ua, in contrast to the usual case where the tbree axes are 
et:{uivalent. ISln has a value of x - 0.618. (From [ALL 16].) 
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relatively to c&kulate the rigid moment of inertia, and the surface and 
\".OWQIDU enerp. for lbese ellipsoids" as a function of fJ and y and to look for 
DUlWD.um of the meJ];Y swfac,c rOt each value of I. Connecting these stable 

1il&1Pe1, one gell a trajectory in the fJ-y plane, as in Fig. 1.18. 
For each I, wc:have an energy surface whose local minima are im,'esligaled. As 
the cue of 1-0 (Sec. 1.6), there also c:xistJi.. beside, the minimum. a vaney 

with a point Because of the centrifuga.l force-. the ba.rrier height Jeb smaller 
for angular momentum anda rami!y of shapes unstable 
fission if the barrier disappears. As an eumple. we take the nucleus 121La (CP~ 74). 
At angular momentum 1-0 its LDM barrier is 40.0 MeV high. Il<; Jacobl 
point (Y/) corresponds to I 67.811. Ai this angular momentum it has an excitation 
enel'lY of 44.31 MeV [£s(O) = 49.5 MeV] and the barrier heighl is only 7.8 MeV. 

From this consideration it becomes clear that no nucleus can support more than 
a limiting angular momentum, otherwise it becomes unstable against fission. Figure 
1.19 ~bows the angular momenta II/ at which the barrier vanishes as a 
function or lbe mus number if in the valley of beta stabiljty [approximated by 
N-A/2+0.2·A 2/(200+A)]. Light nuclei cann.ot support many units of angular 
momentum, because .of their smaU Heavy nudei have a reduced stability 
caused by the Couolomb energy. Nuclei with A ~ 130 can reach the highest angular 
momenUJ. of-10011. Experiments with heavy ions [BES 76] seem t.o be consistent 
with these limiting values.of the liquid drop model. 

.. Sec, for Instance, [Ca 61. eM 63]. 

100 
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FIgIft 1.1'. Mu.imaI angular momentum III that a p-stable nucleus with D'1ILSI 

number A can support, and the critical angular momentum II (Jacobi-bifurcation 
point). The dashed line corresponds to fiuion barrier heights of g MeV, which 
guarantees a reasonable lifetime against fissi.on. (From [CPS 74~) 



CHAPTER 2 

The Shell Model 

1.1 Introduction and General Considerations 

In the Last chapter we considered the bulk properties of the nucleus. that is, 
we discussed (static or dynamic) properties for whlch at least a good 
fraction of all the nucleons in a nucleus participate. In this chapter we are 
going to t.a.Ik about a comp]ete1y different of the nucleus. Indeed~ 
many nuclear properties seem to be describable in tenns of the idea that 
the nucleons in a nucleus are to be considered as independent particles 
moving on almost unperturbed single particle orbits. The reasons for 
as we stated at the beginning of the first chapter, is the that, mostly 
due to the action of the Pauli and uncertainty principle5~ the nucleus is not 
a very dense system. It is now quite wen established that the nucleon
nudeon force has an almost infinitely repulsive core (see [Vi 11D at a 
radius c of about c" 0.4 fm. Therefore, the ratio of tbe clOll!lt packed 
volume Vc to the actual volume V of a nucleus is (BM 69, Sec. 2.51 

Vc (C)' 1 V" 2ro =:: 100 . 

Thus the known "'ItroIlg" cbaracter of the nuc1eon-aucleon forces is 
considerably reduced by the fact that the nucloona are. on the 
quite far apart, and therefore "feel" only the tail of 
the force. worda, the 
singular force occur only quite seldom and the system can be described, at 
least in a a.pproximation, in terms of independent particle motion. The 
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considerations the nucleus develops a very well· 
to a very subtle interplay of the 
IBP For a further, more 

also [BM 69, Sec. 2.5]. The 
mean of the nucleons in a nucleus, as can be estimated from 
ICI.ttcring experiments" seems to be at of the order of the dimension 
of [BM 69, 2.1; KK 68] and is mentioned as the first piece 

e&.)CramtlDl<1l evidence for the unperturbed particle motion in a nucleus. 
of independent particles accepted, it is quite natural to enVis

age that this single particle motion is governed by some average potential 
created by aU the nucleons in the nucleus. Of course, the motion of the 
nucleons will be considerably different in the interior of the nucleus, where 
it is more or less force from the one at the surface where the PauJj 
principle cease. to act and the particles fee] a force confining them to the 
interior of the nucleus. 

In this chapter we will briefly describe further experimental evidence for. 
and the phenomenological description and consequences of, such an 
average potentia1. 

2.2 Experimental Evidence for Shell Effects 

If the validity of an average potential in which the nucleons can move 
independently can be assumed. this immediately has some obvious conse
quences similar to those with which we are familiar from atomic physics. 

The occurrence of the so-called magic numbers 2, 8, 20, 28, 50, 82, and 
126 has. from the experimental point of view. been one of the strongest 
motivations for the Connulation of a nuclear shell model. At Lbese proton 
or neutron numbers, effects analogous to shell closure of electron shens in 
atoms are observed. Here we will mention just a few of them. 

The single-particle separation energy defined the energy required to 
remove the bound particle the nucleus. In Fig. 2.1 the observed 
separation enerJieI for protons and neutrons are shown. 

For mOlt nuclei the separation energy is about 8 MeV, although there 
arc exceptions at the magic numbers. The separation 

doubty magic nuclei. Si.milar exceptions for the 
separation energy are found for the electrons in noble gases. 

The map; Dumben can be seeD Fig. which shows that the magic: 
m8&IC u ..... _. are euepUonaUy It:rona1y bound. Strong binding 

means that the nucleus is very stable agaiMt excitation&, and in Fig. 1.1 we 
have already MO'Wll the variation of the first 2 + state in nuclei as a 
func·tion of nucleon number. We caD see especially pronoWlced shell 
effetts at the excitation energy "Rna lharply in the 
neighborhood of sheU closures. Other coilective excitatioM show the same 
variation. These examples should be sufficient as a demonstration of the 
occurrence of magic numbers in nuclei and of the sheUs corresponding to 
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an average potential analogous to the ones observed In atoms. (More 
details may be found in [MJ 55].) 

23 The Average Potential of the Nucleus 

OOJ1lDClucmce. there exist of degenerate levels with quite 
differences in between tbe electron shells. 
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Figure 2.2. Deviations of nuclear from (heir mean values ploUed as a 
function of neutron and proton number. (From [MS 66].) 

For the of a nucleus, there e,;,ists a priori no such central field. 
As we have already discussed in the introduction, however. we can imagine 
such a potential as being built up by the action of aU the nuc.leons. (Such 
an average potential also exists in the case of the electrons in an atom; 

it makes an extra contribution and to be added to the nuclear 
Coulomb potential. The whole is then well known as the Hartree or 
Ha.rtree-Fock potential of lhe 810m.) A model which describei the dynam
ics of the nucleons only with such an average potential treats the nucleons 

independent of one another (the nucleon-nucleon interac
tion nevertheleu come~ into it in an indirect way. since it gives rise to the 
average potential in the first place). In the following. we will caU such a 
model the shell model or independent particle model. 

In Cbapter 5 we wiU discuSeS, in great detail. how one can derive the 
form of this average field from a microscopic two-body force. In this 
chapter, we will assume that we have such a one-body potential which 
describes, to a good approximation. the effects of the mutual interaction 
between the nucleons. investigate their consequences. 

For further we have to of the ad 
hoc introduced sheD model potential. A nuCleon to the center of the 
nucleus will feel the nuclear forces that is, there will be no net 
force 

( aV(r») = 
ar O. 

,.-0 
(2.1) 
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Because of the finite range of 

V( 

An analytic ansatz whicb r&llrr'l,rill'';JII'nl 

yields quite 
Woods-Saxon potential [WS 54) (Fig. 

we have: 

conditions quite 
the Fermi 

VW.5.(r) 1 eX{-aRo)r' 
with 

Ro= roA , [ ]; 

V( 

F1tw'e 2.3. Shape of 

(The Woods-Saxon potential actually bas a 
r - 0.) Since the eigenfunctions for this 
form, one often uses the following two 
considerations! and also for calculations: 

(i) harmonic oscillator 

V(T)--Vo[I-( T)'j_ 2 

(ii) well 

[ 

{ 
- Vo 

V(r)-
+00 

for r < Ro~ 
for r Ro. 

Before we or Eqs. (2.4), 
we mould perhaps note that all 
For the moment, we win our 

r 

(1'- RJ to 

(2.2) 

(2.3) 

or 

(2.4) 

1 [ 

(2.5) 

(2.6) 

discussion of deformed potentials win be 
more, it should be pointed out that (2.5) 
unphysical potentiaJs~ since they are infinite. 

(2.6) represent somewhat 
.n"",,,''''''''"'' as long as we are 
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bound lingle-particle sta tea. i.I Dot too serious a 
u only the exponential tails of the wave functions are affected. 

If one excitations in these potentials, however. one easily gets 
into In Ole states in the realistic potential (2.4) would be in 
the The use of infinlte potentials in such cases is then to be 
OOllllCJicn)Q with care. 

After these rm1Mk~ we want to discuss the energy levels 
_Ai ....... from the IOlution of the eigenvalue problem 

(2.7) 

for the C.ale of the potentials (2.5) and (2.6). 
As is wen known, the harmonic oscillator gives equidistant energy levels 

(N -hwo( N + ; ) - Vo (2.8) 

with 
N" 2( n - 1) + I, where n= 1,2, ... , and 1-0,1,2, .... (2.9) 

levels are D(N)-fold de-generate: 

D(N). 2 (N+ 1)(N+2)~ (2.10) 

where N is the number of quanta in the oscillator, n is the radial quantum 
number, I is the angular momentum, and ""0 is the oscillator frequency. 
The oscillator constant ""0 is usually determined from the mean square 
radius of a spbere 

R .1- ± 
A i-I 

For oscillator states we can calculAte 

m 
2 

Together with Eq. (2.10)~ we rind [Mo 57, p. 469] 

%(~) 
and for the oscillator length 

b= I 11 = LOIO.A 1/6 fm]. V "mwo 

(2.U) 

(2.12) 

(2.13) 

The with a definite N we call an oscillator Because of Eq. (2.9), 
the oscillator shells only contain either even or odd l-values~ that is one 
oscillator shell conta.ins only states with the same parity. It allO foHOW'S 
from (2.9) that levels with the same N and with different II and I are 
degenerate. This accidental degeneracy of the hannonic oscillator is re
moved in the square-well potential (Fig. 2.4). The true energies lie between 
the two Limits given by the potentiaJs of Eqs. (2.5) and (2.6). 



42 

Oi,2g.3d.4s I 

11h. 2 f . Jp I 

( 1 g. 2 

_. 2p "OJ 
.... 

........ If (34) 
.... 

11 d. 25) (12 ~ 21iw 

the level scheme with nucleons (by ..... u"''''YIY 

of the we see that according to the 
protons D() neutrons can be put into each 
means that both potentials reproduce the magic numbers 

'2 I 
lh (22' 

2 d (Ill 

19 (181 

(6) 

1 f [14} 

2s (21 

ld n:n 

113 (51 

of the 

model can account ror the unusual stability I ~'03J and 
~Ca20' On other hand, Fig. 2.4 contains no indications for the higher 
magic numbers. We will see in the next section dericiency of this 
simple model can be removed- Later, we wiD how 
lomb interaction of the Dl'CliOIll 1Il1l.WeDell 

lA Orbit LOllIPllllat 
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force in the form of a spin 

(2.14) 

levels with j - I !. In the 
I. round experimentally. Scattering of 

proton. or neutrons on a for the lowest resonance the 
(unbound) of to lowest 
resonances sbould bave the quantum I = I, j == i . as the Is-shell 
in "He is closed. One resonances at 1 and 2.4 MeV for the 
scattering of neutrons and At these energies the 
angular distributions show that resonances are predominantly j- i. 
whereas the j -! resonances a few in energy. 

It was a decisive idea (Haxel, Jensen, and Suess [HJS 49]; Goeppert-
Mayer [Ma 49D to incorporate a term into the single-
particle Hamihon operator that the success of 
the shell model was a jj·couphng 
scheme, since "!Ii nOl with I, and s" The 
levels are characterized by the quantum numbers 
nIl,) (e.g., (2di).Q.(n- i 1», and a particle wave func-
tion takes the following rorm Cl

: 

4»( r) lUljm - (r) I j (8, 4-)H~). (2.15) I"'tm 
miff!. 

With the re1atlons 

=(j2_ e-
- [JU+ I) 1(/+ 1)- i ll J ljm) (2.16) 

we are able to give the spin orbit splitting doubly degenerate levels 
Islj=/:±!> for f(r)===const.: 

l1£(/)-[1 ( I 1)]- +1. (2.17) 

An attractive spin orbit potential will assure the observed 
fact that the 1+ t levels are energetically always below the I i levels. 
Equation (2.17) shows rurthermore the with growing 
values of I. 

Inclusion of the spin orbit interaction to 
Fig. 2.4 yields the modified level "' .... ·" .... u 

all magic numbers correctly. 
now 

... ............ of the levels wjthin 
the different shells depends on the choice of f(r). 

The value of /(r) which one could derive by AUC'''VIU' 

electrons in an atom using a Lorentz invariant 

(EO 70, Chap. 8D turns out to be 

" For cakulaliOlU one hu to pay particular coupling 
momenta. since a differemt introduces a is lOurce of errors. 
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One can show [Ho 15] that J(r) pea.ked at the nuclear surface. By 
analogy with the electronic one quite often chooses f(r) related to the 
&pin independent part of the averalc potential in the foUowing way-

1 dV 1] f(r)-)...; dr; ~~ -0.5 [fm (2.18) 

-but alBo other lurface-peaked radial dependences of f(r) can be envis
&pd. It is i.nteresting to nole that the use of the Skyrme force (see Chap. 5) 
yields a spin orbit dependence for the average potential with /(r)-..(I / r). 
(dpi dr), where p is the single particle density. Since V(r) roughly foUows 
the form of P. this consistent with Eq, (2.18). 

2.5 Tbe SheD Model Approach to the Many-Body YnJ,Dlem 

The single-particle model takes into account the individual nucleons. It 
therefore provides a microscopic description of the nucleus. This is cer
tainly omy an approximation of the exact many-body problem. We will 
see. however, in the following, that the shell model can be used as a basis 
for more eLaborate many-body theories, so before we talk about further 
details of the model, we want to discuss some general properites of the 
ilil.Ll""'''' particle model. 

The microscopic theory of tbe nucleus is usually based on the foHowing 
three propenies. 

(i) The nucleus is a quantum mechanical many-body system. 
(ii) The velocities in the nucleus are small enough so that one can 

neglect relativistic effects [(01 cf-l/ 10). 
(iii) The interaction between the nucleons has a two-body character. 

A full microscopic theory of the nucleus would then be given by the 
solution of the many-body Schrodinger equation 

where i represents aU coordinates of the fth nucleont for instance, 

(i) = (rj , Si' Ii)' 

(2.19) 

(2.20) 

where Ii will be ! for neutrons and -! for protons. With the assumption 
of the nuclear shell model, the above equation reduces to the much simpler 
equation 

(2.21 ) 

The solutions i' of Eq. (2.21) are anti-symmetrized products of single
particle functionJ. which ate eigenfunctions to the single-particle Hamilto-



(2.22) 

The functions ~ provide an orthogonal number 
within the framework (see Appendix 

To each level k corresponds a and 
operators (Jk+ , al< which create or annihilate particles with wave function 
«t\.. Since nucleons are Fermions, each level can be occupied onJy ODce, 

and the operators ak , at obey Fermi commutation relations (C. 23). 
The sheU model Hamiltonian Ho has the fOTm 

Ho- ~(kak+ak' 

Using the bare vacuum 1- its eigenfunctions can be represented as 

1<1>1<1"'/(.04 

They are Slater determinants 

4»" de (1, ... ,A)-
... '··· .. A 

with eigtnval!les 

+ +1 ak ••• a .. 
I "'A 

(2.23) 

(2.24) 

In the ground state the levels are mJed successively according to their 
energy (see Fig. 2.6) 

(2.25) 

Thus we have for closed shells the foHowing unique prescription for the 
construction of the A particle ground state as weU as for the A particle 
excitation spectrum: Starting with the (lSI/2) level. one has to occupy each 
level Insljm) with just one particle unlit all A partides are used up. We 
thus obtain an A nucleon ground state wbere aU different quantum states 
are occupied with just one partide up to the fermi level (the bighest 
occupied level); above the Fermi level all levels are unoccupied.. 

The independent particle picture of the nucleus is diHeTeDl from that in 
an atom in the sense that in a nucleus there are two different kinds of 
particles, the proton and the neutro~ whereas in an atom there is only the 

.E 

f1Iun 2.6. Shell model potehtial and Fermi level. 



reasons: 

(i) PTo1toru1 

tli'l'!I!mll,ftt average potentials for two 

CDIllomb force. One therefore usually 
DOl~enltl&l. of a homogeneously charged spbere 

r <. R, 

(2.26) 

r>R. 
r 

Sometimes (see Sec. 2.8). this feature is approximated by using 
different potential parameters for protons and neutrons. 

(U) The symmetry energy [see Eq. (1.4)] favors a configuration with an 
equal number of protons and neutrons. Because of the Coulomb 
repulsion for heavier nudei. one has a neutron excess: If. in the 
nucleus, we replace a neutron by a proton, we gain symmetry energy 
and COtdomb energy. Since the Coulomb energy is already 
taken into account by Eq. (2.26), there must be an additional 
difference between the singJe-particle potential For protons and 
neutrons, which by the symmetry energy. The nuclear part 
of the proton potential is therefore deeper (see Fig. 2.7, dashed line). 

These two effects go in opposite directions. but they do not cancel. In (he 
end. the Fermi surfaces for protons and neut.rons must be equaL, otherwise 
protons would turn into neutrons by {J-decay or vice versa. whichever is 
energetically favored. 

in N Z nuclei, energy levels with the .same quantum numbers for 
protons and neutrons are therefore shifted with respect to one another by 
an amount a« resulting from a positive contribution Ac from the Coulomb 
force and a negative contribution -.l.s from the symmetry energy 

(2.27) 

In heavy nuclei. this difference is such that the protons and neutrons at the 
Fenni surface belong to different major shells . 

... --'" 
FIglft 1..7. CompanIOn of (he shell model potential for neutrons and protons loa 
nucleus with neutron excess. 
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Strong support of the tnClepenllle]l1 

mental fact that magic are the lime for Dr(l~IOIII 
Fig. 2.2~ the magic number 126 only for 
heaviest nucleus known so far we only have - 103). If 
played a major role, then, for example, the neutron excess in heavier nuclei 
would eventually influence the proton magic numbers in nuclei (the 
nuclear force is almost charge independent; see Chap. 4) to be different 
from the corresponding neutron numbers. However. as we have 
not the cue. The subshells of a major shell have~ in some cases, a different 
order. 

hi the shell model, the excitations of th.e system are given by with 
the free Fermi gas by a transfer of nucleons from below the Fermi level to 
levels above it. In the case of only a nucleon transfer, we talk of an 
Ip-Ih state with excitation energy of -Frwo. such a state for 
exampl~, given by 

(2st) - I( In). 

level coincides in this case with the Id3/ 2 level (see Fig. 2.5). 
If we use the indices i, j for the levels below the Fermi surface (fi <; t F ), 

and the m, n for the levels above the Fermi surfac~ «(11 > (F)~ the 
lowest excitations in the shell model are then ph e~citalions of the fonn 

(2.28) 

with e~citation ~ - (In - (t· 

In fact one observed such states in magic nulcei. They are. however. 
not the lowest states. As we have already seen in Chapter l, there are 
low-lying collective states which cannot be explained in the independent 
particle model. 

The Slater determinants (2.23) form a complete set of states for the A 
nulceon system [Lo 55]. Each state of the system is characterized by the 
distribution of the nucleons among the leve1s or the single particle poten
tial. that is, by the "occupation numbers" of the levels. It usual to 
clusify all excited states by taking tbe ground state as a reference state. 
The nucleons that are missing in the ground state are denoted by holes, 
tbose above the fermi levels by particles. A typical multiparticle-muhihole 
configuration is shown in Fig. 2.8 

Starting from a magic nucleus with the mass number A. we can add a 
particle and obtain a nucleus with the mass number A + 1. If we put the 

• x X 1IC III 

00000 

Figure 2.8. Schematic representation or a typical five-partjcle (crosses), five-hole 
(open d.rdes) state. 
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level m, 

(2.29) 

the energy difference 

Em - Em (A + 1)- Eo(A). (2.30) 

able to measure the single-particle energies (see Sec. 2.7). 
are the slates in A + 1 nuclei. More comphcated states have 

a 2p - 1 h structure, and so on. In complete analogy. there are I h. Ip -"211, 
etc., states in A-I nuclei. 

It often turns out to be convenient to define quasiparticles by the 
operators 

a
lll1

=am , 

C't; - Ql+ t 

for (.1111 > fp; 

for E; <: (F' 
(2.31 ) 

These quasiparticIes are again fermions. They are particles for states 
above, and holes for states below. the Fermi surface, so that we have 

ait l4>o> -OJ (2.32) 

lbat is. the ground sUite of the n ___ Ducieus a with respect to 
these quasi-particles; ph are two-quasi-particle states. and so on. The 
muhi-quasi-partide states 

14>k
1

o __ 
(2.33) 

form a complete orthogonal set in the many-body Hilbert space. 
This basis is often used for further investigation of the many-body 

Hamiltonian H (2.19). In the sheU model, one decomposes H, 

H - T+ ~ v(i. )- Ho+ VR • (2.34) 
I 

with the residual interaction 

VR = ~ v(i. j)- L V(i) (2.35) 
i ; 

in such a way that VR is as small as possible and can be neglected. More 
elaborate theories VR in the basis in which Ho is diagonal, the 
shell model balis (see Chap. 8). 

The exact ground state wave function of a magic nucleus has the form 

ml 
m'j" 

(2.36) 

If the shell model is a good approximation to the nucleuS-t the coefficients 
C,.. CIIIIM'(' etc. should be small (see Fig. 10.3), 

At point we would to again stress the fact that we have always 
been talking about a sp/wrlctll shell model potential. Since, as we shall see. 
spherical nudei exist onJy in the neighborhood of magic nuclei. by the 
sa.me token this means that we have restricted our discussion to such 
nuclei. As this spherical average potential is created by the nucleons 
themselves, it may depend (though not abruptly) on the nudeon number If 
in quite a subUe way, in contrast to the atomic case. It is such that we 



so The 

caDDot take a once-and·for.ail potential and hope to 
find the correspondin.& lingle-particle states realized be it 
even over a very limited range of neighboring nuclei. 

We should in mind when talking about 
model. As we said, the filling of the shen. iJ without amhiguilYJ if we 
closed shells. When we start filling neutrons and protoDJ in unfilled 
these states will be degenerate, because tbe have a {2J+ I)-fold 
degeneracy. The configuration of the nucleus can th~n be by 
two numbers, Ie and A~ which stand for the proton and neutron numbers, 
respectively, in the partially filled j-shell. Let the partially HUed neutron 
shell be characterized by the quantum numbers (n 1 j). the partially 
filled proton shell by (n! J' f). One then denotes configuration 

(vnlj)K (,"n'!'},)". 

Because of the 2) + ] -fold degeneracy of each j-sheLl, aU possible shell 
model states corresponding to this configuration are also degenerate. The 
number of antisymmetric, lineady independent products is given by the 
prodUCI of the binomial coeFficien ts 

(2.37) 

The degeneracy of aU these states will, of course, be removed in reality due 
to the action of the residual interaction YJIt (2.35), which is neglected in the 
shell model. one of the phenomenological nucleon-nucleon forces, 
as discussed in Chapter 4~ one can djagonalize V R in the subspace (2.37). 

one takes not only this subspace into account, but also the one 
which corresponds to the neaTly degenerate levels of a whole major shell. 
The S 1/2' d 5/2' dU2 levels of the s - d shell is such a nuclei 
from ltU up to Ca. One can easily be convinced that the di.mension of 
the matrices to be diagonahz.ed becomes exceedingly large for more than 
two particles in open shells. Special procedures have been developed to 
dialODaliz.e such huge matrices [Wh 72, SZ 72, WWC 77]. 

To reduce the si:z.e of these matrices? symmetries such II or 
angular momentum (see Sec. 2.6) can be of great help (see, for inllance. 
[PHM 69, WMH 71, HMW 71, OED 71, VGB 72. Wi 76D. 

2.6 Symmetry Properties 

2.6.1 Translational Symmetry 

For any solution of the eigenvalue problem (2.19) we mUllt require that a 
series of symmetry or invariance properties are fulfilled. Amoq these are, 
for example, translational and rotational invariance.'" In the shen model 

fftIit·....-. u. for LWIn.IIR.D!:lC" 

... 1 ..... I'I'~.h._ of ip«t.r& (5ee [He 73aD. 

~1"Id1t' tabie ODe often hu 
2.6.3). eu. used for • 
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wu..&. __ is always violated: the IransuuiOMI i"variance. 
that we have to fix the potential space in 

of space. The most 
of spurious states in the eKcitation 

redun
only lA-3 

occurs because we have' 
we fix the nucleus i.n space, it 

IfClXlo:m left. The sbeU model, 
states are therefore not true 

system, but cOlrre~~D<1;nQ to motions of the nucleus as a whole. 
approximation nuclear physics have inherent 

11 we will. therefore, show in 
violations can be 

2.6.2 

3A 
the 
aU 

The spherical sheU Ham.iltonian Ho term included) conserves 
rotationa.l symmetry. Therefore, it is possible to construct eigenstates of the 
total angular momentum 

A 

J- and (2.38) 
i-I I ... 1 

by a Linear combination of the Slater determinants (2.23). The shell 
ground state is the only nondegenerate anguJar momen-
tum eigenstate 0, which is therefore identified with the ground 
This consequence confirmed with no exception. is then 
clear that, having outside 
angular momentum nuclei will correspond to 
of the odd nucleon. of COUf$e, is true if there is one nucleon 
missing (a hole) in a filled ruJe is aJs.o experimentally 
with only very few 

If we fill (remove) more than one particle into (from) an unIiUed (filled) 
j-IeveJ. the situation more complicated, because different I-values will 
be degenerate. Again, we can remove this degeneracy by diagonalizing the 
residual interaction. matrices are now mucb smaller as we one for 
each I value. 

The construction of J2 will be shown explicitly a very 
simple exampJe (for more complicated see 1ST 63D, lhal a 
j-shell there ate only two the configuration is then ('11))2. Out of 

stata (whk.h. we by Im.ml), WI 

the mapetic quantum we conatruct, according to the rules of a,,'A--
momentum of Jl and Jz with 

01 + 1)1. (2.39) 
We obtain 

- (2.40) 
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Using the symmetry properties of the OebKh-Gord.aD codficiclu., 
Eq. (3.5.14)D, we have WIth proper nonnalilJUion 

- I k 
l1li1-. 

j I +(_ 
II'fJ /ttl 

11M -
1+ 

We see from Eq. (2.42) that 11M) is only different from zero for 

lj-I+I-2" or 1-211; 11-0, J, 2 .. '. 

[Ed 57. 

(2.41) 

(2.42) 

thaI is t for eveu IIl.l:ual momenta. Takin.a as a dermite eu.mple j-3/2. we see 
that the componenu 

Im1ml) : I H), It - D.lt - 1>,11- i), Ii - i), 1- t -I) 
have been traDllomled by a un.itary trlJJ.Sformltioa to the """"'i~"'''''''' momentum 
coupled components, which are desenerale among tbemselves: 

11M ~), 122), 121),120).12-1).12-2). 

cue these oonskl£ratioIU are a liute tediow.. In Table 2.1 tbe 
pouible total momenta for a pure proton configuratiOD are presented. 

The factor 1/ Ii in Eq. (2.40) is a nOmlllLi:z.ation in the cue in which both 
particles are in the same abell. [n general. we have for the COUpliDg of two particles: 

-;:::==~ L C~ 
I'IIMII' 

states. The 
under a 

coordinate sy.tem a spherical tensor of rank j (l.e., with 

(2.44) 

Appendi.x A). On the hand. opera.tor fl. 
with DI:,.., that is, cont.rapedjenL The nonnal coupling rules (2.44) apply only for 

which are both or both contra&rediC'Dl We CIll only 
couple with the time reversed operator (see [Me 611). 

(J - +-(-)/+j-". 
- °l1li1-11'1' (2.45) 

which is, of course, oogredient. The ph coupling rule is therefore 

- ( (2.46) 

where we have left out the unimportant ... l 

From pure anlular momentum coupLing one cannot III yet decide which 
of the depnerate corresponds to the ground state. for we have., 

to Y It in a certain 1Ut:l.,.lCI. 
the experimcmtaDy oblaved that eveD-neu 

have 1-0. 
AaDlDier experimeatally fouad oouptiq nile ",hid! IbeU model 

cannot explain without configuration mixing is the fact that even odd 
nuclei far from closed shells have ground state spins equal to the j-value of 
the odd particle. We win see in Chapter 6 how this finds a Datura! 
ex.planation by correlations of the nucleons into account. 
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Tale 2.1 List or total angular momenta J for the con!iguratioD 0)" 
(fMJ 55, p. 64D 

1 
2 

j-~ 

j-i 

J-i 

j=~ 

j-If 

t 

I J. 
:3 

1 1 
:2 

1. 0.2 

1 t 
1. 0, 2,.4 
J II! 

1"'1 

I f 
1. 0.2.4.6 
3 .l~ll..ull 

J'J'2'2'2 '2 

4 0.2 (twice). 4 (twice), 5, 6, 8 

I 
2 
3 
4 
5 

I 
2 
3 
4 

S 

I 
J 

0,2,4,6,8 
.1 l 1 1 ( .... vi.""'\ 1i II 11 
1 'l • 2 • z. n .... """,. , 1 • 2 • :I 

o (twice). 2 (twice), 3, 4 (3 times). 5,6 (3 times), 7, 8 (twice). 9, 10, 12 
~,i.i (tw:i£e).f (twice),J (3 hmes).Jf (twice),clf (twice),-'f (twice), 
If (twice). • 

II 
:2 

0,2.4,6,8.10 
~.i 1 I( . \li(. - )Ull( . )1I i ':1 'j ':1 twice" l! tWIce. 2 • 2 tWIce';I 
o (twice), 2 (3 times), 3t 4 (4 S (twice). 6 (4 times). 8 (4 times). 
9 (twice). 10 (3 timet). II. 12 (lwic~). 13. 14. 16 
t.f (twice),~ (3 times).r (4 times)., (4 times).¥ (5 limel).~ (4 times), 
¥ (S times).f (4 times), if (4 times).\1 (3 timet).' (3 limes).i' (twice), 
1f (twice). ~. ¥.J} 

6 0 (3 1. (4 times), 3 (J limes). 4 (6 times), 5 (3 times). 6 (l times). 
7 (4 8 (6 times), 9 (4 times). 10 (5 times). 11 (twice). 12 (4 limes), 
13 (twice), 14 (twice), 15, 16. 18 

2.6.3 The Isotopic Spin 

Up to now we have always considered the neutrons and protons sepa
rately. As a consequence we have~ for example. in Eq. (2.23), a product of 
two Slater determinantl--ODe for protOD.l and one for neutrons. Apart 
from their interaction .. protonl and neutrons ha"e practi
cally the same physical properties. We will see, for instance, in Chapter 4, 
that nuclear forces are to a large extent independent of whether we 
consider protons or neutrons-that they are charge independent As 
long as the influence of the Coulomb force on the nuclear properties can 
be neglected. we can consider the proton and the neutron as just two 



with 

The InU.JPrlll"I 

with 

Like ordinary 
cartesian 

wave 
.... c;u,"""""' that. contrary to 

rotations in the coordinate SDIU.~ 
ISOI)II,D is much simpler than that of 

to be coupled to the orbital ..,....","" ...... ' ...... RlOllrlelU 

one can set up the usual 

'3"- !p, 
I "/f- _I'll" 
'3 :2 } 

I ( I 13= 2 0 

.... "",.ul"'l operators I _ and t + change the neutron 
respectively, 

1+'" 0, 

I ,~'11'=0. 1 ... "lTep, 

I ... -(g I ). 
o · 

I _(0 
- I 

the vector operator is formed out of 

We can therefore define total isospin of a system of A nucleons 
A 

- L:: t(l) 

/-1 

and its 3-component 

as for ordinary 

total isospin is a measure of the total 

(2.47) 

(2.48) 

a 

(2.49) 

(2.50) 

(2.5 I) 

(2.52) 

(2.53) 

tIIOIIlplO was in.troduced OnliJDallry by Heisenberl (He 32]. Later on it WILl 

[Wi 31~ 
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... A)- ( - i i··· +! ]'1'(1. . . A) 

- L . . A ). (2.54) 

neutron excelS. For systems 
the eigenvalue T 

COITelJpoDdllng to Tl can take On the values 

A ITJI< Tc;"2' (2.55) 

Eacb state then has a good total isospin quantum number T as 
long au Coulomb forces, which do not commute with ~, can be neglected. 

As Ii limple example, we will show how to attribute total isotopic spin to 
certain nuclear For the three isobar nucJei 

IOn_ 1°0 10C 
41.K6' s.s· 6 .. ' 

the 3-component of the total isospin is, according to Eq. (2.54), 

T«(I.e) """ - I T(J) = 0 T(C) = I 
;) • J , ) • (2.56) 

The total isospin can therefore be either T- I or T==O [Eq. (2.55)]. 
In the first case we speak of an isospin triplet. states of which should be 

found in aU three nuclei at the same energy (slight differences will 
nevertheless occur because of the Coulomb energy)~ the second case is an 
iIospin Singlet, which can only be aUributed to boron. I n Fig. 2.9 we show 
the low-lying Slates of the three isobars and their identification with isospin 
quantum numbers. 

__ ....,j2 ...... ___ ~ ____ 2 ..... • ~ _____ ---''--
T : 1 

,+ 

T) .. -I 1] .0 ~.I 

FIpe 19. IriplelS and in the excitation spectru,m of isobars. 

From considerations it may seem that the concept of can onJy be 
applied to light where the Coulomb energy is negligible. However it [urns 
out in IIMIvy &lao. the low-lying states have almost good isoIpio. 11riI am 
be understood qualitatively using the following arguments. 

We first conDder I pure shell mCldtl and usume: thlt the wave fun<;tio:I]J ror 
protoDI and neutrons with the: same qu.a.ntum llum'benllJ'e i.dentical. that is that the 
proton and the neutron wells are identical to wiLhin a comtant shift A. (2.21). This 
iI a rather good approxiJD.I.oon for the bound states. 

In Fig. 2.10 we have side by the levels with the same quantum numbers. 
is a bit r.nisleading for energy arguments. but useh.ll in the following discus-

slon. 
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From Fig,. lOa we see 
are 
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o 

b) 

this ltale stille 
T. shows In particular that 
T-O. 

exact 
show in 

• 
• 
o 
o 

d) 
shell model configuration .. 

• 
o 

o 

...... " ... (.' ....... proton levels 
1~1 onto 

of 

ODI:;-.DlIlnICJe POlle:n:1l8J .. ures that there are no Ip-Ih ... _ ......... 

Ire admixed wi lh the II.me we 
sLale of beavy is roughly I /(N -
ltata, and we find that heavy 

has also been ........ ' ...... 
65. KW 69. So 69t LM 74}. 

2.7 Comparison with Experiment 

to such a 

2.7.1 Experimental Evidence for ....... JI~, ...... ""'- ... 

uelilG4=s. the IUccesI of 
Dumbers and an.suJar momeDla 
direct experimental e"IKleB4ce 
Sb1I~l.l [e.g.. (d, p)j and PldCllIP 
and (~, tr' p) rea(~O!ls. 

lp)l)I'()Q9& 

so 

(Hole) States 
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E',p' 

E,p 
• 

E~p" 

of the (p. 2p) reaction. 

uw~#~ both protons leaving the nucleus without further interactions (Fig. 
2.11). 

Suppose that the knocked-out nucleon has been in a shell model slate 
(Fig. 2.12). For its binding energy we have 

Ee- £'- E/f. 

The cross section according to the shell model should have, as a function 
of the eDe'IY~ resonances only at discrete values of Ea. 

In reality, these resonances are broadened of the influence of 
the residual interaction, as shown in Fig. 2.] 3 for the experimental cross 
section of 16Q (p,2p) 15N. Nevertheless, one can dearly identify the 

'¥ 

J 
N . 
I 
i 

10 

J5 

• E 

EIO 

Ea 
\-----1__...--1- - - - - j - - -- -

Flgtn 1.12. (p.2p) _:uvu in the sheU modeL 

(tpi> 

~ ~~----~~~----.~----~----~~--~~----~~~~O 
EetMeVI ....... --

flgure 1.13. Experimenta.l 16() (p. 2p) ISN cross section [MHT 58]. 
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Comparison with Experiment S9 

or",..",,. .. ('l7ipJ /J and (wlpl/2.)' Theoret-i
been done by R. Lipperheide et aJ. 

lEa I. one can use stripping or pickup reactions like (d, p) 
and (p, d) to neutron particle or neutron bole states, but the 
kinematical hu to be corrected rOt the binding of the deuteron. A 

example for neutron particle states in 209pb obtained with a (d, p) 
stripping reaction is presented in Fig. 2.14. It sbouJd be compared with 

2. I 5, where experimentaHy determined proton and neutron single
particle energies ror lOIPb are shown in comparison with calculated levels, 
using a Woods-Saxon potential {BW 60]. 

Neutrons Prolons 

Thlllory Elllp Exp 

2.52 
2107 

f~ -2 1.61 - -- --
l Q.1i1O ...--------

Iln ::.1 - 0 ___ - - - - - 'hll'2 
0 -4 .... 

f a .. ... 
II:; 

1A3(MeV) 
I.lJ 

1..23 [MeV} 
-6 I 

! .r ! -.:II ~--- -- Al1'2 0 c::: 

~ -8 
iii 

&35 
Y - ---- 2d3r2 

1&.4 IlL 
/- - -- -- It\1Ir'l 

2.35 iI? 
___ - - - - - 2d5,o2 

3.47 .......------'9l&z 
141 

HI\) ----------
2g~ -- .. -- - - --::""'--""'Il"""'-

~r~ =::::------~----
~ :.:::.:..: ~----

2fl;z -----~ ,"" ----------
Figure 1.1 S. 
208Pb. 

of experimental and cakulated sin&ie~particle levels in 

One can show for instance, [GL 70, Au 70, Ho 71b~ EW 7lD that 
the absolute values of the cross sections of these reactions are proportional 
to the so-called spectroscopic factor 

Sk - ... "at 1+ A (l.S7) 

where ), Ii'll + are the exact wave functions of lbe initial and final 
nucleus, and k stands for the quantum numbers of the observed single
particle state. If for the wave functions we use the pure sheU model 
approximation, the spectroscopic factor is clearly equal to one.'" However, 
if the wave fUDCUona contain admixtures of more complicated particle and 
hole configurations, which are introduced by the diagonaliz.ation of the 
residual interaction (2.35~ the spectroscopic factor differs from one. There
fore, it is a me&1Ul'e of the purity of the single~partide states. The 
spectroscopic factors of the levels shown in 2. ] 4 are in the range 
0.8-0.9 (see, for instance, [RW 73D . 

.. ThjlllLltemeJll applies only rOt pure prodUCI Illata without I.nJUlar momentum CQ\Ipling. 
With anplar momentum coupling, the different levels with d.l!ferenl m values are partially 
hlk:d and OJlC has to take into accouot the Pauli principle. 



2.7.2 

Other important quantities ready for comparison with eX:~Jenmerul 

(2.S8) 

where a; creates a 
function of the core 

in the level m and rntf'lll'llllPftlll the wave 

The 
Appendix B)l are nru·· ..... !l 

can be as 

- ~ Q a+a 
- ~ kik:!; kl k! 

klkl 

mOQeI ~_ ....,,...,..""" the commulation relations 
fact that the levels m. m' are empty in the core 

.. (2.60) 

]be picture especially simple if we assume that core is a 
cloted nucleus, In all the electrom.agoetic matrix eleiMeIUS 

the core (J - 0) vanish. The single-particle statea are 
quantum numbers Ik -Inljm> and the electrolD.lFDtic ftIII'iI'_'lI"h'''1I 

be calculated from the matrix elements 

they 
states. Their wave 

(2.62) 

wave of core 
OCC'Ul)lC:(l in Itta>. By lU1&Iogy 

-(tt.IQ (2.63) 

CiOCb'()lDJl&DAetlC mwtipole operators are JeII-eq;IOlD 

difference between 
eJeCI.J'IDmqJlletlc transition aute 

of ele'ctr40magr moments. One has to take care of the (2.63) and 
........ ....,...... Since one is interested in the expectation value of a 
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"_ ...... " ... .,,_ IItOD.lIltwn .NllAG'I',1'It"11"ft numbers J, m .... j. one has to crca te 
_ ••• ...,.,. is proportional to the time~reversed 

(2.45)]. with the minus sign in Eg. (2.63), one 
the same magnetic moments as the correspond

inl (the magnetic muJti}XJie operators are time odd), whereas 
the electric multipole moments of partide and bole Slates have different 

(the muttipole operators are time even) . 
... A."""" ..... "" is the m.agnetic dipole moment (8.31) 

IA-<nljjl~ =iT (nljjIMlolnljj>. (2,64) 

where the vector I' given by 

p. = P-,v { g 'I + g (2.65) 

where Il/V - efJ/2mc is the nuclear magneton and g' and g'~ are the gyro
magnetic rations for orbital angular momentum and spin (g'= I.g$=5.586 
for protons and gJ -0, g' - - 3.826 ror neutrons). ~ 

The magnetic moment p, can be calculated with the projection 
theorem for vector operators ~ . 

.... (2.66) 

which can be derived from the Wigner-Eckart theorem [Ed 51, Eq. (SA. I)]. 
Applying it to the vector 1', we get 

It .. Pw j! 1 <iii g IIJ + g "sjl1i> 

-IlN2U'~ 1) [g/(j(j+ 1)+ 1(/+ t)- i)+ g'(jU+ 1)+ ~ -1(/+ I» J. 
(2.67) 

For j-I±! we get 

g IUD + ! gJ) J j = 1+ t 
/1. /1." [g'(j + t) - h'J }i I for 1 j = /_ ( (2.68 ) 

The functions p.(;)/Pw for j=l+ 1/2 are called Schmidt lines (Figs. 2.16 
and 2.17) U can only take on discrete values IlU) / P.H' though it is shown 
here as a continuous function of J)' The experimental va.l.ues are given For 
comparison. 

If the theory were eXACt.. all p.-vahacs would lie on the lines and 
aU orbital angular momenta 1-j±! 'Would be determined. The experimen
tal without exception. lie in between the two lines., mOlt of 
them beinl goo:ped Cber to ODe of the two lines. The I-values determined 
in way almost always agree with those predicted by the sheD model. 
The shell model should work best near magic numbers. Indeed, one finds 
close agreement, for example, for i!'iN, 170, 39K, 41K. and 207Pb. The 
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agreement is also Dot too bad for many nuclei far from closed shells. One 
can qualitatively understand lhi~ because the magnetic moment in time
reversed levels is always of opposite sign. Since. as we shan see in Chapter 
6, time-reversed levels are always occupied pair-wise, the most important 
contribution comes from the last odd particle. This is. however, only a 
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~ 1.11. Magnetic moments of N-odd nuclei as a function of 1lUA111oUm1iU momt;l· 
tum. (From [MJ 55'].) 
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many deviations, especially for 
pure one-particle or one-hole 

we have used the g-faclors of bare 
the magnetic multipole operators. 

pionic currents between the 
effective g-lacton, g. should 

(ii) The core usuaUy in an external electromagnetic 
vibrations which interact with the fie1d. 

is called a polarization of the core. To a 
large extent, it can be into account again by erfective g-values. 
We wiU see 9.3 how this polarization effect can be 
calculated mllc:rOSC(~J)I(:all 

The most important transitions are M1-transitions. In the pure 
single-particle model. the M I-operator (2.65) commutes with 12

, This 
means that M! levels with different I-quantum num
bers are forbidden (I-forbidden transitions). in fact. such transitions are 
observed experimentally. but with a very small 8M l-vaJue. They cannot be 
understood by using only effective g-values, because one does not change 
the selection rules in case. This clearly shows that mesonic effects (i) 
and polarizations (ii) produce not only vector oomponenb ........ 1 and but 
also more complicated erfects. simpJest one is a "tensor component" 

6",-Kr2[Y2s],i3. (2.69) 

By adjusting the constant Ie a reasonable way, one is able to describe 
these I-forbidden quantitatively (see [BM 69, WB 69, and BSK 
73D, 

Let us come now the electric properties. There are two important 
to the cue: 

Q=e -- (2.70) 
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the radius of a particle ion the state Inljm). For 
j 1/1, the quadrupole moments tum out to be negative, that is, the 

distribution like a pancake in the plane perpendicular to 
we have the (i.e., prolate probability distribu-

__ .'A_,' In Fig. 2.18, we see that picture qualitatively right in the 
DeltlDDOlrDCtOO of numbers. However, as one rills the next shell with 

more nucleons, we soon find experimentally a transition to 
quadrupole moments with very largevaJues. We shall see in the 

that in case the average field of the nucleons is no longer 
we obtain a deformed density distribution. Only at the end 

nearly aU leve1s are occupied, does One again get the 
or a few boles in a sphericaJ core. 

fOT one-particle or one~hole states with a magic core. this picture 
only gives qualitative agreement. Quantitatively, the measured quadrupole 
moments for proton states are roughly a factor of two larger than one 
would expect from (2.70) and values for neutron states do not vanish as 
they should according to Eq. (2.10)1 but behave as if the neutron had a 

·charge. One u.sually this fact by an effective charge een. These 
charges can be explained by the polarization effect (see Sec. 9.3). 

Experimentally, it is observed that 1 for neutrons and een~2 for 
protons. 

The electric transitions behave very much like the corresponding mo
ments. Only for the single-particle and single-hole nuclei near shells 
do tbey have values predicted by the single-particle shell model, with 
roughly the same effective charge as determined rrom the quad.rupole 
moments. 

Levels with high angular momenta near closed shell nuclei are often a 
mixture of only very few c~nfjgurations (often there is only one configura
tion possible in a wide energy range). Sometimes-because of the selection 
rules or spin and parity-they can decay only by radiation with a high 
multipolarity. From Appendix B we learn that such transitions are highly 
suppressed because of kinematicaJ. factors. We therefore expect a very long 
lifetime for 8uch nuclei. In fact, quite a few such "isomeric" states have 
been found in spherical nuclei (islands of isomers; see also Sec. 3.4.7). 

2.8 Deformed soon Model 

2.8.1 Experimental Evidence 

The assumption of approximately independent motion of nucleons in an 
average field is the basis of the shell model and of aU microscopic theories 
of finite nuclei. This container potentia"1 produced by the nucleons 
themselves and their mutua] interaction. In Chapter 5 we sl:uu] see how to 
calculate this average potential I.n its most simple form the welJ 
is spherical. This is true for nuclei with closed or nearly closed IhelJs and, 
as we have seen in the last section. for such nuclei the spherical shell mode1 
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is very . F 8.1' 

(AI, Mg). 150< A < 190 (nuclei of the rare _'f'!PII"'.' 
actinides)-the independent particle picture 
ever, In one 
potential. SO, 16, Do 51]. 

The of a deformation is able to ... oA, ..... "IfAiLIL&lii many experimental 
facts, of which the important are: 

0) The ex1ste1lCe of rotational bands. In the mala mentioned 
above, the nuclear excitation spectra show pronounced rotational 
bands with an /(1 + 1) spectrum, as in Eq. (] .64) (see. for instance, 
[8M 75]). As discussed in Chapter 1.5, such collective rotational 
bands are closely related to stable nuclear deformations. 

(Ii) Very luge quadrupole We have already seen in Section 
2.7 that the spherical single-particle model with an inert core is by 
no means able to explain the large quadrupole moments in the 
regions far from dosed shelLs (Fig. 2.(8). This experimental fact is a 
hint about stable nuclear deformations" where the core also contrib
utes to the quadrupole moment. the Bohr model [Eq. (1.75)] 
we can determine from the experimental (spectroscopic) quadrupole 
moment Q an intrinsic value QQ' and derive a deformation parame
ter {J [Eqs. (1.13) and (J.72)}. The uexperimental" values of p, 
detennined in this way, are for axial symmetric nuclei (y =0) i"D the 
rare earth region around 

p~0.2-0.3. (2.71 ) 

The sign is positive. This means that we have cigar-shaped or 
prolate deformations. In other regions (for instance, A -25, A-ISO 
or A -i85 -190) there alS{) exis I pancake-shaped or oblate nuclei 
Whether there ali{) exist triaxial nuclei open to question (see 
Sees. 1.5.3 and 3.3.3). 

(Ui) eabIIlKed quadrupole In the rota-
tional modeJ, tbe quadrupole transition are directly 
connected to the intrinsic quadrupole moment Qo (see Eq. (1.73)]. 
The ,trongly enhanced BE2-vsJucs within the rotational bands are, 
therefore, another indication of stable quadrupole deformations. 

(Iv) Heudeaipole 1Dlbi.x elements. In (a. a') scattering [HGH 68] and 
Coulomb excitation, extremely large bexadecupole matrix elements 
have been found. This is a hint about stable hexadecupole deforma
tions fJ •• They are positive (diamond shaped figures; see Fig. 1.3) at 

"'""lpUJilln..I!!., go to zero in the turn slightly neptive at 
the end of the fare earth 

(,) pMtIde stnIcture.. A very leUIitive tat for the 
deformation comes about from the experimentally observed siDgk
particle ener~ wmch depend very much on the details of the 
deformation (see Fig. 2.21). 

(\1) ~. In some of the heaviest nuclei are found long 
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have large 
77]. The corresponding 

72, Sp 74] and we can 
II such 

large deformations play an in nuclear and 
the model will therefore be of importance for 

Microscopic Hartree-Fock calcu1ations in resul t in a de-
..... ,.._ potential and are able 

.,. .... IOA ...... ".".. (see Chap. 
the 

2.8.2 General Deformed Potential 

If we accept the arguments given in Section 2.8, I about 
deformation, we are naturally led to the assumption that the 

nudear 

nuclear potenlial is also deformed. Since the nuclear have a small 
range ( ....... i fm) compared to the nuclear diameter. one that the 
shape of this potentia) will be similar to the shape of nuclear density 
distribution (which can be determined at least from experimen-
tal data, e.g.~ the quadrupole or h.igher muhipole As we have 
atready seen in the case of the spherical shell model, 
potential (Eq. (2.4» represents quite a good average .... not"" ... ' It thus 
natural to generalize it to the deformed case· [FS 66! GPA 7)] 

V(r,8,c»- - Vo I +exp I ( r R(B, +») 
(2.72) 

In the spherica] case, the parameter a describes the usc:ne:Si and 
is approximately constant over aU nuclei~ therefore 
depend on the curvature or the Jurrace. such a """"A;'"'''''' 
diffuseness for deformed nuclei one to aHow 
dence of a(9. <p) on the angles 8. <p (for more details. see 
72]). 

As we have seen in Section 2.4. spin orbit 
important role for the explanation of the level structure 
In the deformed region., we also have to take it 
straightforward generalization of (2.] 8) given by 

V LS m A(V V(r. fit 4t) A 

This definition coincides the one 

'" single-cplrticle wave fUnlctaQ!1I1 of ra.re 
W oods- Su.on potential, 5Ce lOIS 73]. 

not 

a 



2.8.3 The Anisotropic Harmonic Oscillator 

If we 
be ideally "~r"u'1'lI 
what 

by an elllll)IO'ta 

above that the average OOlteftltial ~W"-Ulid 

harmonic osciflator approximation 
achieved by 

rield: 

,,2 ~+ 
2m 

(2.14) 

W, have to be chOMR proportional to the 
oJ: of the eUipsoid: 

Rf) 
(11= X, y, z). (2.75) 

lbe condition for volume .......,IJI._ ~ therefore, 

(2.16) 

The H81nihonian (2.74) is separable in X. J, z. The eigenstatel are charac-
terized by the quantum numbers "JII' 11)" flz' and eigenvaluel are: 

f.o(n~. nl)=~x(nJ[+ i)+~}'(~ .. +!)+law,(nl+ i). (2.77) 

I.n the case ofaxial~y symmetric shapes. one usually chooses z-axis as 
symmetry axis and introduces a deformation parameter B by the following 

- - w} =: w5( <5)0 + j8), 

w; =: w~(8)(J - ). (2,78) 

where 6 the only deformation parameter in this wri8) 
determined in such a way that volume conservation is lIiLI&U~ Up to 
quadratic terms in 6, we get from Eq. (2.76), 

Wo(8)-wo(l + 162). (2.19) 

~"... therefore introduced .. ddormation-dependent OM:1l1l1Um 

b(~)=(1t1 m~8»I/2 aDd (-rIb. III 
ordinates the namu·to1lJaD 

hoC" )-AwoC8 >( - ~a' + ~,A- ! J(~ff ",.'y J"'.'+ (2.80) 



order in the OelOnllUUlOn 6 

,cz,,), (2.81 ) 

1$- ! •. .. = 1.0576+···. (2.82) 

OCIOnDatJlOD parameter 6 of is tberefore roughly .................. to fJ 

case axial Iyrn,metry! it to use cylinder coordi-
nates [Fl 71]. The eigenstates are by quantum numbers "" 
nIl' mit where ~ projection of the orbital angular momentum on to 
the symmetry axis. With 

(2.83) 

we (2.71) 

£o(nz , "p' mt)==hw,(n, + !)+ru., l,,(2np + m,+ I) 

(2.85) 

symmetry causes. ml be a good quantum number. same is 
true for the spin c,omponent 5, and the ,-component iz of lhe total angular 

It 
the 

which has the eigenvalue 

characterize 
quantum 

m +1 
1- l' (2.86) 

of ho in the cylindricaJ basis by 

(2.87) 

utn .... W of the .,. ...... L' .. '" [.,,-(-1)'-(-1)'"'; see 
discuss level structure a definite example, we use N - 3. From 

(2.85), we obtain in this case 

l'alPle 2.2 
for N-3 

0 

I 

2 

3 

f1f .. 3(n,,,,ln/)~ ~ AW!j+1zWJ)(l- I1z). 

of the Nilsson quantum 

"'t ", g • .11. -
1 I 1/2 3/2 4-fold 
J 0 5/2 7/2 

0 I ttl J-rold 2 0 3/2 5/2 

I 0 1/2 3/2 2-fold 

0 0 1/2 l..fold 

(2.88) 

Y 
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Using Eqs. (2.83) and (2.86), we tbe rcHowing for the 
different quantum numbers~ which are displayed Table 2.2. 

According to (2.85) (2.88), the different values of n~ 
are split for smalJ deformations in Fig,. 
2.19. 

nil::: 0 

---~.:----. nz ::: 1 

6 
of the ....... t, ............ harmonic oscillator as a function of 8. 

2.8.4 Nilsson Hamiltonian 

As we have seen in 2.3. the pure harmonic has two essential 
drawbacks concerning the agreement with experimental single-particle 
spectra: 

(i) A Itroog must be added in order to reproduce the 
right magic 

(il) For beavy average potential is rather flat in the 
1nll", __ of the nu.c)eus. C':ompared to the harmonic oacillator. 

Y,_~lUJ with higher I-values) reel a deeper 

h 
,.2 m m 

6.+ w2 (X1+y2)+ -W2Z2+ CIs+ DI2 2m 2,,1 2 z 
(2.89) 

=: Ttwo( B)( ~ 6.' fJr'ly 20) - KTtwo(2ls + #,12). (2.90) 

where C gives 
with u~ .... v" 

are given in the fonn: 

(2.91) 

orbit force D· f the levels 
2.20; notice that ,,-values are 

d.lffe~fm.t 1iNJI"1U'~ al explained below). 



---,--hW2 
N:::4 ........ ~~---,.--SV2 d3l2 

dstL 9 7/2 

@ 

N=2 (~"-----~---

N:::l 

N EO (:..;;;1+_= 0.;;.;) ____ -0-2- S1l2 

hO " 01
2 

... Ct'$ 

Deformed SbeU Model 71 

r-----312 
""""""", ___ '12 
P-----5f2 

_--lV2 

1'-----912 

- -e!!!!!!!!!!!!!!!!! l/2 
112

1312 
---5(2 

912 
):::===712 

- - - :1/1": -

nn1l2 

l====712 512 

~~1/2 

--~712--

-{----:;: 
~'=====sn 

,-----112 
-"""'---- Y2 

-----1/2 

... ...., experimentally determined levellCberne [K.1 :52) with 
calculatioD1i [Ni 55] Niluon Hamihoniu zero defC>rmltIOG. 
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I n the original 
observed that for 
shift 100 

used the teon D _12.
with large N quantum numben, 

following was ~_ 

D· (12_ (12),,), 

on one 

(292) 

where (12)N - f· N(N 3) the expectation value of 12 averaged over one 
major shell with quantum number N. In this only the states within 
tbe are shihed. center of gravity between different 

the 12 term are no the 

rotational invariance. In 
never violated and one therefore. 

thiI invlriance before drawing conclu-
can be done will be shown in Sec. J] .4. 

so-called projection methods show 
rt ... t;/"Ul'Ylrl....nl shell model are correct. 

For large deformations. the and 12 terms in Eq. (2.90) can 
in comparison with fJY 20' In this limit. the quantum numbers (2.87) 
anisotropic oscillator become good numbers. They are 
then quantum numbers. 

In order to obtain the eigenvalues of the Nilsson Hamiltonian as a 
function of 8. it be diagona.lized in a suitable The ... " ... ""_.'" or 
anisotropic [BP 71] can be his 
original worked in 8 the 
12 are and only the term /3 the 
same principal quantum number N (llN -0) By 
using could show [Ni aN = 2 
admixtures are only of higher order in the deformation 
therefore be neglected to a good approximation. The 
ters in the coordinates are usually caUed ( •. u""",.g. ..... ~ 

12 the same ", in 19 

given for neutrons protons, res-peclively. Again, we can 
with ta.me n" are parallel in the asymptotic region. 

and can 
parame· 

the Is and 
the 

attdbution the II, quantum number, one should accord-
ing to (2.85), levels with higher (lower) nz values are lower than 
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@ 

~ --
... ::: : ,~lI1\ 
~ .., .. 

o 

for light nuclei. fisure 
Hamiltonian 

with lower (higher) for positive (negative) 8. Knowing N. n" and 
n one can the m, value. and hence the complete of 
asymptotic quantum rrom tables analogous to Table 2.2. 

The Nilsson (2.90) contains no Coulomb term. The effect 
of that term into an appropriate of the It 

and p.. They are a.ctually fitted such that the observed levels in defonncd 
nuclei are reproduced. The singJe-particle energies that one 
obtain.s with parameters agree qualitatively with the single-particle or 
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single-hole spectra or near magic nuclei. However. sometimes there are 
quantitative discrepancies. For a discuss<ion of t.his pointt see [RL 16]. 

To get a good fit. different values of K and p. for different shells are used. 
In his original paper, Nilsson used Ie = 0.05 for all shells and I-L - 0 for 
N -0, 1,2; p. -0.35 for N = 3; I-L =0.45 for n -4,5,6; and p.= 0.4 for N -7. 
Later these parameters were more carefully adjuJad. 2.3 
that are now widely used. There the same of p. and I( are for an 
the shells. but they depend on. the n.ucleus (N, Z) one 

Tallie 1.3 Panmeton of the 
tonian (from [GLN 67]) 

0.08 
O.cJ631 
0.0631 
0.0.571 
0.0635 

HamiI-

o 
0.60 
0.42 
0.65 
0.325 

There are many characteristic features in tbe diagram, some of 
which we want to mention here (however, for a more complete discussion. 
we refer the reader to Niltson"s original paper [Ni 55D: 

(i) The which are determined by the single particle anguLar 
momentum j at zero deforrnBtion~ split up into (2j + ) )/2 levels for 
a O. Each of these is twofold degenerate with 0 
([h, j,l- 0) and can therefore be characterized by IDI and its parity. 
The quantum numbers [Nn,mj] are not conserved for smaU deforma-

nevertheless they are used to the levels. 
(ii) The quadrupole field "ly 20 causes the levels with 10wer S] values to 

be shifted downwards for positive deformations (prolate .LUll, ......... 

and to be shifted upwards ror negative deformations (oblate 
shapel). One can understand this effect, realizing that the states 
with low O-values have a relatively higher probability of being dose 
to z-ax,is. This corresponds to a quadrupole moment 

................... _ of the minus sign in Eq. (2.901 their energy is 
downwards. The nucleom with II prolate density distribution 

oelC:OC::I in the deformed well. 
••• '''''''''''' deformations, it can happen that the change their 

are I j2-llatel the N .. I shen.. This 
interaction two lewls with 

n""I1_ Ow comins from dirfere:ntj-sheU", 
caD no em.ull 

[NW 29, LL 59, Vol. 3~ II; HW S3]. 
The repulsion 4f at the crossing point is proportional to the 

interaction strength. Properties of the levell become interchanged at 



... """''''''' .... .,. rule for two same 

the the wave corres-ponding to the two 
point are the same as if there had been 

no at all. 
(iv) H one the Nilsson Hamiltonian using the basis I NljU) 

of the oscillator. the Nilsson wave functions are 
given by a superposition of spherical harmonic oscillator functions: 

(2.93) 

where 

a= }. 

values of a, tbere only small mixing. that is. one of 
is nearly equaJ to and the others are dose 

larger deformations, the depends very much 
on the levels. For example, the stale in Fig. Ie 
splits up into five levels n - 1/2 ..... 9/2. for a - 0 the 
rather from the other levels with same N (it is 
by the term), there is only a amount of mixing, and 
the levels are almost of j2, even for quite 
large of a. The same effect is even more for 
heavier the i 13/2 is type and plays 
an important role in the rare earth region contains almost no 
mixing for deformation values. 

(v) The slope of the Nilsson levels £,.. [measured units of fl",'o«)] is 
given by the single-particle matrix element of the quadrupole opera-
tor q:;;; T'2 in the corresponding single-particle sta Ik 

d~ l 
dfJ - - (klrl Y zolk). 

To prove we use the fact that the eigenvalues 

-(klh(fJ=O)-

of the _._ ... _ .............. ,' ... problem (2.90) are 
[he functions (see Sect. 

h(P=O)lk)-jj6(klqlk) O. 

with rcspec:t to 
that 
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We thus obtain 

qlk)-

2.8.5 Quantum Numbers of the 

D), speaking. spin 
zero. Therefore spin are Celennined by the last 
odd nucleon. Since a directly measurable quantity. we must 
determine it indirectly by a model. We will see in Section 3.3.1.1 that 
the concept the particle-plus-rotor modeL There it will 
tum out the angular momen 10 of the band head of a rotational 
band coincides with D (10 - n). The lowest band head is, therefore, the 
ground state spin of tbe odd nucleus. Often in the region of the experimen-
tally determined value 6 possibilities for the n of the last particle 
exist. In fact, tbe of the ground state spin for many 
deformed nuclei a values indicated in Table 2.4. In 
Fig. 2.23 this method I~!W 109' The other possible g values 

TIIIWe lA .......... "' ...... 
!!pms [He 61. 

9/1+ 
t/2 . '/2-. 
I .3/2-.9/2 

3/2 Os 1ft 0.15 1/2-.3/2.11/1+. 
(9/2 



0 
W'I -• I I • ......... .,...... ......... ~1 ..... 

6.50 

6.00 

5 I • .. 
-if"rjlfl""ll.N IIG:,N 

.., 

..n 

o 0.1 0.2 
FIpIft l.2l. Determination of the ground stat.e 
(From{He 61. p.647].) 
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I 
tOO .. ........ 

W'I 
~ 

0.3 
in the Nilsson 

are usually seen the spectra as band of excited rotational 
which a success of the Nilsson model. Single.-particlc encrgies in this 
scheme can be found [Ch 66. DR 71a. OWP 7J, GIS 73. aSK 
77]. 

2.8.6 Calculation of Deformation Energies 

In order to obtain the ground state energy nucleus in the (spherical 
single-particle cner· 

level. because the 
counted twice (see also 

for this, we proceed with the (allowing qualitative 

or deformed) model, we ........ u.u.n.n 

gies from the of thc pollCD'ual 

effect of 
Sec. 5.3). To 1IlCC~[)un 
considerations. 

We assume that the average potential which is felt by the itb nucleon is 
given by the sum of all two-body potentials on this particle: 

(2.94) 
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The Hamilton operator 

is then given by 

A 

H - L I, + t L Vy 
i ... I i, j 

i.pj 

If .A 

H B<: i L hi + i ~ Ii; 
i-I i-I 

(2.95) 

(2.96) 

If Vi has the fonn of a harmonic oscillator, we have, because of the vinal 
theorem [Da 6511, Chap. II], 

< - (2.97) 

and we get as the ground state energy 

.A A 

Eo(6)-<H)- ~ L (h i )- ~ ~ ~(8). (2.98) 
I-I i-I 

In practice we det.ermine the equilibrium deformation Seq in caJculating Eo 
as a function of 6; the absolute minimum then 8eq. This 
procedure does not, of course, include any interaction and, in fact, 
rails to reproduce the absolute value of the binding energies. Only the 
resulting equilibrium deformations are approximately right (see Fig. 2.24). 
Further investigations on these lines [BS 6)' Sz 61, So 67. and GLN 61] 
have taken into account the following additional points. 

(i) A residual inJeraction of the pairing type (see Chap. 6) 
(ii) The expectation value of the Coulomb force 

Q.I 

ECAlJl=( ~ - KftwoAp. ~ (12-<r)N»' 

150 

prot 

Yb 
9-0-0 , 

prot 

o I'ItfoImntiCl'la of ... en A 

lit: II'lq).. d.«omYJboM at odd A l'IUdel 

- CQI. detormationlof add A I'\l.Idll'l 

(2.99) 

FlpiII'e 1.l4. Comparison of theoretically and experimentally determined deforma
tions. (From [MN 55].) 
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corrects for the Coulomb effect already 
by the difference between the proton and 

rn"IIAIII1"'C! fl.. It tll.l1ll out that the enect of the Coulomb 
the effect of the 

the convene. On the whole. the results of the 
NIII,"_ ... _ UlIOOIJ are reproduced. because Coulomb and pairing 

........ ',,".'u,_ ... "'r ODe another at the equilibrium point. 
(iii) evident that quadrupole ddormations alone a.re 

not abk to describe for instance the fission process. On the other 
hand .. there exists evidence for hexadecupole deformations in the 
ground state of some nuclei [HGH 68]. It is to describe 
such effects with.in the Nilsson model by including. besides Y 20' 

higher terms sucb as Y 40 and Y 60 [NT'S 69, Mo 12. MN 13. RNS 
78). 

For the fission process it is often useful to introduce deforme{j, potentials 
that allow us to describe two separated fragments at large distances. In 
contrast to the Nilsson model~ such potentials have the right asymptotic 
behavior. Several versions of such potentials have been used: 

(i) [DR 66, HMG 69~ ADD 10. GMG 7], SGM 71, 
MG 12. MMS 73J. which are based on two oscillators with sepa~ 
rated centers. 

(iil The Folded Yukawa Potential [Ni 69. BFN 72. Ni 72, MN 13] which 
starts with a density of sharp surface but arbitrary shape. To get the 
corresponding potential, it is folded with a short-range Yukawa 
force. 

(fu) Gt"neraliled Wood-Saxon potentials with a deformation-dependent 
surface thickness [DPP 69, SOl 72, Pa 73, BlP 14, JH 77]. 

The method of simply summing up the smgle-particle energies fails to 
reproduce the absolute binding energies and to describe the energy surface 
at very large distortions. The reason for this is that the binding energy is a 
bulk property. In fact. rather small shirts in the single-particle energies 
produce large errors in the binding To gel the proper values for the 
binding energy together with shell effects, we must use a combination of 
the liquid drop and the shell model. as proposed by Slrutinski (see Sec. 
2.9). Calculations within this method show that the pure shell model 85 

described in this chapter allows u.s to determine only ground state defor-

The ract that the absolute energy minimum occurs at finite values of 8 
for nuclei between closed am understood qualitatively by COlllKl

ering the level density as a function or deformation. It turns out that for 
quite general average potentials the level density dev~]op5 s.belJ effects for 
certain definite values of the deformation; that is, at the~ deformations 
tbe levels are not randomly distributed as a rirst glance on the Nilsson 
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io ai"', 

Figure 2.25. Energy levels or an potential for prolate spheroi. 
dal deformations (. (From (MN 73].) 

diagram would . 
deformations. " 

If one 

for instance, grouped in bunches at larger 
in (2.25) for the harmonic ,,",._u, .... 

as a function of the deformation, one finds that 
situated in a low density region, the nucleus is 

it is bound when the Fermi level is in a high 
in turn, means that the occupied levels 

more bound if the level a low density 
between 

high level density. it Dec:".Onlle8 qualitatively 
nuclei want to deform into a where 
level From this it becomes 

function of 

.. One can I.Lndernand from IeD1blClIIiIII.c:al at'auJlrl.enl~ Ilt 

:!lave to oc:eur 
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Deformation 

2.26. Schematic variation of the energy with deformation for a nucleus 
with a second minimum. The dashed line cONesponds to the liquid drop bamer. 

higher than the first minimum. which gives rise to the so-called shape 
isomeric state·s lSt 66]. Qualitatively, the energy as a function of defonna
tion is shown in Fig. 2.26. 

2.9 Shen Corrections to the Liquid Drop Model and tbe 
Strutinski Method 

2.9.1 Introduction 

Up to now we have studied two quite different descriptions of the atomic 
nucleus. The liquid drop model (LDM) assumes that the nuc1e{)ns produce a 
spa.tially unifonn density distribution in the nucleus with a sharp edge at 
the surface. It is able to reproduce the overall features of the nucleus. that 
is. most properties that depend only in a smooth way on the nucleon 
number, as, Cor example. in Chapter I. the A dependence of the nuclear 
bi.nding energy (Fig. 1.2). On the other hand~ there is the shelf model. It 
assumes a quantized independent particle motion in an average potential 
to be valid. and we have seen in Section 2.3 and 2.8 that this model 
reproduces nicely those particular nuclear properties in which only the 
nucleons in the vicinity or the Fermi surFace are involved. 

Phenomenological shell models (in contrast to Hartree-Fock calcula
tions: see Chap. 5), however. fail to correctly reproduce properties of the 
nucleus in wbich all nucleons contribute (Lbe so-caUed bulk properties), 
ute, for inltaDCe, total binding eoel'lY. Strutinski [St61~ 68} invented a 
vay elegant method" to reconcile both phnomenological detcriptions of 
the nucleus which eliminates their defects but keeps their qualities. This is 
the Sirulinski shell correction procetlure. It is able to reproduce not only the 



experimental ground state pnttli1'O'Ij_ 

deformation 
tion of energy 

2.9.2 Basic Ideas of the .... ~A~ Method 

As we discussed in Chapter I ~ the UI.I ... ' .... 1J.1 .... , ......... <"' .. 1I"II'I:41"o1;1"'il 

of .A have a smooth part E1.DM well 
mass formula (1.4) 1.2) 
defined by 

(2.100) 

energy of 
compare it 
due to the 

occurrence they the ~gic 
numbers, as we mentioned at beginning of (Fig" 
Thereforc, ongm entirely of a a 
matter of fact! iJ we calculate the binding the shell model [for 
example. in the Nilsson model; see Eq. (2.90»), one finds such oscillations. 
Only the corresponding part is as we ex-
plained at the end of the chapter. these are due to a 
grouping of levels into bunches-the shells. In that for a 
smooth distribution of levels, the binding energy depends in a 
smooth way on the position of Fermi level, for a shell-like 
distribution of the levels there also an superimposed 
on top of it. We demonstrate in 2.27, two such 
level whose average densities are equal. 

(0) 

We see that U the Fermi level a we more 
than on the average, whereas if it is placed below we 
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certainly 
level density is not a 

.u .... ·.......,. not influence the previous 
~_"'ll!li PI"~~"'II"!'II. COITe&~pOnClllnl to the shell distribution (b) oscillate around 

level density (a). Therefore, the average 
for the average behavior of 

part which has the wrong value in 
moael. It was the decisive idea of Strutinski ~nly 

of the total energy E in Eq. (2.100) wi thin the shell 
the rest." ELDM • from the liquid model. This 

assumption that the fluctating is welt 
approximated by fluctuating part of the shell the end 

............ '... we will the way we can justify assumption. 
only of how to divide model 

and a smoothly varying 
A 

- ~ Ej - EOfiC + Ed!' 
i ... I 

101) 

[Expression (2.101) does not take into any effect from the 
two-body for eX8.mple~ in Eq. (2.98). We will see thal in the 
end this is of no importance.] 

The decomposition (2.10 1) is a problem which has to be solved com
pletely within the shell model. Therefore, it is useful to introduce 
concept of the g(t:) by derining g«()' tk as the number of 
levels in the interval between ( and (. + tk. In the shell ... __ ._. 
level density by 

g(.:) - ~>~( t: - (I)' 102) 
i 

If we know g( ()1 we can calculate the particle number 

A f: C() g( E)df (2.W3) 

with a properly "'uv''''..,u energy A. 
In the shell A is not defined u.niquely by Eq. (2.103). It can 

arbitrarily chosen to the last filled and the first unfi.l1ed level. 
For the shell model we get 

(2.104) 

Tbc shell model are grouped into bunches with an average distance 
of Awo~4IA - tIl (MeV) [see Eq. (2.12)]. Therefore} the level density g 
ShoWi tbis frequency. 

Since. as we seen Fig. 2.27, the fluctuations in the shen model 
energy E .. h are due to. it is obvious that we can calculate 
the smooth 101) by introducing a continuous function 
g«(). which of the level density g«(). It should 
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have the mean functional behavior of g, but must not contain oscillations 
with a frequency ~1tWo. In a real nucleus the level density is by far more 
compkx than in our picture of 2.27. 
with mCrelLlUlli ,"-':~N 

one can _1,.. • .." 
Tb.iJ will be explained in the ICCDOn. we 
assume that we are given the average part g(f.) of the shell model level 
density g( f). Then we can apin caJculate a corresponding Fermi energy X 
by the condition 

(2.105) 

Since g continuous~ A is well defined by implicit equation a.nd is 
usually different from A. For the smooth part or the energy we finally get 

- fA E." _ C) f.i( f:) dE:. 

The total energy E of tbe system is therefore given by 

E- ElDM + £(1!IIl;- ELOM +E.b - E"h" 

(2.106) 

(2.107) 

As we have seen in Chapter 1. stable liquid drops are always sphericaL 
Because of the additional term Eene' it can bappen that in some region of 
the periodic table the '"Strutinski averaged energy" (2.107) has its mini
mum at finite values of the deformation. However. before we go on to the 
general discussion of the Strutinski method. let us show how one can 
define appropriately the average part of the level density. 

2.9.3 Determination of the Average Level Density 

In we have to deal with the problem of how to define in an 
appropriate mathematical wayan average level density, if we a.fe given a 
shell model density in an infinite three-dimensional well (the restriction to 
infinite potentials is not essential and the following considerations can be 
genendiz.ed for finite potentials lSI 75]). 

QC 

g{()- 2: 5«(-~). (2.108) 

The difficulty comel (rom the fact that for a three-dimensional potential 
the mcrea..sel with energy in I; way. rise, 

not go smoothly, but the levels are arouped in bunches 
rouply apart. If we ima.gine, for convenience of prelentation, the level' 
denJity smeared out with a Gaussian of width <AwOl then we get, schemat
ically, the picture in Fig. 2.28. In whkh way, then, can the average part. 
and the oscillating part of such a density distribution, be separated? 
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FIpre 1.28. Schematic representation of lhe level density in an infinite tllree
dimensional potential. 

As usual, we wm think of the average density as given by a folding 
procedure 

t J + CIO ( E' - E: ) g( f) - - geE')! - d(', 
'Y -00 'Y 

(2.109) 

and as a straightforward possiblity we could think of J as being a Gaussian 
with because an appropriate 
averaging procedure should leave the averaged Jevel density g(f) un
.. ~.~ ... _'~ if averaged again with the same procedure, that is, 

(2.110) 

For f a Gaussian and g not a constant, condition (2. J 10) is clearly not 
fulfilled. In general, it will be difficult to do this for a given g exactly, and 
it is not our intention to fulfill Eq. (2.110) for an arbitrary g, since then f 
would have to be a 8-function. Equation (2.110) will only be required to be 
fulfilled for smooth functions g. Since the essential contributions to the 
integral (2.110) come from the vicinity of the point (' = (, we suppose that 
g(€) can be represented iocaBy by a polynomial of degree 2M (usually 
2M - 2,4, or 6). The condition (2.110) can then be fulfilled if one COD

structs f in the following way: 

f(x) = P(x)w(x), (2.1.11) 

where P(x) is an even polynomiaJ of degree 2M and w(x) is a weighting 
function like a or a LotentziaD, for exa.mpl.e. 

We can check that Eq. (2.110) it satisfied in this approximation by [AS 
65] 

AI 

P(x)- L Q2,,(X)Qz,,(O), (2.112) 
/'1-0 
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where the set of orthogonal polynomials Q,...(x) 
condition 

de~rmined by the 

If we take for w a VIlUDiBIIIU.! 

w(x)- ~~~'" 14) 

then P(x) is by a UIlLel1llWIO LqtJ.enre Polynomial 

-I. H2;I(x)H2It(O)- LlIl(xl), (2.115) 
M 

P(x)-

where H2n (x) are the Polynomials. we have explicitly 
constructed an averaging f satisfying condition (2.110) g( e:) 
which is locaUy approximated a polynomial of degree 2M. For practical 
applications,. we give coefficients of the polynomials LU1(X~ for 
M - 0, 2, 4, 6 (Table 

N 

(x 2)= 2;1 
°a"x . (2.1 16) 

11-0 

Table 15 four lowest Polynomials 

M 0.- a. 
0 
J -) 
2 5/2 1/2 
3 3S/8 7/4 -1/6 

There of how to detennine the precise 
of y and M. In will depend on Since 
we want to take with the approximate frequency 
"""'0' our method if we can find a certain interval 
of y-values IiwO> and corresponding within 
which is practically negligible. We can then, that our 
results are of the averaging procedure of course 
the case), More means that the averaged energy must show a 
"plateau'" as a of y for fixed M within which the "plateau 
condition" [BP 73] 

airll --0 oy (2.B7) 

is valid. Certainly for an arbitrary distribution of lingle-particle .LV"' •• ", 

will be n,Q plateau. But for the physically di'tributions 
there always a bunching of levels with a frequency of roughJy 
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I plateau. (In practical calculations 
are sometimes 

"Clal melDo<l8 have been 

connection between the 
semlielassical (Thorn.as-Fenru) 

known from the Thomas-Fermi 
relevant quantities. We 

c:::onIUlI_U,IIILU1.lIO'll 13 for a deeper undentanding 

2.9.4 Shell 

Having defined y and the function !(x), we get the smooth level 
density from Eqs. (2.108) and (2.1 

(2.118) 

and the smooth part of the ground energy in the sbelJ model: 

The chemical potential ~ is 

A= 
i 

The iii can 
for fixed A, Eq. (2.120) 
procedure. It is 

where then given by 

(2.119) 

... ,1. ....... """ by the condition (2.105) 

t, (2.120) 

occupation numbers. Thererore~ 
the determ.ination of ~ through an iteration 

(2.] i 9) a little: 

- + (2.121) 
i 

With this equation and (2.121). we get for the plateau condition 117) 

a a ---ay oy 

-Y 

1 ., -

_ 1 ali 
(i"i+ -F+y ~ -0 IJ(II) 

"( I Y 

A 0 ~ iii 
"( I 

~.1.A == !F. 
ay y 

(2.123) 
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The last equality follows because the particle number A, is a. constant 
Therefore, we find {hat the plateau condition (2.117) is equivalent to the 
vanishing of F. 

Introducing the shell model occupation numbers 

"1=0 for (i> 

",-I for (, <: 

we find for the total correction: 

EOIC - ~ Ei(nt - ;11)- ~ (i {l.llS) 
; i 

Figure 2.29 shows the quantities 8n, for the actual case of a deformed 
Woods-Saxon potential and a Gaussian average with M - 2 and a width of 
"'(=6.6 MeV. 

an 
I WOODS ~ SAXON POTENTIAl Z Ie! 94 

05 c = \48 Ih.O. 0: = OJ 

-to -5 a EIMtVt 

Figure 2.l'9. Deviations from. the shell model nu.mbers from 
a Strutiruki averaging procedure for a Woods-Saxon potential. (From [DP 73].) 

It is important to notice that the quantities ii; are not actually occupation 
probabilities, as they can in fact have negative On the other hand, 
the iii behave like real occupation numbe~ and they for instance, 
how far we have to smear out the sharp Fermi surface of the shell model to 
get the smooth part of the ground state energy. 

Having calculated the values an,. we are able to calcwate the shell 
corrections to the density in configuration space [01 71): 

A 

6pCM£(rt r') - ~ ~i(r)pi *(1"') 61ft • 
I 

(2.126) 

the of averaged expectation valuei for 
1tD:1lI&·l)tlrllCle operaton. 

To live a definite we will present the results of such .. 
calculation for the harmonic oscillator, which is naturally an over-ideaJ.iz.cd 
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HARMONIC OSCILLATOR POTENTIAL N :; 70 

(sp heric"Oll hwo= 6 MeV 

-10 

2 3 It 5 
Ylhwol 

.... _- l.3O. Shell correction pnp'f"l!:II'Y for the 
M. (From lSP 73].) 

function of 'I 

system, but which has the advantage of being rather instructive. In Fig. 
2.30, the shell correction is shown calculated with a Gaussian weight
ing as a function of 'Y and M. We see that for M ;;. 2 a wen pronounced 
plateau develops at Er,b- -8.91 MeV. 

It can also be shown that a plateau develops at precisely the same energy 
if we had taken w = 1/2 cosh2x instead of a Gaussian for the weight 
function. 

From the behavior of the values {;nj shown in Fig. 2.29 we conclude that 
only the shells in the neighborhood. of tbe Fermi surface are important for 
[he calculation of the shell correction. It is therefore usuaUy sufficient to 
include three major shens in the averaging procedure. Only energies in the 
neighborhood of the Fermi surface are described well by the shen model, 
and it is e'l8ct1y the-Se whjcb go into the sbeU corrected liquid drop energy. 
This quite gratifying. since the phenomenological models are adjusted so 
as to reproduce the levels close to the Fermi leve1. 

For the sake of completeness we have to mention that pairing corre1a
tions play an important role in heavy nuclei. They are usually treated in 
the BeS-model ("~e Chaps. 6 and 7). Since they are closely connected with 
the level density at the Fermi surface. one also observes oscillations in the 
pairing energy P. The liquid drop energy is adjusted to experimental 
malleS. Therefore, it already contains the smooth part 01 the exact pairing 

and we have to add only the OJciUsting part P OIIC' It is obtained 
usial tame philOlphyas the difference between the pairing energy PICS 
in the BSC-model and its smooth part P BCS' The total energy then has the 
form. 

- ,.. 
E- ElDM + E'b - £.h + Pscs - PBC:~' (2.127) 



u 
literature [BDJ Another 
pairing correlations would be 
to superfluld 

2.9.5 Shell 

A3 we will explain 
the shell model 

(MeVI 

-1320 

-1330 

and the 

Skyrme III -E ---E 

Method 

properties lue also 
the Imc.om 
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........ ,,"' ........ ,'JI!o pan of the ground state 
same as one derived in Eq. 

iD. the foUowiD& and we 
theory to return to the 

to the micro-

way. 

_ft, ... ,..1> P is the Kur eQ)III;IIU:n 

(2.128) 

H ... I + V is the total 
potential energies, 

is a one-particle 
Ha,miltonian of with t and V the 

The Hartree-Fock part hHF or 
operator, and is defined by 

hHf_l+Trl ep. 
Now we can divide the density or p in th¢ sense 
smooth and an oscillating part: 

(2.129) 

2.9.3) into I 

p .... p+ ap. (2.130) 
where 8p by analogy with Eq. (2.126) for 

Inscrtinllhil into Eq. (2.128) Ilnd collecting terms of differenf order in 8p, we 
get 

(2.131 ) 

where 

(2.132) 

and 

(2.133) 

Therefore. if the phenomenological shell model potentia] 
spectrum in the vicinity of the Fermi as the 

potential. hfiF
, then the definitions of tbe oscillating parI of the ground 

by the second term on the r.h.s. of Eq. (2.131) 
secon,(J-(1I(Qle:r terms in 8p can be neglected. These have been checked 

and indeed turn out to be small correctioru [BKS 72, DOl 
If the phenomenological Single-particle spectrum does not give cuctly the same 

operator h,""HP, the above statement ne"lren:ne·jietS 
true. apin gjve contributions of IeCClno 
(2.13l). EquatioD (2.131) is abo called the StrurilUki eNergy theorem 1St 
states that all shell effects of fint order in /jp are taken into accoun1 by up 
smgJe-particie energies of an averaged single-particle Hamiltonian. 

In ense, lile Strutinski procedure provides a method which 
microscopic resulL$ in an optimal way using phenomenological models. Needless to 
Illy. lile latter a.re much easier to handle for realistic calculations. 
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J , 

Mass Number A 

of theoretical ma.ss corrections with experiment.a.l values. (From [NIT 69).) 
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model with the liquid drop model as provided 
for instance. been applied to the calculation of 

69]. Figure 2.32 shows the mass corree-
drop model and compares tbem the experimental 

good; the structure in the 
vicinity of the double nucleus 20IIPb is especially wen reproduced. 
However, we must realize that these shell corrections were calculated with 

energies, which do not reproduce the experimental 
level scheme of 208Pb (see Fig. 15) well. In fact. the 

COITOI~ucm ca1culated with these experimental levels 5 MeV orr in 
a discussion of this discrepancy, see [BDl 12]. 

Another application of the StTUlinski method is the calculation of eneTgy 
dcfOnJllatllOD. curves. As we mentioned briefly at end of ~C~(lin 

the energy as a function of not only 
octupole, hexadecupole, 

UltldUlllftllllODaI energy surfaces. As 
rare earth nuc:JeJ 

sorDetlllU!II lC:eoftCl Y"UJI.U.LII& for very iso-
~mDl(t state are roughly at 

as in the pure Nilsson model. HowevCl, at large 
surfaces different <fot a __ '-...0 

tigatiODJ see {DOl 72D. In these surfaces one looks for the 
from the equillbrium deformation past the lowest. barrier 
region of ddormat.ion in which fission occurs. The 
and its actual shape for a nucleus then allows an estimate 
lifetimes (ADD 70. JNS 70, 8FN 72" Ni 72, BD] 72, Pa 73. LP 
RNS In particular the stabilities or superheavy nuclei 
investigated way (see [Ni 12. NN 74. BN 77J and 11" ........... 11" .. " ... " 



CHAPTER 3 

Rotation and Single-Particle Motion 

3. J Introduction 

The experimental level of nuclei show an enormous complexity. 
On the way to understanding at least the features of their structure, 
we have introduced in the first of this book two rather contrasting 
models: On the one hand the liquid drop model describes collective 
phenomena.) such as rotations.. where many nucleons are 
involved. On the other the shell mode) treall the individual nucleons 
as independent provides an understanding of single.-particle 
excitations. two models are only limiting Ca..tel that are 
never We always have some deviations and we 
usually between these extreme models. 

For a deeper of the underlying structures, we have 
solve, in principle, many-body problem and investigate 
which limits solutions are provided corresponding to the above .. .u.&li ........ 

phenC!menologica1 pictures, and which cues new models must be 
introduced to obtain a description. In the following 
book, we will treat methods in much detail, 
reproduce many of the of the phenomenological models. Although 

are useful for an undentanding of principal 
usually involve a terrible amount of numerical effort and 

are not very useful for a fast qualitative interpretation of experimental 
data. 



on phenomena-
more c~mplicated 

COI,ICCICIVC: moae) and the singJe-particle 
a combination is very useful in 
binding and defonna-

with fluctuations of the level density. 
the individual degrees of freedom 

individual spectra. For this we have to 
singleaparticle and collective models .. We 

one or a few to a collective rotor or 
"unified was introduced by Bohr 

in great detail 
[Oa 70, Ro 70t SF 74~ or BM 751), In 

we wm deduce the corresponding 
.. n" ........ of a particle coupled to a vibrator 

missing till now. 
microscopically (see 
cated. Only in the limit 
simple rotational model, 

In the last few years 
investigate rolations, and 
observed. Since these 

a derivation first principles been 
have been developed to describe rotations 

11). but they tum out to be extremely compl.i-
deformations is it to deduce a 

cranking model. 
experimental effort has been made to 

a great variety of new phenomena has been 

the interplay between _OM __ 

can be understood to a large extent by 
motion and collective rotational rno

lion, we think it 
but phenomenological 

I n Section 3.2 we 
rotaling nuclei. In 
model, the .. ....-... "' .......... 
we present the 

We 
description of 
the form of 
They wm be 

3.2 General Survey 

chapter two theoreticaJ 
effects. 

that we do not give a complete 
The residual interactions 

pJay an impoi1ant role this 

3.2.1 Experimental Observation of High Spin States 

New heavy ion fWiion reactions [MG 63, 
SLD 651 Coulomb projectiles [HZ 53, A W 66, 14, 
WCL 76], and pion [EAD 75) have made it possibJe to 
excite nuclear states with momenta large enough to generate major 
modifications nuclear structure (for a review. see [JS 73, St 76, LR 
78D· 



The most important such reactions are of the (HI, ,\'n) type. where one 
bombards the target with (a, Ne, Ar. etc.) a 
amount of orbital angular momentum. After fusion. the combined ... ,'w ... _,... 

evaporates some neutrons and up 
spin on 

• The '1liioI'd meanl 
1ii1J11C131UI tOWlllt for the level with 

I 

angular momentum at a 
Hne. For deformed 

which finally go over into 

ass 
"",," ... UD from these data 

78. ADH 78t WF 78b]. 
along paraUe] to the 
role, and that there is a 

67}. One also usel the !'lame >'f(Jrt 



compelitioll between collective and 
M.eV above the yrast line [SBD 77]. 

W."ll .... ~ effects in the region of a few 

Structure of the Yrast Line 

that a classical liquid drop [CPS 14] rotates at low 
u ... &.U ...... 1II around the symmetry axis of its oblate shape (Hiskes 
3 .. 2&). Only for very high angular velocities does it undergo a 

to the Beringer-Knox regime. where it has a triaxiaJ~ but 

a 

and the rotationa1 axis is perpendicular to the 
ax.is (Fig 3.2b). For still higher frequencies it finally 

b c 
Flpre 3.2. The behavior of a liquid drop for angular velocity. 

The real nucleus. however, is a quantum mechanical it shows 
shell effects (see Chap. 2.9), which cause stable deformati.ons already in the 
ground state for some regions of the periodic table. The yrut line corre
sponds to the lowest energy for each anguJar momentum; aU the excitation 
energy of several lens of MeV with respect to the ground state rotational 
energy and used to generate angular momentum. Consequently, the level 
density along Hne low, much lower than the level density 1- 0 
slates at the corresponding energy. It resembles that of the ground state. 
though we will that there are characteristic deviations from it. Since the 
nucleus is cold in the yrast we can expecl a hiah degree of order. 
Shell effects p1ay an important role. 

The prolate deformations by the shell effects are of the same 
order or magnitude as the oblate deformations of a drop at nigh 
angular velocities (see Sec. 1.7). We therefore expect a delicate interplay 
between macroscopic centrifugal effects and microscopie sheU structure 
when we study the nuclear shapes as a Function of the angular momentum. 

Let us first study the case of weU..deformed heavy nuclei (for iDJtance, in 
the rare earth region). In the ground state they a prolate axial 
symmetric quadrupole defonnation caused by The lINeil in 
the correspondiag deformed potential are occupied by nucleoru 
with the opposite single-partiele angular mon:te:ntum (:t 0). We will see in 
Chapter 6 that the two nucleons in such a pair do not move independently. 
as was assumed in the last chapter, but are c.oupled by a pairing force to 
the so-called Cooper pairs with spin zero; that is, these deformed nuclei 
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a ground 
few MeV. 

With we can 
where the yrast states show quite a different IItn,""""III". 

(a) For low momenta 1-0, 
ground rotational band, as 

collective, is, it has to be 1.'le1'OeltlOJICUli!U 

where we have indicated the """,1'1.1.., __ 
the symmetry axis). 

a J ground sta tit b}alignment of 0 powr c) 

d) complete alignment It) triaxial tJacobi> f}ti 

iol 

yrut of I n"'fnrn!W'lt'l nucleus. 

a slowly rotating deformed 1I"IiiII'\1rllll'flh 

U.CtlSlIOn. see Sec. 3.4). The 
opposite angwar mOmelll1 

them 

same structure as the 
We have to however, that in a the 

has to be genera ted by the angular rno. 
.u;1.1I!!,a"'" D1I1Ct4KmI. In a collective by 

1I"II!IIII'f'TII"W,,_ a little rotational 
are 
the 

summing up all the mtall contributions we the 
total angular 1- 2, 4, ... , . 



(b) angular momenta. the Coriolis Force, 
LU"""_'_ more and more udal a certain angular momentum it win 

to Tbcrerore, at some critical anguJar momen· 
tum Ie: we expect that aU pairs are bro.ken. The pairing correlations 
break down completely and a phase transition from the superfluld 
I-'.y~_ to the normal phase is observed. This effect was predicted by 
Mottellon and Valatin in 1960 [MV 60]. More detailed investiga
tions! however, have shown that the Coriolis force is proportional to 
the size of the single-particle angular momentum j of the nucleon 
under . We have seen in Section 2.8 that tbe nucleons 
in the vicinity of the Fermi surface belong to subsbeUs with rather 
different j-vaJueI. and we expect those nucleons with large j-values 
to aijgn first along the rotational axis. These are usually the levels 
with high spin and opposite panty. shifted downwards by the spin 
orbit tenn. as for instance the i I shell for neutrons in the rare 
earth region (Stephens-Simon effect [SS 72a]). 

(n the second regime of the yrast line (Fig. 3.3b). we therefore 
expect alignment processes of one or the other broken pairs, whereas 
tbe rest of the nucleus stays more or less unchanged. The band 
can then no longer be identified with the ground state band, but 
rather with a band of two aligning particles silting on the rotating 
core. Two iU/2 particles can contribute 12 units of angular momen
tum to the rotation. Such an alignment is therefore connected with a 
rapid increase of the angular momentum J a function the 
collective a.nguiar velocity leadl to a series of anomalies in the 
spectra [JRS 71, JRH 72]. for example. the "back-bending phenome
non" (see below). 

(c) Each alignment connected with a certain cbange in the 
collective on the mean field: piUS 

no longer contribute to the pairing correlatioDl; of the 
blocking effect (see Sec. 6.3.4.) these 
completely after a few alignments. Particles to the rotational 
axis have an oMate density distribution. with the rotational axis as 
the symmetry axis. We therefore get triaxial admixtures to the 
prolate density of the core. 

In a third regime (Fig. 3.3c) which sbould correspond roughly to 
angular momenta 3O:5J :550, we expect the Coriolis and centrifugal 
forces to produ~ effects comparable in strength to the shell struc
ture effects, namely~ changes in the shapes to triaxial de/OI'mtJtiom. 
Such a system without a symmetry axis shows more collective states 
than the axial symmetric rotor (see Sec. 1.5.3): We expect a sequence 
of rotational states parallel to the yrast line corresponding to a 
""' .... 'nn ...... motion. 

(d) If an 
rotational 

part of the nucleons are aligned paraliel to th~ 

we finally expect an axially symmetric oblate shape. 
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nU~;lC1U" wave Iymmetric 
Th.e rotation is no longer ... ""'.,._'_ 

momentum made up by reca:1l1lt'Nltl<JlD. 

particles in the deformed well. 
kind of motion caned W single-panicle" I'OIlfJIIl.M 

of the along the line in region determined by the 
single-particle in the rotating oblate well. The energy differ
ences between adjacent states vary statistically. Only on the average 
do they follow an J. (J + 1) law with the moment of inertia a rigid 
rotor (sec Sec. 3.4.6.). The from one Slate to the next 
corresponds to a reoccupation, and the matrix elements should 
adopt single-particle that the transition probability should 
be drasticaUy reduced. 

Because of the nature of the levels in that region of the 
yrast line. one expects long lived high spin sloles, 
so-caBed yrasl traps [BM 74] which could eventually produce a 
delayed that we could observe the whole yrast c8,scade of 
discrete lines the background of all statistical transitions. 

(e) For very Large angular we expect only the macro-
scopic properties to be tbat is, the nucleus should again 
undergo a transition from obJale to triaxial and prolate shapes 
before it fissions (Fig. 3.3e, f). 

So far. only in the (b) 
observed; the rest of these coDsidenllions is to a large extent speculation. 
We will see in Sec. 3.4.5 the kind of models one used to obtain 
theoretical predictions. [n facl~ in the calculations one found all lhe 
different regimes discussed above. 

It seems to be bowever. that many nuclei do not paIS through 
aU these slages. In particular, weakly deformed or spherical nuclei adopt 
from the beginning the regime (d). namely. a rotation of an ob1ate shape 
around the axis before ioing triaxial and On the 
other hand, in well..deformed nuclei the change in deformation 
produced by the a1.ipment not strong enough to .......... ' .... V ... LO .. _ 

the effect or a prolate They only become triaxial (Fig. 
3.3c, not oblate, before Experimentally, one hal observed 
lonJljving (yral' traps) only for nuclei 

3.4.6). Thil seems to be in agreement with calculationl. 
~NW'iiiiiIIi the band. ODe hal many other rotatioul bands in 

l'tHJ'fIiDII. They are baseci'on conlip-
Q'WiIUD-'DIIU"UCltc UcitlUoDI or vibrationalllUIJu:L 

of the} 
ODe can jmaJine a variety of proceueL for 

example, in an odd mall nuclcUi the aJjpment of the odd neutroa in the 
; 13/:l1hcn, to IO-CIlled decoupled bands. Another example is the 
rotatioDal in an odd-odd nw:leuI, where only the neutron in the i 13/2 
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sheH aligns, whereas the proton stays oriented along the symmetry aJlt.is. 
Such a a /Hlffkl«oupled structure [NVR 75]. 

The partic1e*plus-rotor model discussed in Section 3.3 provides a phe
nomenological method to describe such processes. In that section we will 
come back to some examples of this type in more detail. 

3.2.3 Phenomenological Classirication of the Yrast Band 

Over the years some phenomenological. models have been introduced to charac
terize the properties of rotational band!. In the low spin region (Fig. 3.3a). the 
spectra often foUow exactly the 1·(1 + 1) law, but for higher I-values there occur 

to a g.reater or lessc:r extent .... In order to deKribe from 
the ideal rOUlt"ionru spe<:lrum. one often applies the following parametrization: 

E(J )-A -/-(1 + 1)+ B·(J(J + 1))2 + C·(J(J + 1»3 + .... (3.1) 

It turns out that in many cas.es the of this expansion is ral.her poor and 
an expansion ill the angular frequency w is more appropriate. 

In principle, (oJ is Dol a qUAntity. We can define it, however; 
as 

dE 
(U- dJ' (3.2) 

Replacing the differential quotient by a quotient of finite differences. t we obtain a 
definition of an "experimenLaI" value for the angular 'o'f!/ocilyt 

E(I)-£(I-2) 
(3.3) 

The moment of inertia is defined by 

J l( )-1 
~ - w -"2 dJ :::= (3.4) 

With definitions, we ca.n calculate values or w and g fOT each level of the 
yrast 

Harris [Ha 65a] propos.ed the following paramelriz.ation of the spectrum: 

(3.5) 

Odd powers in w do not occur, since E cannot change by revemng the Angular 
velocity. For was a function of I we can either choose the experimental value (3.3) 
or avoid the ambiguity of its definition by using a similar e,xpansion of J. From 

dE, _ dE £. -w dJ (3.6) 
dw dJ dw eUJ 

we obtain 

... for. tompUatiDo 01 such data. see ISHJ 73. SSM 75). 
1 This repiaolnneDt is not unique. bowevw. and $Orne groupii IDe diffcnmt prescriptioDJ (see 

[JS 73, So 73. Lil 111). 

* Within chapter we atway, URI un aU It .... I. 
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tran.!itional nuclei is 
76). The moment 
energy V 

According to the 
to be ".u""" ...... ~ 

')_ 1/(I+l)+y(g). (3.7) 

-0. 

of 9 at 1-0. 
£(1). With 

motClie'l to order w4
• but the 

3.2.4 Backbending Phenomenon 

........ y'.v ......... 10 a.nd 20 unjts of momentum, an anomaly 
is in of nuclei. It can be most 
demonstrated of as a function of w1

. In 
lowest order - go + bw2 + ... ) this should give a 
straight line. The deviation from a constant is then a measure of the 
validity of the 1·(1 + 1) law. Figure 3.4 gives two examples for such curves. 

by the group [LR 78]. 

of inertia 9 as a function of the rotationaJ 



For low spin valuu one indeed finds straight linea. In the nucleus I74Hf 

the deviatioDS ~ in fact.. smooth. In UIEr, however, a very steep increase 
occu.rs for certain J va1ue~ the curve even bending backwards, (""back
beDding~ phenomenon [JRH 72D. Tb.ismearu experimentally that the 
transition energy 4£1,1_2' which should increase linearly with J for the 
constant rotor u 

1 
fj.E1• 1 - 2 = 2g(4/-2), (3.8) 

does not inc:reue, but for cenain J Figure 3.5 shows the 
experimentAl data that correspond to Figure 3.4. 
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bcmd e"permlcnl;auy 
that the two bands have l1tr'C~l'it mlOD:leDlti 

(3.9) 

This means we have an increasing J with decreasing w, while at the same 
time the properties of the bands are exchanged. In fact-~ it is easy to fit such 
backbending curves by a band mixing calculation with few parameters. 
one of which the interaction between the bandl. For small values of 
Vi one a sudden which produces backbending, whereas 
for large values of V the region is very broad and no backbend-
ins ocCurs [MR 72, 00 74b). 

E 

- ---;;;,-

" I----~-

fl&w"e 3.6. Schematic picture or two intersecting ba.nds with different moments of 
inerita 9 I and 92 , and the c{)rresponding backbending plot (From [LR 78].) 

On the other hand~ it is also clear that the strange backbending behavior 
in the plot of the moment of inertia ~ against w 2 has its origin in the fact 
that we foUow the yrast line in the critical region. that is. we switch over to 
the crossing band with a different internal structure. If we wou.ld sta.y in 
the ground state band, which is no longer the yrast band for the large 
l-vaJues~ we would obtain a very smooth behavior for the tVodependence of 
the moment or inertia (dashed·line in Fig. 3.6). The reason that one usually 
foUows the yra.t band is that these levels are experimentally the most 
eaailyacctllible. 

In aU of thcae considerations, one should, however, keep in mind that 
these kindJ of phenomenological descriptions only give a clulification of 
the spectra and do not say anything about physical origin. In tbe case 
of backbending there ia, fot instance, the question concemiDJ the nature of 
the second band~ Three types of theoretical interpretations have been 
given: 

0) In the s.econd band the nucleus has Ii different deformation, for 



badcbending caused by a 
13]. 

The .a the ground state band. This 
would interpret back bending as a phase transition from a superfluid 
to a norm.aJ·f1uid slate (Mottelson-Valatin effect [MV 60]). 

(iii) The second band is a two quasi-particle band of particles whicb are 
rotationally or rotation (see Sec. 3.3). Then 
backbending would a sudden alignment of a pair of 

and Simon [SS 72a]). 

The general result which include all these 
degrees of freedom the well deformed nuclei (the 

.... ""'"""' ..... rotors) [he reduction of correlations is only responsible 
for the slow change of inertia at low spin values? but that 
sudden effects such as are due to alignment of a single high j 

of number of experimental indications 
[GSD 73, 74* WBB 75, NLM 76. SI 76] for this interpretation of the 
backbeoding phenomenon. 

In the rare earth nuclei, the; 13/2 neutrons play an essential role. There 
is~ however. e~perimental for a second irregularity at spins of --
26-30 ;, [LAD 77. BBB 79a] a second back bending. which has 
been interpreted as the al of an hll/2 proton pair [FP 78]. Other 
high j-orbitals may play si roles in different of the periodic 
table. 

3..3 Tbe Particle-plus-Rotor Model 

To describe the interplay 
tive rotation. Bohr 
only a few so-called 
dently the 

the motion of particles and the conee
[BM 53] proposed to take into ac~ount 

which move more or less indepen
to couple them to a collet:Hve 

rotor which stands rest of the The division into core 
valence particles reasonable to use the 
unpaired nucleon an odd mass nucleus as a valence nucleon on an 
even-even core. can attribute the particle and the hole of a 
particle-hole to the valence particles. More generally ~ one 
divides the into two parts: an intrinsic part H i_, which 
describes mictolcopically a valenQe particle or a lubaroup of 1"UII'I"lfI_ 

ctes nlar the Fermi level; and a phenomenological part HCCD which 
describes the inert core: 

H
The intrinsic part has the rorm 

Hcol:l' (3.10) 

(3.11) 



or 
can be, negiected in many eua." 

The collective pari describes the rotatioDl 01 

Rr Ri R; 
H coll - 2~1 + 2§:z + 29

3 
t (3.12) 

where the are the body-fixed 
momentum of the core. witb the 
valence particles j (wbich is the sum over 
momenta) it forms the total angular momentum I (see Appendix A): 

I-R+j. (3.13) 

can be decomposed into three parts: 

""" HrO( + Hr« + H CQr' (3.14) 
where 

(3.1S) 

[Sq. (J .55)1. which acts only on 
Euler The term 

(3.16) 

is usually called the recoil term. It represents a recoil energy of tbe rotor. 
This operator acts in the coordinates of the valence particles only. For 
more than one valence particle, it contains a two-body interaction. 

the rn.r.nt 

(3.17) 

the degrees of freedom of the valence 
of the rotor. This purely kinem.atic 

to the degrees or 
the only coupling 

in me model. 
It should be noticed that the lotal momentum operators an the 

laboratory ,Iii commute with the Hamiltonian (3. JO). Although 
the violated in the intrinsic (e.g., in the 

IL __ I'I.JU Hamiltonian), the model conserves angular momentum for the 
because the operators 1)£. and 11 act only on the Euler 

and commute with the intri components II' 11 and 13 (see 
Appendix A). However. it must be emphasized that rotational inva.n
ante is achieved only through the introduction of a phenomenological 

COrrelltio1l1l play .ut ia:tporwH role in ddormed 
therefore about rather partick:l. 

(.0 the formulae shown betow, give ...... "' ..... ..,,' ...... 
COt:l!'l.plCllelDas. niWI~P'W~t'. for a reader is referred to 
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ODe particles 
lAlill1llDI core), the Euler angles are redundant variables (see 

wave function of the system may be written as 

I'+~)- 2:.KIIMK)t (3.18) 
K 

DIn,....,.. • .1:' depends on the coordinates of the valence particles and the 
IIMK) depend on the Euler a.ngles and are defined in (A.21). In the 

there 1S only one valence particle and an axiaUy symmetric 
model a large number of the experimental of odd 

been reproduced very accurately, and from this point of view it 
one of the most powerful models in nuclear However. 

until now a dear-cut miaos.copic derivation has been Such a 
derivation should start from a many· body Hamiltonian of 
3A coordinates should be transformed in a proper into a set 

3...4 - 3 coordinates and 3 Euler which describe the 
collective motion. To this transformation should a decomposi-

of the Hamiltonian into an internal a pa~ as in 
10), FinaUy, on.e could hope to describe the internal motion by a 

model. 
Many attempts have been made in this direction we a short 

discussion of them in Section i i .3, but up to the present the problem 
still not been completely solvcct In the case of wen ...... ,t"\t"f'I"'....... .LA ......... "'. 

the model can be backed by the foUowina 

(i) Microscopic Hartree-Fock .....,.,."' .... ...,. 
in the energy surface at axial 

justifies the notion of a rotating core. 
(ii) model is to some extent equivalent to the cranking 

Sec. 3.4), which microscopicaHy founded at least in 
strong nearly symmetric deformations. 

(iii) Villars and Cooper {VC 70] have shown that, in introducing 
dant coordinates, a Hamiltonian of a fonn similar to that in 
(3.10) can be found with, however, additional coupling In the 
limit of strong deformation and with further they 
obtained the correct expression for the moment of 

particle-pius-rOlor model bas .. however, also been applied with 
success to the region of small deformations and to 

It at the present time how this can explained 

3.3.1 The of Axial Symmetry 

rotor has the 3-axis as of symmetry. that 
can be no coUective rotation a.round this and the 

of R has to vanish (see Sec. 1.5). From (3.13) it foHows 
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case 

H ro,---

momcllllwlIl L 

(3.19) 

(3.14), 

(3.21) 

(3.22) 

(3.23) 

I t is often De· 
~ are 

in the following 
and omit H r'k for the moment. 3.3.2.1 wiJI we take it up 

The Hamiltonian (3.20-3.23) eigenfunctions of the type (3.18), 
which can be found by a numerical of the Hamiltonian 
(3.10). However, the different in are of different impor. 
lance, depending OD the physical situation. it is useful Lo 

consider three limits in which one or predominant and 
which as a consequence can be solved analylicaHy (for a review, see [St 
75a]): 

In the sirong coupling limit, the odd particle adi.abaticaUy follows the 
rotations of the even mass core. It is if the coupling to the 
deformation is much than the the particle 
motion by the Coriolis 

In the liT'eDk couplillg limit. which is 
the odd particle _ .. "'UAU.! 

sliptly disturbed by, for .... ..--,.., ........ 
9.3.3). 

In d«oupl;flg limit, 
ClelOIl1IUUlIOD of the core 

small compared 
deformed shen moael 
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fl. becauae the leve1 splitting in the Nilsson 
rotational consc.ant ,,,J.12l] is, ac
(Eq. (LSO). a. fl - 1.; and 

Ix-eautenIB. AI we shall see in Eq. (3.33)~ they 
are a:((1(/ + J) - Kl)(jU + l) - {)2)]lfl, that is) they are smaU either 

low I or for nucleons in orbitals with s.maU particle angular 
For large j-values they can only be neglected for high 0 

vaJuet. 

It is caHed the strong coupling or deformation aligned limit because in this 
case K is a good quantum number. The angular momentum J of the 
valence particles is strongly c.()upled to the motion of the core.. In a 
semiclassical picture, j precesses around the 3-axis, which is shown in the 
coupling scheme of Fig. 3.7a. Since HcOil is the only tenn in the Hamilto
nian which coup1es the particle and rotor degrees of freedom, the eigen
functions are in this limit products of the functions ~~ (eigenfunctions of 
H tDU ' e.g., the single-particle functions) and the eigenfunctions of 
the symmetric rotor (see Appendix A) . 

.. 
I 

0) b) 
~ 3.7. Coupling schem« in the particule-plu.s-rotor model: (I) strong cou· 
pIing: (b) rotational alignment. 

We have seen in Section 1.5.) that the Hamiltonian (3.10) has an 
additional symmetry, (jilt which describes a rotation of the core by 1800 

around the I-axis of the body-fixed system 

(3.24) 

We therefore have to symmetrize the wave function (3.18) and get together 
with Eq. (A.24) the following set of eigenfunctioDB [Ke 56] 

). (3.25) 



If we k.now the decomposition of ctr~ into eigenstates of j2 

- (3.26) 

we find 

e L C~( - )-Jfnj (3.27) 
It} 

The energy spectrum which corresponds to (3.25) is given by 

Ei(/)=f.k+ dg (/·(/+ l)- K2) (3.28) 

[usually. instead of Ek in (3.28}y we have qlla8i-particle energies Ek as they 
are defined in Eq. (6.72)]. This is the spectrum of a rotational band. The 
lowest possible spin is la=K. The bandhead Ek(lo') is not foi, but 
shifted a little, especially if we take into ac,count the recoil term and the 
rellLOU;1.I i.nteraction. The spectrum hu a spacing 1:J.1-1 and ill moment of 
inertia of the rotor. 

In this strong couplina limit we have neglected the Conolis i_nteraction 
completely. Taking it into account at least in first order perturbation 
theory. we get a contribution only for K == 1/2 bands 

Ek ... I/l(l)-Ek_I/2+2
1
g{I(/+I)-! +al(l+~)(-i+l/l}, (3.29) 

where the so-called decoupling faclor is given by 

a
i 

- /lU I! 1/2> (3.30) 

or if ~K is of the fonn (3.26), 

a'= - IC~12( _ )j+ 1/2(j +!). (3.31 ) 
I'Ij 

This means. ror example, that for a positive decoupling factor (major 
components with j +! odd) the levels with odd values of l+! (I-!. ~~ 
f,· .. ) are snifted downwards. This explains very nicely the rather distorted 
..... " ..... (or K- i in nuclei [ASH 56] where there are, in fact~ two 
bands bavinl 2 each (even and odd of J + shifted against 

The reason for decouplinl comes from the symmetriza-
(3.25) respect to with K= i X- - i 

-~.I!!t- of the decoupUng factor a i 

contribute to the wave 

DO JVUl ..... 

operator come 
DO fOIl"- realized lAd we 

3.3.1.2 The Weak CoupUag Uadt (No AI.ipraeaO. As we have the 
slrong coupHng appro:timation breaks down if t.he CorioUs matrix elements: 
are no longer negligible compared to the energy splitting of the single-
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belonging to different K values. Let us therefore study the 
~ft","'lt. matrix more deta.il. 

1 --
~ 

form IiIhown in Eq. (3.26), we obtain 

We see that these matrix elements are large for large values of 1/ K and 
j /0. That is~ jf, for example. levels with large j and small 0 values are 
involved. Particles in such levels have high angular momentum and a 
delllity distribution close to the 3-axis. Therdore~ it is dear that a rotation 
of the core perpendicular to this axis has a great influence on the motion 
of thcfle particles. 

A well known example is the neutron Ii 13/2 level, which lies in the 
vincinity of the Fernti level for Light rare eartb nuclei such as Dy and Er. 
One can estimate the Conolis matrix element for the g -! case to be 
O. t X I (MeV], which is in fact quite large compared with the level spacing 
of Hmu' Since such levels with high j-valua are drastically shifted down
wards by the spin orbit term of the shelJ model (see Sec. 2.4) into a shell 
with a diHerent N..quantum number~ these levels are rather pure conJigura
lions, that is, Cflj~ I (intruder state). I t is therefore sufficient in the 
foHowing to consider only one such single j-shell. The Ii 13/2 shel.l is not the 
only such case. The energy of the largest j-\'alue in each major shell is 
lowered drastically and has an important role in many rotational spectra. 

Vogel [Vo 10] proposed a I.lmit (usuaHy called weak coupling or no 
alignment limit) in which the K-spLitting of H iDts is totaHy neglected. (Th.is~ 
of course, can only be a valid approximation for smaJl deformation.) Now 
j2 and R2 commute with HiTllr and we can construct eigenfunctions of R2 
and R) (the eigenvalue of the latter is. or course, uro). A proper angular 
momentum coupling gives· 

Ii'~ -~(-)J~Kck _JK~<PKIIMK>. (3.34) 
K 

These wave functions diagonalize R2, and the corresponding spectrum is of 
the form 

£(/)- (3.35) 

with 

Ii - R I < J < j + R; R - 0.2. 4, ... (~I symmetry). (3.36) 

This means that for eacll rotational quantum number R. j can have 
2j + I orientations without cbanging the energy of the system {zero cou· 

.. Since we couple the angular momenlJl. 1 and -- j to it -1- j, we have to apply a coUPlil1& 
rule as in abe pit-CUll: of Eq. (2.46). 
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pling). The splitting of the 2j + 1 levels can be In 

as first-order perturbation (we will take a 
perturbation). 

E(/)- + I R(R+J)-PhWo<i'~I?YIOIi'~>. (3.37) 

To each orientation of j 
.6. R == 2. The levels 
(i.e., for a given R) 
connected by strong E2 
most easily accessible. 
energy is given by 

E(l)-

a whole rotational band of core 
mll~est 1 values 1- R + j for a 

to the yrast levels. These are 
[Re 75a] and are experimentally the 

are called favored slates· [St 75a] and their 

21g (I - j){ I - j + I}. (3.38) 

This means that on a parabola with a minimum at 
which is experimentally widely confirmed~ an example of which is sbown 
in Fig. 3.8. 

with I; 

1[;"1 __ JJL Rdative excitation 

some N - 89 (The 
the 13/2+ states are 

IN 

I) &nil 

fO( th.e i .'/1 budJ in 
are plotted 

(From [LR 76).) 
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On the right branch of this parabo1a j and R are aligned 0 R). 

1- j + R - ).J+2.) +4,""", 

and on the left branch j and R are anti-aligned (J II - R); the core rotates 
the oppoIile as J": 

I-j- R=) 2,)-4, ... , i (or 1). 
As an empirical rule one can say that the weak coupling timil is strictly 

valid only for very smaU deformations I {3A < 4. We shall see in the next 
section, however. tbat the states with III J are energetically favoured even 
in the case of stronger deformations. where neglecting the n-dependence of 
Hulfr is no longer justified. Therefore, the Connula (3.38) is also valid for 
many levels in more deformed nuclei (see for instance Fig. 3.8) in the 
so-called rotation aligned coupling scheme. 

3.3.1.3 lbe Oecooplfaal..imlt (Rotational Alipmeut). In the case of inter
mediate deformations, the energy spHtting In the intrinsic part of the 
Hamiltonian can no longer be neglected. In this case, the orientation of the 
extemallarge i-particle is no longer independent of the motion of the core. 
Stephens et al. [SDN 731 realized that the requirement of maxima) overJap 
of the single-particle density distribution (which is concentrated mostly in 
Ii plane perpendicular to j) with tbe core can be fulfiUed if the external 
particle aligned along the rotalional axis of a prolate nucleus a1so 
Sec. 2.8.4). 

Mathematic~ny, we can understand this in tbe model of a single )-shell 
(C'J/:::tII::l, like, ror ex.ample. in the ;13/2 Neglecting .1 and the 
Nilsson are simp1y given by the djagonal matri.x element 

(g EO - .B. ftwo(nljDlr"Y 2OlnljD) 

3fi2 - j (j + 1) I :2 

- EQ+ (3k 4)(j+ 1) - EO- 4 Pk+ CO, (3.39) 

where k and C do nol depend on n. Also, the recoil term (3.22) can be 
calculated as a diagonal matrix element and yields 

Hr~= 2'g {J(j+ I)-nl}. (3.40) 

Therefore, the Hamiltonian (3.10) in this approximation is: 

H-f.o-! fJk+ ;~(I(/+I)+j(j+l»+(C- !)f;+Hoor • (3.41) 

In a certain region of deformation, where C~d/§. there thus Ii 

cancellation of K dependencc cominl from the intrinsic rotational 
parts of the Hamiltonian. This turns out to apply for a rather broad 
domain of intermediate Unfortunately. the eigenfunctiool of 
H oor which we needed to solve (3.41) cannot be given analytically in tbe 
general cue. Thus, we wish to give a qualitative Writing the 

• In prindpk:, lbere are also anb-llIllp::iIeG &UleI with If. > j (PO 78~ 
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we see that it 

through 90° about the .-aAI. 

(3.43) 

of this rotation [Ed 57]. 
b~ver. to such a 

quanlum number. The ... £ __ .... 

we then get 

(- 2. )~iIIMK 
for I K. With 

JI(I+ 1)- K(K+ I) I/MK I 

H~Ii' ft J - _1/. (I K). 

which shows that Q is the of j onto I. 
From (AM) and [Ed 57, Eq. (4.1.4)} we obtain 

( )' 

(3.44) 

1 (3.45) 

(3.46) 

(3.47) 

which means that I - a to be even in order to fulfill the symmetry 
condition I .. 1. 

In the case of Ilg, we find for the spectrum of the Hamiltonian 
(3.41): 

E(l,a)-consl.+ 2g (/(1+ J)+j(j+ 1)-2/0') 

1 
=const. + 2~ (1- a)(l- a + 1) 

I 
-const.+ 2! R(R+ I) 

(3.48) 

(3.49) 

_IR,dI!IIIJ'lIIII! R - J - a - 0,2, 4 •... has to be even because of the symmetry condi-
(3.41). 

'l"hc lowat lyinl ltala are therefore lbe ones are 11l1IA1'I..U:UiCUl,J 

~ .... _ (a BUlt.).. Thil con'CIpondI cx.adIy to the picture of a 
spin ori.ented perpendicular to the 3-axis 
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to a 
neighbor
in weakly 

2~0----------------------------------------~ 

E 
(keV) 

2000 

1500 
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IIIl.. 1.._-,._ -...,2-

2~-

Plrity the neighboring 
the ground state, and energy 
vrv.v..,... (From [SDL 72].) 

r- -212-
r-

6"'-

6"'- -2:Vr 

,+- 'IQ, 

-""r , .. -

~--
'l"--,II/")-

in lome Sa. isotopes with 
.... " ....... In most cases La 11 /2 not 
been subtracted from aU levels shown for that 

aligned stales) a - } 1. They often Jie at 
higher are then not populated in (HI, xn) reactions. 

Figure exact $Olution the axiaUy symmetric 
plus-rotor model for one nucleon in a 11111/2 shell as a function of 
the deformation fi. fi-values, one has the weak coupling 
scheme of several nearly multiplels. On the oblate side (fJ < 0) 
the strong coupling is this lhe lowest level in the NiLsson 
scheme (see Fig. J.) n - 11 level. Its Coriolis matrix is 
very smaU and a strongly coupled band with Al - I is observed. On the 
prolate side the The lowest level has D - t a very 
large Coriolil matrix element. band (the levels with the highest 
I~values) is now formed by a decoupled band 1-11/2..15/2,19/2, ... with 
III - 2 and a spacing, wbicb more or less that of the rotor (as seen 
at IJ - 0). We see also for completely aligned yrast levels the 
rotation aligned coupling is very well realized over a wide range of 
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[S! 75a].) 

intermediate p-values: O.13-R 0.23. Only at very large deformations 
one devia lions. 

The of the bands depends.. of course. on the ~sition of 
the Fermi level. We had here the simplest case of only one particle in the 
sheU. The complete analogue one hole in the high j-shell. There the 
situation reversed: On the prolate side are the with large n-vaJues 
-that one observes Ii strongly coupled scheme-and on the oblate side 
are the levels with small D-values and a dec{)upJed scheme. 

These considerations show that the structure of the rotational bands 
buiJt on such high j levels provides an excellent tool to 
experimentally between prolate and oblate ddormations in the transition 
rellon. 

Summarizing the results of this section, we can say tbat 

(i) In many the interaction can be neglected. Then the 
valence nucleons rotate around the symmetry axis or the core and 
change their orientation with it (strong coupling flI =- 1). 

(ii) In cases of deformation and strong Conolis interaction, the 
valence nucleons orient their angula.r momentum more or 
independendy of the orientation of the core. The core with 

2 
happen by a canceUatioo 

The particles 
to the ,....., ... 1,-:-.......... , angular 

core) 
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Applications of the Particle-plus-Rotor Model 

many rotational bands whicb reveal 
StroDg coupli'lg picture. ca.ses the 1 

a. hip j-value Ji U/2 sbeU in the one 
nI"'K""I'"V.""" very distorted bands." I values they start out like strongly 

coupled bands with 1J.1-1, but soon we " ............ , ... staggering: The levels with I + I 
eWD are more and meR against the with J + j /2 odd., BO t.bal 

• 

two "panue bands with A/-2 the positive parity 

I. com~ of lhae distorted bands with the batkbmdinl bebl.vior in D.eigbbori.Dl 
_[SKI'4]. 

1D 

01 
Experiment [ST 711 

bl 
Theory 

c) 

rotational bands in the nucleus "'ny. The 3/2 and the 
are strongly coupled (AI- The positive parity band with the band 
is suongly perturbed~ the teAt. It is compared with 

<I) a pI..flide-plus-rotor fit .w.."u .... lin.I\.'u p, (b) a 
with attenuatioD p = 05. (0) a senr-c(lrftltlt.e11tlY determined attenu-

JU'''..t''lRfttift (from [lli TTl.) 
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To describe 

6) are wed to fit the 
e)U)e:f:lmj~ntlU spectrum if ODe introduces an &QjIUUiODJIl1 

jactOl'-which weakens the 
HCDI [HRH 70, LRB 72, HK 17]. The original 
too it haa to be by ....... 1Inr 

attenuation and the of the mo<Je;1 FC8lO1liabiry CIIOI_. 

to reproduce the distorted bands and find that for low 
Coriolis interaction, one is in the strong couplinS limit with 4/- 1. 

however, the Coriolis force gets stronger and odd ....... 1'11"0.,.1. 

the luge j-value p8Jallel to the rotational axis. For I-valuel 1 we have It 

rotational aligned motion. that is. large K-miKing and a splitting of the band in 
favored states with mwmaJ alignment tl - j for (I even, and unlavored _tats 
with alignment ex -j - 1 for (l-J) odd. the same value of angular 
momentum R of the core, which is given by R -1- a, two are iIiM'"'"'~ 

degenerate fig. 3.11). 
Several attempts have been made to the arrtrwa#ofl factors as a kind of 

------«JO- in the linear response approach rSpc 72, HK 15]. J t turns out that 
1.hii problem il with a proper treatment of the recoil term (3.22). 
The ugumeDt. that it i. already taken into account in the fit of the band head 
energia. not apply in the one-particle case it is proportional to 
j'2- Kl ed therefore has II. strong K .. dependence which shihs the band beads 
(ORG 75). 

To understand qualitatively the effect of the recoil term we restrict ourselves to 
the case of only one particle and rewrite the panicle-plus-rotor Hamiltonian 
(3.20ft) in the following [Kr 79]. 

(3.50) 

with the new Coriolis term 

1 
H ~Qr "" - (1- J)J -L ""' - j Rj - - wj, (3.51) 

where the collective angular velocity is given by 

w-- (3 . .52) 

The Conolis term ' in Eq. (3.51) is attenuated compared to Hcor (3.23). To see 
this we go into the limit. where the odd particle is nearly aligned to the collective 
rotation R. We then have 

R~I.L(1-7) 

and ftad dial H:'" is in this cue praportional to H cor : 

HI -(l-.!)H -p·H CDI I CXl!I' car 

-,. ..... ,_ doeI the at.tenUlb.OB ditappu.r. 
dJaculiSleJID of the influence of the recoil term 

(3.53) 

(3.54) 

(3.SS) 

been restricted lO 

put of this operator. In fact. it abo contains I:l two-body 
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produces an with the pa,rticla the core. 
the mean fieJd approximltioD [Ri 77J and end up with 8. 

IeIlrooQi)DJllltllD' atleDlJatllOD factor 

p - 1 - -;::.======== (3.56) 

it goes over into the form (3.55). We can also show that 
equivlllent to the cranking model (see Sec. 3.4). In a 

t:reIltlltent of rotational baDds in odd mass nuclei within the self-
model Sec. 7.1), the of the interaction 

[RMB 74. RM 74]. 

~_ lI:hN:Ilbeallllllg iD [Vetil Nuclei. The hackbending phenomenon (see Sec. 3.2.4.) 
bteD elll.plained by Stephens and Simon (SS 72a] as an alignment of two 

in lino. If two neutrons., of rotating around the 
J"'a"""1k a.lign along the rotation axis of the nuc!cw,., this adds an additional 13/2 + 
11/2-12 units of angular momentum. Therefore, the nucleus can decrea..se its 

rotalion increasing its lotal angular momentum through the addi· 
of sln~partielc angular momentum. 

To deiCtibe this idea. mathematically, Stephens and Simon dll.&onalized the 
(3.10) (with attenuation of the Conohs term) Laking at the hasis the 

determinant of the unperturbed core 

-IIMK-O) 

and two quail-particle excitations Chap. 7) 

- f31(~ fj~11MK- XI + (3.57) 

where IJ: is a. creation operator for Ii quasi-particle in the Stlte D- K of the li l :J12 

For low I values, the yrast states are gi,,'cn mainly in the zero quasi-particle state 
the pure rotor. The ex-cited. bands are two bands. For higher 

I·values, the particles align their angular momenta along the axis of rotation, onc 
of them to cr - j - 13/2, the s«ond to a - j - I - 11/2. Thus, we find Ii mixing of 
the ,lata tIIo and fbI( (X-O. I. ... ) and arrive, at the limit of fuJI alignment. at fl 

slate of tbe form [see Eq. (3.44)}: 

- L dkli ( - I )dkll-1( - ; )p~ P,;IIMK1 + X2>' (3.58) 
/(1/(2 

It can be written schema.tically ~ .... Pj '! d4»o>, where the p/ are the qUAsi-
nilIIIl1"U"~I" operators along the louis. 

Stephens I.nd Simon [SS 72,a] were able 10 reproduce the experimental backbend
IU·WI".I"'f1"A reasonably weU with this method. Since they did not take into account, 

the J!1ldua.l change in the pairing correlatioOil caused by the CorioHl
Dl1 ... uruaa effect, they could not obtain the deviations from the I'(J + 1) law at 

tpin valuea. 
In spite of the fact that t.hi.s model describes the imponant effect of two alig:ning 

pa.nide:I properly, it does not allow u.s to deci« whether there is any other 
mecb.aDiIm could be the ori&in of the observed backbending phenomeaoa. 
To decide whether it is caUJed by a. cha..qe in shape.. by a phase tra.nDUoo 10 I. 

aormal nuid rtate., or by an alignment PI"OCeI:I.. one bas to carry out a mierotc:opic 
calculation which aUows for aU the.~ degrees of freedom. Sucb invesllgations have 
been done (sec: Sec. 7.1). They show that the rotational alignment of two particles is 



the 
j-shell 
to whether 

Motion 

a high 
it is another question as 

finaUy on the strength of the 
the two small coupling 

a sudden transition, that is backbending." 

3.3.3 The Triaxial Particle-plus..Rotor Model 

We ICeD in MC:UOG 

triaxial rotor to explain the low lying 2'" ,taUes 
model can also be c.xtended to odd m.ass ...... -. 

rotor [Pa 61. 
78]. It 

ollrselve.. '-"UI" ... QiIIl1N ..... '.u to one ex-temal particle in a high 
h I J /2) and couple it to a rotor. In casc. the 
[MSD 74]: 

J R2 { 
h - i~1 1 + 110+ k,Jp cosy + (3.59) 

p. y-..dependence of the moment of 
(1.48)] only the overaH cOIUtant is constant k is 

in the ho harmonic VIiI.,UHIlVI 

Usually a single-particle pairing field with constant gap L1 is 
account. 

12 s.hows the spectrum (3.59) as a of y It a 
deformation {J-5A . On prolate side (y-O) and On !he oblate side 

(y. we see again the same S.peClT8 81 in Fig.. 3.10. However. two limits 
are now connected through 8 the fl. y plane (Fig. 1.4) with constant 
cJelonllataon fJ. We no lonpr the weak at /1- On 

lpeetra do not y. The 
4UJIlIIll.Yl\JfU from place 

... Recalll),. DC~" el [88M 78] 
elMmica.l potaltiIJ 
Ihae. 

• ""1011 of lrlaxW rotor 
YTF 18~ 

weakly 
-YAJ'UE:.lllI between 

found I.D CJKi:D.Iti.q behavior 
FOI' an mterpRtatiOll of thil fact ICie 

to ICe ITNV 11 • 



The Particle-plus-Rotor J 13 

Flpre 3.11. 
all yran levels J < 

-1' 

of a j - 11/2 particle, coupled to an 
as function of y. (From [MSD 14].) 

rotor with 

The d),rumtical a system of an odd higb-J to I 

rotating trixial core is detennined by three physical effects (see (Me 75D: 

(i) The core 
inertia in 

(li) The 
with 

(iij) The 

to rotate around the axis with the moment of 
to the 

dominates as long as we have only one particle in 
distribution of an partic.le is with j as 

(u) is optimally if the core i$ (y - 60°). 
which corresponds to as symmetry 
and 0) is violated. Therefore, R will be perpendicular to 

the triaxial case, ~2 no 
can all be satisfied together. There is an aUlgrunetn 

""'-AAI.G. In f acL, the calcula tion. sbow that the odd 
the core. This axis serves u an 

approximate quantum numbers K 
projections of I j on.to the 2-axis) are meaningful for a 
is a new level scheme characteristic for a triaxial rotor. 

yrast aregivenbyfi andK-j,j±2,j±4.asin 
coupling of Stephens. For these levels, I. J. R. and the are 
They lie on usual parabola witb A 1- 2 (see Fig. 3.1 to the axial 
symmetric: cue, where the direction or the alignmenl was arbitrary in the 1,2 plane 
(wnwly ODe the l-uiJ). we blve the uymmetric case with no such 
symmetry. favors the on each 
yrfllt 
levels 

& rota.tional band with the spin order A/- 1. In fact. such 
obsetved [ABR 15). 
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f3 = 0.23 Y = I 6 0 A = 0 = 0.7 MeV 
3.13. The ~/2 family of ltatel Il17lr. (From [Me 75).) 



3.3.4 Electromagnetic 
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valence particles and a core, we 
multipole operators: 

(3.60) 

(B.D, B.24) where 
YAI,,"U"""'" particles. 

syrnmletrlc cue without 

mQnWnl of the rotor is 
We thererore gain for the 14 J operator: 

Eq. (I 

(3.61) 

The magnetic dipole moment is defined (B.J)). With the wave function of 
projeccion theorem (2.66). Eq. (3.25) we obtain for I 

(3.62) 

where we have introduced the ""'""",,"'.,., .. ra tio EIC in the following Yo' .. y. 

-- (3.63) 

The matri:x element can calculated with 8. Nilsson wave function. 
For K-I/2 one gets an additional contribution 10 the Mapctie moment which 
contains tbe decoupling factor a of (3.30). 

The magnetic moments obtained rrom (3.62) have been calculated for a 
large range of nuclei [MN NN 65 653] and one has found that agreement 
with for than for neutrons. A detailed 
investgation IIInn.Uf!l;: 

&d1:::::=O.1g!"'* (BM 
Similarly, we can calculate 

operator 1 does not cause 
1/2 and I, l{ 

B(M 1, 1,-+11)- J 

one again needs polarization charges for &: 

....... , ............ matrix elements for M I-Iramilimu. The 
the we use Eq. (1.70) and get for 

-
TheIe M are for rotational bands in odd Allo. 
reuonable agreement has been round [SBP 67~ 

Again using (1.70) we can derive the B(£2) values for electric 1'I'ULI<fD"U-

pol~ IrtUUilioM. For trl.l1litioDJS between states with the same K value the core 
contribution is because of the large Qo 
values. Therefore. the latter can be neglected. and we obtain 

)- Q& S Ie;! 1fZ. (3.65) 



OCCllI" 

MaUnskog [LM 66]. 
ways to improve the simple 

Finally, we ha.ve to mention that the above """l:UUU,lI;;1 

K-bands. For tnul.Sition probabilities momenta 
binds. like a.ligned bands or bands in an asymmetric rotor. we have to 

I.LU.IO"'U" coefficients. 

3.4 The Model· 

We seen in the last how the motion of 
well can connected with the idea of a rigid 

tbe description of the level structure of 
ftllUonal ............ "" .. However 

. in particular~ one cannot ca.lculate 

the other haDd~ nearly aU fully of nuclear 
rotation are on or related in lOme model. which 

'U"l.&1~_;U. by [In 54, 56) in a way. but as we shaH 
see Section 11.4, it ca.D be derived fully quantum mechanically. at least 

the limit of large deformations, and not too strong X-admixtures 
( I). 

I 

cranking model has the following advantages. 

0) In principle, it provides a fully microscopic of the 
rotating nucleus. There is no introduction of redundant variables, 
therefore, we are able to calculate the rotational parameters 
microtropically within this model and get a insight into the 
avrltDflllc.r of rotatioual motion. 

the collective angular momentum as a sum of single
"""""jl!ll ...... , ... ~ momenta. Therefore~ coUective rotation as well as 

rotation. and all transitions in such as de· 
COtJptJIDg proceBlel, are handled on the ume 

iI"ft1M'IIi',r"f for large angular momenta. 
_.' .... ,.- apply (even if the mechanical 

{BMR 70]). 

apply 



OUIaUIY a nonlinear theory. Only in the limit of 
cu one Linearize it using perturbation 

tbeory formula for the moment of inertia). In general~ the 
calctdation3 are therefore compHca.ted~ especially in cases where one 

HveraJ solutions. 
(ii) resulting wave fun~tions are not eigenstates of the angular 

momentum operators. H is therefore not clear a priori how one has 
to calculate, for example, electromagnetic transition probabilities. In 
fact, we shaH see in Section 11.4 that cranking model wave functions 
are in a sense only internal wave functiOns and that one has to u!;e 
projection techniques (0 get the wave functions in the laboratory 
system. 

In the following we shaH give the usual semiclassical derivation (see~ for 
instance, [Vi 5Th. So 73)) and discuss the cranking model in connection 
with a pure single-particle Hamiltonian. Many of the arguments in the ne:Jt1 
sections can. however~ aJso be applied to a general two-body Hamiltonian 
(see Sec. 7.7). 

3.4.1 Semiclassical Derivation of the Cranking Model 

The basic idea of the cranking model is the following classical astumption: 
if one introduces a coordinate system which rotates with constant angular 
velocity ~ around a fixed axis in space, the motion of the nucleon' in the 
rOlating frame is rather simple if the angular frequency is prop«ly ehOlel1; 
in particular, the nucleons can be thought of as independent particles 
moving in an average potential well which is rotating with the coordinate 
frame. 

In Section It.4, we will see how the consequences of this picture can also 
be derived from quantum mechanics uling projection techniques. for the 
moment, however! we want to stay with the bec,ause of 
its Lntuhive character. Also, we do not want to take into account any 
residual interaction. Therefore., we a single-particle potential V of 
fixed shape, wlllch rotates in space,. and accordingly we must consider the 
time-dependent single-particle Hamiltonian 

p2 
h(/)= 2m + V(r,t) (3.66) 

and the corresponding SchrOdinger equation 

11(1,#(/)=;" ;,,,(1). (3.67) 

Introducing spherical coordinates r, I, cp with respect to the axis "', we can 
represent the time-dependence of V(t) in the following way. If V(r, 0) is the 
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potential at time 1- 0, then we have at time I: 

V(r.t)= V(r. 8. qJ-Wi, 0). (3.68) 

Again we rea1iu that V is only time dependent if it depends on ~. In other 
words, V should not have axial symmetTy around the rotational axis, 
because then there can be no coHective rotation around an axis of 
symmetry for a quantum mechanical system (lee 1.5.1). the 
very simple time dependence of VO) in Eq. (3.68), a unitary transforma
tion exists which eliminates this time dependence. It is 

U=e*' (3.69) 

with ~·I- (171 i)ow- djd«p. U produces a rotation of an angle wi around the 
rotational axis "'. 

We find the time-dependent operator 

(3.70) 

and define 
-

1J; - U1J;. (3.71) 

with 

(3.72) 

Equation (3.72) is a time-dependent Schrodinger equation with an ex.plic
itly time-independent effective Hamiltonian h .... It thus can be solved as an 
eigenvalue problem in the standard way: 

(3.73) 

where (~ are eigenvalues of the effective Hamiltonian. To get the energies 
of the original Hamiltonian, we have to calculate 

(3.74) 

The term ",1 is usually called the Coriolis term. 
We have now solved the time-dependent Schrooinger equation in a 

rotating potential and found that we must diagonaJize an effe(:tive time
independent Hamiltonian. We want to emphasize that we have not derived 
a priori the Hamiltonian as it is seen from the rotating coordinate system, 
since we transformed the coordinates and not the momenta. In fact, 
in the of pu~ translational motion, we would get a similar result 
[II., - 11(0) -,. pJ, but from Galilean invariance we require that the Hamilto
Dim HCD from the lnOVing coordinate sYltem is the same u in the rest 

Nevertheletl, it turns out that in the apecial cue of rotations, "fiJ in 
Eq. (3.73) is identical with the Hamiltonian as seen from the 
system {Va 56; Bf 64, p. 69]. From the term ""I, we can derive the Coriolis 
force as weU u the centrifugal force. 

For systems with spin the operator which senerat .. rotations is j -I + s
The orientation of the rotational axis is usually chosen 8Jj paraJJeJ to the 
x·axis because it is understood to be perpendicular to the axis of symme-



The 

try, which for w-O the For higher angular momenta, one also 
investigates nonsymmelric single-particle potentials. 
quire that eN to a principal axis of the potential. 
many"body Hamiltonian of the cranking mode1 is given by (JJ(:= 

A 
_ "'" """ h(l) 

.t:.J w' 
i-I 

where H is a sum of single-particle Hamiltonians. 
Within the we must now diagonaHu 

resulting ground wave ~ WI is a Slater determ.inant. 
normal shell model (with w- the question arises how the levels in the 
single-particle potential be filled to obtain the lowest energy 
for any given angular momentum (the yrasl level). The answer to this 
question (given in 11.4) is that we have to minimize the 
E~:= <~IH - wJxl~>. that is, we have to fill up the potential in the usual 
way in the rotaling frame. 

For the energy in the laboratory from Eq. (3.74) we get 

E{w)- H - (3.76) 

Since E(w) cannot depend on the 

E(w)-

and. since -0, 

)(6)-

We can show that tbe 

of w, one finds 

I 1 -9 w + ... 2 I 

- + .... 

!2 are equal [Sch 61). 

(3.n) 

(3.78) 

(3.79) 

using the fact tbat E(w) is the lowest eigenvaJue of H"". According to the 
variation principle of Rill, we ~ w as a solution of the equation 

;o;s 0, (3.80) 

where is anyone From the of all possibJe Slater determinants. 
condition is fulfilled if we take 

{4'"".}, where ~w· is an H--w'Jx ' and 6)' runs 
real numbers. Then we find (3.80): 

d d o (3.81 ) 

or 

We also derive from Eq. (3.80); 

To have a comparison with 

w - dJ . (3.82) 

nnlen .... we have to determine the value of 
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the angular velocity. Inglis [In 54) prc,f,)OleO include tbe zero-point 
oscillations at least by 

J (3.83) 
In first we get 

w= 
{J(J+ 1) 

(3.84) 

and, (3.71). 

£(1)- £(0)+ 2~ J·(1 I). 
I 

(3.85) 

For higher there are deviations from 
of inertia is defined as 

J(1 + I) Jaw. In general, 
the 

J 
41 __ 

::1 • 
W 

(3.86) 

Up to now we have only completely independent particle 
motion. by we mean that we have even neglected the influence of 
the rotation on the average field. In Section 7.7 we will how this can 
be taken into account. 

3.4.2 The c;&,u •. JI'LLLJlll'l Formula 

In case a pure J (J + I) spectrum. we only one 
constant, 
and 
small 

IYIOtMnt of i1U!rlia. It is already determined by state 
it seems meaningful to apply perturbation theory for such 

We start with the unperturbed system of a defonned JX)tential. which is 
filled up to the F enni level. Levels below will be holes (indices 
i. 1', ... ); levels above win be called particles (indices m, m' , ... ). The shell 
model basis consists of lhe ground state I~O>, - GIJtf 

2p-2h states, so on. The perturbation w·Jx is a operator 
and can excite only one pit pair at a time. we get for 
the perturbed wave function up to fint order 

-1~o>+~L ---
1M 

are the energies of the 
up to first order in ~ 

which, together with (3.78) gives for the moment of inertia· 

l<mIJx li)12 
gI ........ - 2 · ~ ---
-- ~ ~-Cf 

.. formula hli been derived by Wick 48]. 

(3.87) 

The 

(3.88) 

(3.89) 



well ..,"ft .... O'J ... Inglis formula for the moment 8M 
55). 

The moments that result from this formula are usually 
dOle to the body value of the moment of inertia [Eq. (1.49)]. In 
we that~ in the case of a anisotropic 
oscillator, this will an exact result. Uiders [Lil 60] showed is the 
resu]t for any independent partide model in the limit of particle 
numbers (see also [AB Ro 59, SB 64. Oa 15. KG 78D. 

We can understand this result qualitatively. if we realize thal the velocity 
distribution of ground state in a deformed static potenti.aI is nearly 
isotropic (see 1 and that this fact is not changed in the rotating 

by or centrifugal forces (see [BJ 76bD. Then no net 
flow in system and from the laboratory frame we a 
rigid-fotation distribution. 

As we have seen 1 1. the experimental mClmc::n inertia 
Bohr and 
two-body 

are a factor 2 3 smaller than their rigid body 
Mott.elson (BM Mo 56] already indicated that 
interactions would lower these values. The most important 
this respect are the correlations of the pairing type. they can be 
included within the BCS-formalism (see 6) a single-
particle we give here (he derivation of the ~'V"'"\.PQ.J.'''''''''' 8elyaev 
formula [Be 61J, which is the extension of the Inglis (3.89) that 

correlations. (Readers not familiar with formalism are 
referred to Chapter 6.) 

In c.a&e, IBCS) BCS-pouDd ltale (6.31) are 
given by the two-quui-paruc)e .lata «1:+«: IICS). etc.. 
By analogy . (3.81). we obtain the pert\Ilbed wave 

< DCSI a.t'GkJ zIBCS) 
+ '" C4.+ ~'! lacs). (3.90) + 

where 
particle .............. , .. '" 

From Eq. 16), we 

energy of the 

EI{ - J(f.j: -'Ii + lli . 
(3.88) and (3.89). we find moment of 

~.I)'uv-2 L 
.Ie.;:.t' 

IJ!.l2 

(3.91) 

(3.92) 

(3.93) 

This formula for the moment of inertia indeed yields lower values as compared 
to Two effects are reljpolllllDilC 

is much I.arser the particle-bole ....,,..1"CI"Lt1l'Cl. in Eq. 
~4I~!"""l A (Sq. (3.91)] produca a lIP of at leut MeV 

levels in tbe 
(Ill Uk" - Iik,O,i is usually somewbal "' ............... 



UIlNI'VU wave 
at the ex.perimentally al wcll as the experimentally 

".rftnnill~n valucs of the [MN 59D. 
The sucocss of these which produce roughJy correct mo· 

lying between the (too and the 
body 

nll"fJrau42I illleraction on 
the of linear 

of theory. the 
operator can excite virtual 

have an on the moment of 
of such vibrations: surface (ph 
to the stretching effect. and oscillations in 

(pp-vibratiol'ls; see Sec. 8.3.5). The net result of 
such calculations is that both effects more or Jess cancel, and we get 
roughly the same values for the moments of inertia (Fig,. 3.14) as given by 
the BC.s theory. 

We have now c:fucussed the application of perturbation theory to the calculation 
of the expectation value of Jx • that is. the moment or inertia. In a rashion. 
we can calculate other properties of the rotating nuc.lew, for the gyro mag· 
nelic ratio gil. or the magnetic momeD ( of the first 2'" state. Since the LU8' .......... 

moment 1.& is defined as the expectation value of IJ.z in the state M ... I [Eq. 
(831») and the cranking model wave are nOI of angular 
momentum. it is not clear at this to calculate iJ' In Sec. 11.4, we will see 
that a projcctkm technique hu to be apptied. In iowat order, we act a very ImIlPle 

remit, which can be understood easily within the semic::Lusical picture of the 
cranking model: 

Po - (~ullixl~")· 
We can therefore derme the gyromagnetic ratio (1.31) by 

lJ-gR,'J-glf ' 

(3.90), in first order perturbation theory. we get 

1 ~ «kIJxlk'Xltl +c.c.) 
gR-- ~ 

gk..k'>O 

(3.94) 

(3.95) 

(3.96) 

1"b.e caku!ated with these fonnuJae an mWJer than the Jiquid drop value 
gR, - Z/ A (Eq. (L31)] and agree quite wen with the experimental fMSV 12]. 
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a· .• • lei ElfDrllIlV'l\~"" 

_____ eftHIIIllil'lO 

.0" .. III .4pN-IfII~ 

~ ......... 1· .. 

'"\ ~ .'\, 
,~ 

Vb 
70 

Hf 
i2 

fiO &&. & Bl I!i8 UJ III. BJ III. I!IIf.I'O ,. 172 17! f72 m 1K) WJ 

Moments of in rare The squares indicate 
values rNP 61]; the crosses a.re obtained the Belyae\t formula 

The open tAke iDto account only stretching effect (ph interaction); 
additioll to that, the dosed circles a.lso take into account the antipairing effect 
(pp-interaction). (From [MSV 72].) 

we have seen in Sect.ion 3 . .2, from the /(/ + 1) law occur as 
to higher angular momenta. calculate the Band C coefficients 
1)] connected with these deviations, one has used perturbation 

higher order. including the of a residual interaction [Ma 
M R 701.50 that important effect is the "'~ ......... n ..... 

effect~ we Section 7.7. As we 
it is only at the very high spin with J 30 or 40 that one can 

expect the pairing correlations to vanish. 

3.4.3 Rotating Anisotropic Harmonic Oscillator 

We have seen in Section 2.8.3 that the harmonic oscillator can be 
lolved analytically and that it provides at a Quatitative model for a deformed 
nucleus. It turns out that it can also solved analytically in the rotating frame 
[Va 75. RBK 75. GMZ 781), because l;c - :," is a quadractic fonn in the 
coordinates x,y,z and momentap,..p",p,. 

We CIll about the spin. sinc~ the 1'\1'111,,.11'''. does not depend on it term 
the Corioll. operator can be ICparately in the spin space and 

a The Hamiltonian then has the form 

h _ - A2 A+ !m(w2x2+ 
.., 2m 2 .II 

(3.97) 

We introduce the creation and annihilation operators for the harmonic V'!Mo,lUClll>Vl 
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x-( 2~~Jl )t(Qx+Q~+) Px- ~( 

.V-i( fA )\a,,-a/) -It( (3.98) 

In these hw is of lhe form 

+t)+ +~)+1tw~(Qz +!) 
+--{ + } . (3.99) 

and we get, 

(he 

-

Ode creates or 
quantum 

qUllD~ but 

'"'''''' ...... I''a term in perturbation 

-I 

(3.89) 

1 1 

{ 

-w,,). ("7 +~,) 
---(N.r + H,)+ ---

en .. 'I'WV dalominator 

(3.100) 

(3.101) 

t A 
111- L 

A i .. 1 
(3.102) 

I -
(3.102), we find 

JtlII~mU'Uire1K:V t:t:tNIilion, (BM 
• '''',) has the same shape as the 

N-3! 

(3.103) 

(3.104) 

_llleclAld [ALL 16]. 
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With _""_~AI"'M we can rewrite Eq. (3. JOO): 

(3.105) 

value of the moment of inertia so obtained is identical to the 
From Eq. (3.102) we 

value. 

number 
a 

m + (
. N, H,) 

-h + . 
"). W, 

(3.106) 

to stress the point that the self-oonsistency condition 
If we occupied the )'. and z-direction the same 
- we would get from (3.100) 

- N,/fN,)"J 
!j ,,~~-----::---:- - Am --~ (3.101) 

whicb is proportional to the irrotalional flow value [8M 75]. 

we go beyond perturbation theory 
....,11191 ... (3.99) exactly.'" It is I. quadratic 

can therefore be (UK 7S) in the Mme 
of the RPA·type Chap. 

IIUlI1lO'1JIBJrtI(;Rl Hl.miltoniaDi we introduce a canonical II'lU.'l&

which 

COOlrUln&te5 y. z IV a 56]: 

- + {Jp,), 

- O:J(z + (jp,), 

.. °2 1(1- 6{J) -I(py + 6:-}, 

- l{l-BIn -I(p, + 6)'). (08) 

or momenta and 
coordinates. The constants {J 6 are detennined by the requirement that the 

""'" ..... ,"' .... terms P2Q] or P)Q2 In the new tPnI"P!JW'n HamihoniaD (3.97) 
lion. The constants 0: 1 and new coordinates in a way that the 
mass parameter is the Hamiltonian has the form [Va 
56) 

h~-( + !_:x')+( - m + ~"'DlQf)+( - pf + imlljQi). (3.109) 

coordinates of the problem, and 

(3.110) 

with 

1 --2 
..... 2) -...,z .. (3.1 11) 

-For see ILR 771. 



We can now define 

(3.112) 

and obtain ror the HllI'Ililronian 

h9l -hwx ("x + t) +ha:z( Bt B2+ t) +AOJ( B)+ Ba + ~). 13) 

The COITesroo:nOJ 

(alt t'"(B:t)"2(Bt)"'1 ) (3.114) 

are by the numbers of bosons. 
Their single-particle are 

-

+ I ) + A01( "1 + i) +1t03( "3+ i). (3.115) 

I. set 
..... '''' •• A DOIClflll. we 

(3.116) 

to variationl of the eisenfunc
~II_""W'IW value of the angular momentwn [RBK 75] . 

• ,,{ 4<o~(N'_N')_(~+::)} (3.117) 

and the shape parameters ,22, 2 ,I , 

- -
lind so on, The moment 

1 as' -----
mwJC a""x • 

is given by 

+ 4ft + J 1 (N./ll - N.;JJ. 
~-g3 

(3.US) 

(3.119) 

"'",!.Iun of the many-body Slater determinant, bowever, we 
I NJ • 

NK • N". Nz were by the self-
h can be motivated by different arguments. which all 

ome aL w-O. For w"sO this is no the cue. Several methods 
proposed: 

(3.116) ror fixed occupation as 
and w~. and frequency w 

-11_ and fixed 

- (3.120) 
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of the mass 
to the shape of the potential if one include\!! the 

x 
f (9) W~ see that the seif..conmlency condition (3.120) yields the 
for the moment of inertia,. at the actual deformation, which may 

change for larp I-values. 

3.4.4 Rota ting Nilsson Scheme 

For realistic nuclei, the pure harmonic "_1£1_ only of a limited 
shift of high j 

they play 
importanc~. it not contain the drastic 

orbitals due to the I· s 
a heavy nuclei. 

term - to 

h'(w) = h -wjol( 

Figure 3.15 the qualitative behavior of some the ..... ,."."" 
levels thus obtained as a function of w. It shows the (oLlowing 

0) At w-O are the usuaJ Niluon levels. They are twofold 
with to time reversal symmetry ( .... 0). For O. sym-
metry broken by the Conolis term, and a into two single 
levels is observed. 

(ii) The • .,.,......,.,. Hamiltonian 
of 1800 the x-axis. that il. the two 1/IMJI'.Ut _'"", .. ,, __ 

states 

-e (3.122) 

'x - ± i ("'signature" 
(iii) an extremely strong 

w. belong to orbits with large j- and 
li I3 /l- 660h 65. i, 642i). They show strong O-mixing 

""'-"'LA.U> (decoupled bands). 
(iv) at moderate angular velocities, 

(v) 

here, 

cOl1'elationB. discussed in Section 7.7, should be taken 

the alignment 
., .. n .. ", ... l"IU'\J1!Uft into the neighborhood of the 

and try to 

from higher 
surface. 
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SIt. 1/2-+-----

512 
521 1/2-~· 

6 . fi1----=:;::::;::'-'O~ 
633 7/2 

J.0 52 3 sI2-L~--~:'--~:;:::'::'';:::''';:''\~~~X:-~~~N 
:;-.. 

w 

505 11/2 

660 1/2 
532 J/2-~'Y:: 
530 1/2---._ 

6. 2 --....,\~~-:;;;;: 
4 J/2--+-~--

1..00 1/2 

o 0.04 0.08 0.12 0.16 
W/Wo 

In ... _ J.1S" Qualitative behavior of the single-panicle levels in a cranked Nilsson 
mOGe) at a prolate deformation -0.25) as a function of frequency w 

in units of Awo. lines correspond to levels with r~·quantum 
numbers. (TNe are grateful to R. Benguson for the preparation of this figure.) 



(vi) Eventually. new abeU closures with new magic numbers develop at 
high angular momenta, which can. influence the energy surface for 
the fission process (see Sec. 3.4.5). 

3.4.5 The Deformation Energy Surface at High Angular 
Momenta 

As we already discussed in Seclion 2.9, the pure Nilsson model cannot be 
used for the calculation of total energies nor for the calculation of the 
shape of the energy surfaces at large deformations, because the average 
part of the energy is not reproduced in a proper way within this model. 
Therefore. we calculate only the oscillating part of the deformation energy 
within Uus model and replace the smooth part by the liquid drop energy at 
the same deformation. 

In the same way, we can calculate energy surfaces at a fixed angular 
momentum I as a function of the deformation. For an ellipsoidal shape 
[characterized by the parameters P and 'Y (Eq. 1.88)1, the total energy is 
tben given by 

E( p, y, I) - E lDM( f3. y, J) + E1h( f3. y, I) - EM ( P, y, I). (3.123) 

Here ElDM is the deformation energy at a rotating ellipsoid with the 
rigid-body moment of inertia gcrii f3t y), because one auumes that at high 
angular momenta pairing correlations can be neglected.· E.h is the sbeH 
~odel energy and is obtained by summing up the single-particle energies. 
EiJl is the averaged part of it, and is ca1cul.ated by an appropriate smooth
ing procedure (see Sec. 2.9). 

There are two ways to derive these quantities from the diagonalizatjon 
of a deformed single-particle potential in the rotating frame: Work either 
at constant frequency w [NPF 76] or at constant angular momentum I 
[ALL 76]. Both methods agree t if one uses a defonned Wood-Saxon 
potential~ where the averaged moment of inertia is very close to the 
rigid-body value' [BJ 76b, NTP 77]. 

Several groups have carried out investigations along this line [BLL 75, 
NP 75, NPF 76, ALL 76, FDG 76, NTP 77] in many regions of the periodic 
table. Qualitatively they have found similar resuhs: 

(i) For spherical or weakly deJormed "udei at the beginning of the rare 
earth region, the nuclei behave similarly to the classical Liquid drop 
(Fig. 1.18): Up to angular momentum J - 50-7Oh they are oblate 
and rotate around [he symmetry ax.is. In this region. the rotation is 

• in ra.ct. mulDptidty ~l 01 Ihe )'-~e iowcatel the llUC&eua reac.be1 the 
riJid-body mama! 01 ina1ia at hip spiD values [sac 76]. 

tThe (l tmn in ihe NliuoD. potentW (2.89) is r.w::m-loc:a.l Ilnd gives ooluribution to tho 
effective mua. It proch.lca IJlllvuapd mom=.t or inertia which Ii -3Q--.4()% IMpr i.h.u lbe 
rigid body value [Ty 10, 71, DR 7th, Jo 73~ cme !wi u.aed salina proc.ed\l.f'eS to oompeD.A.te 
fOIl' tb..iI eHect [NTP 77~ 



(ii) Nuclei 
prolate shapes and rotate around an 
symmetry axis. With increasing rotation 
more and more particles parallel to this 
find a 10 
in Pig_ 3.17. At 
becomes triuiaJ and ----.--J U_Ion 

300~--------~---r----~--~--~ 

-, 
> .. 
~ISO .... 
.c:. ....... 
~ 

100 

50 

154Sm 

(LIQ, DROP) 

b~O 30 40 50 

O~--~----L---~----~--~--~ 
o 01 0,4 0.6 0.8 10 12 

1"'&1.11
2 

3.ti. plot for the yrut .......... 1Tt of l~m in terma of ~ 
v_wu,_ liquid drop model. [ALL 16).) 

We want to conclude this with the remark that su<;n 
give a qualitative of of the 

.. ""Ln·... at su<;n high Only for very low 
for deep <;an we expect the 

~ .. ua to have a fixed deformation. In general. it will carry out quantum 
tDeCDIlDJlC&l zeropoint nuctuatiol'll minima which ought to be 
described by a dynamical theory for il'lltan<;e. Cbap. 10). 

on I Wood-Saxon potential [NTP me nOI reach 
y--defomll.Uooe, and fiuioru without baving oblJUned an oblate Bhape. 
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FIp.re 3.17. Potential energy surfaces in the (/3. y) plane with inclusion of shell 
(Onecti01ll for l~ as a of angulu momentum. (from {All 76}. Notice 
that these authors replace the Hill-Wheeler coordinal..e y by - y.) 



142 

3.4.6 Rotation about a 

where we 

ai' The component of the 
by 

(3.124) 

we to change the occupation in 
to put from levels with lower (for instance 

into with higher (positive) a-values. 
can be done again by a cra.nking procedure around the 

sym.metry Since the operator i~ commutes with h, we get the single-
particle energies in . 'rotating frame . .. 

(3.] 25) 

where E1 are the eigenvalues of h in the nonrotating frame. These are 
straight lines as a. function of w (Fig. 3.18a) slope is given by 

The condition to minimize the energy in the rotating frame 

A 

£'. 2: 
i-I 

(3.126) 

(3.127) 

guarantees that one always occupies the lowest levels f.;. With increasing 
frequency c.J we thuB obtain a stepwise increasing of the angular momen-

3J8b). The distance between two steps and the size of the steps 
by the distancel of the levels t, and the angular momentum values 

ft __ ;r_ there is a stafutic:aJ increase of the angular momentum with 
IreDlUmc:v w. The moment of inerl;a g is defined. only on the average 

~"Pii; ...... line in Fig. 3.18b). 
To an estimate for the of this moment of inertia [80 76bJ, we 

that eaeh line in fig. 3.18a bas the slope - a i (increasing or 

4rJUmentll can be applied for boles. We lbeD end up 
1VUlr.mclrv WI of I prolate denlity cfu.tributkm. In the middle or Ii 

shell there are many .. prolue deformed lh.apc. It il e&1)' 10 (Ialcrate 
IMJe Ulplar momentum from a few .. lipmmt withou.t too drutic in 
def 01'J.'l\l tion. 
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1 

o 
0) bl 

Flpre J.1&' (a) Schematic of eigenvalues r.; in Eq. (3.125) as a 
function of the cranking frequency. (b) The angular momentum obtained by 
increasing values or (oJ and by always occupying the lowest levels in (8). 

decreasing. depending on the sign or a). For w 0 the levels ± (li are all 
occupied pairwise. The resullan[ angular momentum vanishes. For finite w 

some of these levels with negative ex are no longer occupied, but other 
downward-coming levels with positive a-values are occupied anew. For a 
fixed value of a (for instance a == t) the number of newly occupied levels is 
en the average wag(a). where g(a) IS the density of levels with the 
quantum number a. Therefore. we for the angular momentum on 
the average 

= L a'j- L a'w' a' g(a)-w L: a 2
. g(a), (3.128) 

a a 

and for the average moment of inertia 

(3.129) 

An evaluation of this quantity within the Thomas-Fermi approximation 
gives exactly the rigid-body value for the moment of inertia [Bo 76b]. On 
the average, "single-partide" rotation around the symmetry axis therefore 
shows quite a similar behavior to collective rotation, although the internal 
structure is completely diHerent. 

3.4.7 Yrast Traps 

Since the level spacing in the case of a. rotation around the symmetry axis 
has a statistical character, one expe~ts yrast traps (high spin isomeric 
states). They are defined as yntst states which cannot undergo a rapid 
y-transition and have been predicted by Bohr and Mottelson [8M 74]. 
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JD a rpf'~bllDn 
deformed 
momentum 
we ba '\Ie rather pure 
laDle j-sheH lie on 
replace n by 0). At 

most 
density 
the oblate density of 

ftcure 3.19. 
deformed Nilsson 

at 1-0 (full 

At w-O. 
occupied. 
the 

«tfor 
(3.39); we 

deformations (f:J < 0) the highest 
the deepest energy, their oblate 

plane has the maximal "",,vAl ..... 

j= 

a. 
f'eD'tesentatH)n of the singie"'Partic1e energies 
as a function of a (the eigenvalue of Ix) 

at 1-6 (duhed line), 

in an oblate 
the Fermi 

below it are 

a-values are those with positive are 
19 we show a situation where a jump of 6 units of 

.... < ..... _._ momentum occurs. The remaining I-values on the line can 
by ph-coruigurations with respect to the rotated 

usuaUy connected with an increase in energy. 
that the yrast line is no longer a monolonicaUy 

I, and 8. certain level with 1-10 can have a deeper 
wi<th J -/0 - 1, 2,.... A fast l' 

M]· or M2-character (i.e., with low multipolarity; 
not allowed (so-called energy spin traps). 
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the iDternaJ structure of the states with 
from the structure of the state 10 , 

matrix elements can be very small and the I.ifetime of 
10 !ar!e (.structure spin Iraps). Examples are where the 

10 - I or 10 - 2 can only be reached from the state 10 by a 2p-2h 
tlIliIlW\)Il. or <::aae8 where the y-transit.ion matrix element is hindered by 

rilles of the single-particle wave functions (for 
~_ ... ,"""'''' 1-I()fD'IQ(lm M I-transitions; s.ee Sec. 2.7.2.). 

Several groupl have investigated the theoretical possibility of yrast 
by for cales or rotation around the symmetry axis in the energy 
surfaces at high angular momenta and by investigating the detailed si.ngJe
particle structure in these cases [ALL 76~ CDS 77, AK 77, DNM 77, 
78, PTF 78, AHL 78, Ab 78. MDN 78]. Some regions in the periodic table 
have been found in which they should be expected. These are mostly 
weakly deformed nuclei such as Te~ Ba, Ce, Sm, neutron deficient rare 

""I.J""'''' a.nd nuclei in tbe Ph-region. 
On the experimental side we have known for a long lime about stares with 

large angular momenta and very long lifetimes for spherical nuclei. These 
are states with rather pure high j-shell conFigurations, which have no 
an owed )'-transition matrix elements of low multipolarity to states at 
deeper energy. The most famous eumple [fAG 62] is the 18+ in 
21lpO with a lifetime of 45 sec~ which consists of an aligned ('lfh9/;iCvill 
configu ration. 

Another group of high spi.n isomers. usualJy called K-isomers. were 
observed in well deformed nuclei, such as the 43 and the 31y isomers in 
I11Hf. which can be interpreted as a KlIII' = 8 - and a Kfl - 16'" band head, 
whose y-decay is K-forbidden [HR 68, KL 17]. 

finally, in recent years an is.land of about 20 adjacent nuclei in the light 
rare earth region with long lived isomers has been found [PBS 77]. They 
are probably associated with oblate deformation and "single-particlen 

rotation [ARL 78}. 
The properties of nuclei in the vicinity of 208Pb have usuaUy been 

studied in terms of the spberical shell model with residual interaction and a 
proper angular momentum coupling. Since these configurations are rather 
pure, some calculations of I.his type could explain measured excitation 
energies with extraordinary accuracy [BBH 77]. 

The physical reason for the aligned high spin configurations having such 
a long lifetime is the same in this picture as we have explained in the 
mode] of rotations around a symmetry axis: Two nucleons with aligned 
spins gain energy because their residual interaction is largest for wave 
functions with a large spacia.1 overlap· (see Sec. 4.4.8.). Therefore, these 
high spin levels are lower in energy than the neighboring states with 
smaller I-values. and fast y-transitions are forbidden. In the description of 

,. Tb.iJi dfcct hu been a.lled the MONA-efrecl (Mtuimal Overlap of the Nuclear Wive 

function by Alignment [FPD 16D. 
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it violates COl1.lfVl. 
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CHAPTER 4 
", 

Nuclear Forces 

4.1 Introduction 

Up to now we have only taken into account the forces acting between 
nuc1eons in a very qualitative way. We have used some of their properties 

as their short range and saturation character-to explain the 
volume and surface terms in the Liquid drop model. We have also assumed 
that they give rise to an average single-particle potential By adjusting a 
few parameters, we are able to reproduce a large quantity of experimental 
data. The success of these phenomenological models gives us the confi
dence to go a step further and investigat~ the nuclear many-body problem 
from a more microscopic point of view. In particular~ we wish to appJy the 
techniques of modem many-body theory. 

The starling point for all these considerations is obviously the two-body 
interaction between nucleons. There aTe three basic assumptions in this 
concept: 

(i) Dynamical mesonic degrees of freedom can be neglected and the 
nucleus can be described as a system of A nucleons whose interac
tion can be represented by a potentiaL 

(ii) Relativistic effects are neghgible. 
(iii) Only two-body forces are important 

Even with these rather drastic assumptions. we immediately run into two 
difficulties when we try to proceed the way we have ~"~i.'PIiiPU 

147 



lADle CIIl'lel 1JlC,.. 
alipcd levels witb.maximal «-values and UUIAUE OIlD.lll' dialtribatkm 
lhitted, downwards in llDergy becaUle of 
core. 

Both metbods-sbeU model calculationJ in a .""I'I,A1I"'I ..... 
angular momentum coupliDg tcchniqua cranking aucllIaDt:ml 

slightly deformed well-are certainly hard to COtDDllfe. 

model is certainly much better it more effort) &I as ODe 
can assume the core to be inert. (,0 take into 
account mulupartlcle-mwtihole configurations. It to 
the very close vicinity of magic nudei On the other side, the cranking 
model treats the residual interaction by a deformed weUand is therefore 
much to Over a wide range of nuclei. It anows, however, only 

qualitative since iel conservation of angular mo-
mentum. and is microscopically derived only in the regions of wen de .. 
formed nuclei with rotations perpendicular to the symmetry axis (see Sec .. 
11.4). 
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Nuclear Forces 

4.1 Introduction 

Up to now we have only taken into aCC:OUlIU 
nucleons a way. We have used some of 

as their short range 
terms in the 

that they give rise to an average single-particle .......... , ... uu .... 

few to reproduce a 
success phenomenological 

further and 
crOSCOOIC point In particular, we 

moaeln many-body theory. 
The starting point for all considerations is obviously the two-body 

interaction between nucleons. There are three basic assumptions in 
concept: 

(i) Dynamical mesonic degrees of freedom. can be neglected and the 
nucleus can be described as a system of A nucleons whose 
tion can be represented by a potential. 

(ti) Relativistic effects are negligible. 
(fu) Only two-body forces are important 

with drutic Ulumptions, we immediately run 
difficulties when we to proceed in the way we have '\,IJJ""u.",,~ 
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for and 
only in their [De 78 J. On the 
from an effective Lagrangian for interacting mesons and 
recently proved quite (see,. for 73! LLR 7'~ DBB 
77, Vi 78, Ho 80]). The basic ingredient 
COruitant, which is known from experiment The nu":t«m-lluK~t«l1G 
obtained without a free parameter for particle 
fm. The part from 0 to 0.8 fm is represented 
potential in each ........ "'io#." ..... ,.,,""'''""''''' 
to Ire achieved. 

until now been almost entirely phenomeno-
lopcal part resulting from the one-pion exchange; see 
below) and contain. up to about 50 para.meters. The experimental phase 

very wen poten tiws. On the of 
we shall briefly in Section 4.2.~ we should 
the method of many-body theory and to derive the 

in the preceding chapters in a 

(10. There bowever. a second difficulty in nuciear theory. These bare 
nuclear forces from a numerical of very ill behaved. They 
show strong repulsion at short distances (hard core) and cannot be treated 
straightforwardly by the usual many-booy techniques. For instance. they 
are too Itrong to be treated by perturbation and the hard core 
.............. _ a direct field approach (see Chap. 5), for example, 

In fACt, the nucle{)ns within a nucleus do not feel the bare 
nucleon-nucleon into account that they interact with 

the other nucleolll permitl one to 
introduce an 
behaved and 

imrroclion. which is rather well 
aDIi)lK~.at110n of the usual many-body methods, such as 

theory (Cb&p. 5). Much work bas been done to derive this 
effective interaction from the bare nucleon-nucleon force. We will in 

the been to achieve this As a 

not yet very __ .. __ , 

rhe nucleus one usa 
are constructed the of 

COIIllClefllQ(tn5. but depend on some that are adjusted to 
fit experimental data. 

"'&IIIIllOU"'_ we do not want to go into aUemptl to derive the 
[BJ 76a). In 1eC()DQ section we will 



.. . 
nWi:ICI()DI movmg m a gIVen average 

""'<""''''''_H_ that in this chapter we are 
The Coulomb interaction 

I with experimental data is 
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phenomenological 
interaction be-

dealing with the 
separately. 

one has always to 
subtract Coulomb effects first. 

4.2 The Bare Nucleon-Nucleon Force 

4.2.1 General Properties of a Two-Body Force 

most general quantum mechanical two-body potential is completely 
by ill matrix elements between two-body (in a coordinate 

L 1 d 1 . '.; r 2: • $2 t wllere Sj - 1 an II - 2 are spm 
as; 

(4.1) 

....... '"-... of j'1 ttl; $2' of 
and Ir 2) and the vectors 

and I any operator in the spin 81,Hl ........ 

can represented as a linear combination of the 0. ,°2,°3 
the unity matrix -I. the most general form of tbe operator V 

J 

V ... 2: VTkafl\J~l). 
i, 1e. ... 0 

function ViAe- analogously on the .." ........ A&lL 

. In addition to dependence, the 
operators in coordinate space 

V f V(r'a, r2! f1' 

In the ............... , case in which V(r~. r;, rl' rJ the form 

V(flt ra! r" - 6{r l -r'.)8(f:z -r;) V(r., f2) 

V a local potential. and we have 

- V(r., 

this case the interaction between tbe two particles 
(and eventually on tbe 

1"I...,.,. ... nil"l on the velocity of the particles. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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We in genel1lLL nonlocal 
velocity dependence. We therefore __ ... _ 

a 
-Irl'a)+ (r. - r1)-;-(JIf l 

+ (r; r:J 

=: exp { (~ - f l) a;1 + (rrz - f 2) 

and get, from (4.3), 

a 

+ ... 

(4.6) 

V - f Y(~. r;~ rl~ f:z)exp { ~ (~ fl)PI + ~ (1'2 - '2)1'2 ) Ir.'2) dJr~ dl'l 

- V(rl' PI' 'l" P:t)I'l f 2)' (4.7) 

This means that the general potential can be rpnr~'f"I by Eq. (4.2) 
where the Vik are 0 ............ of the form (4.1) (for 
reuonl of simplicity we neglected the llUlIDID Qer>4~cum,ce) 

_It_ ....... by 
In parucular, we require the following eight 

(I) Hft"'El1etklty 

p exchange of the coord_les 

V(I. 2}- Vet n. 

of such potentials 
ef'lnPl1"SlI function can, 

Iymmetries. 

(4.8) 

This property i!i with the symmetry of the wave 
function 11 2). Since are fermioM, they ha.ve to be antis)mmetric. 
For eumple. if we take Ii product wave function buill out of ordinary .pace~ a spin 
and an isospin part 

("I,t,. '2$2 / 2 .,(r,> sl)f('l' 'I) (4.9) 

we have four combi.nations compa.tible with the Pauli principle, which are charac-
terized by the symmetry or the coordinate space alld spin part 4.1). The 
iso~pin component is determined i.n each case by requiring the of the 
total wave fUllction (4.9). 

• : : means n(Nm.ai ordErins, i.e .. the 
in the the exponent. 

Table 4.1 Characterization of the symmetries of the 

'" ltau (4.9) 

., X , 
singlet a + 

even triplet el 
odd singlet os 
odd triplet ot + 
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on relaLive coordinate 

'-1'. l:z only 

(4.10) 

618_ irn'liU1a1K'e. The potential is not ____ I!,_ by a transformalion to a 
movel constant that on the relative 

IBOGlCIDIUm p - i(, I - PI): 

yO, 2) - V(r. p. 0'( n, .,(1), 

IlIVanaace III'IIder space refledioo. Contrary to is no 
violation for strong , ................ " ..... '" 

Y(r, p. 0'( 1).,,(1) .0'(2). "U» - - 1', p. I) I) 
• (4.12) 

(ri) nme l'everaJ 
OC1X:O,4J, on the direction in which 

do not 
U."'~I_ lee [Me 611> 

Y(r P a( I) I} 0'(2) ,,(2» _ V(r - p - _(I) I) 
~, ., J" II IJ V t (4.13) 

(riJ) Rotatlorud tD'IIarla.noe I.n coordinate space. three-dimensional 
act nOl onJy on the vectors rand p but also on the 

0'- 2· s. With respect to spin, the V the (4.2). It to be a scalar 
under a rotation in coordinate which means Voo to be 
a three independent scalars which we can COlUlruct from the two 
vectors rand p. namely ,l.p" and r·p+p·r. However. the laucr can 
only appear quadraticaUy because of lime reversal (vi). II is more 
convenient to express (rp+pri through .-2. p2 -(rX Voo can then be 
wriuen IU a function or .-2. r and L2. of (ia) and (II) we find 

Y(r, p, «y(I), a(2»_ Y(r, p, cr(2). I». (4.14) 

The terms in (42) that are linear in (f~ i) therefore 

S - HaC I) + aU}). 

To form a s.calar. S has to be multiplied. by a which is 
reneetion. Only L fulfils this requirement 

L·S- tL(a(i) + 0'(2» 

The quadratic terms in a in Eq. (4.2) form a tensor. It can 
scalar cr{ I) • aU). a vector a{ 1) X 0'0) J and a tensor 

on 

(oll'al2l + ollloFzry(1 - ~6iAJ. BecAUse of (4.14) • .,t I) x aU) cannot llu .......... AI 

by Ok.ubo and Marshak. (OM 58). the only""""", .. • .... , .. 

a( I >t,< 2) , (ra( I )(raU». (pcJ< i)(pcrO». 
(La( 1)(lA(1}) + (1A(2))(La( I'). 

Each of these terms can be multiplied by aD arbitrary function 

(rill) Routlo.nai lo\'arlaace III ...,1111 spICe. Within 

(4.15) 

(4.16) 

(4.11) 

and neutrons are considered as quantum states of on.e elementary particle thal 
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i.leBelion hAS the IB.me neutron-neutron mU"'I.(~Oln. 
confirmed by u 

of mirror nuclei Mathematically speaking. 
that the nucleon-nucleon interaction Y(I,2) commutes with the 
total IIOI;pm 

Yo+ V",,,AllrU) , 

aepena on the 

(4.18) 

r, p, 

Not aU of the combinations possib1e from the symmetric point of view 
have been to the nuclear force. We wiU mention here only 
the most .""'.....,.' .. T 

(I), Among 
cel1lrai 
between the 

which do not depend on the 
is the most important. It depend!!§ only on the r 

Ve ( 1. - VoCr) + V.(I')tJ0 icr(2) + V,,(r)r(ilr(l) + V",,(r)a<l>a(ll.r< I 2) 

(Ii). The 

The 
taken over 

remaining loca] part is tbe Tensor force 

VrP.2)- [VTo(r)+ VTv(r)t'Ol,O)]. 

3 S 12 - ? (0'(1) r)( 0'(:2) r) - (7( 1\,(2) • 

(4.20) 

(4.21) 

added to sure that an average of V TO. 2) 
of r vanishes: 

(4.22) 

An experimental hint of the existence of a tensor component in the 



DUC:IC(q}-Duc::a«:m potential is given by the quadrupole moment of the 

(Iv). One sometimes 

VLL = VLL(r){ 

explained by pure central forces. 

nonJocal term is the IlWrbody spin orbit interaction 

- V l.S(r)L· S. (4.23) 

such a two-body spin orbit potentia] causes the 
in the average single-particle nuclear potential, 

in nuclei. 

uses a second-oTder spin orbit inttraction: 

- ~ (fJ(1) L)(a(2) L) + (a(l)L)(a< I)L) ]}. 

(4.24) 

4.2.2 The Structure of the Nucleon-Nucleon Interaction 

The central force (4.20) is the most important part of the nucleon-nucleon 
interaction. It can be represented in terms of exchange or ......... _.,.. 
operators. 

The opera tors 

(4.25) 

exchange the spin and coordinates, respectiyely~ in a wave function. 
For instance, we can apply to the wave function (4.9) and obtai.n 

We can 

,S:z)r(I., ll) - fP(r lt 'l)X(Sl' s.)r{, •. (2), (4.26) 

................. by using operator of the total spin (4.1 
and triplet states and we 

I)' _ sP)'») .. S(S+ 1)- 1_ { _: lor (4.21) 

an operator pr which exchanges 
the particles." Since the wave 

.... """ ...... L the exchange of all coordinates of tbe 
DnDClDle may be written in the form 

prptlp~ __ l. 

coordi· 
to be 
1 and 

(4.28) 

eliminate the 
products 0'( 1\,(2) and 

the operator p'r = _ P'ptl 
1~(2) in Eq. (4.20). 

• The operator PI' CIJl be repre&c'lltcd by a nonlocal operator in COOn1il1Ate I"ce, viz: 

JI(r)P'~(I'I' 1'2)'" J 11(1'1 - rl)8(r; - rJ3(rl- rl)~(r'I' r'J 

In t hi .. setl.!le (4.30) are local 
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- V w(r) + V M(r)P' + V l(r)P· + V H(r)P"P· 

with tbe following relations 

Vw '" Vo- VIP - V.,. + VaT 

VM - - 4VO"1 

V 1= 2V ill - 2 Verr 

VI-[= -2V'!"+2V_ 

(Wigner force) 

(Majorana force) 

(Bartlett force) 

(Heisenbefl 

(4.30) 

The names of these different components of the nuclear force go back to 
the years following 1930J when the first models of the nucleus were 
introduced and the property of nuclear forces was explained by 
exchange without introducing a hard core (for a rustoricaJ review of 
this work see (Br 65aD. 

A way of representing the central force uses projection operators 

n: - I (1 _ pIP ). 

=' ~ (1- P"'), 

nr_l(l_pr} 
o 2' 

n~ - ~ (1 + po ). 

n~ - ~ (I + P" ). 

n~- ~ (1 + P'). 

(4.31) 

These are projection operators (p2_ P. P +..:; P), which project onto the 
singlet (5) and triplet (t), and onto the even (e) and odd (0) part of the 
nuclear two-body wave function (4.9) in the sense of Ta.ble 4.1. We can 
express the exchange operators plllt PI' by these projection operators and 
obtain 

V(1,2)- Vet(r)II:~+ V.(r)n:n:+ VOI(r)n~n~+ V<MI(r)n~n:. (4.J2) 

This representation is especially useful in practical appJica.tions; for in
stance, in p-p scattering experiments we have only isospin triplet states, 
(i.e .• only es and ot are important). Table 4.2 shows those functions 
obtained if one operates with the different representations on wave func
tions with different symmetry. 

TaWe 4.l Connections between the different repraentations of I. centrl..l force 

,,( 1\,(1) "Olr,(1) V(P'. Pll) VOl', nil) 

i -3 Vw + VM + V,+ VH Vet 
3 1 Vw+ VI VH Vea 
I I Vw - + V.- VH Yoe 

-3 -3 - Vy - V.+ VH VOl 

The ramGI dependence of the functions V cannot be deduced from 
In 1937. Yukawa proposed an explanation of the 

nuclear force using a meson field theory. The nucleons influence each 
other by the exchange of one or several mesons. The simplest form is the 
one-pion exchange potential (OPEP). [t has the radial dependence of the 
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(I') (4.33) 

_ft/111trtt!6 l/p.-1i/m."c is th.e Compton wavelength of the pion. The asymp
totic form of potential is uniquely determined by the properties of the 

and coupling strength to the nucleonic field gl /hc~O.081 : 

- Jlic m"c' : (T( '\r(2~{ .. ('la(') + ( 1 + 3 ~ +3( ~ nS12 }. 
(4.34) 

A phase shift analysis of the nucleon-nucleon scattering data shows that 
the OPEP-potentia] (4.34) is weU able to reproduce the phase s.hilts for 
large orbital angular momenta L;;" 6 [Br 6Th]. Since these high partial 
waves only feel the tail of the nuclear force at large distances (r;> 2 fm), we 
can assume that the OPEP potential describes the nuclear force properly at 
such larae distances. For smaller distances we must, in addition" also 
introduce the two-pion exchange and the p- and w-meson exchange in 
order to obtain the medium-range part of the force. This has been achieved 
very successfully [BJ 76a, eLL 73, LlR 75~ DSB 77, Vi 78, Ho 801. so thai 
only the short-range part of the force stiU has to be fitted by a phenomeno
logical ansatz. Only six parameters are needed for each isospin state. As we 
mentioned in the introduction, this potential is not used very much as yet. 
therefore phenomenologkal counterparts have been employed until now. 
These phenomenological parametrization.s of combinations of cen· 
tral, tensor, spin orbit, and higher tennl, and or 
functions containing up to 50 parameten, which are fitted to the experi
mental ICattering phase and to the deuteron data. There: are aUrae,. 
live and repulsive components. At large distances they go over into the 
OPEP-potential, whereas at short distances they have an extremely repul. 
sive core. Several authors have therefore used a hard co,.~ [V(r)- 00 for 
I' < rC'~0.4 fm]. Others use a very repulsive core which goes to infinity only 
for r~O. Such potentials are called SOJ' core potentiaJs. 

Examples of such realistic nucleon-nucleon potentials using a hard core 
are the Hamada Johnston potential [HJ 62] and the Yale potential [lHR 
62]. The Tabakin potential [Ta 64] is a nonlocal potential, separable in 
momentum space. 

The Reid soh core potential [Re 68] is also widely used. It has the 
structure 

(4.35) 

Vc(x) and V l.S(x) have tbe simple form 
OCI -lUI' 

Vc(x)= 2: an~e -, 
"_I X 

(4.36) 

and V T(X) is given by 

V () bl {( 1 1 1) -x (Ie 1)_ TX =- -+-+-- e - -+- e 
x 3 x x 2 X x 2 

(4.37) 
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4..3 Microscopic Effective 

The bare 
preced ing sec; UQln--cc::na 
practice. 

nuclei, where the 
to be considered; (ii) 

an the 
difficult to handle in 

QlIl~njCCl. secOfllll. we can 
by its effective counterpart we have at the 

more or the ma.ny·OOdy than if 

(i) the ground state of 
the nuclear medium has 

_."", ........ nucleons; 
and (iii) effective forces n .... UJ .... ~n are 
effective forces which we will ignore m this ."",,","","'1.1 

4.3.1 Bruckner's and Bethe Goldstone Equationt 

is the 
his.. 

........ "-''' .. 1 Ii senae yet to be specified
two nucleons in free space. 

h!ll!1~"'fi·n·_ start our considerations with the uIJPJlll8lln-'~IIWlnl:a 
ClouaUCtn for the (T.mat.rix; lee Fi~ 4.1) of two particles 

IIUIbdPII,UJ. UllIIlCIiI'IiIlll ad mdbods wlW::b IJ"e 

waleD. whicb is to .. void 
bOWl!IYIIII' the ~t theory of 

to live a abort survey 
devote 1m 91n. du.pcer 

,*,boD iI pa.rtially hued on Gomes. Walcclta. 
(GWW 58} 111.04 the UI~tbook of Fetter and Wdeck.a IFW 11]. 



crolC(l'PIC: Efrective Intera<:dons I 

(Meuiah [Me 61] Chap. XIX. Sec. 14): 

I 

'#2 - (p~ /2m) - (Pi/2m) + iTi 

(4.38) 

'fIIlII!ih,i!"~ It .. kl and tG. are tbe momenta of the incoming and outgoing 
particle1J and E is the total scattering energy. 

If we consider the of two nucleons within a nuclear 
we can sbow (this in F.4) that it makes sense to 
scattering matrix E analogous to that for free particles. The "' ....... ,., ... 

for a nucleus are almost obvious: the plane wave 
have to indicel. the kinetic 
energtes of the r.b.s. 
rep1aced by the shell model energies, and 
intermediate to be restricted so that it not 
below the This latter feature comes from the fact ,bill two 

surface can only scatter into above the 
Fermi IUrface, all other levels are occupied and are !hua excluded 
by the Pauli principle. Therefor~ we get the foHowing for the 
G-malrix, which is usually known under the name equa-
tion [BG (for its mathematical derivation, see Sec. F.4). 

1 1 
Cd+"2 IftIII 

m.1I - . G= __ .I, 111 ,~ ...... (4.39) 

>f.F 

where ab .... tWin are shell-model indices and EF is the energy. 
equation is represented graphically in an obvious as in 
Fig.. 4.2. Two connecting two interactionJ the "propagator" 
I - f,. - ~). (More will be explained about Chap. 8 and 
Appendix P.) we can ignore the hi in of 
(4.39). and in case the is obviously 
checked (4.39). 

I 

k'Xk

: 

k2 ""2 
Graphical representation of the 

+ •.. 

FiIUft 4~ GrapbicaJ representation of the Belbe-Goldstone equation. 



written in the o~rator form: 

(4.40) 

where H 0 is the model Hamiltonian and 

(4.41) 

is a projection operator excluding aU occupied 
In a very qualitative way~ we can see 

stays finite for points where v is infinite. 

G (4,42) 

This is. of course1 only a very 
we in a how 

we have to however, some general ....... ,"_ 
ract that Eq. (4.39) formally very 

there are difrerenca concerning. for instancet the 
boundary condition in the case of E < f., of the wave function defined in 
analogy to the scattered wave of two free partic1es by [Me 61, Cbap. XIX 
(0): 

with 

{; LO ( Qp ) .. 1+ E-Ho G 

+ (4.43) 

- CJ1,,(r2)"b(r I)) (4.44) 

(4.45) 

_yuau,""u (4.43) formally resembles an equation for a scattered 
to the real scaUerina where the second term 

" __ ~I"!> scattered part of the wave function 
not u the relative distance of the two 

to infinity, in the present case of E < (F' this leon vani.she~ as 
to infinity. This comes from the faci that for a real scattering 

T matrix of Eq. (4.38) enters Eq. (4.43) %ion the sheU,'" 
absolute value of the relative momenta of the two particles 

scattering process have to be the same; also, must 
value of the relative momentum. As a the 

energy denominator of Eq. (4.43) for a real scattering 
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ftft'lCelli c:all zero introduce a singuJarity. In the present case this 
never happen, since we < f.F llnd therefore the second 

GI'reI.I(;~D on the r.h.I, of (4 . .39) is never "on the energy sbell," which is 
VaJllllIIllCS for of Irl - r21. A derivation is presented in a 

,..,,1- 11111'1'1"".1"" by Day lOa 67J which, however, wouJd be too much of a 
Iil:l'elllCm to be repeated here. We have thus: 

(4.46) 

Eqs. (4.43) and (4.41) we also immediately get the normalization 
'lion for a. b < f.F : 

(ljl -1. (4.47) 

alIo instructive to expand the correlated pair function in an 
DftCorrelated From (4.43) we have: 

I ~ ii .. + -2 4J CMIIlmn), 
WIn 

(4.48) 

that the correlated function contains, in addition to I components 
the Fermi leveL It turns out that in the most important applications 

the G-matri)t E lies below the Fermi level. For instance, the Bruckner 
Hartree-Fock theory (see Cbap. 5) we must calculate +";1 with i, j 

f.r We wiLl therefore treat the hard core for lms case in a. very simplified 
but explicitly solvable model which, however~ the features. 

Let us consider a large nucleus, the interior of which will be presumed to be not 
very much diHerent rrom the situation where we consider an ipJillit.ely large 
nucleus, usually termed nuclear maUer. In addition, we wiH make a further crude 
aaumption, that interaction of I. core only: 

V(r) -0 for r". c and V(r) IX) for r c. 

Furthermore, we assume that we have two distinguishable for a 
proton Ind a neulrOn. win be sufficient as a demonstration of the prinCiple. 
Let us now write E.q. (4.43) In t.he fonn: 

(E- (4.49) 

OUI cue (E-c.+'J)~1 to 

(t:t + ~- Ho)l~y> - Q,G Iii). Q,DI.Jt,,>. (4. SO) 

where for the last equality use hu been made of (4.43). The general solution of 
(450) is much harder than the solution or an ordinary Schrooinger equation 
because of the operator QF. which i.s a nonlocal integral operALor. This is best seep. 
in the r-repreeentation 

(4.51) 

In nuclear matLer it is clear that tho single-panicle wave functions that a.ppear in 
(4.50) are plane waves. For lifQPLicity we will .also Ulllme thai the sinlle-particle 
energies an: purely kinetic energies (in a surroutld.ing medium this wiU not geneT-
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ally be the CIlse). Because or translational invanance. for nuclear matter the center 
of mllss motion is trivia~ Ilnd we have: 

(4.52) 

Here the following transformations to relative and eenler of mass coordinales have 
been made: 

With all these 

P==PI +Pl, 

1 R- I(rl +r2), 

Eq. (4.50) acquires the form 

:: (pr+pl+~,+~}~",,,(rlr2) 
I .... 

(4.53) 

(4.54) 

Traolforming thiJ equation to reiative aDd center of mass coordinates according to 
(4.S3) we obtain 

~ {k2 +A,} eiPJl ¥tn(r) 

,.,. 

(4.55) 

Since - p2 + 2pp' cos 8 + p,2, we see that even under the restriction p, p' > k,.. 
can take on all values from 0 to 00. The integration over R' give!il8(P-~) and we 

can therefore also perform the " integral. We are thu.s left with the Following 
equation. 

'Ill.is equation is not only more complicated than a usual two-particle equation 
because or its integrodifterential structure. but also because the wave function has 
a nontrivial dependence on the center of mass momentum P. For our purpose. it 
will be sufficient to evaluate it at P - O. Furthermore. we can decompose Eq. (4.56) 
into partial waves [Me 61 Chap. X, Sec. 8J: 

~(r) - L -h/(r) Y 1m (8, q:;). (4.57) 
1m 

Considering the equation for the j'-wave and splitting the integral in (4.56) into two 
parts, Jr,- fr- ff. we obtain: 

til (k1+ 1.: + ±.! )th{r) 
1ft a,.l r ar 

- v{r)'h(r)- (4·"i (It, lip P: jo(pr) (CIO tiT r'1Jpr')v(r)'h(r'), 
Jo (2112') Jo 

(4.58) 
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if the lowest-order sphericaJ Beuc'! function. With ""~r)-(l/r)uk(r). we 

(4.59) 

{ 
sin kF(r - r) _ 

r-
;~:~r') }. 

(4.60) 

It is nOW convenient to illtroduc~ lhe following dimensionless quantities: 

X' III k,.· r'; 

ThiJ leads to 

k 
K- ; mv ---w 

kJ1f2 . 
(4.61) 

(;22 + K 2)UK(X)- w(X)UK(X)- LIXl dx' X(x,x')W(X')UK(X'). (4.62) 

For a square well bamer of finite height, the wave function and its first derivative 
are continuous at the edge of lhe barrier. We can be euily convinced that the first 
derivative of the Willie function becomes discontinuous at the roge as the barrier 
beight goes to infinity. is: 

(4.63) 

where A is I constant, r - C is the radius of the hard core. t: is an infinitesimally 
small positive quantity. In order to produce such a discontinuity for U of Eq. (4.62), 
the product w' u must be proportional to a 8 functlon for r- c. Since for r c the 
potential w uro and U finite, the product W· 14 vanishes oU15ide the hard core 
radius. The wave function U cannot penetrate ins:ide the infiniLe hard core (u - 0); 

there w - 00, the product w' U may be finite and we can write. with c' - CkF: 

W(x)uK(.r) "" A8(x - c')+ l(x)8(c' - x). (4.64) 

The (unction I(x) CIlD be determined (rom the requirement that (or x < c' the left 
hand side of Eq. (4.62) must be zero, since II for x < c'. We therefore have from 
Eq. (4.62) with Eq. (4.64) 

for x<c l
• (4.65) 

Since the bard core is usu.ally rather smaU (e' -0.57 at nuclear matter density 
for c-O.4 fm), we can de\'elop kernel in Eq. (4.65) and obtain Eq. (4.60) 

, 2xx' 
X(x, X)4 J;- X < c'; x' < c'. (4.66) 

With Eqs. (4.66) and (4.65). we see that lex) is of order c,2, whereas any integral 
over lex) will be of order cd. In (4.62) we can tht1"efore neglect the second term in 
(4.64) to obtain a result which is correct to first order in c'. We obtain 

( ~~ + Xl )UK (x):::::: A [3(x - c') - X{X. c')] + Ax{x. c')B(c' - x) 

-A 2xc' (Il10 dpp'jJ,px)jJ,.pc')+Ax(x,c')8(c'-x) 
v J1 

- F(x). (4.61) 
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wbere we made use of identity 

(00 dpp2i1(pr)j,(pr') _ '11 J 8(r- r). 
Jo 2r 

(4.68) 

We remark that the r.h.s. of Eq. (4.61) is only correct to in C't it iJ 
(4.671 somewhat arbitnuy whether to include the second term of the r.h.l. of 

which is of order. The general solution of (4.61), 

Xx LX 'L._ COl L .... UK(X)- """""""':::':"""'"" c' dy F(y /'\iVS Ky- c' dy F(y)sin Ky. (4.69) 

The lut I1'H<I!!ilIT1I 

and we 

x - c'. Equation (4.69) is the solution to 
insertion. 

solution (4.67. 4.69) is 
requirement (4.46) to 

vaJue. To this end we will first show that 

(4.61), III can be 

we are 
uymptoti. 

IteO:')nCl in tegrlll 
(4.69) iI zero in the limit x-:l>OO. we our 

of very c', we can take the integnJ from 0 to 00 instead 
thus 

Ky. 2~l" 5.«1 dp P'io(pc') foGO dy y;o(Ky)jrJ,.py) 

_ 2Ac' (<<I dp i'Jo(pc') W a(K 
'f1 JI 

-0 . 

........ " ........ '" because p is outaide the Fermi 
th .... l'II'!fn·rfI'. find retult that the wllve 

Eq. (4.46)) only if 

LtlD dy F(y)cO$Xy-l. 

(4.61): 

A - { cos Xc' - 10 aJ fly } 

-I 

e') • 

(4.70) 

{4.71} 

(4.72) 

which of the wave function uK(x) of (4.61) 
(4.69) for I!l hard sphere potential 

In Fig. 4.3 we show the solution t/lt (r) for 11: .. O. which reveals several 
interesting features. wave function vanishes the core. With 
(4.69) and (4.72) it can easily be seen that it approaches rapidly (by 

' ..... 4.3.. S .. wave 101ution of the Betbe-Goldltone equation for a pure hard core 
potential maUer. For deta.ih of the figure.. lee text.. (From [FW 7 J ].) 
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nomn teracting 
r). r value at 

wave function first attains unperturbed value caned the 
rlt , because it is onJy for distances than this value 

core wave fUDction differs appreciably the unperturbed 
For the yalues chosen in our example, the distance 

(4.73) 

value is more or independent of P and k, as a more general study 
of (4.59) shows [Wa 67aD, It is important to note value is 
appreciably smaHer ths.n the average interparticle d in 

defined by the expression lId] N/V-(4fp<..AJcl"dpfdr)/V{2'fTh)' 
! which would yield for the interparticle distance: 

(

317'2 )1/3 
k,.d= 2 =2.46. 

therefore, the nucleons return after a ........ ,.u""',.v .... 
mcleDen~l1e[U particle wave function before the next coUision 

of nuclear wave function therefore 
particle wave functions. 

of the independent particle 
ppl'eulng the low momentum components 

(4.74) 

lPJ:'feiilllllg the long range The nucleons thus move 
most of the lime as independent particles of 

principle. That this can happen interacting but 
dilute was first pointe.d out by (We 50]. 

We have seen that the solution of the Bethe-Goldstone Equation (4.39) 
from trivial, and one can easily imagine that the task can ........... JU ........ 

tremendously diificult for finite nuclet. where the wave 
longer waves and translational in variance is 

therefore been currently 
"""_UcUIJ:U •• ., it the projection operator QF 

been proposed, that the Pauli principle should 
in the separation method of MC)S7JtO'YI'SICJ 

,.eference spec/rom melhod of 
We do not to go into details of 

the to the text books of [Br 
74]1 the review article by Bethe [Be 71], 

like the use of the oscillator for the 
Belbe-Goldstone equation in fmite nucleL are explained 

we want to mention only one other approximation IS(.;JllCUIC 

bel'::>me very succeaful in with the 
theory (see S). the local deruity 

tion Negele [Ne 10, 75]~ originally introduced by Bruckner. 
Weitzner [BOW 58] and Bruckner, Lockett, and Rotenberg [BLR 61]. 

The that the G·matrix at any place in a finite nucleus 
same as that for nuclear matter at the same density, so that locally one can 
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4.3.2 Effective Interactions between Valence Nucleons 

Another field to which the Bruckner G-matrix has important aPlPlJc:,a 

eneclive forces between the so-called valence (for a 1N"V11_ 

see [Ku 74bJ therein). a definite example, let us take ''0 
or lIF, where we have two nucleons (the "valence nucleons) on top or I 

doubly magie nw;:leus .'0. pure shell model approximation the two 
nucleons will be in 1 leveL We may hope to a 
tion of the low-lying of 1'0 by making a configuration &01 .... """&"<" 
calculation using the I d5 /2, 2.d /2. 1 d3 /2 wb<ich just form the firlt 
shell above the 1'0 core. Such shell model calculations have been de
scribed to some extent in Chapter 2 a.nd will be treated. in greater detail in 
Chapter 8, we will for instance, that such two-valence nucle-
ons be well particle-particle Tamm-DancoU secular 
equation Chap. 

(4.1S) 

Here the ~ ~s are the single-par-tide of the phenomenological or 
seU-consistent (see Chap. 5) lingle--partic1e Hamiltonian Ho and aU the 
indices in Eq. (4.75) are in the space above the Fermi level of the 
core (e.g., the d5/2, 211/2, and d3/2 states in our example). For the 
two-particle interaction in Eq. (4.15)~ we cannot take the bare interaction, 
since has to simulate and concct at least approximately the 

u,..,.., .. .., ... of <a) the rest of the two-particle configuration above the Fermi 
level, and (b) contributions from higher configurations of the shell model 
basis like 3p-l h, 4p-2h, etc. 

In tbe foHowing we win derive an exact equation, formally almost 
identical to Eq. (4.75), With, however, replaced by an effective (energy 
dependent) interaction, calculable at in principle, from the bare 

e.g., the Hamada-John.ton potential). We start out 
of 2 that the shell model provides a complete 

wave function caD be in this 
" .... .uw .......... way to do is given by the formalimt of second 

which the expm.ion of, for example, an A +2 nucleon 
in the following way (see abo Chap. 8). (In the 

IDCluali m, II, f', " and i, j shall be l!ltates above and below the 

IA+2,'f)- :L R;,.a;!a,,+IHF)+ L R;...ia;;a, .... a,.+QIIHF) 
",<jill 1'1'1<11<,.1 

(4.16) 
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we the state IHF) of the A nucleus in tbe shell 
ideally given by a Hartree-Fock calculation (see Chap. 5), but 

hold equally for any phenomenological shell model. 
InOltCQ m, n.,.. p and i, j in Eq. (4.76). of course, correspond to the 
u. .............. potential in The expansion consists of multipaJ"ticle

multihole components ranging from 2p-Oh up to, in principle, (A + 2)p-Ah 
We now introduce two projectors P and Q. The projector P 

nn]lII!!ICU!. on 2p-Oh states which lie within the given model space and 
Q projects onto the res~ that is, on those 2p ... Oh components whkh do not 
lie in the model space and on all 3p-l h. 4p-2h, etc. components. There
fore, I Ie!: P + Q and 

(4.77) 

where t.he prime on the sum indicates that it goes over the model space 
only. We abo have the usual relations for projectors~ viz: 

p'2_p: P+-P; Q+=Q; PQ- QP-O. (4,78) 

With the aid of these projectors we can write for Eq. (4.76): 

IT) - PI'J')+ Q 11') - PR IHF) + QS IHF), (4.79) 

where R """ L'm<1I R::.,.a;: aft t the prime having the same meaning as in Eq. 
(4.77); the operator S is then defined in an obvious way by Eqs. (4.76) and 
(4.79). The SchrOdinger equation (Ho + V)I1') - where Ho is the shell 
model Hamiltonian and V the residual interaction (see Chaps. 2 and 8) can 
now be written in the following form [Fe 62). 

(- E, + Ho + PVP)P .. - PVQ 11'), (4.80) 

(- Ey + Ho+ QVQ) - - QVP!'T). (4.81) 

Here we bave multiplied the Schrooinger equation from the left once with 
P and once with Q and observed that P and Q commute with Ho. Solving 
Eq. (4.8J) for QI'T) and substituting into Eq. (4.80) yields 

(Ho+ PV:tP)PI - E,.PI'T) (4.82) 

with 

I 
Vc7f- V + VQ E., _ Ho- QVQ QV. (4.83) 

Multiplying Eq. (4.82) from the left with (HFlaIlD",. where n. m are in the 
mode! space. we can write: 

{(HFI[ a"D", , Ho] + (HFIDII(JmPV.rrP ) ~' a;all~IHF)R:'·w 
l'1'li'<.1'1' 

with 

Hal H F) - Et'l H F). 

The commutator in Eq. (4.84) is easiJy evaluated, and we finalJy obtain an 



Eq. (4.75) but 

[ ( Ev - Et') (1ft - ~ ] 

We see that the diJference between Eqs. (4.85) 
the elemen ts of the phenomenological 

replaced by of an effective dependent 
(at leut in principle) can be from the bare 

(4.83) can rewritten alan integra1 for V df: 

i 
V dr- V+ VQ E- H QVcft ' 

o 

can be verified either (4.86) 
or (4.8l) in (4.86) of V, or by tlitri/lll>4"f 

i.oto partial to the &impiest 

(4.86) 

V 4If1' we have to at the structure of the projection operator Q. We can 
,.U4II'UUCJlli.I.LIOU three contributions: (i) 2p-Oh excited where 

"' ... I .... ~"" the model (ii) two-particle excited 
of the lp-Oh are outside the model 

space; (iii) thOle which involve holes (3p-l h, etc.) The excited 
states of type (i) probably do not contribute very much, since it has been 
shown that contribution exactly in nuclear matter [Ma 69], 
and are to be fio.ite (but nudei. Their 
contribution is thus omitted in practical calculations. The two-particle 
excited states gIVe the most important contribution. as practical calcula
tions have shown, therefore we want to study how they can be treated and 
what their relation to the Bruckner G-matrix will be. 

We shall caU that part of Q which to the two-particle 
excited states (ii) Qlpo Retaining in (4.86) onJy the Qq part and expanding 
in powers of V, we obtain up to second order 

(mnl (4.81) 

where tau is the upper lim.it of the model IpSCf and D,," ... :z - E~ in 
accordance with the footnote on this pale (no ·problems with linked or 

terms appear at this level). This shows that part of the 

.n.::tM i.""IIIlI'.tIiiWl defiMd .". 2qI. (4.13) I.Dd (4.!!IS) ~ ualblbd 
CGlatril__ 'fIIII>tIIl'II'irInrmllll' tbeIe __ m we can &bow that OM OD1IbDI 

Ie (4.15). where. it ~ by the ~ 
core. The IIl'pDloent £"A cbe ckDominator 0{ Eq. 
-(Ho- E/1') and only Lbe contributions of Eq. (4.8.3) 

hAve to be: iluo I.ClClOW!IL However. 00 integral equation for ti'ti3 quantilY is known 
(OOIDpue Eq. (4.M)). More de1.aila of thil procedure can be found in the review articles by 
M"Fulane (Ma 69]ln(\ Barrett Illd KiTSon {BK 13). Bn.ndow rBr 67&] has shown that we 
co also gel rid or Ihe of the d'fcctive interaction by introducing Ihe 
~ "folded di.a.gram" (sree lJB 71, The of these ral.bcr involved 
techniques .... ould go beyon<l !..he scope of Ihus we refer the interested reader 10 !..he 
.......... , ....... , literature. 



equal to the Bruckner G .. matrix (4.39) with t;F 

( (4.88) 

whole intention and philosophy of rewriting the exact Schrooinger 
form (4.8S) is based on the hope that Veff is an operator 

physical of two valence nudeons can be calculated 
some perturbative way. One must therefore 

... nDlle that V.rf behaved in the sense that it has, for instance, no 
.. + ....... ,...ft energy dependence. The energy dependence of G in Eq. (4.88) is 

neslected and replaced by 

(4.89) 

Also, aU the other approximations commonly applied to solve the Bethe
Goldstone equation should not influence the result too" much for 
example. [Ma 69] and [SF 74D. Kuo and Brown [KB 66] have solved the 
Bethe-Goldstone equation in the harmonic oscillator approximation [SF 
74) for IflO and HIF using as bare interaction the Hamada-Johnston force. 

force was subsequently used in Eq. (4.85) for a diagonaliution in the 
model space where the experimental round in nO have been used 
for the single particle energies. In Fig. 4.4 we show a of the 

2 

~ 
~1 

-2 

-3 

-I. 0" 

Exp 

--, ... 

--3"" 

==~ 
--I:" 

--3'" 

--2· 
====r. 

F1p.re 4.4. The spectrum of ISO. The rirst column the experimental values. 
The second one was calcuLalcd with the pure G-matrix. The third also inc1udes the 
polari.z.ation term (4.90). (From [HK 72].) 
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low-lying spectrum of ''0 calculated by these authors, with the spec
trum of the experiment; in Fig. 4.5 we show the same for the case of 21Opb. 
The lauer calculations weore performed by Herling and Kuo [HK 72] using 
in principle the same method as Kuo and Brown. Their model space 
""-'"UllYVVU of the following single-particle states: 

neutTons: 2g9 /2 1 ill /2 Ij 15/2 3d5/2 45' 1/2 2g1/2 3d3/2 
protons; Ih9/2 2[7/2 lil3/2 2/5/2 3p3/2 3pl/2 

As can be seen from Fig. 4.4 and Fig. 4.5, the 0·' these two 
calculations with experiment is not very satisfying and the can 
be considered as qualitative only. The disagreement is probably not due to 
the various approximations which entered the solution of the Bethe
Goldstone equation. but rather to the of other configurations like 
3p-1 h, etc. In both of the calculations mentioned it has been shown that at 
least perturbative inclusion of 3p-lh configurations improves agreement 
with experiment very much. The procedure was to calculate the contribu
tion to 'Vert from Q3f~11I in Eqs. (4.83) and (4.85) in second order perturba
tion theory (omilting the unlinked terms. sec foc)tnote on page 166). is 

-~6 
--I. 

--2 

-9.0 
-0 

ElICp 

--I 
----110 -10 --10 

--0 

--I --1 

--2-2 

--0 

--0 

.J.p2h 

spectrum of l"Pb. The fint three spectra ha.lte the lime meaning 
of 4.4. In the founh ap«trum also, 4p-2h polarization termJ were 

account. Also indicated is the free two-particle energy. (From [HK 12].) 
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not too hard to carry out 
result 

our definition [(4.83) and (4.85» and the 

( --.............;.~-- -(n'+-+m')} - (mHn). 
+t:, 

(4.90) 

ext'ra.l(J~n we DC'JIiUCJCleo ? ....... "......, which give a renonnalization of 
energJcs, 

-(171' ~ fI'), ......... _ ......... 
of the structure (VeU)_. ;w,.' 

believed that these terms are already 
experimental 

calculations. Usually one ...... r' ............ ... 

played in Fig. 4.6 (more about 
Appendix F). The second order 
because of the hard core potential. It can 
consistent re-summation of higher 

by their corresponding 

used in the specific 
(4.90) graphically, as dis. 

in Chap. 8 and 
be used as it stands 

[BK 67a] that it i$ a 
bare interac

order contribution 
of the I h states to Veff (4.90»). We wish to go into the 
V~,"QU. of such arguments here u", ... """"", ... they would lead us outside the 

of this book. In 4.4 and results with the 
inclusion of these "renormalized" 1 II contributions (the 
"core polarizalion'') and, as can the with experiment 
proves in both cases If this were the whole story. the results 
would be very satisfying, we would the low. lying part 
of the spectrum of these nuclei Unfor~ 

tunately, things are far from being 
that inclusion of higher order 
effect is shown in Fig. 4.5, where not only 
included. More systematic but complicated 
been performed by Barrett and Kirson 18K 
(K.Z 70). which show that great nuctuations 
different higher order temu are observed 
conclusions can be drawn; in particular, it 
second order 3p-1 h inclusion gives 
One may, therefore, draw the conclusion 
effective interactions is It ill not at a very 

no definite 
""' .... , ... u . ..,. unexplained wby the 

with experiment 
.Pr,~C! .... nt"\II'" theory of 

Neverthe)a. t we come back to two fonnal points 
The first concerns the energy dependence 

all calculations dependence 
we bave already stated, this is. of 

r--~---t 
FWft 4.6. Graphical repre~enUU1(.n a core term. 



dependence is really weak. However, it can a 
function of E. which lie dose or even in the region of me low .. lyiq 
of interest; for example. is the for "0, where a coUective 
pole comes very low in energy [Sch 75]. In case, a pole 
teea ted s.epara (ely, since it gives rise to a strong energy dependence in the 
region of interest. The states al80 cause difficulties in the case of the 
diagram formalism footnote on page 166). where {hey have been 
called in/ruder siales {SW 72, 73]. There. it turns out the perturbation 

of the corresponding effective inter-action in powers of the G-matriJt 
very likely diverge in s'Uch cases. Special techniques have been developed 
to handle this problem [SW 72, 73, HLR 74]. 

Up to now we have considered only two-particle systems, however, the 
can be made for the case of more than two valen'~e 

"u ......... _~. we do not want to go into these details . 

. 4.3.3 Effective Interactions between Particles and Holes 

prOOICl1II of effective interactions between particles a.nd holes arises mainly 
in the Itudy 0{ vibrational lUtes of nuclei Quap. 8). However, from 
a point of view been much less than the 
intel1lCtion between valence nucleons for e:umple, lBK 69. KBB 701). One can 
argue thJlt it would be desirable to c:xpraa the effective ph force by Ii 

ICfiOfjCOJ)llC G-mauix order corrections, like the nn ... .-. .... 

lion diagrams for the This can, in fact, be achieved. The 
discussion is complicated by the fact that, for the part, the random phase 
approx..imation. (see 8) is considered the appropriate theory a.nd not the 

approximation, for the ph However, in order not to compli-
too much we shall ourselves to the case. 

Da.nc:oH equation (see Chap. 8) has the following form. 

(
£TDA. _I + t.). CIA _ '" 

II ....... i l1l'i1 .::::.. 
(4.91) 

If} 

This equa.tion, where m. n (I, j) are indices above (below) the Fermi level, is usually 
solved tn a model ,pace with. SIly, one below and one above the Femti le .... el. 
[0 analogy to the case of two valence nucleons, the phenomenological interaction 
entering Eq. (4.91) bas to simulate the effect or the Ip-I h states nOl included in the 
mO<.leI space, and allO 2p~2h, 3p-3h. etc:. effects. 

for a shell nucleus we can the following expansion of 
lach I. vimtioulltale (ue Chap. 8): 

1,,)- L C!,a:4tIHF) + ~ C!., t-a:a.+41I'!rIHF) + .... (4.92) 
MJ "..<n 

i<J 

However, the procedure for arriving at an effective tnterl.Ction starting from Eq. 
(4.92) hu to be IOmewhat different from .t't1e valence cue. Pint we 
introduce the projector P which projec1.l onto the whole Ip-III 8ubspa~ that is: 

P- ~a;aIIHFXllF1a/aM" 
(4.93) 

Q-I-P, 
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with no ........... '" on (he sum.. Using the same at Eq . 
(4.85), we obtain the ph cue 

- £:1' - t". + ~ ]c:.- (4.94) 

v." is by the same as in (4.83) with, however, 
the operators P and Q given by Eq. (4.93). The {"irit to Q 
comC';9 from the componel1ts~ that is, from Q:q-lh' Calculating contribu-
tion of this term to second order perturbation theory in V. we VUL«.U.I 

( (mj. til ) - 6mJ, m'ff' -:::::-------
m'<I'I' 

-L (I 
r<j' 

I 
V_A', Nt'~------

"7 -ill + •. -11. ,r:r "'7f .., "W 

(4.95) 

terms wh.ich renormaliu single-particle lire not 
term on tbe r.b.s. of Eq. (4.95) together with the first order term 

of V rff two tenns of the G-matrix: 

(4.96) 

Indeed, we can verify that to each. order in V there exists in V 4Iff a term which 
ITe!m<lnCls to correspondinl order in Eq. (4.96). Therefore. Vefl consists of I 

first term which is the G-matrix (4.96). The second term on the of (4.9S) 
represenlS which num.erically are round to and 
therefore may be neglected. The third and fourth term are analogous to the 

4.6) for the case of two vaJence nucleons . .". ... , ......... 
as they stand, but we can show thAt it is a consistent 
order terms to replace the bare ...... .......... elements 

The polariz.alion diAgram in the ph cue is 
we have a G-mltrix 
difference belwcen the and pp ca.l. In 

DOW convert (4.94) to one in a model pit space. 
this purpose we 
ph space and 

P into a part PM which projects onto the m.odel 
which onlO the rest of tbe ph space: 

p- PIII+PR,' 

(4.94) that are outside the model.pace with the 
amoa"~D ............. ' ... h,"'" nl'lllM'lIIlUV formalism (Fe 62}, which we have already 

used (He, for (4.80) I.Il4 (4.8l)11eads to I IDA equation in the 
model Th~ appearing there can be expanded up to 

FIpre 4.,. 
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lOCOed .order in the G·matrix. The term whicb coms 
Fi •. 4.8. where it sbould be appreciated 

imaginary 
reuon fOT this--as in more detail in Cbl.p. 
mates gr.ound Slate correlations and polari.zB.ti.on .or screening terms have to be 
introduced t.o reduce them. 

Flpre 4Jl. Second .order contributien t.o in the model ph space. The broken 
in termediate indkate that te sum .only OYer nates not 
in the model 

Witb these we wish te .our corwiderati.on .of lbe mic:rOlllC.opic 
effective interaction and, in the next Itcti.on, turD t.o their pben.omen.ololPcal 

4.4 Pbenomenological Effective Interactions 

4.4.1 General Remarks 

In Section 4.3 we IIW how effective forc.es can be defined microscopically 
and how difficult it in practice to caJcuJate them and get quantitative 
agreement with experimenL Consequently~ from the early or nuclear 
physics the use of phenomenological forces, which contain a certain 
number of fit parameters adjusted to reproduce the experimental data 
been adop~. In many cases Ihm has turned out to be extrem.ely 
succeuful and, using only a. few parameters chosen once and for aU. much 
ex.perimental data covering quite a large range of nudear muses can be 
explained. Therefore. it is aU the more disconcerting that a really s.alisfying 
microlCOpic theory able to expiain the success of these phenomenological 
forces somehow still 

There exiltl t of course. an enonnous number of different phenomeno
logical interactions that have been applied to problems in nuclear physics. 
Each of them has been used for a specific problem and their range of 
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lucceu varies very much. It Hes outside the scope of this book 
a complete picture. and we will restrict our discussion to certain 

properties and the presentation of only the most successful 
of them are only constructed for a special purpose, as, for 

_ ........ 1 .. ,.""1 for Hartrec-Fock calculations (see Chap. 5). which calculate the 
nuclear field, and bulk properties of nuclei such as binding 
energies and saturation densities. Others serve as effective forces between 
valence nucleons or between particles and holes (see Sec. 4.3). Therefore, 
we must be very careful in comparing these different types of interaction, 
even if, as we shall see, they look very similar in mathematical structure. 

As we discussed in the last section} the effective interactions are used in 
a certain sbeU mode1 configuration space: the model space. We therefore 
have to expect a certain dependence of the effective interaction on the 
space, that is, different interactions have to be taken for different sizes of 
the model space. As we have seen, the microscopically defined effective 
interaction is always energy dependent. while most of the time there is no 
explicit energy dependence in the phenomenological forces. It is usuaUy 
sufficient to put aU these dependences in a varying strength paramet.er. 

It is evident that we prefer to choose the analytical form of the effective 
interaction to be as simple as possible. For example. it is often assumed 
that the effective interaction obeys the same in variance principles as the 
bare nucleon-nucleon interaction (see Sec. 4.2). This is certainly not 
always true. For instance. we should expect the renormalization procedure 
which describes the transition from the bare nucleon-nucleon interaction 
to the effective one to depend on the actual density ot the system, that is, 
we get a different force in the interior of the system than in the surface and 
outer regions. For a sheH model calculation in a fixed weB. we should 
therefore not expect a trans1ationally invariant residual interaction. 

We know that the range oj the nucieiJr force is rather short. We have seen 
in Section 4.3 that this true even for the range of the effective G-matrix. 
The simplest ansatz therefore consists in using a zero range force 'U.1""",,,,"" 

radial dependence is described by a 8-function. In fact, forces turn 
out to be rather useful because they are simple to handle a,nd they describe 
many nuclear properties quite well. More realistic forces, however. need to 
have a finite non-vanishing range (see [AS 71, Sch 72b)). Afinite range can 
be simulated by a momentum dependence. To show this we transform a 
function VCr) of the relative distance r-rl-r1 into momentum space 

(PI I f -~(p-p')a'V( )d3 :;;: eAr r. 
(2w1l)3 

(4.97) 

We see that a a-force is a 
p-dependence in momentum .).I'C'~ 
is of the form 

and that any range represents a 
The simplest rotationaUy invariant one 

(4.98) 
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V(r) - Vo"(r) 

4.4.2 

use only cen tral part 
aet:>enaeJrlce V(r). Some simple "''"'' .... '" 

V(r) - Voe 

-'I'. 
V(r}- - VI;) 

I-f!' 

V(r) - ( r ) 

The depth Vo s.rtd the 
data. One finds Vo~50 MeV and 
the pion is 1.4 fm). 

For the r-dependent coefficients 
dependence is usually asaumed; 

(4.33) or 

(Gauss potential), (4.100) 

(Hulthen potential), (4.101) 

(contact potential). (4.102) 

arc 
1- 2 fm (the 

to fit experimental 
,,,"" .... , ...... wavelength of 

VCr) i.D Eq. (4.20) the same radial 
their strength are adjusted 

to fit data. Here we not wisb to which one of the 

.".. ...... ,._ for the ......... '~.U, ... mixtures 

i 1 1 I 
I 0.6 -0.6 -I 
I J 0 0 

57] I 0.6 0.34 -1.78 
[VF 51] i 0.634 0 

I 0.46 0.14 -0.4 
I I 0.6 -0.6 0.6 
II l 0.4 0.2 



preferred; we only to some 
... <iLL, ... _ of the ooefficients (Table 4.3). 

(4.103) 

type have been used by Kallio and Koltveit 
Clark lCE 65]. The lauer authors also include a 

spin orbit force. 

4.4.3 The Interaction 

1956 Skyrme [Sk SO. 59] OfCIDQ4reG an ene<;tivc 
three-body tenn 

Y(t. j) + ~ V(i. jt k). 
i<j<1c 

a 

(4.104) 

he used a short-range ... "" .. """'"." ..... the form 
two--body part: 

V(l, -'0(1 xoP f1 )6(r) -r,) 

ttl [ 6(fl - f2)k2 + k~(rl - r2) + 12k6(r] - rl )" 

+ W 0( 0'(1) O'(2»k 8(r. - f2)k.. (4.105) 

where k ... (I jA)P the operator of the relative momentum 

I 
k - 1i (V t - V 2)' 

For (he 
fonn 

V(l~ 

Skyrme also assumed a zero 

(4.106) 

force of the 

(4.107) 

The nve • It. 12 , '3' xo-and Wo were adjusted to the 
mental UU..l.\.U'J~& lI"!I' ... ·f"cn radii. There are sets parameters 
called n. etc. Sec. 5.6) resulting We 

HI IBFG 751: 

I] 28.75 (I - 395.0 MeV 

- 95.0 MeV fm3
; I J - 14(0).0 MeV fm6

; (4.108) 

Wo.120 MeV fm5
; 

The 10 describes a pure 6-force with a 
simulate an eUective as in Eq. (4.99). The fourth term 
represents a orbit interaction. It ca.n 
from a normal orbit term [see Eq. (4.23)] in the short 

In .see tbat this force has been 

; 11 and 12 

Eq. (4.105) 
[BS 56) 

limit 
extensively in 
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calcuJa bOlll. 
body term (4.1 (4) turns 
two-body interaction·: 

Such a dependent term can be 
logical of the p-dependence of the 
interaction. This interpretation is preferrable to the 
r oree a three-body interaction, we know that 
inleractionllU'C rather weak in nuclei. 

There are three realOBI why force 
ten years: 

[VB 12] 5) were able to _, ... .rwt'l'U"' .. 

IA"YI"I'liHLIi OltDomg ... n .. ~_ over the whole periodic table with a 

sections. 

at the lame time, the LlYlJW~1IW 

with the usual non-denlity depen· 

COI!}nt~JiOn between 
G-matrix discussed in the lut 

mathematical form of the force is extreme]y The 
6-functions simplify types of calculations 

There are similar of interactions originally proposed by Mosz-
kowski (Mo 70), the so-called modified 8-interactiMU (MDI). They differ 
from the Skynne interaction by the absence of the IJ-term and the spin 
orbit force and by a different p-dependence (f a < I ).t 

4.4.4 The Gogny Interaction 

Despite the great success of the Skyrme interaction, it has been argued mat 
~ .... ""' ... - might not be able to simulate the long range or even the 

parts of the realistic effective interaction. In particular, 
of the force are not able to properly 
in nuclei (see Chap. 6), therefore Gogny [Go 75b] 

and '2 of the Skyrme force by a sum of two 

true for S)'ItemI without apin M.tUl1ltiol'l. In lhI: th.r.-body 
~rJI'W!' roree, iii purely and spin 

1iI_;~· (momllD~etd1:a. This the ~ ~ And 
""", .. ltD" f'IlrftII'lIIIIIrtiil>lI atMt a ckn1ity 

DVIl~lUn)' iD the 



exchange miJ\tures (a force wbich was origi
by Brink and Booker [BB 67J) and got 

2 

V( 1,2) - L e -c~ -,><)31111 (Wi + BjP· - HiPT - M/PflP'" ) 

+ iWo(a l + al)kX 3(r.-

+ I](t + pili )8(rl-r;Z)pl/l(i(r, +r2)}. (4.1 JO) 

were adjusted to the properties of finite nuclei, and for 
nuclear matter (Table 4.4). 

TaMe IliA Force parameten of Ibe Oopy fORe (nl) 

Wi B, HI M,(Mc=V] Wo'" + liS [MeV fm'] 

-402.4 - 100. -~l -23.'6 'l'" 1350 [MeV rm4J 
l.l -21.30 - 11.17 I 

4.4.5 The Migdal Force 

This force was proposed by Migdal [Mi 671 in his theory of finite Fermi 
systems. Based on the interacting quasi.particle concept of Landau·s 
theory of a Fermi liquid [La 59], Migdal introduces force to ."-,,, ... 
the eollective excitations in nuc1ei. t 

Starting from the ground stale of an even-even system. the 
particles are defined as the low.lying excitations in the neighboring odd 
mass nuclei. The ground state of tbe even system contains no q\J.8.$i
particles, and excited states are cbaracterized by the quasi-particle occupa
tion numbers n}t.. A cbange of these occupation numbers by the amount 
6nA causes a change in the total energy Eo of the system by the amount 

8Eo L(~{jn).. + 21 2: Fu ,6"}t.6nJ\', 
>. U' 

where (~ are the energies of a quasi-particle A in the absence of any other 
quasiparticle and F>,}..' is the w-called quasi-particle interaction. Migdal 
introduces an effective particle-hole interaction F'" and an effective par
ticle-particle (or hole-hole) interaction F4. 

In an infinite system with translational invariancet the quasi-particles are 
characteriz.ed by the momentum k, and Landau could show that the 
ph-interaction F(k, t') is given by the second derivative of the total energy 

.. Sim.ila.r deMit}' dependeDt effective interactions have been used Ul [Kr 70. ZR 71, RPS 
12. lMV 7), Rap 17j. 

, It would be beyond the scope or book to so into the detajls of this Lbeory. The reader 
may, however. find lOme buic ingredients in Section F.7. 



At the Fermi 

functions CJ?. aeJr>eIl(lS on four it 
hal been proposed (0 derive to Eq. (4.1 Jl), from 
the exact ground state 

it 
an indirect relation may 
energy calculated with 

---- (4.112) 

relation. 
a different 

theory in the limit of a motion 
from the assumption that the 

(I.e .• p2,.p; see Sec. 5.3.3) and that 
a functional EJp], obtain in this 
the second derivative of Eolpl with 

(4.)1 
instance. the Skyrme force (Sec. 4.4.3) 

force directly, even though, as we 
the approximation pl'.::::::!p, however, 
by differentiating the ground state 

interaction twice with to the 

Like the Skyrme M.igdal force an expansion in momentum 
However, contrary to potentials suitable for Hartree-Fock 

(such the pZ.tenns do not play an role, 
as the Migdal have to guarantee saturation (they are 
constructed to different physical anyway). In 
calculations it is to take into account only the constant 

cO()(aJlDate .1,oQ,..'",. On 

V(1. 2) .... Vo8(r. rz)(/ + /,'f'O>.,.(l} 

which has to be adjusted to the con,figuration 
region Vo-380 MeV fm'}. Guman and Birbrair 

pn:IJ.)OlMIQ to take into account the different interaction strengths 
nucleus and the diffuseness of the nuclear 

of the constants /~ p, 
j'')p(r), (4.114) 

" 



a 

I 
1>(1")- I+exp[(r-R)/a] . (4.115) 

a0411UODJll parameters R and a represent the radius and the diffuse
of the nucleus,. Contrary to a Hartree-Fock calculation 

witb a interaction (see Chap. 5), the denl,ity (4.114) is 
adjusted self--conlislently. Therefore, the Migdal force violates 

'II""'"'''' invariance. Of course, this is no drawback. since the renormalization 
pl'ocedure is connected with the underlying single.panicle poten
tial. which also violates translational invariance. In fact, a proper choice of 
the effective residual interaction should restore this invariance (see Mi~ 
keska and Brenig [MB 69D. From this condition one can deduce additional 
relations among the parameters f. /', gJ g' [NW 72, 74J. 

The Mi,daJ force has been widely used to calculate low~Jying collective 
vibrationJ in nuclei within the framework of the random phase approxima
tion (see Chap. 8). The effective charges caused by such vibrations (see 
Cbap. 9) provide an enormous amount of experimental data with which to 
adjust the parameters In, fU. Fin, t"''', g. g' for the particle-hole 
and particle-particle forces (for details~ see [RBS 73, BSK 73, BER 7.SD. 

the partide-bole forc:e Ring and Speth [RS 74a] found: 

t n =0.0685; 

pU-O.465; 

-0.3315; 

g-0.575; 
r"- -2.165; 

g'-0.725. (4.116) 

It is important to Dote is effective ph-force which does not have 
to be antisymmetrized 76). It shows strong attraction outside the 
nucleus and is close to uro inside the nucleus. 

4.4.6 The Surface-Delta Interaction (SOl) 

Like the Migdal interaction. force is thought of as an effective residual 
interaction among the particles near the Fermi surface. The main physical 
idea is that the nucleons move almost independently in the nuclear 
interior. In fact, the residual interaction of Migdal is rather weak inside the 
nucleus. Most of the collisions occur at the nuclear surface where the Pauli 
principle loses its importance and the nucleons feel the strong attractive 
interaction [OM 65]. The behavior of the force outside the surface is again 
not veT)' important because there the wave functions have exponentially 
decaying tails, that is. the probability of finding a nucleon there goes 
rapidly to zero. Therefore, it is a meaningful approximation to restrict the 
whole interaction to the nuclear surface and to define Ihe so-called surface 
de]ta interaction: 

(4.117) 

Vo can still depend on the spin and isospin coordinates in the usual way 



(4.20). f~ 

sion of the 8-function in LeJi~enlilr 

where 911 is the angle between the vectors f, 

theorem of the spberical harmonics [Ed 57, 

(4.11 

and 
we get: 

B{r -
V(1,2)- - VoL __ I --

1m "I 

Ro) 
--- y 1m (II;tCPl)' (4.119) 

This is an i.nfinite sum over separable terms. a spherical 
matn", elements coupled to a good angular momentum become 
simple because only one term of the sum in (4.119) This model 
force has been applied [KS 63, PAM 66, 68 j VPK 69] in many 

been an efFective 

strong interaction. 

4.4.7 Separable Forces and Multipole 

10 ........ " .... "' ... 

momentum quantum 
by the value 

wave functions 

In the iast section we saw that the surface-delta interaction 
simple to handle because of its separability in a model 

We caU a force separable in panicle hole direction if it can written i.n 
quantization in the form I: : mea.ns normal in the sense of 

(C.SO}l 

where 

V : Q+'Q:, 

Q = 2: Qklk20k:°1r.3 
klk:t 

is a one~partkle operator. Acting on a 
ftlIfrJ1~I.'fllnn of ph-pairs. A force 

p+=l'" o+a+-2 .t::.J Pkl/(l k. kl 
It\k2 

a operator. Acting on a 

(4. J 20) 

(4.121) 

a 
nO->Qll'rcllon if it 

(4.122) 

(4.123) 

it creates a 



can 
an ansatz as (4.122), however. 

the matrix elements of with a 
are of the same magnitude as those ca.lculated 

MlC::tolSCODIC <I-matrix with polarization terms 4.3 and F.S) 

the question of separability somewhat further and 
a general phenomenological effeclive force without and 

IIOID1D aeD4~nClen.ce. The force shall depend only on the relative distance 
nU.:lecml. therefore we can expand the foHowing way [La 

64}. 

(4.124) 

(4.125) 

a v VoB(r)~ we find that V, does Dot depend on I: 

6(rl - (2) 
Vo---

'1 
(4.126) 

In (4.124) we have written a genera] force as an sum of 
each of which are separable tbe angular As we see from the 
6-force, we can.not expect expansion to converge rapidly tor a short 
range In fact, we obtain an estimate for the effective of 
component in expansion (4.124) if we restrict ourselves to a small 
region where '1-:::: ,. The function p/(cos "I'J major 
contributions only in the region 0 <; 012::5 1/1 (Fig. 4.9), that V, (4.125) is 
smal1. if the of the potential V('Il) is large compared r /1. that 

Fll'ure 4.9. 
between r. 

or degree I as Ii function of the angle 912 
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the larger the strength of the high i-components VI' the 
the: force. I n a with zero range all l-compol'leDti 
same relative weight. 

We now come back to 
(4.124) and the 6-force (4.126) are not ......... " ........ 
dependence in VI('I' 'J. On the other hand. if one aJlUlna that 
interaction is surface peaked as tbe SOI·interaction (4.111). it then be-
comes a sum of separable terms of Lhe additionaJ factor 8(r - RO). 

A more general 

-v I 
V,SDI(I'I'2)- ~B(r,- Ro)-6(r2- Ro). 

" '2 

... """"_ ...... of this kind is 

V,(r"l)"'" h(',)'h('2)' 

(4.127) 

(4.128) 

One often CH()054:S J, --1' I 

I 

obtains the multipole-mu]tipo]e forces 

V- -"2 2: XI : 
1m 

(4.129) 

where XI are and the muhipole operator 

(4.130) 

H we take into account only the components with smaU I-values. we obtain 
long range forces. The most well known is the quadruple-quadruple force 
lEI 58~ KS 63]. We shaH see in Chapter 7 that it can be used to describe the: 
quadrupole deformations of nuclei self-consistently. 

Again we must emphasize that these multipole forces are onJy to be 
considered as an effective force between valence particles within a re
stricted configuration space. If there are many such valence particles we 
can apply a Hartree-Fock approximation for them· (sec 5). How
ever, such HF-cldculations with muJtipole forces for valence nucleons 
should not be mixed up With the basic HF-calcuLations for the binding 
energies. 

The expansion (4.124) turns out to be very useful for the lon.g ran.ge pari 
of the effective interaction. because in this case the runctions V, become 
smaU for higher I-values. To obtain I similar description of the shorl range 
part one uses a different kind of expansion. We shall restrict outselves to 
interactions between nucleons of the same type (for the treatment of short 
range correlations between protons and neutrons, see Sec. 7.5). 

We now consider the general expression (4.3) of a not local 
force V(rl.r2,rltr'~. In the case of a local force, we have rl-rj and f2-r;, 
and tbe (4.124) is made in the variables f., f 2 • Now we require 

c!u(:ulaUOllll. the exchange term (5.43) to the HF potential is U&Wl.Uy neglected 
6&" Ma 14], 
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'1"'" and We expand in rl' r~ and obtain 
1lU114U<IU to (4.124) and (4.1 

8(f l - r:z)c'J(rj ri) V(rl' ri) 

- 8(r, - '2)8(r; - r'2) L V'('I' r;) rim (9,41"') Y'!1(8 1 (4.131 ) 
1m 

" - ~ ~ Ii already restrict us to a short 
true if the two nucleons are at the same place. (This 

6-force. because we are allowing for 
expansion (4.131) seems to be 

However. we have to 
wave functions. As we shaH 

term (4.131) a contribution only 
particles are coupled to spin /-1. 

".,. ........ _ j.s.heU. instance, we find that their wave 
__ "',j'''''''" spatial overlap for /:= O. In this the angular of their 
wave function fonn: 

I 

I j}/=O. M- 0:: L ( ),"Y'm(O,) Yi_m(SJ2)cx PI 812), 
m- -I 

(4.132) 

(Because of the short range force~ we assume only the to be 
important.) we find maximal interaction (or /-0, the 

momenta JI and J2 are antipamHel, and we can understand 
that the expansion (4.131) is meaningful for short range interactions. 

Again, if we replace the non~s.eparable. radial term in (4.131) by a 
aeparable ansatz as (4.129). we obtain 

"'" - L G,P';'Plm- - L G/P/· PIt 
1m 

where is time-reversed state to In deriving 
(4.131) we must care in handling the spin coordinate 
operator 133) not separable in Ipin space a"""""''''' 
a·force however, we always have SJ "'" 

makes it to derive (4.134). 

(4.133) 

(4.134) 

(4.135) 

(4.134) from 
the 

of the 
, which 

We are now able to calculate the matrix elements of a a~force in a u ..... _ ... 

j-shell, the singJe--partide wave functions are given by 
- . We construct OpeT8tOrs Ai~ with momentum 
1,M: 

(4.136) 



and use (4.124) and (4.126) to obtain 

V6= - L V,(l)LA1t,A 1M ! 

1 .... 0.2,... M 

with" 

Y, 

where R4 is the radial integral 

R4= fooo dr 

From (4.137) we see thai only the Ilh term in 
into matrix element coupled to 1- I. In 

maximal for J = 0 and with 
mOlt imporlant of the force (4,134) is 

Table 4..5 The relative magnitude of the matrix elements V,(I) 
(4.1 

V,(I)/ 

)-7/2 
9/2 

JI/2 
13/2 

4 

0.238 0.117 
0.242 0.126 
0.245 0.13J 
0.246 0.133 

6 

0.058 
0.075 
0.082 
0.087 

8 

0.040 
0.053 

10 

0.060 0.038 0.019 

(4.1 

avoid complicated formulas, one usually introduces a slight modifi
cation of the Condon-Shonley phases (see [Ed 57D! the so-called 
phases. and defines for m 0: 

I nljm>cs , 

_( _/+J- (4.138) 

The time reversal operator T [Eq. (2.45)] has a very simple form in 
case. For m 0, we find 

- Inlj- Tlnlj-

The 1=0 part of Eq. (4.134), the so-called pure pairing force, bas 

1 
4 

(4.139) 

(4.140) 

again the time reversed state to k and the sum runs over 

of J. and 

I I 
-1/10 



mort range 
6). It is again 

it should only be applied a configura-
force constant is connected with the size of 

generalize this simple model 
the expansion (4.131). 

model force for beavy nu.clei has been obtained by 
a quadrupole-quadrupole a.nd a pairi ng force to the 

force [KS 63, BK 68]: 

(4.141) 

correIa lions and 
is very easy to handle (see 

contains X and two different cona 

G" for protons and neutrons. It sbould only be applied in a 
larger than one major shell. actual values of X and 

see [KS 60] or [BK 68]. 

4.4.8 Experimentally Determined Effective Interactions 

II bare Ilucleon~nudeon 
to determine the matrix 
directly from the 

are attempLs to derive special from spectra of 
These are rUldei in one reason to believe that their 

Itructure is determined only by a few matrix e.lements whose number does not 
'IiioA'-1!;;1!;;'U the number of the obs.erved [Ta 62]. We may take, for example, the 

sheU nuclei. where the J7 /2 &beU is in the simple particle 
One assumes in this case that there pure f7 /2 configurations 

10 the double magic core and Z > 20. These levels 
CODlDletCIV deten:nined by the eight «j1 /2)lITI VI(j1 /2rIT) 

I •... ,7 (T-l for I even. T-O for I 
[MHZ 64) elements from the 

nucleus 41Sc. It contains one neutron one proton outside the 
............ I,U ... JLUK. to angular momentum I the interaction energy 

V(J)- hll VIJIJ,.I 

- B(J, "'Sc) - B(I, 41Sc) - B(J, "lea) + B(J, .coca), (4.142) 
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where B are the 
or the ground state of the other 
levels aDd electromapetic of the other J7 / 2 
nucleons can be reprod~ced qwte well. Howner, I. more corllpllcalad 
structure (e.g., holes in the.eoca core) are also encountered and it not m('tWll 
much they mix with the pure f7 /2 configurations. 

[Sch 71b~ 72b] and Molinari et al [MJB 75] have made a more thIIIn_1 

investigation of many such simple nuclei with pure 
nucleon is in a shell jl and the other in a &b.eU h. The coupliq of aAJPIIIIr 
momentum yields multiplelS with - hi'" 1 '" jl + jz. The interaction Dl'(I<IUCII 

splitting of the multiplets. It is to plot nol V(I) (Eq. 4.131) / 
rather the dimensionJes:s ratio V(J)/ Vasa function of the "'overlap anp .... 
where V is the average two-body interaction energy 

v- 2:(21+ 1)V(I)/2:(2/+ I). (4.143) 
J I 

angle between the orbits of the two valence nucleons 

1(1 + 1)-Jl(jl + 1) - h(h,+ I) 
COS912-~~"r'-

2(jl{J1 + I . [h(h+ I)] 
(4.144) 

it meu~ overlap of the two wave In plot (Fij, 
4.&0), the points for different nuclei lie neaJJy OD the Nlme curves. As aft; 

example we show the plots for nuclei where the two valence nucleons are in 
same orbit (Fi&- 4.10) and them with the rorrespoDding values for a pure 
'·force. 1) we again find that the absolut.e int.eractiou 

r> ... 
> 

-I 

IDENTICAL mUlIT SPECTRA 

\ 
x 

T·O 

(a) 

> 
-I 

-2 

0" 

(b) 

... --- 4..10. 'T'be matrix elem.enu V(J)I V'1iS I. of the 
overlap IUlgJe '11' Experimental values for (a) four nuclei. (b) a pure 8 4 force 
spectrum and j - 41/2. (From [AS 71 ].) 



187 

.WI""UI~" ror 9.:z.ISOO, that ii, for an tiparaJ lei spins (1-0) 
off rapidly. nonidentical in the case T - 0 they also 

'12-0. ii, for parallel spins. For identical pa.rticles this configuration 
"DnVeDll.ed by the Pauli principle. This expresses the fact that a short-range force 

or the wave functions and it seems that an effective 
IIIUllr&l;tKl':o. of the 6.type can reproduce qualitatively the uexpenmentalJy'" deter
JilU:tOO matrix elements. However. a quantitative comparison [Scb 72b. OSZ 74, 

11] ihow:s that 8. long-range part is alJo needed to reproduce properties of 
The orig.in of !.his long-range part is as yet not completely 

uDderrtood. For a dilCussion of this point ~. [Mo 16<;]. 

4.5 Concluding Remarks 

In the second section of this chapter we discussed the bare forces acting 
between nucleons. We first restricted their a.nalytical form. observing that 
they have to obey a certain number of invariance principles. It is weB 
k.nown the long-range part of the nudeon-nucleon interaction is given 
by the one-pion exchange; at shorter distances, exchanges of two pions 
and heavier mesons become important We have not presented recent 
results of such investigations because the bare nucleon-nucleon forces 
withjn nuc1ear physics represent a discipline an its own involving intenne
diate and high energy physics [BJ 76a). We have discussed some the 
more conventions.1 phenomenological (which usually involve be
tween 40 and 50 fit parameters), but which achieve perfect reproduction of 
the nucleon-nucleon scattering data:. However. this fit gives us information 
only about the behavior of the nuclear force, the off-shell part 
which enters into many-nucleon systems remaining indeterminate (see, for 
instance, [SS 76]). Three-body calculations show, that tbe cur
rently used two-body Lnteraclions like the Hamada-Johnston potential or 
the Reid soft core potential in their off-sheH behavior should not be very 
different hom one another. We thus have phenomenological bare 
nudeon-nucleon potentials which are, in fac4 quite reliab1e. 

These potentials have, however, the inconvenient feature of being very 
repullive at short distances and they can thus not be directly applied in 
nuclear structure calculations. Many-body theory teaches us to use effec
tive fOfca in'tead of bare ones) the former being aJready an infinite sum of 
the latter. This procedure not only sums up higher order many-body 
effects in a consistent manner, but at the same time gets rid of the hard 
core problem, since it turns out that tbe effective forces are wen-behaved. 
We shall see in the next chapter that the application of the concept of 
effective forces is quite successful for the calculation of ground state 
properties of nuclei, although the most advanced purely microscopic 
calculations in this field (consistently taking three-body correlatjons into 
account [KLZ 78}) are stiU not able to get quantitative agreement with 
experimentaJ binding energies. In all other calculations, some phenomenol-



to ni!!I'Irl"tvlU 

may IUtllOOlle 

ina 
these attempts have met with 
certain stage in the perturbative eltl:xu1lUCtn 
menl with experiment ill achieved.; but lIIfj"'JLHlIIfj 

worsens the results again. Until now, the for this 
intemlediate step have not been explained. 

After very involved theories of effective m~=.ntJcuc_ 
with their 4.4 we paged. to the aa,un_' 
the phenomenological effective There the situation is quite satisfy-
ing. A number of phenomenological anlitte exist which have been 
succellful in much more nuclear data than there are fit parame--
ters. One of the force, whose success for the ground 
Slate properties of nuclei will be in more detail jn the next 
chaper. For nuclear structure calculations we have to mention the very 
simple but highly pairing·plus-quadrupole force. In the lead 
region quasi-particle concept seem·s work well, as shown by the quite 

succeSI of using the Migdal force. But other very 
simple forces, like the surface-delta force, also do surpns.ingly well. In view 
of their it appears to be a dilficuJt but challenging task to give 
an explanation from a microscopic point of view. 
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The Hartree-Fock Method 

5.1 Introduction 

The success of the phenomenologically introduced shell model justifies the 
assumption that nucleons move independently in an average potential 
produced by all of the nucleons. The question now is how to extract such a 
single-particle potential out of the sum of two-body interactions 

A 

V(I ... A) V(i, 
t 

(5.1) 

and how well this single·particle potential will agree with up to 
now, for example. the the square well. or the Wooos
Saxon potential. It will be shown that we can derive a single-particle 
potential from the two-body interaction by a variational principle using 
Slater determinants as trial wave functions. 

In Section 5.2 we will discuss in general the variational method, which 
wiU be important in many of the following chapters. In Section 5.3, we 
describe the Hartree-Fock method in detail and in Section 5.4 we give an 
application to a very simple model. In Section 5.5 we treat symmetries in 
connection with the Hartree-Fock method, and in Section 5.6 we present 
the Hartree-Fock theory with dependent forces. 
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5.2 The General VariationaJ Principle 

We 

is equlvalent to the 

with 

The variati.on 

Since 
over 

we use the fact 
can replace 18 

Together with 

H 

6E[ =0. 

can be obtained from (5.4): 

i'IH-£ + - 18 -0. (5.5) 

a complex function, we can carry out the variation 
part independently. which equivalent to 

over IB independently. To see this 
is valid for inJinitesimal We 

and get 

-E + (5.6) 

we find 

+IH-E o (5.1) 

and the c{)mplex equation. Since 18 arbitrary, Eq. (5.1) is 
equivalent to the eigenvalue problem (5.2). 

The approximation of such variatjonal methods consists of the fact that 
Ii') is usual1y to a set of mathematically trial wave 
functions. As soon as the true function is not in the mmimal 

is no longer exact eigenfunction. but only an approximation. 
The variational method is especially well the ground 
state, since for wave function we can that 

(5.8) 

and thus Eo will always be the lower bound of a variational calculation. To 
prove thjs, we develop the trial wave function in of the euet 
eigenfunctions of Hamiltonian: 

(5.9) 

with 

H == (5.10) 
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2: 
] .. _M'_' ____ :> It 

I 0 111 tl 
.. (5.1 J) 

, (5.8). In cases where the ground state energy is not 
equality sign in (5.11) is valid" if and on.1y if aU the 

a" with n vanish, that is proportional to If we 
first excited state. we then have to 

iU ........ .,V .......... entirely orthogonal to 
with 0 0 =0. Within t~is 

value of H. To find 
condition (it I I 

the whole spectrum 
we do not know I 

the Hilbert space, we 

over aU 
has the 
out the 
we can 

an approximation to the state 
we have solve the variational equation (5.3) with the supplemen-

condition that 14>,> orthogonal to 14>0): 

4>0)- o. (5.12) 

For the ~'l"In state, we must have two condition •• 
namely: 

14>.> - 0; and -0, (5.13) 

These supplementary cond.ilions are coupled to the problem via Lagrange 
parameters. We thus see tbat for higher excited states this method quickly 
gets rather , therefore it has been applied mainly for the 
calculation of the state. Sometimes. however. these conditions are 
simply fulfilled of symmetry as. for example, the case 
for states with different angular momentum quantum numbers. We will see 
in Chapter 7 to calculate a whole rotational band where the 
nation of no more than that of tbe 

So far we for a certain t.rial wave function, the ground 
state energy is or equal to the exact ground state 
and to an extremum. In actllal calculations .. we have to make 

actually corresponds to a minimum. that we 
must derivative of the enerBY functional. for example, 
with respect to In the case of the Hartree-liock or 
Haruee-Fock.-Bogoliubov theory, we will C9me back to this point (in 
Chapter 7). 

In order to which of two variational approaches (i.e .• two sets of 
trial wave functions) ,is better one, we have two criteria: 
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0) If one set or the wave I. 

larger set is usually the better one, because it \;ulnAI 

minimum. 
(ii) Since the exact Eo is a lower bound, we may hope that out of 

trial wave functions., tbe one for which the corresponding enerx.y 
closest to Eo is better. 

Both criteria are, however, not exact statements. 
be found which contradict them. 

We this section with the remar-k that the variation principle is 
fonn ror a Linear eigenvalue problem of the type (5~2). In 

where the Hamiltonian itself depends on the wave function we want 
determine, we have to be very careful in applying this principle. 

5.3 The Derivation of the Hartree-Fock Equation 

5.3. t The Choice of the Set of Trial Wave Functions 

Using the that the shell model has provided a suitable approximation 
for the qualitative explana.tion of many nuclear properties.. we ulume 
that. there an average single-partide potential (later to be caned the 
Hartree-Fock potenlia/) 

(5.14) 
I-I 

whose eigenfunction having the lowest eigenvalue EoHf is an approxima
tion to the exact ground state function. This eigenfunction 4»( I .... A) is, as 
we have seen in Cbapter 2, a Slater determinant 

A 

-14-(1. .. A»= II 0/1-) (5.15) 

in which the Fermion operators a,t, ak correspond to the single-particle 
wave functions epJc I which are themse]ves eigenhmclions of the 
particle Hamjltonian h, viz: 

h( i1Pk( i) - (.CJlk (i). i - {fit Sjll,tl. (5.16) 

AJj we have seen in Section 2.5~ we obtain the lowest eigenvalue of H H'f' if 
one occupies the A lowett levels in the state fHF) (£q. 5.15). In the 
following., we will characterize the occupied levels in IHF) by the letters 
i. j (hole states) and the empty levels by m, n (particle states). If we do not 
~-~I!!o""""""" we use the letters k.I, p. q. 

The wave functions CJ'k(r. $, I) are a coordinate space representation of 
the eigenstates I of the single-particle Hamiltonian h. Very often, we 
work in a configuration space based on some arbitrary complete and 
orthogonal set of Single-particle wave functions {X,} (an example is the set 
of spherical harmonic oscillator wave functions). The function Cfik can be 
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epic - L D1kXl· (5.17) 
I 

wave function X" we define corre5ponding fermicm creation 
operators c/, 'I (see Section C.I). we can similarly express 

at by the operators c/,: 

(5.18) 

e both sell { } and {XI} are complete and orthogonal, the transfor-
tion D hu to be unitary: 

D +- V - DV + - L (5.19) 

fact also guarantees that the operators (ak". a,e> and (c/, cl) both obey 
Fermi commutation relations. 

As djscussed in Section D.2. there is no one-to-one correspondence 
between a Slater determinant ~ of the fonn (5.15) and the set of single

states 'Pic' Any unitary transformation which does not mix particle 
hole slates leaves ¢I unchanged (at least up to an unimportant phase). 

It is therefore more convenient to a Slater determinant 14» by 
single-particle density matrix (D.9): 

PlI" - .. cA.)· (5.20) 

Eqs. (5.18) and (5.19). we get 

Pir -. 2: DlkDI!k¥<.lak~ok 
kk' 

A 

- L V,iDfl (5.21 ) 
i-I 

because P is diagonal in the basis 0k+' Ok with the eigenvalues (occupation 
numbers) ) for i <; A (holes) and 0 for i > A (particles). The trace of p is 
equal to the panicle number. 

As we show in Appendix 0.2. there a one-ta-one correspondence 
between the Slater determinant ~ and its single-particle density p. Single
particle densities p of Slater determinants are characteriz.ed by the fact that 
they have only eigenvalues 0 or I. that is. 

(5.22) 

Ii is therefore a projector in the space of single-particle wave functions onto 
the subspace spanned by the hole slates 'P" 

In the same way. we C80n defi_lle a projector a 

a"" 1 - p (5.23) 

the subspace spanned by the particle states <p ..... 

The HarUN-Fock method [Ha 28, Fo 30] is DOW defined in the following 
way. We use the set of Slater determinants {4>} of the form (5.15) 
consisting of A arbitrary but orthogonal single-particle wave functions CfJj 

IS tria.l wave functions and minimize the energy within this set. An 
equivalent statement would be that we use the set of all wave functions 
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{~} whose particle density (5.10) pl_ P 
Trp-A. 

As we will see in the foHowing sections, will us 
possibility determining the single-particle operator H Hf, 

5.3.2 The Hartree-Fock Energy 

Before we are able to carry out the variation which allows us to 
the HF-wave function ~. we have to calcu1ate the H 

We 

wbere 

Wick"s 

E HF - HIcJ». 

many-body Hamiltonian 
. operators ct J (;, (see ........... " ...... 

Vtlf~ l}i" .. V/l/hl" - 1)/1/~,/,· 

C.4) allows us to calculate 
si.ngle-particle density 

HP[ p ] _ I'I,/C.I"" 
'I/~ 

We can therefore use it to 
{ CJ11c} in which p is 

5.3.3 Variation of the Energy 

(5.24) 

it in second 

(5.25) 

(5.26) 

(5.24) as a 

(5.27) 

(5.28) 

(5.28) does not 
n1"".e:til'\n for the 

(5.29) 

To the HF-basis, we have to minimiz;e energy (5.28) for aU 
product wave functions I.) or for aU densities p with the property p2 - p. 

II small variation p + 8p has to be a projector we get 

(p+ 6p)1=p+ 6p 

or. up terms in 6p, 



lure that we slay within the set of 
anow for variations 8Pmi and 

p in the HF-basis. 
of the energy (5.21) is then 

(5.30) 

lherefore~ 

and Itp matrix 

a: hu .8Pk:k = hlflj8Plm C'.e., (5.31) 
Ak' mi 

the Hennitian matrix h is defined as 

Eq. (5.27). we obtain 

the sell-consistent field 

r U' ~ V/trk'/P/f" 
/I' 

arbitrary values of 8Pml are aHowed, we see from 
liE - 0 rOf the HF-solution means that the ph rna 

II have to vanish~ 

(for i < A. m A). 

in the where p is diagonal, Ihat h does not 
states of p and Eq. (5.35) is equivalent 

[h. p] ., [I + r[ == 

(5.32) 

(5.33) 

(5.34) 

]). that the 
elements of 

(5.35) 

hole 

is a nonlinear equation, and not easy to solve. It also stales that h 
p can be dialonalized simultaneously. Since the basis in which p is 
diagonal detcnnined only up to unitary tTansfonnalions among the 
occupied leve]s or among the empty leve1s, we use this freedom and 
that h shaH be diagonal. This defines the Hartree-Fock basis and converts 
(5.36) into an eigenvalue problem. 

(5.37) 
i .... I 

Considering the fact that this basis is given by the transformation D 18), 
we obtain the set of Hanree-Fock equatiOns 

which represent a Hermitia.n eigenvalue problem. 1 t is nonlinear 
the matrix h depends on the density P. that is-. on the solution of 
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with the properties 
where the 

depends on the density of 
one-body field over all two-body 

Thil point will become even the coordinate representation 
5.3.4). The energy expectation value the HF·wave function IHF) 
given by (5.29) and (5.37): 

I A 
-~ 
2 I 

(5.40) 

to single·particle [compare 
point in 

5.3.4 The Hartree-Fock Equations in Coordinate Space 

To a better 
down in the coordinate 
does not depend on spin or 

or the structure of Eq. (5.38), we write it 
Assuming a local two-body potential which 

that is, a pure Wigner force (see Sec. 
4.2). we find of (5.38): 
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.&iI'IlI-~"""'''- (5.38) and (5.44) contain a seif-consistency problem, since (he 
r Hand l"E_ depend on the local and nonlocal density p(r) 

of solution. The equations can be solved by iteration," 
of phenomenological shell model wave runctions to 

as a first step. Another convenient first guess is the 
al)re:lIIICtD for the density (see Sec. 13.2.1). From (5.44) we 

let new lingle-particle wave functions, and so on. This procedure is 
convergence is obtained, that is) the potent.ials stay con

in two consecutive steps. In this case. r is tbe self-consistent average 
potential felt by one particle through interactions with all the other 

It should be noticed that, starting with a local two-body interaction, the 
Fock potential (5.43) is nonlocaL This is caused by the Pauli principle 

the antisymmetrization of the matrix element (5.26). A variation of 
product wave funclions without antisymmetrization yields only the 

local Hartree potentiaL Of course. nonlocal two-body interactions give a 
Ilonlocal Hartree term. too. On the other hand, if we use a 8-force. then the 
Fock term is atso locat t [see Eq. (5.99)]. 

Since ma.ny of the more formal discussions on H F theory will be taken 
up in Chapter 7. we will not go into more detail here; we wish only to 
mention that we will treat there the stability of the Hartree-Fock equa
tions, that is, the question of whether the Harlree-Fock solutions corre
spond to a minimum or a maximum in tbe energy. We will also present the 
so-called gradient method for the solution or the HF equations. 

In order to familiarize the reader with the concept of the theory 
presented in this chapter, we will now present a simple model in which aU 
equations can be solved analytically. 

5.4 The Hartree-Fock Method In a Simple Solvable Model 

As we will discuss in the last section of this chapter. aU realistic Hf calculations are 
very difficult numerical problems. In order to get some feeling about bow this 
method work.s~ we want to apply it to a very s.imple, exactly solvable model first 
proposed by Meshkov, and Glick [LMG 65]. and which has been wideJy 
used to lest all kinds or many-body theories (as we s.hall see later on). Let us 
imagine two levels in a fixed shell model potenlial having the same j-value, one 
s-itualed just below the fermi level. the other just above. The below the Fermi 
level is filled with 2) + I nudeons (of one kind, for simplicity). The Fixed singlt-
pa.rtide potential can be thought of as being produced by an especially stable core 
formed out of the rest of the nucleons. It is then conceivable to calculate solely that 
part of the average potellti.a.1 coming from tbe nucleons in the last i-shell. io I. 

aelf-consistent such that the mutual inOuence or the core and the lu·t 
j-&heU is ne:glectec:L Of oourse, the idea that there is only one level with the same j 
above the Fermi level is very unrealistic and serves only to schematize the problem. 

II for nummiul t.o solve the HF-equatl.ons (5.38) or (5.41), Re also (Qf 78]. 
tIn lhis case., however. we a.bo have to Lake inLO accounl spin degrees of rreedom, 

otherwise the: exchlUlJe term cancels the direct tum. 
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core. 
form," bfJiq of 
only one matrix different from z.et'O 

RPA type (see Chap. 8)). The model HamillMUM 

H-EKo- i V(K.K+ + K_K_), (5.4') 

with 

~= t f (c:""C+",,-C~MC_M); 
11'1-1 

where n -2j+ 1 and c!l'IIJI' c:"" create a particle in the upper and lower 
respectively, and ( is the energy difference between the two levels FiJ. S.I). 
The Ko. K:I: fulfill the commutation reiatiollS of angular momenta. 

[K+,K_} 2Ko; [Ko,K:t]-±K:t. (5.47) 

Ei2-- .. .. .. --Q fold 
- - ,....... r ........ 

...... --Q fold 

Fil'ure 5.1. Level scbeme in the schematic model. 

However. it must be emphasized that the operators Ko. have nothing to do with 
rotations in coordinate space. They are often referred to &I quasi·spin operators. In 
order to apply the Hartree-Fc.x:k method, we have to construct the general stater 
delerminllDt The Hamiltonilin (5.45) is invariant Wlder a permulfltion of the n 
leve)s below and corresponding levels above the Fermi surface. Thererore, in the 
fonowing, we restrict ourselves 10 those solutions of the problem which are 
completely symmetric under such a pennutalion. In this cue, t.here is only one 
possibility or excitin& ph-pairs, and the most general Slater determinant it 
characterized. by the complex number l: 

with 

and 

-D-oC: .. +D+oC!m 

at,.. - D _ Ie ~ .... + D _IC!,.." 

(5.48) 

(5.49) 

(5.508) 

(5.50b) 

wbere we denole the new lower and upper levels by 0 and 1. With the aid of 
ell,ll101l1 (SsOa) and (550b), we can the Hamiltonian (5.45) in the new 

opl'rl,lOn a~. Then.. varying with reapect to DIIfI 0 and D:'o yields'" 
the Hartree-fock equations in tbe Lipkin model (this is, in fact. just another way 

.. Under the sUMidiary condition that the l>s are nonna.l.iz.cd lsec ESq. (S.96)J. 
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to derive the HF 

1) 

v x- E (0-0, Q==xD+crD~o. 

is of the 
linate-particle 

where we put D 
+0 and inserting 

O. the following 

-. 
can be solved by new 

(5.52) 

Solving Eq. (5.51) for D_ o 
Q yields, with (5.52) in the cue 

"deformation" potential Q: 

1_ X l . 

This equation has only 
solution gjven below. (The 
8CS theory [Eq. (6.60)] is not aCClloeD 

11.2 
In the coordinates a, t.p. we 

-
the set r -ei)nUSlency 

~!+Q' 
for X :> 1 corresponding to the ..... ·rn ........... rI 

is very similar to the gap 
as will be in more 

ror the ground slate energy 

20:+ ixsin~2a. (5.54) 

- dl sin (1 - X cos 2ex 'cos 2,,), 

~--o-

Eq. (5S5). we see 

whether X is greater 
solution: 

X t we h& 'lie a ~;'\ftl1 

-0, 

I . 2 - 2 2' sm a 'sm ". 

X'cos 

to distingwsh two cases. depending on 
one. In the latter case, we have only one 

X 1. 

-I, x 1, (5.57) 

which turns out to COlrTCI~lXl,na to minimum in Lhe energy. tbe 
having been a lDJ.lXimum. can seen from the curvature or the energy at this 
point: 

In Fig. 5.2 we show a CUi ("P .... 0) 
ror X I. 

for X> L (5.58) 

the lwo-dimen$ional energy surface (5.54) 
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",... . --
--

\ /"" 
'...-"'" 

EoHF as , fllDction of a for X 
to quantities calculated within 

1O.7.S}. (from [Ho 73}.) 

'" I ' .... _,/ 

I 

IX .1.8 

l-
I 

I 

--

I (fuU The other four eu",.. 
generator coordinate method 

From the critical value 

V ... (O-l) 
Xc· -I 

( 
(5.59) 

on, the solution at a 0, If' - 0 becomes unstable and then we to use at 

dirferenl single-particle In Fig. 5.3, we show ror X - 6 how tbe iterative 
solution of equation (5.51) wor~. Starting with al - 80°. CPI - 30° we find in lhe 
subsequent steps (full lines in Fig. 5.3): al 32.01°, Ifl"'" -30°; «3- 39.7.5°, CPJ 
-30°; a .. -4O.19°, CP.- -30°; .... With respect to a we get a rapid convergence to 
the solution aHF - 4020 [Eq. (5.S7)]; with respect to the variable cpo however, we do 
nol get convergenc-e, the solution ju.mping back Ind forth between + 30° and 

Figare 5.3. Numerical comparison or solution or the UF equations by iterative 
diagonalization (solid line) and the gradient method line). 
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a very special cue in the sense that in the general 
"'_'SO" .. "'" UJ,.."DllWoUIUJ\J'o. i:'.I.\nVlerlll!il!lt k> I in the energy surface. 

JOEHtlDIlI abo enCOullters in cases where, 
rRCiOOIn. the solution back and forth. as in our 

tNorr"",1"W'1II\ preferable to \lie Illothe:r method to find the minimum which 
Illso Jive futer convergence. This is the gradient method, which 

CAIl!!lIUJ1t:lU in Section 7.3.3. The way in whicb the .Iradient method wou1d 
converp to the in our iJ indicated in Fig. oS.) by the dashed 

5.5 The Hartree-Fock Method and Symmetries 

HF equations (5.38) are nonlinear, which means that the self
potential r [Eq. (5.34)] depends not only on the original Hamil

l1UIJLM!LI.A. but on the solution [which is represented by density matrix 
p (5.21)]. Therefore. this potential does not necesurily show the same 
symmetries as the Hamiltonian. We then say that the solution has a broken 
symmetry. The loss of translational invariance is one which we have 
already enc{)untered. but, as we shaH see, there are others-such ror 
example, the rolational invariance and particle number conserva.tion (see 
Cbs. 6 and 7). Usually one calls a transition from a symmetry<onserving 
solution to a symmetry·broken solution a phase transition. The great 
advantage of this symmetry breaking the fact that it allows Wi to take 
into account, in an approximate way, many-body correlations wit.hout 
losing the simple picture of independent particles. A more detailed discus
sion of this point wit! be given in Chapters 7 and II. and in Appendix f. 
but let us give here the [ollowing argument: Let us suppose that we have a 
Slater determinant I~) which consists of deformed single-particle wave 
functions {at}. We express them in a spherical basis {crt} through the 
linear tnmsforma.lion 

(5.60) 

We thus obtain a sum of Slater determinants in the spherical basis which 
differs in the occupation numbers of the level 'I: 

(5.61) 

Here the coefficients •. .,q".. are the corresponding minors of the matrix 
D",. They are of a special form; had we allowed them to be of the most 
general form, the aosatz (5.61) would contain the exact answer; however. 
this can never be the case in an independent particle (Hf) description. 
Nevertheless, we see thai a Slater determinant in one basis can be a 
complicated superposition of Slater determinants in another. 

Of course, the exact wave function should have the symmetries of the 
Hamiltonian, and their violation is a matter of convenience in order to 
maintain the independent particle picture for as long as Neverthe-
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."., ... _ ..... try at a later stage to restore 
will be U. "nwil!ll'''''' 

for matrix S of a unitary· symmetry operator 

s- 2: SII'C, 
II' 

which commutes with the many-body Hamil 

[H.SJ-O. 
The property (5.62) is easy to show for the definition (5.34) 

+ 

=2; 
II' 

From the invariance of the two-body interaction 
A .. 

SVS+= 

we finally get (5.62) and 

Sh[p]S+-h[SpS+]. 

means that if the initial density p(O) has a certain symmetry S 
tonian H, then the field h[P(O)] for the first step of the 

The density p(1) is found by a diagonalization h[p< I)]. It 
to have the same symmetry again. and so on. 

the symmetry S is conserved. 
of these 

for practical calculations [Rt 68]. 

(5.66) 

(i) If we ellpect a certain symmetry for the solution. we ca.n start with 
an initial density p{O) which has this symmetry and therefore reduce 
the computational dfort by working in a basis consisting of eigen
states of thjs symmetry. 

(ii) If we start with a certain symmetry, we wiIJ always stay within this 
symmetry, and the minimum of energy can only be found among 

wave that have this symmetry. If. for instance. the 
_.." ... ",v mlD.lmUm I. deformed SLater determinant, we win never 

get to it starting with a spherically symmetric density matrix~ though 
it may happen that small numerical errors cause small deviations, 
from the initial symmetry. which grow during the iteration. 

apply, with small modificationi, for .. u.,,,,,,,._. unitary 



(iii) If we have a solution with a broken symmetry S 

SpS + =PI (5.68) 

then from Eq. (5.67) we obtain the: HF-Hamiltonian h[PI]' which 
"""""'"..,"" ..... to the transformed density and has the form 

(5.69) 

that PI is also a solution of the HF-equation (5.36) 

[h[PI]' PI == O. (5.70) 

In the case of a continuous symmetry. like that of translation or 
rotation, we therefore have, to each symmetry-breaking solution. an 
infinite number of degenerate solutions. 

In the next section, we shaU see that it is useful 10 do HF calculations 
density dependent two-body forces. In this cue, the force does not 

exhibit the same symmetry properties as the bare nudeon
force. Nevertheless, it is clear that the usual properties of HF 

n& with respect to symmetry transformations, as previously dis
"'"w,~"'". are also retained for density dependent forces. if we require that 

interaction satisfies the very plausible condition [BG 77] 

SV[p]S-I- V[SpS-I]. (5.71) 

for instance, that in tbe case of rotations the two-body 
interaction in a rotated system is the same as the interaction calculated 
with a rotated density. This condition is fulfilled for the Skyrme force 
(4.109). 

5.6 Hartree-Fock widJ Density Dependent Forces 

5.6.1 Approach with Microscopic Effective Interactions 

5.6.1.1. Bri.idrner-Hartree-Fock. One of the main obstacles to a direct 
application of the Hartree-Fock method, outlined in the preceding sec
tions, is the fact that most bare nucleon-nucleon forces have an infinite or 
at least very repulsive core (see Chap. 4). As is easily verified. the two-body 
matrix elements entering the Hartree-Fock potential (5.34) al1 become 
infinite for a hard core potential The way to solve this problem is to 
replace the bare interaction in (5.34) by the BruckneT G-matrix discussed 
in Section 4.3.1. Thjs~ as a m.atter of fact. is not only convenient because it 
solves the hard core problem, but it can also be shown that it is a 
consistent resummation of certain higher order terms of the fuU many 
body problem. Since we do not have the technical many-body apparatus at 
hand here~ we leave the demonstration to Appendix FA. 

The Bruckner Hartree-Fock equations are given in analogy to Eq. (5.38) 
by (see also the review articles on the subject treated in this section by H. 
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S. Kohler [Ko 75] and W. Wild [Wi 711): 

L; { 10 , + A 2: 
I' I pp' 

Here G is the Bruckner G-matrix defined in Sq. (4.39). written in rllllt'l"1"_L 

of the basis of a definite single-panicle potential. 
ground state energies given in the are 

A 

£ BtiF= I + ~ o jl ~ 
i-I 2,,}_. 

A 1 A 

== ~~-- ~ 
i-I 2 I 

For the ground state it seems that we need only the hole soln . 
of (5.12). The particle solutions of (5.72), enter the Be 
Goldstone equation (4.39) through the intermediate particle t,.l 
The Bruckner Hartret-Fock solution then of a compJicated 
bly procedure. It can be :u-,lved. for example. by the ....... ' ...... -
inl cycle: (i) CaLculate the G-malrix via (4.39) in a suitable 
of fint choice (e.g., harmoni.c oscillator); (ii) diagonalize once (5.72) in 

which a new basis; (iii) calculate in new 
G-m.atrix; and so on until the convergence is achieved. in 
cycle there however. a ambiguily concerning 
dependence of the G·maLrix in (5.72), Since we do not know the solution 
priori, we have to include the dependence of G;:'.j.; into 
iteration cycle. We thu.s have to take for the energy corresponding to 
ba3is in which we bave Ictua.11y written Eq. (5.72) for each step of 
iteration, that is, we can take E. equal to f., or f./", No ambiguity arises for rEf 

because the D i are to be diagonal in the it.erat.ion process. 
conventional choice for the BHF potential energy matrix [see Eq. (5.34)] ill 
(see e.g. [Ba 698.]) (of coW"Se, the final answer does not depend on 
specific convention): 

A 

! L; ( ) for k. k,' <: f.F • 
2 ;-1 

A k <; (I' 
rBHF_ L; Gft +-it for (5.75) 1cJc' lei.n k'>(F 

. 
; - t 

A k' <; (I' 
for 

i'" I k>f.F 

particle-particle matrix elements of r BHf are a somewhat CQntrover~ 
matter. For a fixed G-matrix. the particle-particle matrix elements of 

raMP do not influence the hole solutions or Eq. (5.72); they do influence. 
however, the parlide solutions, and via (4.39) in the doubly self-consistent 
cycle. indirectly the hole solutions. We can argue (see discussions in 
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69.) Ne 70D that if the particle-particle matrix elements of r BHf are 
to 

r llHF -0 
,,/C' - • 

correlations are effectively "' .... ~, .. u ... u 

our formulation (5.72) and (4.39). 

(5.76) 

which were originally not 

(5.72) is not only different from the ordinary HF equation 
because the two body operator is more complicated, but also 

:ca11llC!:: r lHf now depends on the energy which we want to calculate. 
ler,ef()lre~ it is a nonlinear problem in which the solutions to different 

are, in general. no longer orthogonal (solutions with different 
momentum are, though, stHl orthogonal for the spherically sym· 

case). However, for the iterative solutjon this is of no special 

in Section 4.3.1, the G-matrix sums up two-particle 
processes in the nuclear medium. One can show that (5.74) 

nLains all contributions of this type to the ground state energy [Ma 6Th]. 
Table 5.1 we show the results of Brtickner-Hartree-Fock calculations 
the rms radius and the binding energy per particle in the case of 1:0. 

and ~Pb; the bare force was the Reid soft core potential (4.35). 

Tillie 5.1 Results of BHF calculations with the Reid sort core 
potential compared with experiment (from [DMS 13D 

BHP 

Ito -~/A(MeV) 3.91 7.98 
nns (£m) 2.50 2.73 

~Ca -Eo/A 3.88 8.S5 
rms 3.04 3.48 

208Pb 
8.1 -BolA 2.52 7.81 

nTIS 4.51 5.50 

The results in Table 5.1 are deceiving. The calculations do not give even 
half the experimental binding energy and the rms radii are about 10-20% 
off. The bad result for the binding energy is not too surprising, however, in 
View of the fact that it is a difference between two very large numbers. that 
for kinetic and that for potential energy. 

Nevertheless. in view of the unsatisfying result, one has to envisage 
taking into account more complicated proces!'es.' Ne:\t in the hierarchy 
are three-particle scattering terms whose importance should depend on the 

of the system. As we have seen in Section 4.3, the heaUng distance, 
which characterizes the range of the two-particle correlations. is apprecia· 
bly smaHer than the average interparticle distance. Thus the probability 

-One should mike sure that the energy dependen.ce of rBHF is not too stron" 
Ottlr.nllll'1H' the independent pllU'ticle ptcture may no longer be valid. 

t In this cOnlcltt, sc-e also the hypemelled chain rormalis.m [PB 73, FR 75, 764. lS 11. Ri 
19]. 
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calcuLations with different 
c;:ugulllUC:1lD including J-body COI'ndJI:IXltt& 

that three particlel are within 
distance be quite is, however, a rather qualiitat 
argument [Be 71, p. 161]. In fact. Ki..immel and co-workers have been a 
to include three-body correlations in a completely self-consistent 
into the calculations for the gound slate energy (see, e.g., [KlZ 75, 781 
farther references cited therein). They give strong arguments 
four-body correlations should be negl.igible. Their results are very . 
ins in the sense that agreement with experiment is improved, though 
very dramatically. For different nucleon-nucleon potentials, the results 
roughly on a smooth line in the - Eo/ A versus rms·radius plane, as 
in Fig. 5.4. This hne is called the Coester line. The result.s of the Reid 
core potential are located approximately at the point where the curve 
closest to the experimental value. III view of the claim [KLZ 75] that 
results have converged. the remaining difference must be attributed 
relativistic effects or to mesonic degrees of freedom. 

5..6.1.1. 'I'be Local Uld tbe VariatlooaJ Principle. In ~ltlOlli 
4.3 we saw tha.t the innuence or & hard core potential on a two-nucleon wa". 
function is effective over relative distances of the two nucleons ranging from I) 

about 1 fm, that is.., only over very ShOft distances. compared to the nuclear 
of about 10 fm. meatul lhat the Bruckner G-matrix is only different from 
bare interaction oCr) within the same range of r-values. However. in 
variation, of about I fm in the relative variable r- of the two 
imply &, similar vl.ui.ation in the center of mall coordinate. The nudear "' .... !'ImllV 

p(R)- p(Hr. + ri» does 001 (at least, not in the interior of the nucleus) change . 
mucb over such I range of R-valuc:s. It therefore Seftn8 a reasonable assumption 
calculate the nuclear G-matrix at each value or p(R) as if the nu.cleus locally 
R were a piece of matter'" with the density P(R). Actually, this 

• for the of nuclear maHer. a.ee the reviews [Be 71. Sp 72, JLM 76). 



approximatian (see Chap. 13). More explicitly, 
.Ifoe\De-U<llklltlOJ,e equation (4.39), which call be written using 

G + (5.77) 

projector QF by itl extmn.IOln Q;:M io nuclear matter of denJity 
Q, (4.41) can be the noruocal ringle-particle density 
.9ll(r)"P,"'(r'), 

<rlr2IQp~r'~ - [6(r l - rj)- p(r., r;)][8(r2 - r'J - P(~. r'JJ, (.5.18) 

._DI that in (~.18) p baa 10 be repiac.ed by its oudear matter value [&« Eq. 

(5.19) r 
I-r-r', R- f(r+r), andJ. is a The of (5.19) 
from the fl-Ct that we have only truled the luldcus loeaIly aroood R u 
mati«. The between k,. and p is giveo~ as usual. by EqI. 

I). (13.22), and (13.23») 

P(R) - ~ ki(R). 
3fT 

(5.80) 

Nw:nerical compari&on with eJlUlct density matrices of finite nuclei have shown [Ne 
1.5] that lile nonloca.1 behavlor of p is very well approximated by (5.19) in the 
ludear interior. and reasonably wen represented throughout the nuclear surface. 
We can therefore conclude thal the local density approximation to G-matriJc. as 

here is quite good. 
In principle, the G-matrix thus calculated depends on the lhree variables 

'-'1 - r2; r' - rJ - r2 and on R"", f(rl + '1- rJ - r':J; G - Gr. r': 1It. It turns OUt, how
ever, that the dependence of G on the tOULI momentum P (the conjugate variable to 
R) is weak, and we usually put it equal to some average value (BOW 58]: 

Gr ..... ,.:::: Gr. r'. ,. .... 

Neae1e [Ne 70] further simplifies the upression for G. He replaces the starting 
ll1«gy w- (t+ E; appearing in the G-matrix of Eq. (.5.13) by an average value 
obtained 15 the average hole energy in nuclear matter. In this way, we get rid 
of the lute dependence of the single-particle potential in Eq. (5.12) Ilnd the 
OOfTespondiq form a complete orthonormal set. The next .step 
consists of repre.nting G", r' by an dfective local operator vlllf(r); (we omit the 
det.aiJ1 of how lhis is achieved and refer to INe 70]*). Furthennon. this effective 

il phenomenologically to give the C:On'eCt volume of 
nuclear matter [see the Belhe-Weizai.cker formula (1.4)]. In this sense. the "density 
dependent HF" (DDHF) method of Negele is still a semi-phenomenolopcal 
procedure. 

One further very imporUlDt ingredient of Negele's theory we have not spoken or 
until now: In Table 5.1, we have seen that a pure BHF calculation does not give 
very good results; therefore. something better has to be invented. It rums out that 

• Other applications or the <local' d.etIiIity approximation can be found in [Ko 65, NV 70, 
cs n. NR 72]. 



mtWtively appealiQa to vary 
by the local derWt}' a.pproximation, with tell*' 

IS in the pure HF cue CEq. 5.29). very sood 
Hamiltonian t.t.Us cue, Eq. (5.31)1 

when lit) is a Slater determinant 4'\fVrll!'~11'W'W11 

independent forces, (5.81) just reduces to the 
dependent forces, however, we have an usually ......... """"" 
rearraflge7'MnJ or satwralion po/~l'ItiQI. It resull.5 from the demity 
oalf(p) and plays a very important role in praclieal calculations. It hu to 
emphasized, however. that the vanational method just described is not eDlil!Vllllll!lll!!il 

to the variation of a trial wave function minim.iziDg the cxpeclation value of 
original many-body Hamiltonian (5.15). Thil impUee that, at least in principle,. 
ground state energy calculated with (5.81) could be lower than the exact one. 
method in the lim by ill success; theoretically. we can say that 
additional term tom.how account three-body scattering t«mI 
[Nc 75) (avllft/3p hal in shell model space). In Table 5.2. we 
the big improvement over BHF wbich is obtained when using the DDHF method 
[Ne 70, NV 15]. 

Tule 5,.l Binding energies (in MeV) and rIm radii (In fm) with 
the density dependent H~-Fock method (DDHF) 

BHF DDHF 

1:0 -Eo/A 3.91 1.59 7.9'8 
nns 2.SO 2.75 2.73 

:ea -Eo/A 3.88 7.99 8.55 
nns 3.04 3.46 3.48 

~Pb -Eo/A 2.52 7.83 7.87 
rms 4.51 5.49 :5.SO 

The solution of the DDHF equations is I!I. very complicated wk because of 
fact Utat the term (5.43) that an integrooiIrerentiai equation 
be solved. The Cact that the force is of rather short ranle can, however, be 
exploited the problem 10 that the noruocai term can be 
expanded in powers of the nonlocality around its local value. This prOCledure leads 
in a rather natural way to a justifica tion of the very HF scheme usinlthe 
PAIIQ(l!IDC11l0IoglCJ.l Skyrme foroes, which we will next [Ne 7SJ. 

5.6.2 Hartree-Fock Calculations with the Skyrme Force 

5.6..2.1. Geaeral There have been many applications of tbe 
HarLTee-Fock method over the years using different forces. It lies beyond 
the scope of th.is book to give a review of them (for a recent review, see 
[QF 78D. Many or them-in particular~ those that do not use density 
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the shortcoming that they are not able to si.multa
OlDQUltl energies, t.he radii, and the proper single-

spectrum lipt Ilnd heavy nudei (lee, for instance, [Vo 65, MB 
NDK 68, PS 68, SFW 69, Sf 70D· 
of force (4.104)u a phenomenological interaction 

~_""_"IlV;tJliil> bas the important merit of being able to very well 
and nuclear radii over the entire periodic 

the Negele force, obtained from the local density approxima-
Skyrme force is dependent and, as djscusscd in the last 

cannot be used in the variation principle (5.3), which is 
u_' ..... Hamiltonian. Formally, this diHiculty c:an be overcome 

the force as a three-particle force (4.104). 

5..6.2.l. TIle CablJded with the Skyrme Force. We start with the 
Skyrme force as given in Eq. (4.104) and calculate the expectation value of 

corresponding Hamiltonian with rerpect to a Slater determinant 
containing the single-part-ide wave functions 1J1,(r?s.t). For the sake of 

we require time reversal invaria.nce. This is not essentirulPa 76], 
simplifies the equations considerably. Furthermore, we regard only 

Dudei with N - Z and neglect the Coulomb field.' (For the case N * Z 
with Coulomb interact jon, and for more details of the foJlowing derivation, 
see the paper or Vautherin and Brink [VB 72)). 

The energy given by: 

Eo-<~IT+ V(2) + V(3)[cl») 

(5.82) 
i ... 1 

Because of the 6-function character of the Skyrme force (4.104), it is 
possible to express E by an integral over an energy density H(r) 

Eo- f H(r) d)r, (5.83) 

in which H(r) is an algebraic function of three quantities: 

(I) the nucleon density 

(5,84) 
i. J. I 

(ii) the kinetic energy density 

'I"(r) - 2: IV ~j (r,.f, t)12; (5.85) 
i. !I. I 

'" There lIS • Lu-ge number of iimil..., phenomenololicd denJity depeDdent (orca with UfQ 

range [Mo 10. LV 71. La n. EM 72. BJS 75, Ko 76, LB 76. TK 76, KKS 77. SM or tioite 
ruge [Kr 70, ZR 71, RPS 12, LMV 73, Go 75b, RBP 11) whicb show properties to tbe 
Skyrme force in Hf W(:'Ula 

f For the: ttutmml of !.he Coulomb field, gee IQu n. GVL 73. Sl 51. Go 52. KS n. TQ 
74J-



(ill) the so-called spin orbit densities 

J(r) -( 

The sums are taken over aU occupied single-particle A .... "'".,!!!;"'''''''J! 
straightforward ca.lculation [VB 72) for N - Z nuclei 

tt2 3 2 1 3 I ( 5 
H(r)= 2m 'f(r) + 8 toP + "'i6'y> + 16 311 ':z)PT 

1 " V23 1 2 + 64 (9/ 1-512)( p) - 4 WopVJ+ 32 (t l -t2)J· (5.87) 

Besides the kinetic energy 'T. we aJso have contributions from the two-body 
6-force -p" and the three-body 8-force ,..,..,pl. The QonJocal p2-terms 
contributions -PT and _Vp2. The latter has its largest contributions at 

nuclear surra.ce. The 1- t:z}J2 usually neglected because it 
difficult to handle in deformed nuclei contribution to the spin 
pan does not experimental splitting. 

We could tbe tbree·body term _p'J from a tt.j!ll1i'tlll'Urw 

dependent 

(5.88) 

In Section (5.6.1.1) we saw that when using density dependent interactioo"1 
we have first to calculate the energy and only aft.erwards vary with respect 
to the density. In that sense, the three-body contact force of Skyrme 
equivalent to the two-body interaction (5.88). This equivalence. however. il 
only valid in even-even nuclei with time reversal symmetry. 

Using (5.87), we a.re able to calculate the binding energy per partide 
nuclear matter without Coulomb interaction. In cue we have transla .. 
tiona. invariance and the single-particle wave functions are given by plane 
waves normalized to a 6-function 

I 
iT). = . elUxl/2xl/2 
"·1U1 (2w)JIl 3 I 

(5.89) 

and in Eqs. (5,84)-(5,86) we have to replace 

A 

2: .,. by f dJk . . " (5.90) 
i-I Ikl<*,.-

where aU the levels with Ikl smaller than the Fermi momentum kF are 
occupied. From (5.84)~ we get the usual relation between p and kF [see 

(13.22) and (13.23)] 

(5.91) 

and from (5.85). 

(5.92) 



with 

..... "., .. ""'. we have V p = V J "'" 0 and 
nuclear matter 

translational 
DlUQUlI& _"' ..... £n.I per particle 

3 A" -----A p 5 
J :.I 3 3 .\'.: ~Ll 16'3P + 80( '.+J/z).fHIoF· 

property means there an equilibrium 

for 

(5.93) 

Po for 

incompressibility of nuc1ear K is defined as the curvature of 
binding energy Eol A with 1"~1"WIIIIoI"'1 to the Fermi momentum 

6 --5 

(5.95) 

(5.93)-(5.95) allow us to the two constants '0 13 

combination 31 1+512 by the maHer constants EoIA, POI K. 
Eq. (5.95). we see that '3 is correlated with the incompress--
K .... From the Formula (1.4)~ we know thai the 
of Eol A - Q v - 15.9 MeV. well determined is the equilibrium 

_.£IU'"" Po-3/4'UrJ~O.14 fm- J
• it is not possible to adjusl 

parameters of a. phenomenological force to nudes.r matter data 
•• CUI· ...... We first have to carry out the calculation for finite nuclei. 

..,oIUIo ......... The Derivation of the DeosIty [)epeadnt Ibrtree-Fock Equations. 
to the concept of 1, we have to vary the functional 
respect to the density in to gain the 

UnIortunately, (5.95) nol have the form of a functional 
depends on 'T and J. and it hard [0 T and J 

p. In our however, no problem. since the 
is uniquely defined by the single-panicle wave functions 'Pic 

(5.84), and we can also carry out the variation with respect to CPIt under 
tbat they are normalized to We use Lagrange multipliers 

subsidiary conditions 

~k( =0. (5.%) 

the energy (5.83), by parts~ can be written 

/J£ ~ J dlr[ 2",~(r) .n(r) + V(r)/Jp(r) + W(r)8J(r) 1 (5.97) 

"Nuclear mattCT ea1culat~n!l give values 150 an.d 250 MeV and. from l''Cecen! 
me.uurements of the brealhmg mode in lO6Pb. we deduce the value MeV for the 

of heav)'. finite nuclei. 



with an effective mass 

an average field 

a one-body spin-orbit potential [we neglect the term 

3 
W(r)- 4 WoVp. 

We now have to into (5.96) the variatjons M. 3p. and 6J 
l' .... nII"lIr-t to 'PIC From Iftn.,ft""'''' (5.84)-(5.86) we get 

and~ using Eq. (5.96), we finany find 
viz.: 

HF-equation i.n coordinate "p.,,,,, 

(5. 

The exchange tenn i.n the HF-equation (5.44) is now local and is included 
in the potential U{r)~ so that (5.102) is a pure differential equation. 
nonlocality is expressed only in the r-dependence of the effective rna. 
m·(r). In the case of spherical symmetry, we end up with a ODe

dimensional differential equation of second order in the coordinate 
T. In particular, the spin-orbit term (5.100) takes the form 

and, we have already ""1~~.1IniiU in Section 2.4, this IS 

mainly at the nuclear surface. 

UltlallllCllD of the Realu. Vautherin and Brink [VB 72] originally 
equation (5.102) for the spherical shell nuclei l'Of 

tOzr, and and were able to adjust the six parameters '0' 
t l' I", ill WOt and Xo so as to reproduce the radii and binding 

........... " ... ". They presented two sets of force constants (Skynne I and II) 
which a good description of these closed sheU nuclei. Both have 
values of '3' which means a strong density dependence. This is a very 
crucial point, because for density dependent forces the binding energy EoHF 
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given by (S.28) and (5.81) 

-TrIp 
:2 

J j 8V ) (I ()p} - '2TI\ (HFITp,HP)p 
I --:2 

(5.104) 

(5.88), 

If 

E Hf' 1 ( 
o - 2. 'Ii 

1- J 
(5. lOS) 

(5.104) and 105) as in Section 5.6.1.2, 
term. For a density independent force it 

the binding energy 
"'1"1;11'11"'0'1,,,,,. f., of a 1.1 

the part of Eq. 
DOIIlJbJe to reproduce the 
negative because of the 

'-"L.'~'" or large densities. 
many other spherical nuclei was 

75] and other were determined 
(Styrme III-VI). They differ their density dependence, and it turns out 

I) is not determined by the and energies alone. With 
rather different values of fact, reprodu.ce these values. 
However. the single-particle (i do depend dramatically on I). 

S.kyrme III [Eq. (4.108)] gives reasonable values for all these 
Table 5.3 lists binding root mean square radii '" for several 

spherical closed-shell nuclei as the most sophisticated 

Table 5.3 Experimental and calculated root mean radii (in fm) and binding 
energies (in MeV) per nucleon 

Experiment Skynne III 
[BfO 

160 E -1.98 -7.96 

'c 2,73 2.7S 2.69 

4Oc;a E -8.SS -1.49 -8.47 -8.54 
f'c 3.49 3.49 3.40 3.48 

"'Ca E -8.61 -7.48 -8.40 -8.71 
f't: 3.43 3.52 I 3.44 3.53 

~ E -8.71 7.85 8.70 -8.71 
rt: 4.23 13 4.32 

lOIPb E -7.87 -7.53 
f'c 5.50 5.44 
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calculations with derived from tbe 
force and also witb III. 

a.1so calculated angular distributions scattering and 
round agreement with the experimental data. This shows that the 
calculations produce the proper charge distributions. example, in Fia. 

we show the distribution of 
curve determined from ... '_,..If ........... __ .. ,,'IIM 

COI:1'e!iDO,n<lLDK average potential U. and U" for 'DI"CnOllB 

the effective IDaa mill / m. The HP..charse ........ 1_1.~.J' 
stant in the interior, but lOme OIC:lUIID()DI WftlC!ft 

in the sheU effects. They are smaller than the V_IIIt'll1 

obtained for a shell model charge 
1I.J'V ..... -.::u: .. JI.uu potential. but are still larger 

IIDiPi-pllrt1iCJe wave functions of the A 
we neglect the polarization 

the level i, then we get for the energy 

E(A) £,(A -l)-/jj + ~ +! 2; 
)<A 2 <.4 

1(6) 

of the right-hand side shows [VB 72] that (5.106) is ex.acUy 
the single-particle energy €i l the of the HF-Hamiltoflian. In 

therefore, we the experimental single-particle 
calculated single-particle (,. Iy. we obtain the 

(a) 

208pb 

Skyrme D 
-Exp. OJ 

208 Pb Sky rl"lW n 

(b) 

Hartree-Fock results for with the 
(a) distribution. (b) Effective mass m·/ m and HF-potential 
proton single-particle potent:ial do« not include the Coulomb 
721·) 

II. 
U(r) (the 

[VB 
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Remarks 21 S 

11112 
21112 

".-_____ ..---1 

'--- ]5112 r------ 2 d 312 

---r~=:;:::== 1<1512 

1 Q112 

.,....- 5.6. Experimental lIUld calcubued single--particle ene~elll 
~~vW"II,U;;;Y valUeI were obtained with two different V ..... 8.n1UI 

With mereums effective mass. we recoanize a COIDpr'elllIOD 

SHand :::.:0.75 for SUI). (From [BFG 

of the single-particle levelsv although the 
or parameters show rather different However, it 

should be emphasized that we cannot expect a priori complete agreement, 
polarization effects play a certain role that have not yet been 

laken into account [RW 73]. 

CODcludi,Dg Remarks 

the results of this chapter, we can say that there is a 
lcrIDSCOO:IC foundation of the spherical shell model as in Chap-

method provides a tool for the 
potential from an effcctive nucleon interaction. It oe<:OI:'lIle8 very 

dependent effective interactions to 
we are able to reproduce 

nuclei very well. In most 
the correct ordering; however, 

the experimental single-particle excitations of 

'-&,..., ....... " .......... only applications the HF method with 
these are the only cases where the field 

can symmelry. As soon as one or several are put in 
an unfined j-sheU (open shell HF [Ke 63D we have to decide which one of 
the degenerate magnetic quantum numbers m to occu-



... ~~t'O 
valuet of 1".1)-
the Dext step of the cha.np8 
functions in the core. In this way, we takeiIno .""''''tAlbU 

caused by the interaction of the external ....... noCl""" .... 

We can effect a polarizaJion of the core. 
As long as we have only one or a few 

thiI interaction in the spherical basis by a 
calculation aUowina for ph excilatiOlU. In tbil DtC'~R 
excite virtual vibratiolll in the core and we treat the 
I. putide vibratiowtl coUPlina technique (ICe 9.3). 

In many application!, this effect has been taken into !ux:()U;Ifll 

only in aD way by dittributiag the 
of the next Jelbell 

-l/(lj+ I). The wave fUDcbon then, in I. """IMII'!Iii,, 

Chap. 1) deuity dialributioo. 
approacb only justified if there is a 

."&51._"10 occupied. the 
cue (I>ubahell cloaures~ it is easy &0 exes. 

JIft'''DlllII'lI and we can ar:aore complicated wave function 
a Slater determinant [see Eq. (2.36)]. From these arguments, we ex.pect tbat 
the HF method yields a better approximation to the exact ground state for 
magic nuclei than for nuclei with 8. few particles away rrom the closed shell 
configuration. These nuclei show a small deformation in HF and have 
many nearly degenerate levels in the vicinity of the Fermi surface. 

We call such nuclei transitional nuclei, and in the Chapters 9 and 10 we 
will discuss some methods for investigating their structure. For nuclei far 
[rom closed magic configurations, however. the correlation among the 
quasi·particles becomes so strong tbat they can again be treated in an 
extended mean field approach. Depending on the kind of correlations. we 
have to use a deformed HF potential-which is again a very good approxi· 
matioo for cases where new magic numbers develop in the deformed 
region (see Fig. 2.25). We wiU discuss these methods together with the 
nuclear pairing phenomenon in more delaiJ i.n Chapters 6 and 7. and we 
win see then that nuclear derormations with density dependent rorces can 
be explained rather nicely. 



6 

Pairing Correlations and Superfluid 
Nuclei* 

6.1 Introduction and Experimental Survey 

In Chapter 5 we looked for a wave func·tion the ground state of 
the nucleus. Restricting ourselves to a product ansatz and minimizing the 
total eneTgy of the system has led us the Fock melhod. As we 
have seen. the solution of corresponding equation yields a transfonna-
lion from a given single-particle to a better one. The 
principle is equivalent to the requirement that are no matrix. elements 
between the g.roand state and the simple excitations. the particle-hole 
excitations. Therefore. the Hartree-Fock method paniaUy takes into ac
count the particle-hole part of the interaction. that is. the long-range part 
of the force. as we have seen in 4. Before we turn to the 
e}\citations caused by these correlations, we want to consider the short-
range part of the force which causes correlations (d. 
Chap. 4). It will tum out that this can formally very Similarly to 
the particle-hole part of the force by introducing generalized product wave 
functions of u quasi.partic1es." 

Of course we usually have to both correlations at the 
same time. be done in within the framework of 
Hartree-Fock-Bogoliubov theory. to pure 

II We are sJad to.!ltt that !.be orilln&J version of Ihis (in 
and Schuck) [85 68a} hu partly adopted o!.ber I.u!.boa 
incorpor.ted some of their changes. 
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6.1. 

short-range (particle-particle or pairing) correlations. This 
understand many important effects which cannot be 

Hartrce-Fock picture. 
Let us briefly summarize the ess.enlia.1 experimental facts which lead 

the of pairing c.orrelations: 

(i) energy gap. The spectra of deformed nuclei show a 
tic difference between even and odd nucleon number. 

only few (collective) levels up to 1.5 MeV 
can be nicely interpreted as rotational and 

situation is very different for even-odd nuclei .. urnlrn 

have coUective and sin&le-particle states in 
6.( shows the spectra of some lin 

(ii) level density. n we assume that there are only a 
of given}! many states can be 

degenerate corresponding to the various 
angular momentum. The number of states 

can easily be estimated. and it is found that in 
region the level density exceeds that found 

by roughly a factor of two. 
(iii) Odd-even effect. The total hinding energy of an odd-even 

to be smaller (han the arithmetic mean of the 
jil>n,/ltrOrtiII'C of the two neighboring even-even nuclei. 
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have the foHowing relation for the masses of neighboring nuclei: 

MA~I+MA+1 
M(A, odd) > 2 

u the effect 
(ly) The fIIOmenl:r oJ inertia of deformed nuclei can be measured from 

the level structure of rotational bands. Calculations based on the 
pure lingle-particle model (see Sec. 3.4.2) deviate by a factor of two 
from the experimental values. If pairing is included. theory and 
experiment are in much better agreement. 

(v) Deformations. n. in the pure shell model, we calculate the density 
distribution of the nudeons as a function of the nuclear mass 
number. we find that there is a steady transition from spherically 
symmetric shapes for close.d shell nuclei to strong deformations for 
nuclei ~ith ha.lf-fiUed shells. Nuc:1ei whose mass numbers do not 
deviate very much from the closed shell configuration. however, 
stay at least in their ground state. spherically symmetric. Filling 
more nudeons into the shell. one enters I. region in which nuclei 
undergo rapid changes in deformation, reaching its maximum value 
in the middle of the she'll. 

(vi) Low-Iying 2'" states, We find in even nuclei. in lhe neighborhood of 
closed shell nuclei, a low-lying level with angular momentum 2 and 
positive parity (Fig. 6.1). These levels can be interpreted neither as 
rotations nor as single-particle excitatioRl. In fact, they are vibra· 
tional in character (see Chap. 8). baving a strong interplay with 
pairing correlations. 

To understand aU these phenomena we have to take into account the 
correlations due to the short-range part of the nucleon-nucleon interaction 
(see Chap. 4). As indicated in Chapter 2, even-even nuclei have ground 
ltate spin 10 -.0. and the spin of odd-even nuclei is determined by the 
angular momentum of the odd nucleon. These observations led Goppert
Mayer [Ma SO) to a very eady calculation sho'wing that for short.ranged, 
QllraClive, two-nucleon forces, the coupling of two nucleons in a shell of 
given j to a (1- O)-pair is energeticaUy favored over all other possible 
couplings. This can be understood very easily by neglecting the spin for a 
moment and by considering the density distribution of states 11m) and 
(1- m). as shown schematically in Fig. 6.2 (see also the discussion on this 
point in Section 4.4.1). From these density distributions, it is clear thal the 
spatial overlap of two-nucleon densities is maximal if the two nucleons 
llave the same I. For a short-range force the configuration in which the 
two nucleons orbit the nucleus with equal Iml but in an opposite sense is 
therefore energetically very mucb favored (the case where they tum around 
in equal sense is obviously un favored by the Pauli principle; see, however, 
the case of angular alignment in Chap. 3). Here. orbiting in opposite sense 
means coupling to 1- O. The angular part of a pair coupled to 1- 0, M - 0 
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m :!. 1 

distributions for a nucleon in a given 

given by (4.132): 
I .. (-I 

fM I 

two nucleons. From (6.1). we see 
aellX'llQI only on lile relative 

therefore uniformly 
functions or the two 

palf ID cannot, in general. 
dependence ~ing very much a question 

wave functions. we have 
at -0 witb a of 1//. 

to cloK in which 
their spatial o~'erlap to be maximal by the short 
On the the two nucleons cannot too 
forbidden the uncertainty principle [it can easily 
kinetic would be infinite for the pair wave function 

therefore say that the nucleons want to st.ay as close 
to their short-range interaction, but that the pair has to 

its kinetic energy. which to keep 
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()QQ-llWlm nuclei) I.le paired off. To excite even-even nuclei. therefore. 
one pair. whereas for odd-even nuclei an 

be achieved by putting the odd nucleon in a very low energy 
the biDdin, energy of a pair is of the order 1-2 MeV, the 

spacing between the ground and first ex.cited state in 
-even and odd-even nuclei is thus qualitatively explained (see Fig. 

Other features mentioned above can be understood with the pairing 
el. Because of the energy in the low-lying part of the spectrum of 

nuclei. the level density agrees much better with the experimen. 
one. Also the odd-even effect becDmes obvious. The existence of 

-O)-pairs favDrs-as we have seen (6.1 spherical. nuclear shape (no 
tion is preferred). Nuclei in the neighborhood of closed shells will 

efore still have spherical symmetry, since the influence of the pairing 
e 'Overcomes the tendency to deform. Further away from the closed 

we will have the opposite situation. However, this depends very 
. ively on the strength of the pairing force versus the long-range (p-h) 
; nevertheleu. in this way the rather sudden change from sphericity to 

'Ormation can be understood. 
Closely connected is the existence of low-lying 2 + levels for open shell 

even-even nuclei. Nuclei in tbe neigbborhood of shells that are still 
can easily be ex.cited to shape vibrations around their spherical 

equilibrium position, sinc~ the restoring force. which is the difference 
between pairing and defonnation dfects. is rather small. The nucleus will 
thererore become deformed into an ellipsoid and vibrate about its spherical 
Ihape with a low frequency (quadrupole oscillations. 2 + -levels). 

The diagonalization of the pair interaction cannot be interpreted as a 
contribution to the average static potential of the Hartree-fock type. I t is 
I. completely new eUcct which gives rise to the so-called pairing potentiaL 
h is analogous to superconductivity in metals. This is the reason why Bohr. 
Mouelson"f and Pines [BMP 58] and Belyaev [Be 59] successfully applied 
the methods of tbe theory of superconductivity by Barden. Cooper, and 
Scbrieffer [BeS 57] to nuclei. 

6.2 The Seniority Scheme 

we said in the introductjon. pai.ring correlations are due to the short
range of the nucleon-nucleon interaction, and this interaction is most 
etrective between (I == O}-coupled pairs. In Section 4.4.7 we studied this 
problem to some length; to investigate the pairing phenomena in more 
detail we reconsider the model force derived in (4.[40) and consider N 
particles in a single (2) + l}fDld degenerate )-shell interacting through this 
pairing force. If we place thil at zero energy. the corresponding 
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of 

H 

with 

s 

the operators or Eq. (6.3) ...."., ... _u~_ 
be as the and lowering nl"!. __ 

momentum, which we will caU (1.1 in the case 

+ 

Chap. which has nothing to do with real spin. 
introduction facilitates the solution of (6.2) [Ke 61]. 
purpose we introduce the following three each 
(m>O): 

Therefore. we see that 

[ 
[ 

.... +a+ . 
li&M _RI" 

.. l*) 
'''+ 

triad of operators 
momentum 
and lowering • ... " ....... 

the angular momentum j + j _ . 
the of the angular momentumjo. We 
we quasi-spin operator 10 

we can see from the definition that it has 
ues the pair (m. - m) is fun or 

a of t angular momentum 0, or 

man 

in the j.leveL [U only one panicle is all the componentl 
so that S(IIIII) spin zero in this 
vector is defined by 

(6.6) 

an angular momentum, and the pairing HamiUo
written in the form: 

H (6.1) 
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I • (R +a+_ -2 "'m" 
1'1'1> 

(6.8) 

is the number of Thus the 
depending on whelher 

of So afe 
is an integer or a hair 

it follows 

.1 
"2 

momentum 

(6.9) 

according to Eq. (6.6), the maximum value of S is S-0/2. we see 
S can on aU vatues n/2. (0/2)- I. (n/2) .... 1(0/2)-
states will then be labeled by S and and the eigenvalues of 

(6.6) are given by 

E(S)= - G {S'(S+ I) !(N _9)2 ~(N -o)}. (6.10) 

alternative quantum number 10 Ihe total quasi-spin we can 
the so-called seniority quantum number .S' [ ~3] given by the 

s- HO-.r), (6.11 ) 

s -0,2,4, ... N for N 
s 1,3,5 .... N for N odd. 

tota] energy (6.10) as a function of is then by 

G 
E(N.s)- "4(N-s)(20-s- N+2) 

- - ~ (S2 2.r(n+ I) 2N(!2 1)- (6.1 

characteristic feature of the force is that the by 
degenerate in ali other nu N. 

value of the energy depends slron~y on the number 
................. does not. Since the total quasi-spin 

have [from (6.10)1 for the energy difference of two 

E(S- i)- £(S)-2G' S. (6.13) 

binding energy increases for a given N with S; the ground is 
obtained when aU quasi-spins are aJigned. that is. S - in or 3 - O. 

an even system. the first excited state has s - 2; and from (6.12) or 
13) we have, for the excitation energy of the first excited state, 

E(N,s-2)- E(N.s=O)- G·n. 

The excitation energies are thus independent of the 
j-shell. 

14) 
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1.2.4 ... 2j-1 6· ==== LI,12 
I.. 1/26 

2'" 1181 

oj bl 
Fipre 6.3. (a) Two-particle spectrum of I. pure pairing force. (b) Spectrum 
21OpO (2p in the 1119/2 shell). 

If we have only two particl. in thej..abell. the lelliority caD take on 
the values $ -0.2. The two (identi~l) nucleons can couple to J-o. 
4 ..... 2j- L Only the state with 1-0 is aIrectcd-tbat is, lowered-by 
pairing interaction (6.2). The other states are unaffected and 
degenerate. Thus we see that the ground state ($ -0) has 1-0 and 
excited states (s - 2) have 1- 2~ 4,6, ... , that is, in Lbe ground stale the 
nucleoli' are "paired,'" whereas in the excited states the pair is 
This fact is represented scbematically in Fig. 6.3, where we also show 
comparison the low-lying spectrum of 310pO (two protons in a Ih9j2 _"'''''AJ 
I'D the Fneral CiLIe. the binding energy of the ground state as It fUllction 
N can be written 1.1: 

,r~'---> 

E(N,s-N)- E(N.s-O)- - E(N.3-0)- Gn ~ (1- N~l). (6.1 

We see that for cases in which the particle number is much smaller than 
the degeneracy of the sheH (N -4::0). the binding increases linearly with the 
number (n - N /2) of pair~, that is, the total energy is just the binding 
energy of one pair (6.14) multiplied by the number of pairs. If we draw the 
ground state energies as a function of n, we obtain a "harmonic spectrum" 
(Fig. 6.4). This is the pair vibrational spectrum, which is found, for example. 
in the lead region and which we will consider in more detail in ...nii'~.YU'1i;1' 

8.l.5. AU the states of the spectrum in Fig. 6.4 have maximal 
(9-0). that is. they are grOllnd stales. We speak then of the s-O band; 
there are. of course, $ - 2 bands" etc. 11 has been found that two-particle 
transfers between two states of a given band are enhanced with respect 
those between two slates belonging to different bands. If the number 
pa.in increases. the mutual disturbance of 1-0 pairs due to the 
principle (see introduction) becomes important and the spectrum (6.1 
becomes anharmonic. 

We see that the excitation energy of the first excited state (6.14) is 
to the binding energy of one pair (6.15). Alternatively, we can say that 

GQ 
nlE3 

n .. 2 
GQ 

n;; I 
GQ n.:::O 

Flpre 6.4. Humonic spectrum of pair vibrations. 
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fint exciled (.r - 2) two nucleons are unpaired. (The ity of 
the first excited by putting the bound pair into a higher level 

loded in OUf model, since there is only one level.) This classification 
Itraiabtforwardly senerahus to the statement that a state of 

ty I baa J' unpaired particles (s even and odd), 
ground apparently never degenerate. since there is only one 

to make a total of S-n/2 out of 11 spins ~. There are 0- I 
for the s-2 

(6.16) 

. can be easily checked by considering a definite e'lample. say D - 4; 
I 2 3 t1 

J - 2 state can then be represented as: -+ -+ -+ <E-. There are 4 1 - 3 
'bilities of grouping a with one of tbe quasi-spins. namely a I, a2. a3. 
can be verified that for an arbitrary. even $ the degree of degeneracy 

given by (BS 681.]: 

s t( N. (6.17) 

wave junction corresponding to Eq. (6.2) can also be obtained easily 
the quasi-spin formalism. for N -0 (a completely empty Ihell) and 

D (8 completely full shen), tbe tbird component of each of the 
is - i or + i. respectively. Therefore. tbe vacuum is the state 

= In S "'" -In 2 u , 0 :2' 

1- (6.18) 

the full shell is the state S - iO; So -lfl : n/2). If we represent a 
I quasi-spin state by ISSo>. where So- N - 0). [he ground slales 

- D/2) ror diJferent even N can be written as 

I!O,So)-ltD. N;D)O:SZ/ll_>. (6.19) 

The application of the raising operator S + (6.3) increases lhe number of 
by two. The ground stales are eigenstate'S of S2, So. and Hand 

are just the products of n - N /2 pair states. Therefore, we aJso say that the 
around state is a pair condensate. 

For odd N-systems. the particle cannot be paired and one of the 
will be zero. The largest possible value of S will 

tberefore be Hn - 1) and the ground states are given by: 

0-1 
2 

(6.20) 

Since m can take on the 20 diHerent values - j <: m <: j. the ground sLate 
of an N-odd system is 20-f01d degenerate (in contrast to the nondegenerate 
ground state of even system!!!). This is the explanation of why the level 
density for odd systems close to the ground Slate is high. whereas for even 
systems there is always aD energy gap. 
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As we have seen, the seniority 2 -,0-1) are 
slOla for even N They can be easily ........ A ... ". 

formalism .. 
We first consider the case N,., 2 and construct lh 

anguJar momentum by applying the operators 

(6.2 

on the vacuum 

1M -Ai~1 (6.22) 

Since A~o: Solo [we use BeS Eq. (4.138)], tbey are eigenstates of 
quasi-spi.n with S-0/2 for 1-0 and with S- }n- I for I~O. To see 
we calculate 

SlIIM)- [Sl,Aj~]1 + -}n(!o+ 1)1 

The first term on the r.h.s. is: 

[Sl. A It, )1- ) - [ S .. S _ ,A I~ 11 + [ sg - So. A I~]I 

- S+ [S_ .Aj:']I-)+ [S;- So,A/~ 

(6.23) 

(6.24) 

Since S is proportiona.l to Aoo , it foHows from the orthogonality relationl 
for the Cleblch-Gordon coeHicients [ Ed 57] that for 1:;1:-0. 

[S_.A/~]I- -0. (6.25) 

Using (6.8). we find for 1.,..0: 

S21/M)- -gI/M)+ ~ (~ + I )IIM 

-( 2 -l) ~ 1M (6.26) 

Therefore, the two-particle states (6.22) are, for I O. eigenstates of S2 with 
S - (0/2) - I or s - 2, that is, the two particles are unpaired in the I 0 
states. 

Since the operator S + cannot change S and only serves to add two 
particles. it is easy to construct the first excited states for an even N system 
withN>2: 

liO-I, (6.27) 

SiriCC S ... is a spberical tensor operator of rank zero, tbese states have the 
anaular momentum quantum numbers I, M and seniority two for 1+0. 

The states (6.27) are, of course, eigenstales of the Hamiltonian (6.2) with 
the energy (6.12~ and we see that it does not depend on I, M. As we have 
previOUlIy 'lated, the excited states are characterized by the numb« 
or unpaired particles, that the seniority number s. Such states can be 
cOlUtructed using multiple application or the Ai~ operators, but the 
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to lower states as well as the construction of stales with 
momentum is then nontrivial. 

many casal, the explicit construction of the wave function. however, 
Dot needed (e.g .. , many matrix elements can be obtained angular 

coupling techniques). which is one of the advantages of the 
r';qp.i-t;pin forma.lism. 

us calculate. for example. the matrix elements of the quadrupole 

(6.28) 

(6.28) we see that Q20 is a vector in quasi-spin space. This fact 
that the dependence of any quadrupole matrix element on So= 

i(N - 0). that on Ihe particle number. is given by the Wigner .. Eckart 
theorem [Ed 57]: 

I 
o (6.29) 

Since quadrupole transitions go from the ground st.ate with seniority uro 
an excited state with s - 2 [$election rule given by (6.29»). we get for the 

quadrupole transition probability 

- - 0:.:( Q/2 
-So 0 

0/2 - 1)2 ( n )( (} ) 
So «2" -So '2 +SO 

(6.30) 

From (6.30) we see the COlleCfil,'e effect for transition probabilities which we 
mentioned in the introduction: It is proportional .10 the product of the 
number of particle pairs N 12 and the number of hole pairs (Q - N /2). The 
ooUective effect is therefore most pronounced in the middle of shells 
and due to the aforementioned condensation of pairs in the ground slate. 
This is in agreement with the ex.perimental finding thal the quadrupole 
transition probabilities for nuclei in the middle of closed shells are en· 
hanced with respect to their pure shell model values. 

The model we presented in this section is indeed very simple and in 
reality things will be much more complicated. We will have to consider. for 
instance. more levels and more realistic forces. Nevertheless, we wish to 

the point that many features of the seniority model remain valid in 
more realistic cases, and in a certain sense the mathematical and physical 
hansparency of this model reflects reality better tban lhe quite abstract 
formalism of quasi·particles, which we introduce in the next section, used 
to handle more complex situations. 



6.3 lbe Des Model 

6.3.1 The Wave Function 

......... ' ... ""'" and which can easily be 
method no longer 

but, like the 
derived from a variational principle. Therefore. it 
make the right for the ground stale wave r n analogy 
Bardeeu, Cooper, Schriefrer (BeS 57J. who determined the 
state of a we try to represent the wave function 
even-even nuclei in the fonowing way. 

+af)1 

where Uk and vk represent variational parameters. The product runs onb 
over baH the configuration space, as indicated by k O. For state 
k > 0 there a ugate'''' state k < 0 and the states {k. 

space. 
the probability that a certain pair 

or has to be determined in 
a minimum. They are nol, nn'w""IJ"''' 

dent, as the nonn of the state (6.31) 

luk l2 + -I. 

Since the wave function only fixed to within a factor, it 
always choose the coeFficients u .. real and positive. In 
the phase to be determined by the variation the 
expectation It can be shownt however (see 

reasonable for tbe interaction, real positive 
the The ansatz (6.31) contains the coefficients Uic 

VA; only for k O. In the following it is sometimes to also 
coefficients Il~: - Uk and f)~ : - - Ok for the values 

if the Hamiltonian is invariant under time 
state [Me 

Tlk). (6.33) 
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example iI • spherical basis [in BeS phases. Eq. (4.138)]: 

- -m' /. m>O. (6.34) 

UVI,<IIMP'I however. apply also for cases of Hamiltonians 
time reversal symmetry Sect. 7.7). 

point in the the ilariarionaf ansalz (6.31) for the wave 
Ilctionseems rather arbitrary. It will become dear in the next chapter 

iI"'M,iI"1"IIf.lI'lil quite naturally by a slight modification of the Hartree
u_ ...... Let us simply make lhe observation that the particles appear 

mutually conjugate pairs similar to the ground sta,te (6. J9) of the 
. 'ty model, but wi,tn the important difference that [BCS) is a superpo

of different numbers of pairs. that is, (6.31) no longer has a sharp 
cie number. This is actually a great disadvantage of (6.31) in nuclear 

1- + .... 

(6.35) 

solid state physics. where N l0'-3, the violation of particle number has 
influence on any physical quantity_ r n nuclei. however. the violation of 
invariance corresponding to the particle number in many cases gives 
to serious errors. One then has to use improved methods to deal with 

h problems (PBCS, FBCS; see Sec. 11.4.3). 
To give an impression of the flexibility of the ansatz (6.31), we rewrite it 
a different way: It can be by a. generalized pair crearion 

1IIi!J.DI!ra r or (6.3) 

(6.36) 

IBCS)a: exp(A +)1 (6.37) 

The component having the particle number N is therefore (A +1/2. This 
corresponds to the seniority zero state (s-O) of Eq. (6.19); in fact, this 
oomponent is exactly the ground state wave function of the seniority 
model. since in this case aU v/s and uk's are equal. as we shall see later on. 
In that sense, the BCS-ansatz contains the s - 0 state of independent pairs. 
that it is a condensate of bound pairs (boson-like entities; see Chap. 9). 
which are in the same quantum state (l = 0, T- I). In infinite matter this 
leads to a Bose-Einstein condensation of the pairs (superconductivity). In 
finite systems like nuclei there exists no real phase transition. Nevertheless, 
it can come quite close to it and in any case (6.37) should be a good ansatz. 



6.3.2 The 

assume 

or 

H-

... 
- H-'AN. 

COIKluwn (6.39). It is caw=a 
,. .. .., tI .. ,1'IIII'V """",,,",.1,&1_ it represent! the 

the particle BUIDDI:!' 

we use the fact tbe value of H' i5 fl 

variation of the DeS wave function (6.31). 
of the parameter h. Therefore, we get 

IBCS{;\') h..A' 0 (6.42) 

dN 
d'A -A . (6.43) 

In the following we of H. For the calculation 
to remember that we have to the term 

quantity in this is the 

(6.44) 

for the BeS expectation value of H': 

} 
+ (6.45) 

>0 
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determined by the parameters 

-0 (6.40) 

(a!. + all. H o. (6.41) 

differentiating, we finally the set of BeS equations 

2it ",,, - u:);O. k >0, (6.48) 

(6.49) 

the gap parameters (for real matrix elements) 

(6.50) 

and 61:' (6.32) and (6.48) yield two equationl 

(6.5l) 

In the case of no interaction one has a - 0 and v; = 1, u; = 0 for occupied 
orbits 0). The only of (651) are therefore: 

I[ ~ ]. vl _ 1-
Ic 2 ~i'J.+ III 

J;; Ie 
(6.52) 

l· ui-; [1+ 
~;:+Ili 

variational principle (6.46) yields the set of equations (6.49), 
(6.50). and (6.52). Together with the particle-number condition 

2 -N (6.53) 

allow caJcuJa.tion of the parameters general, 
are noruinear and by 
................. or the properties of these equations it is often useful to 
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obtain equalion: 

6.3.3 The Special Case of a Pure 

the form. 

(6.45)] is 

In caM the parameter 

is given by 

not 
particle 

In (6.56) 
important and 

In 

which are in any case not 
In this we have 

on k: 

more by 
in the proper 

that in the limit G-.O, that is. 
-0 for unoccupied onC'S. In this case~ 

the case (A 0) the step 

from below above the Fermi 
the below and a partial filling 

particles are 
a partial depletion 

the states above the Fermi 
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... - 6.5. The O((:U1)IlUCrll vi in the noninteractins use (1.1- 0) and 
interactina 

6.5). The gap 6quDiion (6.54) takes the simple 

a--
2 

the speciat case of Q _u,. .... iI": all ~ are equal. From (6.58). 
taking into account the term 

condition (6.39). we rind 
we see that in 

are equaL From the 

~-:o . 
corresponding energy is (Ek "'" O): 

=-! 'N.n(]-~+L). 
2 211 202 

(6.60) 

(6.61 ) 

(6.62) 

expression agree'S for N up to order I In with the exact formula 
Eq. (6.15). Therefore. we see that the DCS ansatz is a good 

tion, suited to treat the paanng t"n1"I .. ,.I:.I 

The uncerLainly in the particle number can be obtained IfU"l'l''U''''U 

(6.44) and (6.61): 

(6.63) 

(6.57) and (6.61) as 

~- . (0-1) . (6.64) 

gap thus a parabolic dependence on the number of particles in the 
.beU and is zero for empty or fined For N = U. (half-filled shells), we 
find 

·n. (6.65) 



134 Corrc1atioru. and Supe:rfluid Nuclei 

As we will see later (Sect. 6.3.4). it is not by accident that is 
excitation energy (6.14) of tbe first excited state and it wiH DeCOl1lIC 

why d caned the (energy) 

6.3.4 Bogoliubov Quasi-particles-Excited 

advantage of writing the ground in the 
that despite being very similar to the exact ground 

mode1 (condensate of pairs). and therefore containing "',..".,.. ... , 
particles, IDCS) can at the same time be 

of a new type of fermions: the Bogoliubov OUI:Z'l"/. 

a general concept in many·body 
in Chapter 7. In it easily verified that 

with 

+ 'A a+ , a,t = fAk k - t:.k 

ukat + V.k"k· 

and the fonowing fermion commutation relations hold: 

{ ak ~ a,,- } { Q k • at } IIII!J 8u," 

we have used (6.34) and the usual phase convention 

0; k O. 

ansatz (6.67) for quasi-particles is very similar to the ansatz 
in the Lipkin model (5.50) and we could 

same techniques for their solution. In the latter case, we can 
coefficients (cp=O) give the lowest energy. same 

here if the force has only matrix elements Vtfk'k' < O. Since 
is very reasonable. we shall use only rea] coefficients 1.11.: 

(6.67) and (6.52) we see that a quasi-particle has 
properties of a bare particle and some of a bare hole: Above the 

it is nearly a particle. while below the 
nearly a hole. 

(6.67) that by m;;ing this very useful trick of a 
we have achieved a representation of 

ll'UJ'Utf" interacting particles in terms of a notfw' 

This is. of course, in many ...... "'.·TU· .. 

price we have to pay is that the 
not conserve particle number becau~ we 
operators. If we assume that not only the ground 
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m.rellCnle4 by a product state of quasi-particles, but also excited oJlales, 

Hamiltonian HiP' which corresponds to this gas of non-interacting 
is given by 

(6.70) 

miklll!·f'III'! the constant (H takes account of the fact that we have 

for all k ~ 0, (6.71 ) 

H. has the right ground state expectation value. The quasi
energies EIt. are a straightforward generalization of the definition of 

for real particles (for details of the calculations see Chap. 7) 

Eli. -(BCSla.H'atIBCS) - H'IBCS) 

_~2+A2 
It. It. (6.72) 

one..quasi-particle states 

ak~ II (Uk + v/(atar )1-). (6.73) 
k.,..k, 

IBCS)- ak~ IT (Uk + v/(atar )1-) (6.74) 
*.,..k, 

\'iously have the energy + E/t. They are a superposition of states 
"th odd particle number and describe a nucleus with an odd number of 

Dueleons. Ac(:ording to the quantum number k I this state can be either the 
state or an excited state. 

The two-Quasi-particle states 

-a/c~(J.: IT (u/c+v.c:ak+o!)I-), 
.4:.,..1<," kl 

-( - t:,tl + Uk.IOk~at.) IT (Uk + tlka.+at)l
k..". "I 

the energy + Ek. + Ek. . They describe excited states in the even 
I :& 

. In this case one pair is broken and the excitation energy is 

(6.76) 

first excited state in the even system thus lies at least 26 higher than 
ground state. 

In the special case of a .Jingle j-shell. the ex.citation energy is given by 

Ek + Ek ,-2Ji2+62 

With (6.58), (6.41). and (6.62) we find (e:/(-O) 

- G O- N 
(- 2' 

(6.77) 

(6.78) 



(6.64), 

seniority model From 
" ..... , ..... u' 1'1V"f'1II'U 211. 

L.\ • 

For small excitation energy (ik we ...... ""'.,n.·,. rind a 

m 
We can explain the odd-e\ten mass dirference by 

consideration: The ground state energies are given for any N by 

and therefore the odd-even mass 

(6.81) often exploited to 
meuu.red binding energies. It has 
I""LIV"'. the relation 6 - 12· A -1/:1 I.S a 

67] (Fig. 6.6). 

the gap empirically 
found that on the average 
l1Ja.!"lI't"".a of nucleon number 

above OODIiderations give a qualitative understanding of the 
atates in superfluid There remain. howevert a 

IIDlDOl1alill DlIlID:1a to take into account in a more detailed investigation; 

(I) 'The CIIetukaI PotNdaI. 
A detennined in a 
ground state has the correct 

seen in (6.53). the 
that the averap: particle 

With lhe same A, we rind 



(6.82) 

,,,"" ...... - Ie whieb are far away from the surface. 
'Il.I'I .... t!'1'U1fV of the Fermi surface the particle 

the encfIY depends strongly on average 
iIUU'VdU readjust the chemical potential i\ for the 

and also for the ex.cited levels even nuclei. ... 
long as we not done this, we should use the operator H J - H - 'AN 

&"..,,_,wof H for the calcubuion of excitation energies (as we have done $0 

be seen if we correct for the wrong particle 
Ik) of (6.82): 

l-(kIHlk)+ ~ (N +] -<"PVlk» 
... 

-(kIH-i\Nlk)+i\(N+ I) 

(II') The BIoekIIll Effect. The occupation probabilitjes the BCS 
ground state [Eq. (6.52)] were determined by the variational principle. The 
ground sta.te of an odd system is described by the wave funcrion 

- ak~ IT (Uk + VkQ"t at )1-)· (6.83) 
I.: .,.k j 

The unpaired in the level k I and blocks this level. The Pauli 
principle this from participating in the of 
nucleons by the pairing correlations. level kl always stays 
occupied the level k aJways stays empty. Only for k k I do we have 
v; - c} (Fig. 6.7). Using the blocked wave function wave 
function the variational principle. we find the same for 1,.,1 as 
before. The only difference is that in the calcuJalion or the one level is 

2 v. 
k 

6.7. Blocking of the state k l _ 
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"blocked"; 

The level Ie I has to be excluded from 
to the pairing energy. The chemical 

N 1+2 L vf. 
t ~ lei 

Similar equations for the case of a higher number 
in the case of [W()--O'WUii-Dar 

The , in the UkS and 
These blocking c.orreiations are of the order {} and 
neglected. However, as pointed out by Soloviev [So 6 j. 
NiLsson and Prior (NP 61], the correction may be in some cases. 
can happen pa.rti.tu1arly for deformed nuclei where, although there 
20 levels in the spectrum. onJy 4 or 5 contribute appreciably to the sum 
Eq. (6.50). Clearly the blocking of one or two such levels in such a 
a 10 one cannot limply equate the ex.citation 
quali-particle bUl must evaluate the total energy of the 
state subt.ract it the vacuum energy. For two..quui-partide 
the corrected energy (:::::: 1.4 MeV) smaller than the 
energy 1.7 MeV1 but much 1arser than the free-particle 
MeV). One problem that in this corrected theory, in which the 
be appreciably different in the ground stale and the ex.cited Slates. is 

are no automatically orthogonal. 
different quantum such as the spin or the parity, 

In particular, two-quasI-panicle states of spin 
orthogonal to the ground state in such cases.. 

6.3.5 Discussion of the Gap Equation 

For aU practical cascs, the BCS-equations have to be solved on a 
and the question arises of how many levels one should inc1ude for 
calculations, that is, we have to . which states contribute most 
the sum appearing the equation (6.54). For this purpose, let UI 

the ~k for a state close to the Fermi level. [n Ihis case 
main contributions to the sum come from states in the vicinity of 
Fermi level. The reason for is that (i) in this case the 

+ I 0), and tbe elements vIcII;·f. for 
overlapping wave functions) are larger than the other matrix 

elements. 
rar from the 

are k''::::::!:!k. the overlap or the wave functions is 
but tbe factor Il k ,/{i.;' + is now small of 
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surface it is the other way around, since the 
{k and /(' usually belonging to different 

if we had taken a constant matrix 
.. mCl!lIOVer connguration the gap would have diverged. 

spherical. only weakly deformed nuclei the single-particle 
a pronounced shell The main contribution to the sum in 

comes from within the same she]]. We can 
kAM ..... F' .......... more or less treat each shell separately. From our discussion 

we expect for inner shells Ilk The pairing force will therefore 
be effective in the partially Hlled shell. which is often called 

ell leads back to seniority model. For stTongJy deformed 
the shell structure washed ou 1, the sum 

runs over a group of levels the neighborhood of lbe Ferm.i surface, 
called the A-shell. 

. __ "~ .. of the pairing to of the Fermi level is the 
reason that neutrons and can treated separately (at for 

nuclei). For nuclei with A -1 neutron excess is (N - Z);:.. 20. 
neutron and proton levels close the Fermi energy. therefore, have 
small overlap compared to that of protons or neutrons 
neglecting the proton-neutron pairing, the total wave function may 

represented as a product of the proton and neUll'on functions: 

(6.86) 

In of these simplifying assumptions t BCS equations can only be 
solved numerically. In order to study innuence of [he interaction 

pairs of nucleons in a qualitative manner we restrict ourselves to a 
pairing force (6.55) within tbe the following consider-

we therefore negle.ct the other equalion is then of 

a-
2 

(6.87) 

the sum runs over the A-shell onJy. Equation (6.87) always has the 
trivial solution Il = 0, that is, u1 , t:,t - for no or sufficiently weak 
pairing force is the only solution. for 

I 
2 

(6.88) 



~J""'L'" a HOJna .......... "'lI' .... vUlI. 

pairinl force is 
However) sharp traMition 
tion and it somewhat ........ _ 
For an IYltem, particle nmn.,.:r 

ft ... ' ........... i, a.lwaYI 
On the other hand. (6.87) can also be 

of the pairing force since. andJ as we 
determined empirically from the odd-even effect. It 
on the "'cutofr' A. 

6.3.6 Schematic Solution of the Gap Equation 

It is very instructive to have an analytic solution of the gap equation 
59]. This can only achieved in a very schematic modeL We imasc a 
I"UII;l"l"I,dl"'I"II'UIIl,n nucleus for level is almost uniform 

level 4( is very small compared witb a (for n.lr .... rf1!'1._ 

........ "''''''''. in the rare I MeV and 4t:::::O.l-0.2 MeV). We 
replace the sum in Eq. (6.87) a.pproximatively 

the Alben: (' < ( < ; a" -1\; b - A. 

1- !Gi" 1 p(f.)£k, 
2 d Jt.'1. + fj,2 

where p(t:) is the level density. We furthermore assume that P(E) 
approximately constant within the A-Shell We introduce the 
mensioruell quantity 

and obtain after integration 

Solving for A yields 

2.,.,-aninh it_ 
6 

1 .......... . 
A- . h2 ~b2+a2-2abco,.h2." 

Sin 1} 

average particle number in the BeS model is given by 
determines the chemica] potential A. The number of particles in the 
is given by (again we replace the sum in (6.39) by an integral): 

N=2(b!(1- )pch. 
)0 2 ~f.2+al 

The number of levels in the A-shell is given by 

~ p(b-a). 

(6.93) 

(6.94) 
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unroclLUCID& the occupation factor 

XN= 1- ~ t (6.95) 

a ICDI.UIIY but straightforward caicuJation using (6.92), 

IfftlUIlrIl"Y'I1'U:J (6.96) in (6.92)l we get: 

the limit of weak coupling. that is~ for G'P< I, we find: 

~a: e -(l/,G). 

(6.96) 

(6.97) 

(6.98) 

We therefore have from (6.98) the important result that the gap cannot be 
developed as a power series in the interaction strength. 

Equation (6.91) has been derived under the condition that A is not 
than the level distance~ that is. 

(6.99) 

(6.100) 

For 'Y/ <; I (strong pairing correlations), this inequality is always fulfilled. 
For 'Y/~ I, Eq. (6.100) is only satisfied for large enough values of N(2rl
N). 

The ground state energy in the BCS-theory is given by (6.56). Its 
contribution to the ground state expectation value of H' is 

H (6.101 ) 

Since H' differs from H by A' N. using (6.96) and performing the integral 
in (6.101) we gel for the ground state energy: 

Eecs-(BCSIH 

We are interested in that part of the ground state energy which comes from 
the force alone. For this purpose, we first calculate the energy for 
G - 0 which corresponds to the limit ll~oo: 

EO. H (' + (H). N - ~g( (If - E')( I - ~). (6. J03) 

The contribution EI' of the pairing force to the ground state energy is 
therefore given by: 

(6.104) 

In the case of a half-filled shell where N == n. we find. using Eqs. (6.] 02). 



ptJirilf8 ..." for 1I'UI!!IH'l!'I'it"Ii:II" II 

possibJe to estimate G &Ad ~ from 
(NP 61) found for protODI GI'Q:!I7/A 
MeV. The energy gap ~ is roughly 1 MeV. AlIliumLtnl 

I MeV, we get 7}::::':.4 / 100. In case we can n 
(6.105) and obtain for the total 

same for protons and neutrons, 

E " -EP +E P ........ tota. (p) (II) -

total pairing energy is therefore extremely 

which 

MeV}, 

a slate which 
etI,enllll.1te of the particle number operator. whole theory 

is well localiz.ed around the actual particle number. In 
we therefore calculate the mean deviation 

IftLI'~" (6.44): 

Within the ... " .... 1TI 

/j.l 

(6.N )2 - L ~ I: 2 
k:>O fA' +6.", 

'II"TO"""' .... it that 

(aN)2.~(arc taD : -arc tan ~). 

In the limit of weak pairing correlations or small level density we get 

(aN)2. p·a· tr. 

is roughly fuUiUed for strongly 
values for p and G. we obtain 
16. 

limit of strong pairing (TJ c::: I), we take only the 
of (6.108) with respect to 1): 

(~N)2-0(1_~,)-2N( 1- ~). (6.110) 

Consequently. for a haJf-fUied shell (N an) one finds aN,. 
for only one pair (N-2) we obtain 6.N-::::::.2. A typical example 

,bell with 1J< 1 is Its BCS wave function ns 
am,OUlllts of 204Pb and 200pb and abo of 206Pb and I9IPb. We have to 
in howevert that the Fenni surfaces A and the 
same for aU these nuclei, and therefore the uncertainty 
number not as bad as it appears. 
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more 
embraces all the models we have treated so 



CHAPTER 7 

The Generalized Single-Particle Model 
(HFBTheory) 

7.1 introduction 

As we have seen in the last two cbapters, many properties of nuclei can be 
described in lenns of a model of independent particles moving in an 
average potential whose space dependence closely follows the 
distribution. With unfiHed sbells, we find additional correlations between 
these particles. In the BCS model we have learned to treat these i".nt'1'"ul. 

in a generalized picture by introducing 
and a new type of potential." 

The (HFB) theory Icneraliz.ei and 
both theory we look for the most ,cnera} product 
wave of independently moving quasi-particles. 
are determined by II variational principle and take into account as 

staying within I. static sinlle-particle picture. 
this approximation, the Hamiltonian reduces to 

potentiab, the seif·consiltent field f, which we already know from 
theory, and an additional pairing field fl, known 

the BCS theory. The field r contains all the long range ph-correLations 
eventually lead to a deformed ground state tranritlon}. On 

hand, /1 sums up the short-range correlations that can 
to a and a superfJuid state. HFB theory now mixes 

both and bandIes their interdependence. It is therefore capa-



"'"UI~ transition within the 

the HFB theo.ry is a combination ef both Hart.ree-Fock and BCS 
li1Jleo;r"J. many of the relevant problenu have already been discussed in the 
~~IorCI:OU:Ul chapters. We can therefore stay rather formal in deriving the 
_*1&1"'/ formulae appearing at the beginning of this chapter. In Section 

we introduce a general picture. The nuclear wave runc-
under censideration defined as a vacuum of suitable quasi-

and its formal properties are discussed. Many of the 
and some important theorems in this context are proved" in 

.......... uc,dix E. In Section 7.3 we derive the HFB equations that determine 
wave function Ie) and present several methods for solving them. The 

pairiDl-plus-quadrupoIe model is introduced in Section 7.4 as an example. 
shows many important features of realistic calculatiens. Severa) 

,applications of the theory are in the last sections., namely, 
calculations of the ground state properties of deformed nuclei coD.l!luained 

rtree-Fock theory (CHF) for the investigation of energy surfaces in tbe 
context of fissien and the caJcwation of rotationa1 spectra within the 
.:if -consistent crank.ing (SCC) model. 

7.2 The General Bogoliubov Transformation 

7.2.1 Quasi-particle Operators 

The basic idea of any qua.si-particle concept is to represent the ground 
state of a nucleus as a vacuum with respect to quasi-partides~ which are 
defined by the low-lying excitations of neighboring nuclei. This is precisely 
the concept of Landau and Migdal [La 59, Mi 67]. who defined the 
vacuum and the quasi-particles in terms of e:ltact eigenstates of the many
body system. This theory of Fermi liquids is therefore. in principle, an 
exact one; howevert it has the disadvantage that there is no simple 
mathematical relationship between these Landau-Migdal quui·partides 
and the "bare" particles of the system (given by some basic operators c/ . c, 
which may, for instan~ be plane waves or harmonic osciUator states). 

In this chapler~ we use the so--caUed Bogoliubov quasi-particles [Bo 58, 
Bo 59a+ b, BS 59, Va 61] which have a linear connection to the bare 
particles. They ar-e easy to handle. but the corresponding vacuum ,.,> and 
the one-quui-parlicle states are now only approximations of the eu.ct 
eigenfunctions or the many-body Hamiltonian. 

We have already defined quasi-particles of a very special type within the 
DeS model (Eq. 6.67). In the limit ef vanishing pairing corrdations 
(ut.vJc-O). they are either particles (£A;>f:F ) or holes (E:k<fF ). A very 
natural extension of these BCS quasi·particles is given by the most general 
linear transformation from the particle operators c/ ,c, to the quasi-particle 



11/ - ~ U1kC/ + V1kC,. 
I 

The indices k and I both run over the whole 
- 1. ... M). The He:nnitian conjugation of Eq. (7.1) 

11k , We therefore have a transformation of the 
ct .. . C;;)~fJl .. 'P/tIt I1t .. . n;) which acts in a 

and which is represented by the matri'l 

-( ~ ~). 

U, V are not arbitrary. We require the new 
+ to obey the same fermion commutation relations III 

or 

the matrix to beinl unitary. 

-I and 

I. 

-1. 

uu + + V" VT "'" 1. 

UV+ + V· T -0. 

and allows us to invert Eq. (7.1): 

C/ = L u1tflt + V.l1k· 
Ie 

There a famous theorem of Bloch and [Zu 62. BM 62] 
states that a unitary matrix of the form (7.3) can always be decomposed 
into three matrices of very special form: 

(7.7) 

or 

DUC. V D*VC. (7.8) 

d<idiDiiMUk or the matrix ill Eq. (7.2) IO'ImI .omewhat unusu.al; it is.. bowever. 
I) ud hu the advaol../lp that we caD use the ruln of 



are unitary matrices 

o 

o 

I 

-

o 

are real matrices the 

o 

Un 0 

o U" 

I 

1 

o 

o 

o 
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(7.9) 

proof of this theor~m is given in 1. Its meaning is that the 
(7.1) can be decomposed into three parts 

(1.10 ) 

D U.V 

(i) a unitary transformation of panicle I'lf'Ul'l"fllnlf"r C + among themselves 
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as in the HF case [Eq. (5.18)] 

It defines a new basis, called the "cantmicai" 
explained in more detail in Appendix E. It is 
because. as we shan the density matrix p is diagonal in this 

(ii) a special Bogoliubov trans/ormation, which distingllishes 
"paired u levels (up> 0, vI' > 0) 

a/ == ul'o/ - CpO" ' 

a/ upa/ + vpap' 

where (p, p) are defined by the 2 X 2 boxes in Eq. (7.9) (see 
Chap. 6), and "blocked" levels, which are either occupied 

0) or empty (c'",-O; u",-I): 

a = a+ (1' - a_. 
A I t -m 0'1 

(7.12) corresponds to the DeS-transformation (6.67). The orthogonal ... 
ity relations (7.5) guarantee that the real occupation numbers vp and 
up are normalized; 

(iii) a unitary transformation oj the quasi-particle operators o.}(+ amonl 
themselves 

(7.14) 

From this theorem we see that a general Bogoliubov transformation (7. J) 
is nothing but a BeS transformation in a,n appropriate the canonical 
basis, defined by the transformation D in Eq. (7.1 J). In particular, 
decomposition (7.1) defines fully occupied levels (i). completely empty 
levels (m). and paired levels (p) with canonical conjugate states p. p. In 
many problems with lime reversal symmetry it turns out that one can 
choose the time reversal operation as canonical HoweverT 

there are cases (for example, the HFB~theory in a rotating frame; see 
7.7) where we do not know a priori what the canonical conjugation is. Firll 
we ha.ve to determine the fuU HFB transformatiom (7.1) and afterwards we 
can apply the Bloch-Messiah theorem (7.7) for the calculation of the 
canonical basis. We will see in Sec. 7.2.2. how this decomposltion can be 
achieved in practical cases, which win be useful for a deeper insight into 
the phYSical content of the wave function. 

• It bas Lbl.i name because lh.c skew symmetric pairing (ensor I{ (7.24) is ill the canonical 
form in this 
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'1.2.2 The Quasi-particle Vacuum 

operatofl the section has up to now 

"UlI'WA'''."lIi.U.'~ To get physical information from the transJor
to calculate a wave function. As discussed above, the 

·1J'(.und ltate the many-body system shaH be represented as the 
" ... ,uu:w with respect to these qu.ui-particles: 

for aU k-I. .... M. (7.15) 

which fulfill tbis condition for a corresponding set of 
operators (1.1) will. in the foHowing. be called HFB wave 

ore we can study the structure of such wave functions in more detail, 
want to show tbat this definition is always possible and unique: It is 

,Cluy to construct a wave function which fulfills Eq. (7.15). We SLart with 
bare vacuum I and multiply it by a product of annihilation 

II ). (7.16) 

* 
k runs over aU values k-l •.... M, the condition (7.15) is certainly 

. In many however. such a function vanishes identically. In a 
HF state, for instance, the product can run only over the annihilation 
operators of aU hole states 

- (.(,1- - I1 a,+ 1-)· (7.17) 

Ally annihilation operator of a particle Slate am - aM wouLd make I~> 
vanish identically. Therefore, in Eq. (7.(6) we define II as the product of 
the max.imal number of k-value8 t such ,hal the multiplication of any 
additional operator Pq would annihilate I~). This maximal number turns 
out to depend on the pbysical situation. It is determined. as we shaJl .see 
later on, by the blocking structure (7.18). It may happen that this number 

even; then the wave function describes an even nucleus (ground 
or excited state; see below). If this number is odd, one deals with an 

odd nucleus. From this definition~ we can always construct a function I~> 
which fuUiUs (1.15). Since the basis sets c{+ , ... , c,+ - (N - 0, ...• M) 
+1 /If • 

and 13k, .... tPIcIi (N-O •.... M) are both orthogonal complete sets Ln the 
many~body Hilbert space, the definition of I~> by the operators Pic (Ie;a; 
1, ...• M) in Eq. (7.15) is certainly unique. 

The opposite is not true: I~> not uniquely derine the quasi-particle 
operators 11k.' Any transformation of these operators amongst themselves 
[1.8 in the C-transformation in Eq. (7.14)] leaves invariant. This means, 
in particular, that we could have also used the quasi-particle operators (Xl 

(Eqs. (7.12) and (7.13)] in the canonical basis for the definition of I~). 



I~) is fuUy determined by 
and the occupation 

In particular, we can now use the 
form of It is dear that we have 

Eq. (1.13). After .... rn..-.. 

.. II ~ 1- - II a/ II (w, 
k ., 

by definition, none of the 

Theory) 

........ A ...... the number of occupied levels i is even or 
a superposition of states with an even or odd 

... u.u;w..l:U,UJ,Jl~1 number the number parity 73]. II is 
even number parity can only 

and vice versa. 
the ground an 

not used this in the derivation. We now lee 

on U and V in the Sogoli 
(1. J) wbicb completely determine our wave function~ we get even or 

parity. These coefficients are detennined by II variation of 
energy expectation value and we win derive the corresponding (H 
equations i.n Section 1.3.1. They are nonlinear and can have 

.... ~ .......... "'. Usually. the solution of equations 
will provide us with such coeHicients U and V that the COl·re~ipondlllUl 

the ground slate or an even nucleus, that 
represented as a BCS state (6.31) in 

however, we want to calculate the an maJI 

In such a we have to make sure that we use coefficients 
V which guarantee odd number parity for the wave 14',); 

written as a one quasi-particle state ....,u~ ......... 

stale with even number parity. 
In very simple to accomplish [BMR Ma 

with a fully paired vacuum I~o)- /3, /32,'" 1- > with 
even pa.rity. one-quasi-particle stale 

is a vacuum to 

I~I - Ptl4'o) (7.19) 

operators (Plo Pl." . JiM) with 

PI = f3t · ill" P21'" ,P.w:: PM' 

creation opera tor P" 
operator fl. means that we have replaced 

U and V by the corresponding columns in the 

a replacement we change the number 
go over to a one-quasi-particle 

(7.20) 

fully paired ground we can come 
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by limply interchanging the corresponding 
Wilh this trick we represent quasi-particle 

~ for properly defined new quasi-particle operators. 
C. U, V. and D of Eq. (7.7) are changed 

(1.20). In particular, the canonical basis for I~l) is. in 
from tbat for in Eq. (7.18). Only in cases where the 

tnlLnlJfor.matioD equal to unity (i.e., iJ I~I) - t.1 11<z,o» do the (Wo wave 
1Il0Q0111 have the same basis. 

The Density Matrix and the Pairing Tensor 

we saw in the last section, the general BQgoliubov transformation (7.I) 
or the coefficients U/J; and ~l are not uniquely defined by the HFB wave 

to within a C traonsformation (7.14). 
We now define two quantities which contain no redundant information 

determine the wave function let» uniquely. They are the 
nt;f'mal and abnormal density (or density matrix and pairing tensor)t and 
are given by their matrix elements in the particle buis 

pw .... (cI>l ct cJ 

or in matrix notation 

p= V. T 

fJ is hermitian (p" p) and II: is skew symmetric (II: T - - /IC). 

(7.22) 

(7.23) 

Using the decomposition of the Bloch-Meslish theorem (Eq. (7.9») and 
the unitarily of C. we find 

p-DV 2D+. t(=DUVD T
. (7.24) 

This means that p is dia.gonal in the canonical basis. Tbe eigenvahles of p 
are the occupation probabilities v: and the eigenvectors are the coerricients 
DIJe of the wave functions Ok (7.ll) in the canonical basis .... At the same 
timet Ie is in its canonjcaJ form: it decomposes into 2 X 2 matrices: 

( 
0 UkVk ) 

- Uk VA: 0 . 
(7.25) 

Two important relations hold for p and K. They foHow from Eqs. (7.5) 
and (7.23): 

:1 + P -p- - KII: • (7.26) 

Sometimes it is useful to define a 2M-dimensional generalized density 

• Equation (1..24) IlhowI that p behaves under a unitary lranslormation like a linear 
operator and IlL" bebaves like the matrix pan of an utilinear operator. For the connection 
between H FB theory a:ad the theory or IWtiline&.!' operators, see [BV 68, VH 70]. 



matrix 61 t Va 61) 

_( <<<-I etc"tt> 
<~Icl' I.) 

which is Hermitian and idempotent: 

"!R,l __ tjt,. 

Its eigenvectors are the HFR coefficients (~) 
operators with eigenvalue 0, and (~) for QWU1-DlUrUCIle alllDlbl1lLUCl,n nll'lIIW:Ia. 

tors with eigenvalue J: 

CiM+~G'llS'_«c)IPk~t\.I~) <~I fJI'P/I~»)_(O 0) 
<<<-I Pt· <<<-I fJ/ Ie) 0 I' 

Both sets of eigenvectors are determined only up to a unitary 
mation in corresponding eigeo..space, that up to the C 
(7.14), and that p and tc uniquely detennine 141»). 

In we will see that many developed 
ori&inaUy of pure Slater determinants (p2.,p) can 

case with pairing correlations SUIIlply 

formalism with the matrix t5t. 

7.3 The H.artree-Fodl-BoeoUubm\EquatiODS 

7.3.1 Derivation of the HFB Equation 

Until now we bave investigated only the formal structure of the HFB 
transformation (7.1) and the corresponding vacuum I-z,). In this section we 
derive an equation for the coefficients UfJ: and V At which defines the 
quui.particla and the wave function I~). 

We assume that I~) is an approximation the exact ground state of 
the Hamiltonian 

and use the variation principle of Ritz (see 
wave functions are the set of generalized 
type. 

(7.30) 

5.2). In our the trial 
states ,.) of the HFB 

As in the BCS mode] these wave functions violate the symmetry con .. 
DCt:tcd with the particle number (see Sec. 6.3). Again we have to use a 
COII:IU1W1t on particle N and vary the H' - H -
"AN. To limplify the notation, we neglect prime in the foHowing and 
come to problem of a variation with constraint in Section 7.6. 

Starting the variational principle 

<"" I·) 
8 <IJ) =0. (7.31 ) 



JlauiUWJ I".) of solution 
fUliCUA:>PS of the 

J'\P1PCUWX E) and the· function 1.1
) 

not ortboaonal to 1«-) {MW 68, Ma by: 

(1.32) 

the coefficients UIJc and V., which obey orthogonality 
the variables ZU' (with k < k') are independent variables. 

SOllilUCm.'.> of variational equation (7.31) orresponds to -0. For 
u:u1.eaunal variations, we can expand up to second Using quui-

nal!"nr~_ f'1I'ftf'1l'~_W'l.J'u. (E.lS) for the Hamiltonian 

• (7.33) 

we get 

the vectors and matrices runs over aU pairs (k k') 

-<., 14t), AId'11' - ( 4tI[ .8" . .B", [H, PtP/') ]1.); (7.35) 

H.~-<.l[ Pk·.Bk,H]I4t), Bu ',,'- -(4)I[ P,,'Pkrr [H, .Brt',]]I.)· 

a quadratic approximation of the mu1tidimenmonal 
energy the vicinity of I.). The variation with to 
yields'" [Be 59] 

a (.'IHltIt') 
aZlk , (tIt'l·') 

(1.36) 

which means the linear terms in Eq. (7.34) vanish at the stationary 
point. To see if it a minimu.m or a saddle point, the quadratic In 

Eq. (7.34) be investigated. The matrix 

(1.37) 

-.... ... ,.,. tbe stability matrix (or cu",alure temor). At a minimum it 

(7.36) are not affected by Ii C-tranlformation 
among them.se]ves [Eq. (7,14)]. The requirement 

e1el1Dllile&. therefore, only the first two of the Bloch-Messiah 
transformation can be used to diagonaLize the 

(7.33). TogetbeT with (7.36), this corresponds to the 
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diagonaHzation of the supermatrix 

-~~.)-( ( 11k' H]. /3k~} 
( Pt, H]. Pk~ U4t) 

H), /J,,-} 
t H]. /lA:'} 

In the space of the basis operators Cit C/ this matrix has the form 

x-eruJ HII H'l:IJ +_( It ~) 
'\ - H 2O- - H II- ~ - h· 

with 

(7.40) 

Applying Wick's theorem (Sec. CAl, we get'" 

h-f+f-A; fir U'l(l'qP,"'; 611'-~ ~VW99"K"'t, (7.41) 
qq' 

We therefore end up with a diagonatization problem for the matrix 
so-caned HFB equations [Sa 6l, 63a + b]: 

(7.42) 

where the columns UJr.' Vk of the matrices U and V determine 
quasi-particle operator fJ/ (7.1). In the basis correspondi to opera
tors 13k,' both matrices X. and (7.29)J are diagonal. We therefore 
get as an equivalent condition to Eq. (7.36) [BS 59]: 

[ o (7.43) 

which corresponds cJtactly to the formulation (5.36) of the HF equalion. 
The Hamiltonian (7.33) now the form 

H HG+ LEkfJ/Pk+HI1I,' (7.44) 
Ie 

H 1nl (E.18) contains the terms H 40
, H:H, and H U , They are neglected in 

the HFB approach. In this H is diagonal. Its eigenstates are the 
quasi-particle vacuum (with the eigenvalue H one-qUASi-particle 
states 

(7.4S) 

with the Elf. two-quasi-particles states, s.nd so on. 
The excited lUtes to are states with an even number of quasi-particles. 
The states with an odd number of quasi-particles the neighboring 
nuclei (A ..... t). 

however, give only a rough overview of the struc-
of excited In particular. the one-quasi-particle states (7.45) are 

not determined self--consistently. We wiJI see in the next section how this 
point can be improved . 

.. The chemical potential >-. is deten:lliDed by the particle Dum her: Tr p .... N. 
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QIICW. the properties of the HFB equations 0.42), let us give a 
some in~reltifti aspects of the theory and 

aUcWat10n [Bt 62]. 
the theorem of Wick (~ Sec. C.4). we expand the Hamiltonian in normal 
:) with retpect to the ground state I~). We lhen get for lhe one-panicle 

(7,46) 

for the twa.partide opera tor 

c+c+c C.p D -P D +,,* I( I. 13 J. 'I] I-,lrlil 1';.,..-'./1 'Ill I';. 

+ PI' : C/ Ci : + PI I : C/+ Cl : - (/3 HI.) 
]"1 l" 4'% I l 

+: CJ;C,;C1/ il : . (7.47) 

the definitions (7.41) for r and ~, we immedi.ucly find 

H- HO + I: (c+c)( _:. _!. )(: ... ): + * i: V'I/-,I,I,,: c,;C';'I/I, :. (7.48) 
',1:/,/. 

The lut term. contains only products of four-quui-partide operators. It corre
to H-fIJ, Hll, and H22 in the quasi-particle representation (£.18). In the 

single-particle model. this interaction between the quasi-particles is 
aeglected. The rest is a quadratic form in the operators c, c;', which can be 
diagonaliud exactly by the general Bogoliubov transfonnation (7.1). Again we find 
the HFB equations (7.42) with the solution (7.44). 

7.3.2 Properties of the HFB Equations 

The HFB~equations (7.42) are a 2M-dimensional set of nonlinear equations. They 
show more or less the same properties as the HF equalions (5.38). Many points of 
the in Chapter 5 are therefore valid for the HFB equations. In 
particular, we can also derive them ror densi\y dependent forces by a variation with 
1I"IIII'!IIl"_'" to both densities." p and Ie (see Sec. 1.5). The theorem of self-consistent 
symmetries (Chap. 5) applies here also (Sa 68, Go 79]. They can be solved either by 
iterative of the matrix X in Eq. (7.39) or by the gradient method. 
wbicb will be desaibed in the next section. 

There are, however. some buic differences to the HF case, which we will discws 
in the following, 

The equations contain l!I. chemical potentiaJ A which has to be determined by the 
particle number subsidiary condition. Therefore, we must always constrain 
equations; for the method of treating such problems, see Sections (7.3.3) and (7.6). 

In addition, the HFB equatiolUl contain two potentiAls, rand 0.. The r 
corresponds to the HF potential. which describes the shape of lhe nucleus (spheri
cal or deformed), wbereas tl. determines the pairing correlatioruJ. In c:ontrut to the 
DCS-theory, t:. is now no longer given by one number tl..t [Eq. (6.50)], but is a 
matrix which mixes different levels. Since we have seen that the HFB wave 
functions I~) have the structure of DeS wave functions in tbe canonical 
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(7.11), it is interesting to investigate the HFB equations (7.42) in this 
therefore use the matrices U and V (7.9), for example. in a fully paired 
obtain from Eq. (E.22). for the matrix elements of HlI in the auJlODltaU 

buil (for rea.! matrix elements 6kd. 

Uk lJk Vlk~"+ flu) + fl • .£( lit - v1) - 0, 

which hIlS a. similar solution to Eq. (6.52) viz: 

( u;) _ -21 I ± to'kA' + flU) ]. 
,,2 "I :1 

k V Hhl'k + lin:) +Aif 

(7.50) 

We ice that the important quantities, which determine the occupatiOfl numben, are 
the diagonAl matrix elements hu. hn. and ll"I in the canonical This 
not., however, mean that the other matrix elements of h and A in general 
and a nontrivial C-trandormation il to dialonaJize H II. 

There is a special case when H LI is already diagonal in the canonical AI 
we see from Eq. for H 2O

, this happens in cases of time reversal SYmDlClryt 

whenever the on]y non·vanishing matrix elements of A in the canonical are 
the elements tJ.kI' such ca.ses. the off-dilgonal matrix elements of It in 
canonic.aJ buis vanish, and we gel for lhe quu:i-particle energies 

£11;- (7.s1) 

This happens, for instance, in aU cases where there time reverul 
together with! monopole force for the calculation of the pair field A 
Sec. 7.4). [n such cases, the full HFO equations (7.42) can be solved by a solution. 
of HF equations (5.39). including tbe appropriate oc:cupation factors vi. which 
themselves are determined by the BCS equations in each step of the iteralion. In 
the general cue this is, however, not true: The Bloch-Messiah theorem (Sec. 7.2.1.) 
doe1! not imply tbat HFB can be replaced by coupled HF-BCS equations 
[Go 79D. 

We wa.nt to stress that for the derivation of the HfB equations we have oniy 
use.d the general product structure of the function ~c» and the stationarity condi
tion (7.3J). Whether the solution corresponds to the absolute minimum in the 
multidimensional energy surface (see Sec. 7.3.3) or only to a local one, or perhaps 
only to a saddle point, depends on how we solve these eqWltions and, in particular. 
on the initi.al conditions or the iterative solution~ For instance, if we use a 

symmetry (see Sec. 5.5), we can never get an eventual absolute 
minimum which breaks this symmetry. In such a case, the solution or the HFB 
equations will therefore be a local minimum or a saddle point. 

This fact is often used to approximate functions other than the ground state 
wave function of the Syltem. If there is a operator (for instance, angular 
momentum Of the K-qtl.lUltum number). the many-body Hamiltonian H can be 
diqon.1ized in eacb of this symmetry separately. and we can apply the 
HFB approximation in each Cl:lSt!. In ~, the separate solution of the HfB 
equationl in each subspace provides UJ with approximations for the lowest eigen
slates with the corresponding symmetry. 

An example is the number pllrity (see Sec. 7.2.2). If we run the iteration in such a 
way that I~) has at each step an odd number parity. we let IUl approximation to 
the wave function for an odd mass nucleus. This cOITf$ponds to the self-<onsistent 
solution of the HFB equations for odd mass nuclei [RBM 70, RMB 74J. It includes, 



The HlU1.ree-Fock-Bogoliubov Equations 257 

particular. the bloclring effect (see Sec. 6.3.4) I..fI.d the cba.n&e of the average 
due to the odd particle (polarization). How such calculations are acheived 

be Iller in 
example it tWe>-qua.si-puticle states in the even system wilh 
If the K-value or such a slate does nol vanish, it is automatically 

al to the ground slate with K-O. For the calculation of K-O. lwo-qwui-
states, we have to realize that such states eorrespond to different slationary 

the enefIY of the ground slate. They can be found by a variation 
the constraint that the wave function is orthogonal to the ground state wave 

[MSR 7~ EMR 80a]. OnJy in cases where they lie in the minimum of a 
separated valley with approximafely orthogonal wave functions, can we 

conslraint 
see that the HFB equations (7.42), in principLe, can be used for the 

approximation of all eigensLates of H whose wave functions have the 
of genendiud products. 

an actual solution by iterative dia.gonaliz..ation of Eq. (7.42), we encounter the 
Dn)Ol:em that the equations are 2M-dimensional and have 2M eigenvalues and 

To construct a set of quasi-particle operators {fit ... fJ;}, and for 
calculation or p and II: in Eq. (7.23), we have to choose M of them. However, as 

recognized, to each eigenvector (VA-' U,J with eigenvalue E1 there corre-
IDI)DCls an eigenvector (V;, with eigenvalue - EIr.' We saw in Section 7.2.2 that 

exchanse of two eigenvectors to a replacement of one 
flt by 11k and vice versa. h is to choose E. and - Elf at the 

.me lime (otherwise it is to fulfill the Fermi commutation relations ror 
the operators {J. /J +). Therdore, we have to decide for each Ie (Ie - I ... M) whether 

takes the eigenvalue E/( with the eigenvector (U,I:, V~J or - £,1: with the 
(V:, Uk). 

In the pure Hf CIl.')C:, this choice corresponds to the freedom of keeping a level 
occupied or empty in the calcula.tion of the density mat:rix p. Of course.. in such a 
wculation the levels are usually rmed I<xordi ng to their energy to get the lowest 

energy. This corresponds to the case where all the excitation energies of the 
." .. 11 ....... are positive. 

In the same way, we usually the M positive eigenvalues E#( in the HFB 
cue for ~ven parlidt number. Then the excited sLalea or the system, whose lowest 
are the two-quasiwparticle states, have a positive energy. With this choice at each 

of the iteration we uswdly find 8 fully paired state which corresponds to the 
deepest minimum in the energy surface. 

If we want to solve the HFB for an odd nucleuf, we can start with the 
solution of the neighboring eVlIllyttem and a pure quasi-particle state as the input 

the iteration. As we have already seen in Section 7.2.2, such a slate can be 
interpreted as a "vacuum" to a new set of quasi-particle operat.ors P Eq. (7_20)] 
by interchanging one of the eigenvec.tors (VII' VAl) by (V; . lit). We therefore have. 

the solution of the HFB equation or an odd system after each diagonalization, to 
ehoose one or the negative energies - EJc with the corresponding eigenvector 
<v;:", U:) to get a blocked HFB function. Which value of k we take depends on the 
qu.ui-pMude state we want to describe. They represent different local minima in 

energy surface. By such an exchange we therefore jump from one vaUey to 
.l.llother. 

In cases where valleys are no longer well (for instance, in band 
cn:lt&iina phenomena in even nudei).. it may happen that one of the 
energies becomes very small and even negath'e (see Fig. 7.8d). In such cases we 
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jump into a 
investigate 

Model (HFB Theory) 

. ...., ....... "'-' .... structure or the system in eacb 
73]. the next we will study a method thai avoidJ 

7.3.3 The Gradient Method 

UQUvua (7.42) are often solved by iterative UUI,Jl.V1uaILU!lL!..JIV!lU. 

the problems that can arise a 
ODlle-C:oDIWDlIlI& and convergence is not always 

it gets particuWiy complicated 

I!.Uw, .................. is reamed. 
therefore. is a suitable and l1nique parametrization of 
the vici.nity of the point 1.0>. We use the theorem 

(see states that each wave function of the HFB type which 
orthogonal to' '.0.> can be represented as 

I.(Z exp (· ~ Zu.P/c-+fJlt."!') 
It <: Ir' 

where the operlltOnl Pit. annihilate 1.0) and there is a onc-to--one COlrre=llXl!ndm::c 
between M(M·I)/2 (Ie k1 and the FB 
discuued E.l, functions orthogonal to have, in 

excitatiON with a diverging matrix are 
on the enerlY surface and cannot be reached using a 

lmlP01UDIC to jump in one step to a state 
SOtDellmC~ done in the diagonaliulion method. 

wave functions several because at 
U,,-"Al.gM theorem is apin applied to a 

new of the energy surface at each step. 
Stutins from 1.0> f&1ven. for instance. by the HFB Uo• Vc:J, we 

I finl to I function whicb corresponds to the parameters 
direction of that is, parallel to gradient of the ""1I!'rl7'" 

a 
fJ az. E(Z 

w 

The parameter fJ determines the size of the step. It is somewhat arbitrary It 
reduced or increased in the following iterations. on 
of the energies E(Zr)' To get the new codficients VI. VI thlt 

... [Me 56, 60, BTR 1'1]. 
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'WlCUOD I •• ) -IIII(ZI»' we use 

UI - Uo+ V8Zr. 

Y1- Yo+ U~Zi· 

(E.30) and calculate 

(754) 

the coefficients VI and VI corrcspond to quasi-particle 
I~Zi» but do not fulfil Fermi commutation 

-0; (7.55) 

n_.~r01re: we have to orthOJOnali.ze the vectors (~:) by a C-transformation (7.14) in 
of 

procedure i.1 coDtinued until convergence is achieved. that until the 
H'J$} iOellticaHy. which corresponds to the condition (7.36). 

e method is extremely useful in cases where we mwlt fulfill a subsidiary 
-for ins.tance, the particle nwnber condition Ii) - N. Starting from 

witb arbitrary particle number No. we do not proceed in the direction of the 
H2O alone. but we admix the gra.dient of the particle number N 20 

(7.56) 

parameter>. is determined in such a way uun ~Zl) has the right particle 
N up to linear order in Z I . This gives 

N-No• 2: Zru,Nf<~+c.c.-ZI·N20_-TJ(H2O·N2tJ-AN2O·N2f1) (7.57) 
k<k' 

(7.58) 

where Z· N is the scalar producl or the veclors (Z. Z*) and (N, N°). In cases when~ 
already has the right particle number N. we get 

_ (2.0 H 2O
• Nl{l w) 

ZI- -lJ H - 2t'J lON • 
N ·N 

(7.59) 

that is., we choose the direction of the gradient projected onto the hypersurface 
orthogonlll to the gradient of N, which means tha.t it has constant particle number. 
If convergence is achieved. we find, as in a variAtion whh a Lagrange parameter A. 

(7.60) 

It is easy to extend the method to several subSidiary conditions. 
The path on the energy surface to choose in the gradient method can be quite 

diHerent from that of the diagonalization method. An example is given in Fig. 5.3. 

7.4 The Palring-plus .. Quadrupole Model 

In deriving the HFB equation (7.42) we started from the Hamiltonian 
(7.30) and obtained the two potentials rand t.1[Eq. (7.41)]' Both potentials 
are calculated £rom the sa.me nuclear interaction v(l,2). We saw in 
Chapter 5 that the bare nucleon-nucleon force cannot be used for the 
calculation of the HF potential r. The Bruckner (Chap. 4) 



shows that we to lItftIF'l,l['II 

which sums up part of the .... 4_" .... ,. 

arguments hold the 
allow the 

63, Mi 671 and 
calcula tion 
different. 

a 
potential fl which violates particle number symmetry. 

These three simply in the 
quadrupole model. potential is approximated 
spherical harmonic f2 term, that is. by a 
potential (Chap. 2) at zero deformation with corresponding single-particle 

. Only nucleons within one shell of each parity feel the 
The interaction two parts, one contribut-

here is only that part of goi ng 
already contained the single-particle energies 
contributes to A. 

of the interaction are ..... """'_u be separable in the appropri
ate Since the are of a 

correlations are the ones for 
kind the fonn 

H- ~ft(' .. -!X : Q/Q,a :- Gp·p, (7.61) 
Ie ,..- 2 

with operator 

~ (klr2Y:z,.lk' )ct+c ... , (7.62) 
H' 

and operator for a 

P+- ... ... 
cit ci . (7.63) 
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the lime reversed state of k. BeS phases are used [see (Eq. 
_LIdAJl valuel of the force constants X and G depend on. the 

A_I&Ucl~Uil iII'~'_ u.nder consideration (see, for instance. [BK 68D and 
llUllW!ILOI.J;. from experimental data. 

following, we neglect (by definition or the model) the single-
part of Q"" Q. the contributions of the pairing force to the 
r. and those parts of the QQ-force which contribute to. the 

and the Fock term in r. The latter terms are usually rather 
(7.41) and (7.48) we then obtain the HFB single-pa.rtic1e 
or the form: 

2 

HHFS= ~(kctCl-i ~ q,.(Q/+Q,.)-po(P++P) (7.64) 
k JA" 2 

qfJ.- and (7.65) 

we have assumed the paramelers qlt' and Po are real. The HFB 
operator is a particle-number and rotation symmetry violat

single-particle operator. With fixed "deformation" parameters qfJ. and 
it is similar to a Nilsson Hamiltonian. In Eq. (1.65). ({It" and Po. however, 

depend on the solution that is. on P and K. They have to be 
detennined by iteration. or by what is equivalent in the case of separable 
forces-minimizing the energy E(qjA' p~ with respect to parameters. 

It becomes convenient to choose the principal axIs of the density 
distribution as the axis of our coordinate frame (this implies q. - q _ 1-0 
and q2 - q ~,) and to work in a basis which is symmetrized with respect to 
III rotation of 180° around the x-axis ([RBM 70, Go 14]; see also Eq. 
(1.57»): 

1 --Ii (7.66) 

Assuming Rx = e ifLlJt as a seLf-consistent symmetry in the sense of Section 
5,5 and arranging the levels in the order (k l .k2 •••• , f •. f 2 ••.. ) we find in 
general for the densities p and K and for the potentials r and A. the form: 

p-( ~ ~J .~ (~, ~). r- (~':J A-(:, ;). 
(7.61) 

with p/+ - PI' rt - r j ; 1(2 - - ICr, and ~2 - - ~r The diagonalization of p 

gives the fU'St transformation or the Bloch Messiah theorem (1.7): 

D_.(D 1 0). 
- 0 D'l (7.68) 

The Hamiltonian {7.61) is time reversal invariant. which implies 

P -p •... ' 
2 I • 

D -DIt. 
2- I' 

II(~-ICI; r 2-rr; 
6.t-~I· 

(7.69) 



For a pure pai..riD.1 force:, 
the buis 

To determine the transformation D it is U."lninn. lafrlCi .. , 
ize the self...a>nsistent fieki: 

h - E: - A + r - { - A - qoQo qi Q2 + Q 

TIlls is exactly a NiJs.son Hami.itonian (2.89) for fixed deformati.on 
ters qo p q". The canonical in this case is therefore the 
with the eigenva1u~ iI!' In this the HFB 
(2 x 2) matrices: 

with the gap parameter (7.75) 6 == p" which have the BCS 
To summarize, then. the complete solution of the HFB in 

pairing-plus-quadrupole model corresponds to a Nilsson diagonaliza 
with variable deformalion parameters qo and q2' a subsequent BCS 
lation with constant gap parameter ~ - Po- and a minimization of the 
energy 

H 

with respect to pa.ramelers qo. q2' and ~. The term (1/2x)· (q~ + 2qi) has to 
be added, since in summing up single-particle energies we have counted 
the (negative) interaction energy twice [Eq. (5.40)]. 

This force explai.ns the Nilsson model with BCS occupation probabili 
very nicely and by a suitable choice of the constants G and X one co 
therefore reproduce aU its results. We have to emphasize, however. that it 
is only a model constructed for certain namely 
deformations and 1=0 the interplay 
these degrees of freedom. these phenomena it the 
features of a more realistic approach. 

7.s Applications of the HFB Theory for Grouod State 
Properties 

HFB studies on light ntldti (seeJ for instance, [WFS 71, BKD 
A In cases it is DeCeuary to 
projection of angWl.U momentum and particle number (for [00 F 13) or 
[GOA 74]; ICe ) 1). We will not go into the details, bUl mention bere the 
so-called pro'M-Mtlil'Of'l fXJiring (for a review, see [Go 79D. 

In light protons lind neutrons occupy the same We can 
conltrutt not pp- and M-pairs with a large spacial overlap of their 
distributiona. but plY-pairs [Go 64]. We thus have two types of pairiD' 



T - I pairiDs for pp-. nn- and 
T-l it impofUml. The fuG HFB equations 

inducie IIll tbeIe typea of pairing It the same time. This. 
COIJiJI*=X ~"'IIIiN.Ni1iIII. •• r 4 and complex HFB coefflCients U 

Il'll'lro.-a, 110t only iii there time revertal, but also cbarge 
avluUmce. In cue it can be sbown a.nalytically [Go 72] that there 

bilities for each particle. The proton can be paired with (i) a panicle 
reverted stale (pP), (Ii) a particle of Jifferent kind in 

and (iii) a different particle in the same state (pn). The 
poBbility is nol excluded by the Pauli principle; it does, however, violate the 

III:ymmetry it mixes statel with different ( + K. and - K). The 
modes have three different gap para.melers. whose absolute squares add 

to the square of the total gap. 
authors have investigated different of such pairing correlations in 

t nuclei, with many different kinds of forces [GK 65. CCJ 65 + 66, CO 67, GSG 
BOG 69, WFS 10. WFS 71}. These calculations have demonstrated that r .... o 

dld.snificant in determining the equilibrium shapes. We find that for N - Z 
T-O pairing is mOSI important. For a small neutron we have a 

liC0Dl1petitioD between T-O and T .... 1 pairing. heavy nuclei with large neutron 
_cesl. where the protons and neutrons at the Fermi surface occupy different 

T-O pairing i& 00 imporlant and there remains the usual T- I 
in PI and nJi as in Chapler 6. 

further applications.. we will restrict ourselves to a few examples in 
defDrmed nudei. According to the amount of phenomenology us.ed in 8uch 

we mwU distinguish among the followicng. 

(a) Cakwlltlorui In a Model Spac<e. In this case, one starts. with a finite configuration 
IPBce and spherical lingle-particle energies. A phenomenological residual interac
tion is introduced which produces deformations a.nd pairing correlations. Such 
tnC()rics are never able to give correct ground sla.te energies. 

The simplest model of this type is the pairing-plUi-quadrupole mooel 
Section 1.4. By adjusting the force parameters it is to reproduce the 

deformation and the gap parameter hi way. 
In the next step, Dietrich. Mans,. and Prada.l [DMP 66} I.l.!Ied a more realistic 

<1. __ '_. interaction with tillite and Ipin-isOlpln exchange. They applied two 
Ul ... UI ....... 1II to determine a HFB wave function I.). In the fif$t c,.ase tbey I.l.!Ied 

+ DCS wave functions Ie.( fJ, depending on the two parameters fJ and A 
m.in.imiud the enefIY 6)1 H Itt( IJ, b.» 10 nvo parame~ 
In Fig. 1.1 we show the "'energy .udace"· as a fUDction of fJ. We two 

BUA;u.u.IA for prolate IDd oblate ddol'1Wltiom. are rather in energy. 
In the second case, they solved the full HFB equiltions H'1tJ_O. Since this 

procedure allows for mon pnerl.l wive functions tlllJi). the rtsulting energiel are 
(Jiveo by horiz.ontallines in Fig. 7.1). The energy difference ia not very 

either a of the wave fUDction shows that tbe full HFB 
'WIve functions are rather well approxJmaled by the "Nilsson + BeS" functions. 

Although deformation parametcr1 calculated by the second meth.od give the 
trend quite nicely. they do Dot agree completely with txperimml.al data. because of 

configuration space. On laking into account B. contribution of the 
inert core, one finds fun agreement. 



J 

-I 

Flpn 7.1. =ergy as a fUDCtioa of "'_~!Ul\ 
beyond the minima are the solutions of 

66].) 

QC 

p(r)- L 3, 
il, 

with 

i( 1-
ft-A ). 



qwmtlllDl fltlIflhen Q. Neverthelal, 

!he experimental binding energies 
reoroduce the measured quadrupoJe and 

[FQV 13J. 

we saw in 6, !he pairing correlations depend 
effective pairing force. but also on the IIfUDe-

calculation, in which the field 
the same force. is therefore only .............. "' ..... 

re8I01UlDIe IlnIJOoDarIJlCIC spectrum. As 
UiIliiU"":1 dei)Cndelll aIT_lft" .. forces for such It task.. On. the other hand the 

are not useful for complete HFB calculation 
,.,.."-"1 ...... " IGo 73, 7Sb. DOG 75. [)(] SO) therefore 

Sec. 4.4.4) a 
ian form of Olil force anows I fut calculation of the matrix: elements in 

[Go 7Sal. 
of the we have nOl 

nolY. In a.na.1ogy 10 :)ec:tlorn in such a case we have 10 calculate the 
_""f'fnJ as a functional of the p and Ie (we use the conventions Trl and 

19)}. 

(t-A)p+ tTr~TrlpCp+ !Trl,Tr;z,,4I&. (7.75) 

HFB equations from the va riation.a I principle. is most 
with lhe c.t (7.21). We UH Pa. 

variabl.es and impose tbe relations (7.28) al 
a of Lagrange parameters (this procedure could have also 

derive the HF Chap. 5) 

-( 

B( E'(p. d-

BEt 

hiJ! -~ .• 
flP'd 

Tr«X-

-0. 

-( 

-
+A)8!l) 

..,..""' ..... " •. this is equivalent to 

X-A~+"'A-A. 

(1.16) 

(7.n) 

(7.78) 

(7.79) 

(7.80) 

(7.80 

see [HN 



A is by the 

exactly equation (7.43). It it "' ... ", .. .., .. 
the same way II HFB _ .. _ ..... uoo 

the p. we 
(1.75) and (7.79) we 

1 a 
II 

770 
631 627 

7 .. 6 Constrained Hartree-F ock Theory 

too: We can certain 
of the energy on the 

we want to calculate the 
parameters q. such 

we saw in Chapter 

the spurious contribution due: 
11). 

derivation of a collective Hamiltonian, as we use it 
vibrations or of the procels. We will this in more 

Chapter )0 in connection with tbe coordinate method. 
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all these cases, we are interested in a wave function which 
i&lU.LUIiII_"" the total energy under the constraint that a certain single~partif'le 

haa a fixed expectation value 

q~<~IQI~). (7.84) 

S1Dlllnc:&1. method for solving this problem is adding the condition (7.84) 
II. Lagrange multiplier X to the Hamiltonian H and minimizing 

( - (7.85) 

the solution of this problem. A is determined by the condition (7.84). 
method also called variation with a linear COlUlrainl. It corresponds 
e invatiption of the many-body system in an external field Q which 

it a proper way. 
method bas already been applied in the BeS theory (Sec. 6.3.2) to 

wave functions with the right expectation value of the particle number. 
analogy to Eq. (6.4J), we find that the Lagrange multiplier A is the 

tive of the energy E- (4)IHI4>) with respect to q 

A - ~: . (7.86) 

As we see from Fig. 7.2. the method of linear constraint means that we 
e to draw the tangent to the energy surface E(q) at the point g - go and 

UIe this line as the x-axis of a new ({)Ordinate system rotated by the angle 
tan a = A. The y-axis in the new frame corresponds to (H'). An 

unrestricted variation on gives the extremum of the energy lurface in 
rotated system. 

It is evident that thi~ procedure can only work. as long as the function 
£(q) has a positive second derivative. In cases where the curve is concave 
downwards-as, for instance, in the neighborhood of a saddle point on the 

pa th or in the back bending region (Fig. 3.4)-this method will no 
'longer work. In such cases, the energy in the rotated frame has a maximum 

tbe point ql which win never be a stable solution of the HF equations. 

E 
a) 

E 

~ 7.1. Schematic representation of lUI energy surface sbowing the metbodl of 
li.near (8) and (b) quadnuic ooMtrainl 



::>mJUI!>·ra.rnc;le Model (MFB Theory) 

We also rllfLl!',rlIOT\ 

several points with 
the vicinity of inOection points there are 

(that with the same A, but 
of q), that a unique function of the 

parameter 
There are this problem and to 

Wlt;U(lJD for such ........,iJ;il .. _ 

(I) 

(U) 

2 -1') . 

a with 
It produces a new 

extremum of po. U its width is 
( tdlE/ dq11). this is always a. real minimum. 

The variation of If 

H)-C(I' -0. 

equiva.lent to a 
P. we obtain 

is true for any constraint that is a 
quadratic constraint. the effeetive value 

automaticaHy the iteration. 
(iii) A third (8W 71] uses a linea.r constraint but 

energy 
13. 

value of A at step of the iteration in a 
condition (7.84) is fulfilled. This method is applied in 

with a constraint on lhe particle number. However. it 
at each step. 

theory (eH F) 
of nuclei in the vicinity of the 

78] and for fission Dr(l~S;ses 
BFV 741. 

In the latter case usually the queslion has to 
Q should be used. It is to 

wave function I~) by CHF calculation using a 
A 

COltlll1ra.tlIU.JSII operator Q •. We have only to use a.n operator whose 
part Q: is defined as a multiple of 20, We then get 

HlO_AQ7JJ-O
t 

that is, 14» as a solution of the corresponding CHF equation. Of ,.nu:~ 
thi.l ill not much practical use for a calcu1ation of but it shows 
there is a wge variety of CODltrainina operators 
wave and are different in their Q II-matrix "".""fl't"",·ft 
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h 

q Q 

7.3. Example of lin energy surface in the (q, h) plane showing that we do 
not follow the fission vaHey exactly with a oolUl.raint only on q. (From [FQK 13].) 

On the other hand, a constraint on one deformation (for instance, the 
quadrupole deformation '1= <~IQ2ol4») does not mean thal another defor-

(for instance. the hexapole defonnalion If - Q40I4») stays con-
ltant. This is shown schematically in Fig. 7.3. As long as we use a 
constraint on q, we follow the line h 1('1) - <~q)1 Q..J~'1»' It connects the 
points of a vertical tangent on each equipotential surface. because £ has to 
be a minimum for conslant q with respect to aU otber of freedom, 
which means, in particular, dE / dh 1t,-COllst "",0. 'This li.ne If I(q) is, in general, 
different from the bottom of the fission vaUey, which corresponds to a line 
of steepest descent h "(q). Both hnes go through the stationa.ry points of the 
surface, such as the ground state minimum or the saddle point. Both lines 
are very close if the fission valley is parallel to the q axis, but they can 
deviate quite drastically if the valley is parallel to the h-axis. Nevertheless, 
We recognize an enormous advantage of CHF calculations compared to 
the liquid drop and Strutinaky-type calculAtions (see Sec:. 2.9): In the CHF 
calculation we need only follow a one-parameter line and obtain a wave 
function which, in many cues, (allows quite closeJy the bottom o( the 
IlIIlOn valley, whereas in the other methods we must calculate muItidimen
~al energy surfaces. 

We should certainly optimize the choice of the constraining operator in 
CHF calculation. In Chap. 10 we shan study a method for achieving this. 



I Model (UPB 

Deformalion energy CUl'Va or l40pu wilb the ~~-... 
as a of die mall qWl.drupole mometn q. The ...... __ 

explai.ned in the text. (From [BQ 

Figure 7.4 shows the defonnation energy for the nucleus 
wi~ a Skynne force witb a constraint on the mass quadrupole moment 
(fuU line [FQV 74D. Pairing correlat.ions are taken into account by a 

force, whose constant G is chosen to be proportional to the surf A.,,..·.· 
The calculation reproduces the ground state minimum and a 
minimum. The heights or the barriers do not agree quantitatively 
experimental data, but we must bear in mind that axial symmetry 
parity are conserved in the calculation, there are indications 
the actual fission path violates axial symmetry at the inner and parity 
the outer saddle. 

compare these results with a liquid drop calculation, a 
averaged HF energy (dashed line) is calculated and shown in Fig. 7.4. 
shows smaU wiggles. These are, however, not caused by she!] eUechl 
are also present in the liquid drop energy which to the 
deformation q and It (duhed-dotted line), because the curve 
side valleys. The liquid drop energy at the bottom or the 
(dotted line) very smooth. 

Figure" 7.5 shows density distributions for the same nucleus at 
def ormalions. 

{FS 76. BSV 76J have pointed out that CHF calculations of 
with spectra (like Q ...... ' 2YlO. 

if wave function.. are 
space. All practicaJ applications of the CHF method, 

r.'I"'II"'IN'1 out in finite spaCe5, which ensures 
the wave are conc.entrated in the resion the nucleus. 

In choice of the eonfiJuration space, therefore. we are limit.ed twO 

sides. To get convergence in the binding energy. a large corui&uration space is 
DeclO.,. .... but Gn the other we not be able to the 

II seems that the CHF calculations made up to the 
present time stay within these limits. 
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q .. 1697 

If"~ 7.S. Dertlity distributions or l40pu at 
[FQV 74].) 

different possible way of keeping the nuclear wave 
JDUro<I'uce a second constraint [GL 77): 

1/'_ -l\a+ 2 

Lagrange parameter II would allow us to vary the 
'ltave function. 

q - 81.8 

is 1.0 

(7.90) 

fluctuation in the 

7.7 HFB Theory in the Rotating Frame (SeC) 

In Chapter 3 we discussed the cranking model within Ihe of the 
pure single-particle shell model. It gave us the possibility of calculating the 
moment of inertia microscopically. It is evident how to this 



theory to the 
value of the 
the angular 

Model (HFB Theory) 

....,..,.."Uiill,..,. .... " .... , many-body case: we must 
V.I"IoI'V'I'V Hamiltonian with tbe 

operator J;rt a certain exl:JeCtat:ion 
gives the equation also J 1.4) 

-0. 

The frequency w depends on the angular mc.mcm 
determined by 

/1.(1+ t) . 

wave function, which the ""' ....... u"'un«;::utJ!n 

laboratory system by a 

nllf!tl!'\T"IJ we restrict tbe set 
of the HFB type, 

to 

of the H F B theory 
metry of the wave function by 
we do not know a priori the conjugate 
and thus we must solve the full HFB 

rotating frame [RBM 70} viz: 

(
h-WIr 

0.. - h" + 

which 
0. take the form 

UIl.'~''W of 

D
•· I • 

_ ....... ,_ and the potentials thus have a 

H<I"'"VI .. 'W Ek which, for w 
up finite cranking 7.8d) and are no 

by fonnula {7.S1}. According to the Bloch-Messiah theorem 
(7.Th there a canonical basis, which can be found by a 
diagonaliz.ation of the p. As wIF can from Eq. (7.50), the 
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OC4C'Ut)8tllOn probabilitia in this basis are given by 

1)2;;;::![1- ~-wjx. 1 
Ii: 2 ' 

~( f.;. - wj xJ1 + A~r 
(7.96) 

- i(hk./c + ha) and Jx. - iU.r;u + JXti)· 

shows that the diagonal matrix elements hick' ixu~ hff~ l., and Akk 

the canonical buil ate the crucial quantities that determine the occupa-
)ftpn)babilities" The h. ix' and A themselves are in general not 
aacmlJ i-Jn this One also notices that levels with large positive 

elements jXa have a greater occupation probability than those with 
neplive values. 

The sell-consistent cranking model is useful for the description of the 
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.. '1 .... - 7.6. Spectra of rotJltional bands in 1MEr. Belides the &found state band 
we see a Stepbens-Simon band (55) of in aligned 113/2 neutron pair, 8 

neptive parity and a y-band [KSM 78]. The yrasl line (indicated by a 
dashed line) the lowesl-energy levels for each J·va.lue. The r.h.s, gives 
theoretical calculations within the see method [MSR 76, EMR 80a + bl. 



0-··· -oelll.p 

full 

OJ 
tMeV. 

0--·.·0 

a-a 

a ....... 'IOUJlIIIIUIII.l.11 

76J. In both &.I. (3.3) WAI to derme the moment 
ugular frequency w. 

of alll!IJm.lII::a found in the high spin region. • which were 
Chapler general to embrace a 

illustrate. we will some of 
whicb been very well experimentally 

76. KSM 78]. Several rotational bands 
7.6) which go up to rather high spin 
variation of Eq. (7.91) yields the lowe~n 

definition, the yrast line line in 
ground state band onLy up to J"'" ] Between 1- J-

we backbending if we follow the 
7.7). band has the structure of a 
with two aligned i neutrons. Therefore. the 

character. It follows ground state band up to J-
then to the aligned band for all I values J ;> J 6. The '-4IU~!;"UI· 

of levels along the Line within the self-conslstent cranking 
4IU·U·U:UIII: the following 

(0 'The Stretching Effed represents the possible change of the 
during the rotation. It described by the selr..cIOn!tlStent 

potential f, which depends on the density and therefore on the 
Figure 7.8a shows the eHective nudear deformations fJ y 
sec calculation for Hi4Er. The change in the deformation fJ 

in this spin region. The same is true for many of 
eu··aerormeKl rare earth nuclei. On the other band. the 

'IlCH1."AUY 0' the cn.nkin& model for descriptIOn of baDdcrouingi 
dllcWllic)D [Mil 76. MG 11b. CDS 71). 



the Rotating FJ~ 

1'_10°, but this depends on the particuJar and 
n .... :lel can be rather stiff against yadefonnations. 

0.1 

22 
Ox) 
20 

16 

12 

8 

(CAP) means that the pairing correla-
Welluu=nea by the Conolis force. 6 

COITclatu:ms come mostly from of 
feel a strong interaction of 
Coriolis force acts on both angular 

7.9). we should at a 
a lowering of t.he corresponding pair energy ~ 

the c.aJcuhuions (Fig. 7.8b) 
of the moment of inertia at low 

16 

7.8. Calculated deformation (8). PP (b), .. ""1.''''' ........ 
va.,.......,. of the angular momemtum IJl (c), and Eic lhe 

"'_"U." rrame (d) as I. function or the angular momentum the case of the 
U4.'1'1f'1.l1II 164&. (From (MSR 76].) value of the ,8-deformation is normalized to 

J .. O. Part (b) shows the gap parameters A,n in the 
'CNlODICIU buu [Eq. (7.97») ror protons neutrons and the gap ~1IIiI or 

_n ............. pair (duhed line). details are explained the text. 
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! \ 

1!l'1---1!J. of the 

in a superconductor within a magnetic field, 
angular momentum we find I. to I. 

nu.clm, MeWM' wu predicted by Mottebon 
60) and w£ulatiool (for [CV 66~ RBM 70, 

Ku 76D a' rather different values . 

.,aC:l:D4lmGlDlI DD4=nc~mt:OOtn hal been to be caused by 
auil>JU,,",'"iU (KS 73]. More ca"lcull.tions, however, whic 

~"""'!IoilYUkU. nrCl~tlel of one or leVeral of nucleons. showed 
pp 11 not £Omplete]y in the backbending region 

7.8b, between 1- 12 and J - 16). It is only reduced because of the ClAUIUlIi""" 

ment process. This corresponds to a transition to a two-quasi-parlicle 
with the corresponding blocking eHect Sec. 6.3.4). In Fig. 7.8b, we 
show the averaged gap 

(M' - M /2 is the number of levels k >0 in the conriguration space.) 
for a constant pairing force with the constant pairing matrix element A 
the original not all of the matrix elements 6.Jcf in the canonical 

In particular. the matrix element of the aligned pair Aaa goeJ 
""'_II'L ..... ' ..... line in Fig. 7 .8b). This effcct it most drastically pronounced 

for pure force. which acts omy on J -0 pairs (see Sec. 4.4.7). 
Re&liItic calculations for very high spin states still have to be done. 
calculationl and experimental data (BSC 751 however, indicate that 

correlations still perlist~ sometimes up to rather 
(J -40-5(0). 

(III) (Stephens-Simon Effect. [5S 72a]; sec 
HFB wave functions are products of the most general iU.UJ~ 

(with occupation probabi1ities)~ they 
tbe ground stale band as well as states of partiaUy or totally 

bands. Therefore, they are the appropriate 
mVCltlaallDa luch decoupling micrOlOOpicaUy. It is 

however~ that we must allow for a violation of axial symmetry to describe 



"",n'lt ... .,. are a mixture of many 

• 
m&luu,rm by the matrix e~[nen 

QU10I1IC<IU basis. Figu.re 7.k 
COITalIPODClllD1 occupation probability (7.96) which 

ex.pectation value of 
DIllCK-·oeIIlW.ll& nlIt.Oll more than the tolal increment 

5.8 + 4.8:::::::: 10.6, 
11/2-12. 

the rest of the 
angular r req uency w 

of the rather 
a fully aligned ;13/2 pair would give 

FinaBy, Fig. 7.8d some qU&$i-particle energies the 
(:fIJInG. which are the of (1.93) as a function 
.,meD1LUDIl. They are nO twofold degenerate, as is the case with 

reversal invariance. At large angular momentum it may happen that 
these goes to zero and becomes negative. Since the pairing 

potential does not vanish in this region. this phenomenon is called ... <.LU."".....,. 
74, CMR 75]. It does not mean. nnl.lIo'I'!Vi~'" 

there is an ex.cited state with energy. because the excitation 
energy in the even system sum of two quasi-particle 
We have seen that for of Eq. (7.93) we 
eigenvalue of these 
becomes positive in the region. However! we are not allowed 
to choose positive because (as discussed in 7.3.2) 
would correspond to a to a wave function in a system with 
particle number. We also in Fig. 7.8d (by the thin lines) the 
band-crossing phenomenon, which is connected with the transition from 
the ground state band to a two..quasi.particle band in the backbending 
region. 

Similar features are found all nuclei in the rare earth region.t 
are, however, drastic differences in the backbending plots (see 7.7). 
because this kind of plot sensitive to small changes in the level 
spacings of the spectra. In many cases such alignment do take 
place without the backbending As model calculations [CMR 
75] show, whether backbeoding occurs depends on the underlying .. U& ....... 

particle level density interaction between the 
Cf()SI1IDg bands: small low level density give sudden 
ment and therefore back bending. other cases (for instance. 168Yb) we 
have a smooth alignment without backhending (see also footnote 
on p. 122). 

'" An analogow phenome.ooQ oceun io meWlic [AG 61J. 
t for applicatioN or the sec theory lipt DlU:Jei 5ee [PM 76, NS 78. Zi 18~ 



instead of Eq. (7.92). For the ground band in even nuclei, which 
to a good approximation symmetric, rather small. In 
CAICS (1.98) is equivaJent to (7.92). With subsidiary condition 
disturbed rotational in odd nuclei have been calculated [RMB 
FDB 77) and been found good agreement with the experimental SDelt:trl 

(Fig. 3.11). In particular, t.here is no need for any attenuation 
CorioUs interaction in this model [RM 74, Ri 77J. 

Figure 7.6 an example of a two-quasi-particle band with .. "" ... ,au ...... 

parity. Here one neutron in the ilj/2 shell and the other in u .... iI .. .. 

parity shells. We apin observe an alignment of one i ll/l 
which caUlel a smail level spacing for the Jower members of thil ~_ 
Because of the parity selection rule, the corresponding wave 
automaticaDy to the ground ltate. This is different in 
calculation of the -second" band, causes the backbendinJ 
phenomenon. It it an aciled band which cbanges its character at 

from aligned two-quui·parti.cie band to 
the UlIle symmetries as the yrast band. 

fOR, we have to apply the additional that its y/lve funcbOtll 
LW;l'II'U1IAI to the corraponding wave functions of the yrast band 

I'lifrlrt1"llll\. 7.6 a1ao mows a 'Y .. band. As we shaH see in the next chapter. 
CQlleCl[lVC vibrations cannOl be described by pure product wave function&.. 
This does not, however, mean that the rotational band buill upon such Il 
vibration cannot be investigated by the cranking model. We need only use, 



the Rotating 

III more c{)mplicated structure (like 
U! ................ in the next chapter; [Ho 

the fonowing concluding 

279 

or RPA 
CMR 

as many correlations as In a 
picture. I t therefore defines 

(the order parameters Chap. ll)], an 
ph correlations, and Ii pairing potential A for 

correlationl. this theory, we are able to reproduce tbe 
state properties of spherical and deformed nuclei. It c,,:n be. 

the description of excited states with wave functions of general. 
product as pure quasi-particle excitations or rOlational 

well-deformed In tbe latter case a on the 
be used. We should mind, 

wave functions have to be understood as 
functions. from which we can get the wave function in 

IIVIIle1n by a projection eigenstates of angular momentum 
11.4). 

In addition, the HFB can be to provide an 
complicated mC:::I.D<XlS to treat further correlations. 

following chapters. 

for 



CHAPTER 8 

Harmonic Vibrations 

8.1 Introduction 

In giving a description of the 
only static independent particle models. We 

nrl~"""r definition of the or quasi-particles 
we are able within such a piclure to 

many nuclei. Spectra of nuclear 
important for an understanding of the 

an analysis of such spectra within the 
within more elaborated independent particle 
Fock or Hartree-Fock-&goHubov. we find that a 
can adequately explained by such models as ph- or 
particle excitations. But there 8rc also many excited with featUJ1'f:1 
that be reproduced within the framework of shell model 

of the by introducing sophisticated 
symmetries we are able to take 

correlations among the nucleons. 
for example, we restrict ourselves to spherically symmetric dou 
nuclei like IlQ, or then the InD.'''''.' 

oscillator approximation of the nucle .. r shell 
......... " ..... hWo. For 160 the experimental shell d 

11.5 MeV. In the speclrum of 
states a {J'fI"""3. O}-~aate at 6.14 MeV, 
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ClOSS section for (Y. II) proceues. IS II 
64]). 

281 

nCtloll of tbe y-enel'lY 

a 5 MeV broad resonance which is usually called giant dipole 
IODI.I.n(:;e (see Fig. 8.1) having the quantum numbers JII' -1 ~ I. 

can be shown (see Sec. 8.3.3) that mainly lAw excitations are involved 
resonance. Therefore, the pure sheU to explain the 

of the giant dipole resonance. 
out that these excitations can if we 

parlicipation by many in the 
we understand by "coherent" can at moment only be 

terms of the classical liquid drop approach 
are believed to take part in 

nuclear drop. We will learn below what 
quantum mechanical sense. Such collective 

nill>1'"IT'1"""" generally fuUill the following criteria. 

(i) electromagnetic transition probabilities have a collective 
strength such that they are one to two orders of magnitude 
than the single-particle transitions (see Sec. 2.7.2). 

show up in the spectra of different nuclei. over entire regions of 
table with great regularity. The dipole 

for _LO"""'. has been observed throughout the periodic table 
excitation slowly with mass number [0: SOA 1/3 -

see Eq. (1.44)}. 

well as deformed nuclei a 
We wiJl restrict ourselves to 

the context or the inreracliOlf 

t) 



aUowan of 
as low-lying (usuaUy bound states) COl.lecllVe 

by (8. I). we wiU in 
single-particle picture because it U.U;lilllll._ 

It should emphasized., however. that 
in following sections 
quasi-particles (see Chap. 7) instead of 
also show this explicitly. 

In Section 8.2. we study the interaction between on-loan 

uncorrelated HF ground state (famm- approximation 
different types of coUeclive 

correlations are taken into act:Joun 
,",""l1li''''' approximation (RPA) and it it !lll'u"''I.II.I'n 

method can be solved in 
.,,, .. ,, ......... can be derived formalism 

of come into play 
Oel;:ICDiOelrU mteractioua. In 8.6 we present 

of the theory. Sum interesting means 
properties of such resonances of clarifying the 

nel''lJ4U!,,"f"11 the quantum mecbanical of the RPA-Hamiltonian 
picture of surface They are 

8.7. Finally, Sections 8.8 and 8.9 are devoted to special extensions of 
RP A, such as particle-particle RPA a.nd quasi-particle RPA. 

8.2 Tamm-Danooff Method 

1 Tamm-Dancoff Secular Equation 

we fill up the 80eH model with A nucleons up to a 
level, as shown in then aU zero, single, two, 

four, ... t N particle shell model excitations a complete orthogonal 
can be used to expand the many·nucleon wave Functions of 

ground state or the excitated III). The exact solution of 
Schrooinger equation would then obtained by a diagonaJization of H 

full sheU model space Of, equivalently, by a variation of the foHowin, 
expansion coefficients. [In the following we restrict the indices m.11 (i, J) 
above (below) the Fenni leveL] 

I 10)- C81HP) + L C!tQ;Q,IHF)+ 4 C~lja:all+QIQjIHF)+ .. · 
ml 

- CoIHF)+ LC~a:aiIHF>! y4:a~+QiQjIHf)+ •... 
M/ 

Ideally. the determinant IHF) would be given by fining up the N 10\\1.1 

sin.gle-particle levels of the potential. However, the Lauer 



Figure 8.2. A ph--excitation in the shell modeL 

approximated by a phenomenological single-partiCle potential. The 
";d, consequently annihilates a particle below f.T (creates a hole) 

creates a particle above (F" It is therefore called a particle-hole 
operator (Pig. 8.2). 

exact diq,onaHzation of H within the full shell model space is a task 
cannot be solved. Let us, however. suppose that it is reasonable in 

of the excited states in Eq. (8.3) to go up to 1 particle-l 
eJlcitations only. We will see iater that for certain or stales this 

a very approximation. A priori there are reasons why 
be so. The subset of Iltw particle-hoJe excitations are the shell 

coufigurations lowest in energy and should therefore be Iml)(Jt1ta 
w-lying states of negative parity. Transition pt:Obabilities of states 
are excited by an dectromaanetic field P-'}:,"F"a/a" are propor
to PI,,)fz and these states are therefore believed to have domi-

particle-hole contributions. We can thus hope to get a fair approxi. 
for at least a certain class of states if we retain from the expansion 

only the following terms 

(8.4) 
mi 

Since (HFIHa;aIIHF)-O [Eq. (5.35)]. we see that the ansalZ (8.4) implies 
that the ground state a determinant. whereas it is sufficient for the 
.....,.~, .... ,\,& state to retain only 

- ~ C;;,a;aAHF). (8.5) 
ml 

The main drawback of this procedure is the fact that correlations are only 
taken into account for the excited states, whereas the ground state will be 
unchanged. Later we will see how we can build correlations into the 
around state also. 

Since the Hamilton operator commutes with the operator of total 
angular momentum I and in many cases also with the operator of total 
iIospin T, we should use the ansatz (8.5) in a Clebscb-Gordon coupled 
form [see Eq. (2.46». In order not to spoil the simplicity of our formulae 
we shall omit them in the roHowing unless they are absolutely nec:essal 
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Using (8.5) as a variati.onal ~-'""""t we obtain with 

as usual a secular equation for the determinadon 
expansion coefficients: 

:2: «HFlaj+a .. Ha,to,IHF)- E.<HFlotdMaJl+~IHP)} C~-O. 
I1j 

With (5.35), we can get a more convenient form of Eq. (1.7): 

~ <HFla,+a.[ H, oll+o,]lHF)C';-( - EOHf)C':'. 
nj 

The commutator in (8.8) can easily be calculated with the use 
(5.25) 

. 
With the definition (5.37) of the Hartree-Fock single-particle ",rUI'!nftlM; 

and the rules for calculating the ground state expectation valun or 
opera ton (Appendix q we finally obtain the so-caHed Tamm
equation: 

:2: {(Em - ~)8_8y + i5"",~) C~- ErTDAc~. 
nj 

[t;.,HF has been set to zero by a suitable choice of the energy scale 
E.TDA is the excitation energy of I') in Tamm-Dancoff approximatioft 
(fDA)]. 

For many purposes it h.u turned out to be useful to represent the maw 
elements of the interaction" graphically (Fig. 8.3): 

vMjj" .... f cp.:(~I)'t(~2)V('I. 'l)4pi('I)CPII(~J dEl df~ 

-f cp!(el),/,(~JV«(I' E2)ql .. (E,)CP,·(El} d~1 del' (8.11) 

The variable E stands symbolically for all coordinates and the integration 
include summation over spin and isorpin. The rules for Jtaphs are explained. 
mlmy texl boob (AOD 63. Mil. 6Th] and since we do not want to present 
graphiw method I.. a tool by itae.tf but rather as a pictoriAl representation of 
we have derived analyticalJy, we do not go into much detail here and simply 
the presaiptioD used to draw them. A wavy Hnc .hal1 stand for v and Lines 
arrows for the linsk-particlc functions (arrow up-partide; arrow down-hole) 
which. accordiDl to their coordinates., are linked to the intenlctioD poinu 1 and 2 
of the wavy line. Furthermore, we usUllJy agree that lines which Irc to the right 
the interaction 0 in rormula (8.1 I) point towards it, and that those lines to the left 
paiDt away from it With these coDventiOftl, t;1!I\f, ,. can be graphicaUy. lid 

shown in Fig. 8.3. 
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m\ II 
~-----7{ 

"I V 

E 

:t------~ -X 

.. im..lline I. time scale perpendicular to the wavy line, I particle-hole pair nj 
&IIIIUN~""'" and another one created in the di.rect term D. whereas in the 

a nj is scattered in a new one mi. Thinkinl of the wavy line 
tho 'l'i.M&nilli of "'direct" and "'exchange" becomes even cle-arer; proceu 

I pair crution and annihi1ati.on procca (u in electrodynamics, in which 
sLinds for the pboto~ the hole for the positron. and the particle for 

electron). The graph E then represents I. process in which a pion is exchanged 
_I'we:t~n I. panicle-hole pair. Very often the direct plus exchange term is combined 

one graph (Feynman pph). indicated in Fig. 8.3. 

8,,2.2 The Schematic Model 

The solution of the Tamm-Dancoff equation is, in general, Dot obtained in 
fuB particle-hole space, since this is a very big numerical task. 

Therefore, in most cases, only a "model''' space is retained which inc1udes 
leverallevels above and below f.r These ca1culations are also often ClUed 
configuration mixing or shell model calculalions. Before we go into morc 
details. we want to study the qualitative features of the solutions of the 
IDA equation in a very sim.ple model for which we can obtain the solution 

an analytic form. 

Solution of the IDA Equation with a Separable Intcradkm. The 
solution of Eq. (8.10) is greatly simplified iJ we assume that the matrix 

of the residual interaction are separable in (he partide-hole 
Sec. 4.4.7 and (BB 59, BET 61]) 

~A' Dm,D~. (S.12) 

Further, it is assumed that the Dm; are matrix elements of a multipole 
as, for example~ the quadrupole operator 

Drm - <mlr1y 2Ia( ". -P)li). (8.13) 

The multipolarily agrees, of course, with the angular momentum to which 
the particle-hole pair (m, t) is coupled. The matrix element (8.12) is 
certainly not antisymmetric as it should be. However, it tums out that the 
exchange term is sma.Jl and neglecting it is a good approximation [BK 68~ 



Ma 74]. In general. the residual interaction is attractive for T-O 
(they are pushed. down in energy a~ for example, the 3 - T- 0 state in 
and repulsive for T- 1 states [BB 59). Therefore, we have to choose 

A<O for T-O: 
A>O for T- I. 

There are reasons to believe that the anaall (8.12) for 
as bad as it might look, but here we do not want to 
of a separable force (see Sec. 4.4.7). Rather, we wish to (8. 
convenient simplification which allows uS to study the qualitative 
of tbe TDA solution. 

With tbe ansatz (S.12), the secular equation (S.lO) has the 
form. 

(E.,TDA - t..., + £I)C;" -ADm; L D:;C~. 
ftj 

The states I,,) should, of course. be normalized and with Eq. (8.5) 
therefore have: 

L C:;C;:- On" 
mi 

With ~'" D~C~ - roost, we can solve Eq. (8.15) for the coefficients 

D 
C" -N. 1'1'11 

m/ ETDA_ ( + •. 
II' ""..., 

We can solve Eq. (8.18) graphically by plotting tbe r.h.s. as a function 
E,TDA, We thus obtain the eigenvalues from the intersection of this 
tion with the straight line ] IA. AlJ solutions are sandwiched between the 
ongina) shell model excitations ('"' - ~ - (i' only one solution being pushed 
up (if 1 IA > 0) or down (if 1 IA < 0). The assumption of a finite partieie
hole space seems to enter into this argumentation, but we have Lo remem
ber that ph sheU model excitations of definite parity are grouped 

roughly lhwo apart. Figure 8.4 thus represents just one of 

The one excitation wh.ich is pumed down (T-O) or up (T= I) is a 
formed by Ii cMerenl superposition of aU matrix elements of the residual 
interaction. as can easily be shown for the degenerate case to be discussed 
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e 

Figure IA. Oraphical solution of Eq. (8.18). 

By "coherent" we now mean that all matri:K elements contribute with 
J:Jtamlpl~=S for such states are the octupole states 

-Pb at low excitation and the giant 
resonance (T- t), which we win turn to later. 

u-............ Dqenenlte 
(8.17,8.18) that 

If we set all E"d equal to I, it follows from Eqs. 

( )

-1/2 

CmI - ~ IDlMlf.t . Dmit 

-E+~2: 
(8.19) 

I'II9i 

Bl'nU"ft means that state is being pushed up (down) by the sum of 
diagonal elementl of the interaction. 

degenerate cue is realized. for example., if we talce into account 
one major shell for particles and another major shell for holes in a 

oscillator potential without a spin orbit term. In reality things will 
be so pronounced. but the essential features are likely to be preserved. 

The collectivity of shifted state can be demonstrated for the degener-
case by studying the partitioning of the total probability for 
different excitations. the collective state we have 

(8.20) 

We therefore get~ for the probability, 

D - IDJIftIII
2

, (8.21) 



a coherent superpolitiOD 
operator D - ~ Itt' -"'j~k 
interaction). 

For the so-called sum. rule (see Sec. 8.1), we get 

~ l<rIDIHF)12
- ~ ••. + 1<,.C'fD fHF)11 

., " ... "f 
- L (HFID +lrX"JDIHF) 

" 
- ~(HFID+lmJXmiIDIHF)- L ID,.il. 

MI mi 

Here we replaced the complete set I JI) in the ph space by the complete 
Imi). Because of (8.21), we see that the total sum rule is elthausted by 
collective stale 

This means that in the degenerate case there is no transition probability 
from the ground state to any non-coUective state. On the other hand, 
trans:ition probability to tbe collective state (8.21) is drastically enhancecL 
We thWi have a qualitative explanation ror the strong 1 - resonance shon 
in Fig. 8.1. 

8.2.3 Particle-Particle (Hole-Hole) Tamm-Dancoff Method 

AI we have seen in the cue of doubly magic nuclei.. the simplest correlatioal 
beyond. Hutree-Fock can only be taken into account by breaking the HF corw 
ud raiama a nucleon from beloW' to above the Fermi level. In moving away 
doubly magic nuclei. that is, by filling nucleons into the next open shell. a 
different type of correlation may be viewed as important. Since a malic nuc:kus is 
sup~ed to be quite a stable entity, the correla.tions amons the valence nucleona 
alone seem to be responsible for a variety of experimental ractl known about 
nuclei. The 1- d IhelJ nuclei ranli'n! from .'0 to «Jca are perhaps the most studied 
examples of such "open sheU'" nuclei. A whole theory has been developed to 
such nuclei, known most widely under the heading of shell model c01ffif'UtllioR 
ntJxlng c.alcul.ations. Many ingrecllentJ of this theory an be found in the textbook 
of de Shalit and Talmi [ST 631 and the moat advanced caJculations within 
thOOf)' have been performed by the Oak Ridge group lHMW 11] and by Whitehead 
[Wb 12]. In I.his section we only want to treat the simplest possible cue of 
nuclei, that Us., we move away from the closed shelJ by only two particles, tho 
filling in two nucleons or removing two (creatins two boles). In accordance 
what we have said above. and by ana]01Y to the ph~, we may therefore try the 
followmg va.riatiooal anlatz (pp-TDA method). 

IT,A +2)- L C~Q":Q'I'+IHF). (8.13) 
1'1'1<.1'1 

The coefficients C~ are supposed to be antiBymmetric, that i.s., C;,. - - C~. In 
complete analogy to the pIt·TDA cue, we obtain the pp-IDA secular equation: 

(E ... TDA - ~ - tll)C':' - L D __ II,C;"III" (8.24) 
If'!'<n' 
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(8.25) 

(8.26) 

DRlmD'1e fUllS over all levels > €F and therefore inch.Kla 
lives rise to matrices too bi&.for 

COIllD'llta"l. we usually work in a restricted subspace. taking into 
Ihellil above tbe Fermi level. In order to account ror the 

iDClUdIed.. we must take a suitably "'renonn.ali:z;edn interaction (see 
.......... 141&11.1'''14 (8.24) looks jUlt same tor the h,h. TDA cue 
(m, n) are replaced by bole indica (i. J) and the sip of the 

is The solutions of the pp(hh) equation can ... AU .... nl 

to the ph cue. instance.. we can also set collective low·lyinl stales, 
1I'I'I1'MllfI" as pairing .,iIHGlN»u See. 8.3.S). Since the qualitative 

much the same as in the". cue. we will not SO into greater detail. 
lead for instance, [HK. MT 73] and 

liel~aJ Considerations for Collective Modes 

Vibrations in Quantum Mechanics 

this is the right place to interrupt our more or 
ion of the IDA method for a while and consider the 

in more detail. I n Chapter i we 
of a liquid drop. The word vibration may be U ..... r..iIidl 

mechanical context, since we are in fact onJy 
The density p(r) of such a stationary state 
correspondence is roughly the same as talking 
quantum mechanical harmonic osciUator problem. 

dCIXDldellU density distribution p(r, t) which vibrates around 
" ... ' ... .,..11-'1' p(O)(r) we have to investigate a wavepackel 

1'1'(1»-10)+ ~CrIF)e-~~/" 
" 

_lIL .... &Jl ....... , ... _ ....... the ground state 10) and small admixtures of 'IOiA,.nJ(;"" l:Jl1..a.",ro 

Up to first order in the coefficients c" the corresponding density 
1'\pt:~naiJX D): 

A 

p(r,t)-(i'(t)1 ~ B(r r,)I'+'(I» 
I-I (8.28) 

A 

Bp(r, t) - L c .. (OI L 8(r-ri)lp)e -iE"J/A + c.c. (8.29) 
A? P'. I 



A 

A 

p( I)·(r) - (01 ~ 8(r-
, .... 1 

quantities are called tram/tion del1Jilies. 
we expect oscillations not only in the 

as given in Eq. (8.28h but also in the nonlocal 
interested in the transition density matrix. As 
a sheU model it has the form 

p~). - (010,,+ a,I"'), 
In the TDA approach these matrix are given by the 

that is, in TDA we have 

different types of ................. _ 
n_II'II'II"lOH of freedom: A 

or the densities of the protons and neutrons can vibrate 
and out of phase; there can be vibrations in spin and isospin; we 
pairing modes and many more things which only a few 
features wm be discussed here (see 13). 

8.3.2 Classification of Collective Modes 

we are dealina with harmonic vibrations in this cbapter. in 
we want to investigate their qualitative properties in more ......... &aH<. 

To see the basic structures we our discussion to spherical 
shell nuclei. The best suited example is ·Pb. These considerations 
however, also apply for the other in the periodic table. In 
we saw in the introduction. many of these collective excitations 

classical properties which smoothly on the mass 
eoUective ph-vibrations can be characterized by tbe properties of 

corresponding pair operators [Mo b] 

(a+a). (8.33) 

are a number of exact symmetries of the Hamiltonian such as 
rotational inva.riance, pari ty conservation~ and charge conservation 
the corresponding quantum numbers I. '" and T, . In addition, we have 
""","" .. YoilII!Mi/U. in Sec. 2.6.3) the approximate isospin symmetry for light 

with the quantum Since we start with a 
""'v~ shell nucleus in ground (1- -O+)t the angular u ...... 'u."'.,'-" 

the parity of the excitation are determined by the COITCSioonOJ 

numbers of the coupled (a The same allo holds true 
light (N- Z) nuclei (with 0 in the ground state) fo1' the isospin. 



To or 
ATof the ph 

and a AT-I 
mean -To+L 

a __ w,v.1, to lhese general considerations about which 
instance, information about the angular distributions. we want to 
the collective motion more precisely according to the different 

l&1'Cel of freedom in the ph pair 

a + (r. s, l)a (I" ~ s', f). (8.34) 

tbe first place, there are vibrations of the local density p(r) of the 
in space. Since the angular dependence of such vibrations is 
completely detennined by angular momentum, we only can 

different radial shapes, The simplest examples this context are 
vibrations of a sphere with a sharp we have 

SClllJH(t in Section 1.4 in great detail. From Eq. (L 7) we find that the 
trarllit;ion density (8.30) for such a surface vibration with a sharp 

for,. between Ro 
(8.35) 

the density in the nuclear interior stays constant The entire 
concentrated in the surface region. 

can also imagine other radial dependences of p( I), where the density 
also cbanged. Such excitations are called breathing modu. 

qu.ite different type of motion. which also involves only the spatial 
of freedom is given by vibrations in the nonlocal part of the 

density matrix pC n(r, 1"). An example is the nuclear twul mode, 
where the local density of the nucleus stays unchanged and only the 
intrinsic velocity distribution osciUates (see (HE 71D. 

(c::) is an additional degree of freedom. we have 
distinguish between excitations in the same nucleus AT,=O 
flip A-I, which belong to the neighboring 
charge + 1 and the neutron number N::- 1. In the first 

................ to AT=O or to AT- L For aU the 
two options: The protons can 

VU4~ (6 T- 1) with the neutrons. At a 
an oscillating charge distribution. 
the nucleus. A case of vibrations with ATg = - J 

which wiU be discussed in Section 8.3.4. 

"T- I il possible proto.o particle-neutron boLe e:xatatiou that l"InIY"I_nnnd 

stales in neighborinl odd-odd nlJCleus.. 



parity 

FIpft 8.5. ............., .................. Olc1:ur"e of the shell ItrUCture in a closed aWl DiU=-_ 
possible lp - I It 'lliiA""'~_I""VIJ". 

(eI) Finally, we also have the 3pin degree of freedom. The COrrellPOldill 
vibrations wava. 

1'b:e of different modes given so far was, to a large 
COIlll<1erllU()DS within the coordinate space and emp 

realistic nuclei however, these modes are 
precisely are always more or less drastic admixtures of 
collective states. Therefore, it is often very useful to apply quite a 
classification, on the shell model in its simplest version-the 
monic oscillator, 

Figure 8..5 shows schematically the shell structure for a .... __ 
nucleus (as ZOIPb). We have ahernating shens with positive and 
parities by an energy distance of roughly fr",o' For a .......... , __ 
nucleus, the lies just between two sheUs and we 
filldph-pairs of a l~ excitation with negative parity, or a ~o 

or a J&Jo excitation with negative parity, and so 
..... v~ shells we also have, in addition, OItwo 

within the shell 
~.'O~'Ir ................ the degenerate oscillator shells split up and a 

wrong parity are shifted down into a lower Schell 
term. This causes l~o excitations with positive parity for closed 
Duc1ei such as 2OIPb. But the basic features of this pictures also 
realistic cases. 

Although we have superpositions of many ph pairs in the cOLlecl:J.ve 
excitation energy shi.(ts due to the correlations as 
Section gross structure is conserved to a large ex-tent.· 

...... -,..'-4 we find a very coUective state consisting mainly 
1 h.wo and a second one consisting mainly of 3"wo 
[MNS 76} St 79~ 

chi. l.I'lAIyticaDy ill • scbem.tatic modd with 5eYen.l r,JII,I.W ___ 

.......... "'1I!.1I' to Scc.. 3.2.2..2. 
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...... , ...... ., iCllierrlatliC8JiI~ in 
lowest ph 

the 
no longer the case. The 

only smoothly over tbe 
[~a:A -1 / 3; see Eq. (2,(2»). We therefore expect a similar 

-<Ul~nOjCD(:e of the resonance energy for resonances. 

UUICWIIJ(JID of Some Collective ph-Vibrations 

Ii sense the most lrivi.a1 collect.ve motion is a tranJlalion or the whole 
generated by the linear momentum P. Since it commutes with the 

Hamiltonian H~ the exact ground stale 10) is an eigenJunctioD of 
owevert if we use an approximation 10).pp for the ground 

symmetry. PtO)a.pp are new states. They look like collective 
IDC}n!. We call them spurious, because they do not to 

excitations. Witbin the angular momentum coupling '""u ... u""". 

U'ltlllm numbers are J -1-. T-O (P is a vector operator that 
on the i9ospin). They correspond to a translation or tbe whole 
There is no restoring force against this motion and therefore they 

have uro excitation energy 

- PH 10)a.pp~ EoPIO)app' (8.36) 

depends on the approximation. instancet in the 
a luperposition or states. which is generally not an 

mll:ale the TDA equations (8.10). Instead, it is a mixture of an the 
"loa' .... "". which form a complete set in lbe I p - 1 h space. Since its 

nevertheless close to Eo (Eq. 8.36). it has large components of the 
TDA This means some low-lying solutions of the TDA 
(8.10) have large spurious contributions. As loni as we are 

a spherical basis with good spin and isospin, only the J - I , 
are influenced. They have to be treated separately in order to 

the spurious components. For details. see Chapter II. 
best known and the most thorougbJy investigated giant resonance is 

giant dipole slate (see for instance [Sp 68D. [t is a several MeV broad 
has been observed over the whole periodic table at an 

of roughly 

E I-a:80A -1/3+ -1/6 [MeV J. (8.37) 

typical case shown in Fig. 8.1. The experimental spectrum usually 
." ..... nJ., some structure. It has its origins in the specific properties of 

is not constant over the periodic table. Particular ph-
DOl1enlS may show in I'Q [EF 57}-or shell effecls may cause a 

of the resonance. For instance. passing from spherical to de-



the 
alIOwt 
58, Ok 58. BBC 71}. 

The giant dipole retOIWl~ 
of ,),.radiation. In Section B.7 we .-..,..,.."v.,. 

of a final state I') by a photon of Il!lftll!t"tnI 

4172,,1 
0',( ) - he (E,. - Eo)I<,.t 

D 

It is proportional to the z-component of the distance between 
I'JllllftYAlllrN of gravity fOf protons and neutroni. 

croa for dipole absorption DIOUlI is 
.. _lUdAi.Ua over aU final states I' > and over th.e IIIniilll'lI'OV 

~ roo o,,(E) dE- 4'1'1",2 _ £0)1<,IDIO)12. 
, Jo lie 

It or(lllDOlrtlo,nal to the energy-weighted 

Sl(D)- 2':(£"-£0)1('1010>12 
~ 

and can evaluated in closed form: 

S.(D)-!(OI[D, [H,O]]to), 
where H is the exact two-body Hamiltonian and. 10) ·is the exact 
state. If we assume that the two-body potential no velocity 
and no mixtures (Wigner force). we calculate in IllLLHW""JlU 

(8.158): 

(OI[O,[H,O]]IO)-T WI' 

For the dipole sum we therefore have the Thomas-Reiche-Kubn 
rule: 

roo 21T~lA NZ 
J
o 

a(E)dE- me A~O·06A[MeV'bAm]. 

This value is by 40-80% if the 
exchange mixtures (see. e.,., Brenig [Br 65bD and tensor 
which tben seems to yield roughly the right 

cross section. It thus turns out 
dipole sum in low-lying 1-

- II reaonances below 20 MeVt the giant rCSOiD1 
peak conta.ins clearly reflecting its collective character. 
of the dipole sum to be found beyond 30 MeV [ABC 63, FH 62a, h. 
65b, BS 64, ADW 78]. For heavy nuclei the giant dipole resonance 



IUID iboW8 that a 
QlDrQle 111m (8.43) ill exhaUlted by tt..e Jiant dipole 

a large overlap with the 

D) - D~> - NJ { z ~ (plzlp')a,. a ... - ! ~ (n Itln')a: D., } 10). 

(8.44) 

hal become known as the Goldhaber-Teller state [OT 48] 5«. 

quantum numbers of the state are identical with those of the giant 
IODan(~e /"'- 1 =. In the case of the isospin, we have to distinguish two 

For light N - Z nuclei the C.ou10mb force can be neglected. The 
ground state then hu T-O. operator D is I. vector in isospin 
space, as we see from Eq. (B.88). Angular momentum coupling rules 
therefore show ilia t D has T - 1. 
For heavy nuclei the iIospin is again conserved. The ground state 
has To-(N - Z)j2. Using similar arguments as in Sec. 2.6.3 we can 
convince ourselves that the dipole state ID) has the same isospin To 
by showing tba t 

(8.45) 

does not., however, mean that there are no other 1- states with 
To +1 in the excitation spectrum of the nucleus. We simply do not 

them by dipole 'Y .. rays. 
structure of the operator D shows that the giant dipole resonance 

mainly of JAwo excitations, Because of the repulsive character of 
tIe'lresi'tdual interaction it is shifted to higher energies. 
Besides this well known dipole state, in the last ten years I number of 

giant resonances of higher multipolarity have been found. The giant 
Ie resononce is especiaUy wen established over the whole periodic 

Ie at an energy somewhat less than the giant dipole resonance [PW 71, 
72, LB 72, HGA 74, Sa 74. KWB 7S, YMR 76, Be 76] 

~+~60-65A -1/3 [MeV). (8.46) 

exhausts 40-100% of the energy weighted sum rule of the isoscalar 
operator" 

(8.41) 

III Unfortunal.ely. in I. direct comparison wilh experimel!ll "WCl cannot UN photo-absorption. 
• ill dipoie cue., because (i) the photon field does DOl etmlAln the itovector part ror A> J. 
IIDd in practice the pbot.ollUC .... reactioDJ proceed ~ the dipo~ 1!OCJi<k. 

mon impor'Wlt expenmenw lOOI ~ lei excite mch viM.donlil iI ineluuc IJ(':8.tleriJII of 
~ aDd heavier partkln .. uch u prOlOnl. deuccroo.s.. and alphl. putk:&ea [Sa 76}. The 
~D.di.n& ~x.cir.ation opcrat.on have II mc::m:: complicated lIItru.cture (see. for rUe 
'n. Sa 121 + b, 74, HMS 7S} aDd the sum rules are DO lon.ger model inde.pendent. Tbc:n:fore, 
-" will not. go into the del..lib of the analysis of such experiments. 



to I 
3.3"~ [Ha rest of the isoscalar quadrupok ImlmalLD 

low-lying collective 2 + state, which shows 
and mainly of (Yawo excitations. 

Recently, a breathing mode was also observed [MMW 7S, 
YRM 77, DDL SO), a spherical density oscillation with 
number Jff_ ,r-o. As we shall see in Fig. S.14, it! 
not only on the nuclear surface but involves 

over the volume. Its excitation 

~80A -Ill MeV. 

a measure of the nuclear 
In 20IPb the experimental breathing mode 

COITe1IJ)O!Damg to K~200 MeV, which in 
[RS 74a. SZR 74. WMR 77}. 

"""I"lftIlI'tN'l I'IItmOM we II splitting or tbe PDt quadrupole rHOn.a.nce 
comipoDeaU llKMY 7S]. 

~.O r-----------------------------~------------------. 

20.0 

16.0 

I.LI 
1 OJ) 

" l·r..o 

"' "-

1.0 

10 16 20 30 

lIi1 ... _ 1.6.. The electron spectrum for 90 MeV e) at TSQ calculated 
iaC*X)f,)lC RPA wl.ve The numbers in the figure denote 'be 

momentum parity I.nd isolpill of the corresponding Cfou-sec:Lion contribution. 
it the sum of III the diUennt oontributi01ll. [WKS 73D 



MG.,,.rttc N!sontmce.J are excited by operators which involve the spin and 
angular momentum operators. They have the quantum numbers 
,... and have predicted by several calculations (see, ror 

[RS 14a, SWK FRS 78D. experimental how-
an object of Q]SICUISIOIR. 

giant resonances in the spectra have been observed various 
>erl1:DetlIU (see, for instance. IPBD 74, TIS 75, Pa 75a, SED 74D, but the 

parity assignments are not completely established. As an iUustra ... 
we show in 8.6 a calcuLation the (e. e l

) spectrum for the 
resonance region of We see clearly that the total can 

obtained by a complicated of rather res-

Analog Resonances 

reactions for beavy nuclei (N) Z). like, example. ·Ph (p, n) *Si. 
&trona collective resonances caJled aMlDg slatu for reasons we learn 

a moment,'" 
explain the structure these states we use fact that the nuclear wave 
Ons in beavy nuclei to a rather lood approximation. eisenll1tates of the 

operator y:z (see 2.6.3). The Il'ound state and the low-lying excited 
have the quantum numbers T- T,-(N- Z)/2. 

from such a ltate II, T, - T) at an we can derine ill t:mtdog 
by the application of the isospin Iowerina operator 

II. -1fT1/, T, I). (8.,") 

belongs to the "dauahter" (N-I.Z+l) is an of H 
the 

-E+~. (8.50) 

To see we decompose the exac1 Hamiltonian H into nuclear part 
'Which commutes with T _ and the Coulomb interaction Ve 

HT_- + -T_H+l J. (8.51) 

commutator [Ye • T -1 is of 

Coulomb 

Vc(i)- Y .. (;, j)O - '1»). (8.53) 
j"'" 

Under the auumption that IiDJIe-particle potential in the interior of the 
nUcleus a CONtant value or roughly Ilt (see Fig. 2.7), we obtain for each 

In) of the "parent V> (N. Z) an state T _In) in the 

• 
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IN.ZI 

8.7. Schematic representation of the spectrum of aWol 

"daughlef" .... '"" __ (N - I, Z + 1) 

HT_I")-E~ 

Th.iJ means that in the daughter nucleus there is a sequellCl of Ita. with 
energy spacinp II the Low.lying levda of the parent nucleus 

T - N-Z-2+1 
- 1 t 

which iI one unity larger than the UliUillIIJU& 

(Fi" 8.7). 
In order to Jearn more about the IItructure of the antioa f'MOnanca we 

forF! for the moment the interaCtioD used in the of tile 
slate of the parent nucleus (N, Z). will be given by a pure shell 
descriptJon, represented graphically in Fig. 8.8. 

p n 

• 
• 
• 
• 

• • 
• • 
• • 
• • 
• • 

Flpre SA Schematic representation of a pure shell model determinant. 

We assume tbat the protoNi. and neutrons, whicb occupy the sUites with the aamll 
quantum numbers (besidC5 I). of cowse) form an inert core and are coupled 
T-O. In the folloWlna, we IlhaII DIalect this inert core., !K) that the ground stale 
the mother nucleus is given by 

p n 

• 
• (8.56) 

• 
• 



T-1)-

(8.57) 

AlUIIiAJI& state in (8.57) is a coherent superposition of certa.in ph-states 
caod. by repllc1ll& in (8.56). the neutrons by protons one by one in the 

)OGdimli stI. tea.. 
re 8t1e. of coone, other combinations of the states I,,) orthOJonal co 

&111Il0l .tlte II, T. T]- T-

~ e"I".> with L cjA - o. 
~ ~ 

operator T + annihilates them 

T + ~ ,,)0:: ( ~ efA)' T. T3 - T) - O. (8.58) 

Iftf·orc. they must have T - I. • the iIOIpiD of the FOund state or 
daqhter nu.cku •. Without readual interaction they lie at the lame enere II 
anl.log slate and have and parity. 

Experimentally, the ltates are obterVed as sharp retOMnces at rush 
ac:rgiles lAW 61]. 15 10 small. the rule forbids 

rapid decay into the other states form a continuous background. 
To see how they ciln be treated with the TDA. we slJu1 with II HF potential 

is the for and neutrons. Only the levels of and 
are shifted wilh to one another by an amount ~ - t1.. - ~ Eq. 

The quantity ~, its origin in the symmetry energy. In our approxima-
is the only difference in the potential of protons and 

i:uutroDS rc:sulliD& from tbe nuclear force. 
If we diagonaliu the residual interaction in the we obtain 

IspUtting between the. l.oa1ol resonance and the other states. a aepara-
foree we end up with the degenerate model of Section it 

aU slrength in the B.ruI.log stat.e and shifts iu energy from lhe 
value ~«- ~c - As to its proper value A .. , because it is e:u.ctly the 

interaction which causes tbe symmetry energy As' For details., see 
textbook or G. E. Brown [Br 64, (second edition 1961)J and other 

cited in the review article [AHK 72]. 

8.3.5 Pairing Vibrations 

As indicated in the treatment of the pp(hh)-TDA method, there is II grellt 
formal similarity between the ph and pp(hh) cases. In fac~ it also turns out 
that the.re are collective pp(nll) of the corresponding TDA equa

(8.24). A good example is the 0+ ground state of lO6Pb. The ampli· 
tUdes C~ according to Eq. (8.23) enter directly into the expression of, for 



example. a -Pb (Pt I) 
section (01 6SJ. The fact that 
sucb a ructioa of lLU""'~' 
206Pb, clearly indica_ the coherent 
and therefon the collectivity of thilltate. Sb'l1l1ar 
21~b. These rather strongly bound entitiea of 
due to the short-range part of the interaction 
discussed at the beginning of Chapter 6. Two .... * .. "'."""'1,_ 
entity that they can be multiplied, added to, or nM'l1'liO"I11!!O 

(like, for example. lOIIPb) almost like independent 
very mucb like bosons because of their inte,er spin). The IDIaf1Ut11 

therefore be approximately harmonic which, in fact, cue 
isotopes (Fig. 8.9) [BM 15]. harmonic spectrum is 
termed the spectrum of "pairing vibrations"" We can also pnx!lIlC'ecx. 
0'" pairing vibrations in these nuclei. For example. let UI reElDO\I 

l()IgPb a 0+ pairing phonon. which leads us to ·Pb. At the 
us add a phonon leading from the 208Pb to the 210Pb ground sta 
clearly gives an excitation in lClIPb lAO apart and ir .. deed such a 
excited state in 210pt, (p, I) ·Pb and 206Pb (I, p) 21lIPb reactions 
well known and lie! at 4.9 MeV in lClIPb. 

The faet that particle-particle correlations lead to collective 
modes-now usually called pairing vibrations-was recogniz.ed 
Schmidt [Sch 648, b] and Bohr [80 64] and worked out in much detail 
on by Bes and Broglia [BB 66] (for a review lee (BHR 73] and 
references therein). 

It is a quite general concept which the pairi"ng correlations 
the same level as the deformations. Starting from a spherical closed! III 

nucleUl, we can excite vtb,,"iON, which have an QlrgulG 
111m different from the ground state. and pairing vibraliom, which 
nuclei with a diHe-rent particle numbe,. Ground state correlations 
by such vibrations (see Sec. 8.4.6) give in the fif'St case a virtual q 
deformation and in the second case a virtual excitation or 
2p - 211 states. As we go away from a dosed sheH, the nuclei get 
is, the correlations get larger. Finally we get a phase transition to 
states-induced by the ph-correlations; or to superfluid statet--induced 

<r 202 

<r 204 

rf 2'06 

rf 2:08 Pb 
cr 210 

rf 212 

rf 2'4 

FIJ1re 8.9. Schematic representation or the ground state energies in the even 
isotopes. 



a OOIl~lIsa'te of quadrupole or 

AVA, .... "....., in deformed nuclei. These are 
__ ""'" .... deformation. In the same way, we can have 

u. .............. , They correspond to oscillations of 
their ground state values. 

Theory with Ground State Correlatloas 

ap!,ro:IlUllIJUe wsatt (8.5) was the fact that we could 
the excited states; the ground state however, re

the TDA method. This complete neglect of 
J interaction VR in the ground state certainly influences the results. 
ove this drawback of the TDA method, we could think of 

the (2p - 2h) components in Eq. (8.2). This is not practicable, 
would become prohibitively large. One way out 

TDA method in whicb we take, instead of the HF 
one a certain class of correlations bas 

lWDDled Although the discussion of the problem stays more or less the 
as for the TDA method. we will have to pay a certain price for this 

of our theory. Our new equations will no longer fonow out of a 
principle, and thus we can generally get imaginary solutions, 

new equations [ra.ndom-phase approximation (RPA)]* 
to method using a different technique which will 

naturally the necessary generalizations leading to the 

Derivation of the RPA Equations 

understanding of what is done in the phase 
re-derive the TDA equations using a different 

...... -_., ......... equation of motion method (Ro 68a, 70]. 
eigenstates of the Hamiltonian H 

possible to define operators t Q/' and Q .. in such a way that 

- + and =0. (8,60) 

·This approximation hu been introduced by Bohm and Pines [BP 53] in the theory or 
pLuma ~Ililtiom, have bttn given by IStNCf'1lI authors lOB 57, Hu 57. 
",An 

'The use later on of the letter Q in the seDJlle or I not 
eonlU-tCd 



[H, ]IO)-(E..- _Jf __ 

MultiplyiDl frain the left with aD arbitrary 

(01 [ aQ. [H. Q .. + J] -(E,. - Eol<01[ 8Q. Q,,+ 

We can use the commutator, because (01 Q,+ -
were exact and, since the variation of 
space, (8.62) corresponds to the rull Schrooinger equation (8.S9). 
re-derive the TDA equation (8.10) by approximating tbe 

by the HF state and the operator Q,. by the collective ph·.q,cnl.1 

mi 

approximation, we restrict to the space of 
.. "" __ ._ .... _. that we &Q Lmia;atIHF)8C....,. and from 

a/a".. [H,Q,toj]]IH C~- E,.TDAc~. 

where E,.TDA is the excitation energy in TDA approximation. This 
the TDA equation we derived earlier (8.10). In deriving this equa . 
have not a variational principle this time. The above procedure 
however, the advantage that it can be generalized in a straightforward 
There is no reason why we should not use, in Eq. (8.63), a more 
vibration creation operator which then also implies, as we ,hall see, 
general ground state. If we think of a ground state containing 2p 
correlations, as indicated by Eq. (8.2). we can not only create a ph 
also destroy one. The most straightforward generalization of Eq. (8.63) 
therefore: 

where the minUi sign has been chosen for convenience. The RPA • ...,....: .. 1If1l'lllll 

state IRPA) is defined by analogy to (8.60) byt 

Q .. IRPA)-O. 

We will later on deduce from this condition an expHcit expression for 
ground state. Instead of only one matrix C~ we now have two matrices 
and r:~. We also have two kinds of variations 8QIO). namely a:a,IO) 

·U we aprtu Q by the openton Q/Qt' ",,+Q.+Q,tJ6 with codficientl C",. and Cf'f"I' duID 
8Q is Jiven by <lQI3C"C for arbitrary vanatiOl1.l &C. 

? One uualty IIiJUlIIImeIIRPA) to be the ground lllate 01 ilD even Iyuem with ckleed dMII 
(/" .... 0 ... ). Rowe fit &1. aUo invaLipted the poaibtlily or COMtnlCtiDlI.D RPA hued Ofi .. 

open w.u cooftpratiotl <OJMI' _eO RPA; see [RW 69. 70. NR 71, RN 751). 



-Ml.,(RPAI[ + l~RPA), 

AO.(RPAI[ 0':0" Q.,+ ]IRPA), (8.67) 

contain 
which are still very 

the ground state 

an approximation known as the 
61, Br 64). If we the 

diUer very much from the HF ground 
we C8..n calculate aU expectation in the HF approximation, for 

[ 

be an if 
tors obeyed the commutation 
ion (8.68), however, violates the Pauli DnDC1f1)IC 

ted tenns coming from the commutator. The 
can only be checked from realistic calculations 

Within the Ipproximatioll~ the 
a their absolute 

and +0.10> 
the 

-X" Mi' p~).

pf:r- - y., mi' 

Equations (8.67) can now be written in a very compact form: 

0)( X") 
-I y" 

(X') ·=X·,' (Y") ., yr,. and _ _, wd .till' 

-(HFI[ oi+o",[H.a.+Dj]]IHF)-
- - [Q,+aM[H,a/a,,]]IHF)-

matrix A is Hermitian and the matrix B symmetric. 

. (8.68) 

(8.69) 

(8.10) 

(8.71) 

Equation (8.70), together with (8.7]~ is RPA equtJlion. We get 
back the TDA equation by putting aU r,:/ equaJ to zero. They a.re therefore 
a measure for the correlations in the ground 



'tImnji 

FIpre 8. 10. Graphical representation of the 

As we can see by looking at matrix B of Eq. (8.7l), 
addition to graphs of Fig. 8.3. the graphs sbown 

2p - 211 excitations. 
quasi.boson approximation 

is~ if we have many 
same of In such cases each single rJfl··compODent 
I. small probability of excited and the violation of the 
can be neglected. We discuss this poiDt apin later in _liilllill.nl_ll 

On the other hand, the amplitudes y~ should be small COlnDlcU 

because they describe ground state correlations. If 
replacement of the correlated ground stale IRPA) 

(8.67) not justified. 
In casel the coeffi.cients Y;". c-an be neglected completely, we 

back to the TDA. Thil il the reason that we can describe 
very well using the RP A, where the quasi-boson approach 
allO rather pure ph-states, where the coefficients Y!., are 
RPA equation (8.70) looks like the diagonalization of the Hamihonian 
basis witb a metric tensor (~I) which is no longer positive definite. In 

Section 8.4.4 we win show that the eigensolutions of (8.70) IJ'8 

ortbogonaJ with respect to this metric. Another consequence of this """"Imp 

is that the eigenvalues liSl,. are not necessarily real. 
To transition probabilities (8.62) .-r,lI.I""~·t'I the excited state I 

the state 10) we only need of the type (OIFI 
for a Hermitian one.body operator 

In the RPA approximation they are given by 

(OIFlv) - L Fkk,p1·~r II1II Y;;" 
kk' ml 

In following sections we will frequently use notation 

(8.11) 

with the column vectors 

f-(~) and -( ')' 



:;_(A B) 
B$ A-

(8.73) 

HF theory Eq. (1.37). It is a 
and its real eigenvalues characterize the nature of the 
is positive definite it corresponds to a minimum in the 
this case, we can calculate the square root of the 

bring the eigenvalue problem (8.70) into a more symmetric form: 

o 
I 

WDlCn is a Hermitian eigenvalue problem having only real solutions. ]n 
word&. if the HF solution corresponds to a minimum in the 

and not to a saddJe point or a maximum, then the corresponding 
RPA equation has only real frequencies (TIt 618J. The opposite is not 

true. In the following we will Ulume that we only have real 
non-vanishing eigenvalues n., 

8.4.3 Normalization and Closure Relations 

Since the RPA matrix is not Hermitian, its eigenvectors cannot be orthogo
nal in the usual sense. We would also expect a different kind of orthogo
nality relations from the that the excited states Iv)- +IRPA) 
should mutually orthogonal 

(~I -8"1'.-(RPAI[ ,Q/]IRPA>~(HFI(Qr.Q/ 

or 

~ (X .... X"· - Y"", YP',) 0",,,,- - mJ".i IfII _ • (8.14) 
11'11 

In fact. we can show that solutions of the RPA equations v" Y 
fulfill this relation exactly. ~- p' this us the possibility of 
normalil.ing the vector (X"', Y") if the norm positive [Th 61a]. 

To show the orthogonality of the RPA solutions in the sense of (8.74) we 
first notice that to each eigenvector (XII', Y') with eigenvalue nil' we have 
another eigenvectOr (Y ..... , "') with the eigenvalue -n",_ Both eigenvectors 
have the same absolute norm the sense of but with different sign. 



~-( ~ ~); -(~ 
Together with (8.75), the RPA equation (8.10) hal the 

~~-~~D, 

wbere the diagonal matrix D contains the real eigenvalues (110"" -
Simple matrix algebra show!!! that 

[no ex'" -(~~Jl)"'~-~"'(~~D)-~+(:;+ -S)~-O 

that is, n commutes with ~ ... ~~, and tbus ~+~CX i.J diallonal tOFltbli 
with D. Since the norm of the vectors (X. Y) is open, we choose· 

~ ... C!)t, '3( -l!.t. 

These are exactly the orthogonality conditions (8.74), 
The closure condition is obtained by multiplying (8.78) with ~. \II • 

shoWi that ~ «X ~ is the inverse matrix of ~ ... , or 

which gives explicitly 

~'!)t<X'" -~ 

~x"x,,· YIP" L:...J ml m'l' - ml 
r 

8.4.4 Numerical Solution of the RPA Equations 

In many practical cases the RPA-matrices A and B are real For 
frequences n, the problem can be reduced to the diagonalization of a 
symmetric matrix of half the dimension. 

We define the vectors (see footnote page 301) 

fMl: P"-i'V-f (X"+Y"); Q'= V2~, (X'- Y'). (8.81) 

From (8.70) it is easy to deduce 

jo(A - B)QI" ="P", 

- j'(A + B)P"="D~Q". (8.82) 

and 

(A + B)(A - B )Q" =hZU~Q". (S.8l) 

Together with the stability matrix ~ (8.73), the matrices (A ± B) are 
positive definite. We can decompose A - B into a product of two triangu
lar matrices (Orthogonalization of Gram-Schmidt [Wi 65, Ch 70]~ ft 

.. For a poe.itive definite stability ml.trlx :;. this is always possible. beuUNl D. then hIS t.be 
same sign as r.tl. 



of matrix (A - B) [UR 71D 

with - 0 for i> k (8.84) 

MDm:ctrlC eigenvalue probJem 

T(A + B)TTR"-h2D!R'. (8.85) 

solution gives the 0" and the normaJiz.ed eigenvectors R'. 
we get the properly normalized amplitudes from 

(X") I -y' - 2 «hO,) (8.86) 

Representation by Boson Operators 

the derivation of equations (8.70) we have used the quasi-
boson approximation (8.68), that we have replaced the ph operators a; 01 

by boson operators ... 

B';, (8.87) 

which fulfiH exact DO!!;on commutation rela.ljons 

(8.88) 

This replacement is an approximation. In fact we wiU see in Chapter 9 that 
we can expand the pair operators 0:0; in a series of boson 
operators. in which the term is B~. In the quasi·boson approximation 
we neglect aU higher 

Since we use this approximation within the RPA tbeory it is very 
convenient to represent other operators, such as the Hamiltonian H or 
transition operators, by B +s and Bs. How this can be done is discussed 
in Chapter 9. 

Here we shaH go to order only. that is. we take into account 
the Hamiltonian HII only quadratic in B, B'" as B'" Bt BB, and 
B ... B "', This with the approach (8.87) because we need only 
terms of the [H, B +]~ [HI B] Eq. 8.67) in the derivation of the 
RPA equations. we determine the coefficients of the 
B BB, and by the requirement· (8.7J): 

(HFI[ -
(HFI Bnfj' [H.!J' B,,] ]IHF)- (HFI[ 0i+Om' [H, a/aR ] ]IHF);;;; - B"';ttJ. 

(8.89) 

.......... "'- we mUll rem.a.rk lhat is not cuedy the ground ltate 01 the 
COU1,ctae orny approximately with the operaton eli"" a... In L1lI.DCef 

IUUllUtU Sbltel of BotKm by round parentbc&is B""'iHf) .... O. 
difrerence between I.Dd tHf) in RPA we do not dl.lllqll.UltI Mh_ 

staLes in the present always 1.lSe B"",IHF) - o. 



and 

-
-

~ AIfllnJB':;B,,+ ~ 
-".I 

- ~ ~Am'ml+ ~ (B + 
mf 

,,,i 
requirement that the operators 0.: • 0 .. now fulfill exact boson 

mutation relations equivalent to unitarity of this transformation 
yields the orthogonality relations (8.78) and (8.79). 

Hamiltonian expressed in tenns the operators 0/ , 0" is 
diagonal after taking into the RPA equation (8.76) viz: 

with 

In 

H B - EHF - ) Tr A + ~ + O)~ +~ ~ g -+ ) 

-
(8.93) we have used the 

A-
-B 

in 

It 
..4+ 2 L 0, 

.>0 

Itn.. Y:lld 2
• 

mi 

nv .......... of the RPA equation (8.76) 

Y"'O yT, 

y+ + yeQxT. 

to the Hamiltonian 
\.4I<IRi'W lhe harmonic 



.~~~ The eigenfunctions of H Jj 

(it OODltructed in Section 8.4.6), 
+IRPA). two-boson states O,.+O":IRPA), and so on. 

the matrix, which diagonalizcd in the TDA equation 
(8.93) that the RPA ground state energy E"'PA is 

to the Hartree-Fock energy by tbe amount 

1 

lum of all in the ex.citation energies between 
and the approach. 

the theory of the harmonic oscillator, we may also 
etlemnoltles by generalized c.oordinatca moments 

- ! V-M,o., _1 (0 - 0" ). 
i " If .. , · -JM~O, Ii (0,+0,+). 

(8.95) 

numbers M, are arbitrary at this point The operators ~,.. rulrm the 
relations of conjugate momenta coordinates 

[ ] [ (8.96) 

Ham.iltonian (8.92) can be these operators: 

(8.97) 

.2,. therefore. obey the equations of motion 

(8.98) 

Using the representation 

- P;',B; + p:.t Brru 
mi 

6) ~,. B +: + QJ19 B 
"".1' L.J . Mf _ WlI ( X - Y*)". 

!'FIt ' 
mi 

we get an explicit form the Eqs. (8.98): 

B )(. P) _ i"fl.l M (Q ) . 
A· ,. "Q* ' 'II' . ,. 

(8.99) 

! · ) ( -~. ) ,. - ~ M,. ( P ),. 



of P::U or Q':i) or 
M,,). 

So far we the cue 
(n! > 0). J n principle) the RP A 
example is A -a -1>. B-<1 A>. 
general cues have not been 
dependent Ha.rtl'ee-Fock: 
di.qonalize a matrix of the 
The corres.pondins C'igenvector 

-
In such I cue there emU no the form (8.91), which corresponds to 
eiJeD,vaJue. Nevertheless. we can construct operators <!r" and !" with the properdll 
(8.96) and (8.98). We have only to solve the system (8.99) for an arbilnU)' OOIISU'II1IIi 

value of M" and a negative value of O~. In order to obtain a complete at of ........ __ 
operatorl, we can derine COfTeIpondinl boson. 0 /, 0 1 + by Eq. (8.95) 
absolute value 10,1 inltead of 0/ [RB 16J. The Hamiltonian H, (8.97) IS 
diagonal in this buis, orr diagonal: 

- ~lgll(OI+O/ + 0/0/). 

8.4.6 Construction of the RP A Ground State 

The RPA ground was originally defined by Eq. (8.66) as tbe 
of the operators Q". Within quasi-boson approximation it 
equivalent to the vacuum of the operators 01"; 

-0. 

We can construct it explicitly the vacuum IHF) of bosons 
[Eq. (8.8?)} 
quasi-particle r.n._110 

E.5): 

where 

where we constructed the 
by the theorem of Thouless [Th 60} (see 

-; 4-. Zfi1ljB,;!B; 
mU?J 

(8. 

and No 
for the 

a normalization (see E.69 and E.75). In Appendix E we 
(8.91) the commutation relations (8.88), 

z- Y·X·- 1• 



(RPA) I 

but more praclica.-
65] and by da Provi-

rU •• I,1.AlL1 _1' .... ""&I11."' .. "u. have performed by Goswanni and 
the RPA ground stale has to be taken with 
approximation probably overestimates the 

many cases [IUY 65, PR 68. UR 69J. 
given by Eq. (8.93). Obviously, it 

energy EHF • The reason is tha.t it 
higher correlations. However. we have to keep in mind 

not follow from a variational principJe. It may, 
l"III''I'II''!I',(u''I'" happen its energy can even be deeper than the exact energy. 

we are now able to calculate the RPA ground state. we could use it 
evaJuate (8.6n avoiding the quasi-boson approximation (8.68) 

of the matrices A and B. Oiagonalizing the new RPA 
a better ground state. and so on. This yields a self

which avoids the shortcomings of the quasi-boson 
IIOC)fOlUl118tllon IRo 10. 13, Ma 76a). We will come to this method in 

several other extensions of the RPA theory have been 
higher random phau approximations; see, for instance. 

64, Ro 68a, MYM 68. GNS 10, DDK 71D. We do not want to 
these methods in the fra,mework of this book, since in Chapter 9 we 
a systematic way of treating collective phenomena in nudei~ the 

1II'V""_,Al ... "" boson expansion technique. 

8.4.1 Invariances and Spurious Solutions 

We assume in the fonowing that the ex.act two-body Hamiltonian H 
invariant under a continuous symmetry operation generated by a .. 

one~body operator P, as there iSt for the case of 
we assume further that the HF solution violates symmetry. 

""JI"""~n",. in ~rticular. that the HF single-particle density p(O) not 
with P 

[p(O) , p] +0. 

p(O) diagonal in the HF basis (0 for particles 
means not aU the ph matrix. elements P wtI .. 

ex.act Hamiltonian commutes with P: 

[H, pJ -0. 

therefore an exact but spurious S'olution of the RPA 
[H, HlHF)-O· or, in matriJt language, 

4 

(8. (02) 

holes) 

(8.103) 

(HFI[80, 

(8.104) 

'"The" M ma.tru. elemcmbl of P do not contn'bule to this ~1.1 .. ~'n beelute 0( 
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where P is the vector P ffl.i in particle-hole space. The COI:TellpOndJia& 

P)- ~(P.ra:Q;+ 
mi 

We realize that the RPA equation (8.70) 11 ~in""~I' 
case in whicb the symmetry is) in fact, broken by 
Otherwise the matrix eleme'nts P mi vanish identically. 

Thus, we see tha.t to the extent tbat we calculate the RPA ..... 10.14 

use self-consistent single-particle energies and wave functioat lll 

ous excitations that correspond to a broken symmetry in the· HF 
for example, in translation of the nucleus as a whole--aeparate 
are orthogonal to the other excitations and lie at zero exdtat'lDll~ CltlefJ 

We have derived this for density-independent interactions. H:owrev~cf' 

Section (8.5) we will see that this also holds for density..d,ependent i 
tions that obey the condition (5.71). 

This fact is a major advantage of the RPA over the TDA where. u 
have seen in Section 8.3.3, the spurious and physical solutions ~om 
mixed up with one another. 

As we stated at the beginning of Section 8.4.3, tne RPA always 
symmetric solutions, U ... and - 0". For P, however. we have no .. 
partner, since P is Hermitian and the adjoint is simply a repetition 
In fact, the state IP) in Eq. (8.105) is not nonnalizible in the sense of 
(8.74). There exists no corresponding boson. Since tne RPA matrix 
even dimensions and all non-spurious solutions are paired off, [he 
solutions are one short of forming a compiele set. 

To see what is going on, we foHow Marshalek and Weneser [MW 
MW 10]~ and use the represenuuion (8.95) for the spurious state. 

A 

ously, the ph and the lip parts of P are now identical to the He:rmi 
operator ~o (the canonical momentum) up to a constant Mo wbich t in 
definition (8.95) is open in any case. In order to obtain complete 
operators 0"+,0,, (v>O) and ~oP 20 we only have to determine 
canonical coordinate ~. It is given by the solution of Eq. (8.99): 

(~. !.)( -~. t == - :0 (J. )0' 
which is a Hnear inhomogeneous problem. Since the matrix ~ is si 
this equation only has a solution if the inhomogeneous part is pc 
lar the spurious solution. But lhis is e~actly the case (8.104). 
equations (8. J06) were first derived by TbouIess and Valatin in the con 
of nuclear rotations [TV 62]. 

The constant Mo is finaUy determined by the commutation 
(8.96): 

"In a (.".Ue where this ill not tru.e, for ioata.nce. in RPA WculllioruJ bued 00 a ooenOi'JDCUlr 
logical Wood.&-~ pote:lltiaJ, specl.a.l melhoda have been developed to remove the SDUJ1UI
components [PS n. Me 79J. 
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(8.106). we find 

>O(~. !.)( -a.t- 2(HFI(~,[H,~]]IHF) 
(S.l08) 

onLcticaI cues it is often possible to choose the phases such a way 
~ aDd B are real. Ina case where QmJ is a150 real~ P mi has to purely 

and we for 

Mo-2P~(A - B) Ipo- (8.109) 

the Hamiltonian H B in RPA order in the 

(8.110) 

constant ERPA no longer has the form (S.93b) because of the zero 
I'nIl!t11U'!'I'ICV mode. However, we can give it easily by constructing the HF 

value of (8.110): 

.. 2 <HFI~IHF) 
EJlPA - EHP - ~ AOp~ IY mJl - • (S.I 11) 

11'>0 mi 

subtraction of the tenn (P'')/2Mo is often used in the recipes (Chap. 
II) for doing HF calculations in nuclei in order to correct for spurious 

motion .of the centre of mass. We see that this correctien is 
«Je.l .. ', ..... '"' ....... automatically in the RP A. 

form of the .operator (8.110) alse gives u.s an interpretation or the 
£OnStaDt Mo< It is the inertial parameter corresponding to motion ... 
characterized by P. 

us consider two examp]es: 

(i) Translation. Here we can use the Galilean invariance for the exact 
Hamiltonian 

(8.112) 

where X is the u~r-OJ-m.a:u coordinate, and find by calculating the 
matrix elements 
identical to (8. I (6), 
mass of the nucleus. 

.. , JjHF) of this equation an equation 
shows that in case Mo- Am the 

(it) ROlation. Starting with a deformed HF calculation. a violated 
a rotation perpendicula r to the symmetry axis.. let us say a 

rotation around tbe x-axis-the operator P is now the angular 
'" operator Jx ' Equation (8.106) determines the ph-matrix ... 

element of a corresponding coordinate, an ang]e ':s:< Mo is now a 
moment of inertia ~TV corresponding to a rotation around the x-axis. 
We get for real matrix elements in analogy to Eq. (8.109) 

!lTV - 2 J:"(A + B );.!,j x., , (8.113) 
mJ 



with 

(A + B }1IPIl.,r- c51Mc5~( ~ - + + 
Neglectilli the residual interaction B we ...... """lU 

.......... , .. e formula (3.S9). For Ii 
formula see (3.4.2). 

ina 

0,,10)-0 for p>O; 

for JI >0; Ip)-

wave functions give the proper excitation energies 0" 
but it turns out that they are no longer normalizible. [MW 10). 
for this. Tberefol1 

IWlCUC.D of a rotational 
angles. We can deduce therefore, energies. but Dot 
In particular. we do not recover the quantization or 

we can say that the RPA theory treats 
G:V1!Rft1U11h"""CI of the prob*n consistently. It separates the .....,-_Oc._ .... n,LI.,Ll 

from the vibrations. In fact, these excitations are 
but they represent a different type of motion which 

treated At least their energies (which are not given by 00.0 
by p2/2MJ are reproduced properly, since they are by 
right mass parameters. 

8.5 LIDear Response Theory 

on the 

collective excitations of the nuclear 
stationary Scbrodinger equation (8.59) and 

at least in some approximation. 
now begin from quite a different starting point. 

of an external time-dependent field 

F(r)- Fe-I~ + F 

We usume that F is a one-body operator. that 

F(t)- ~ AJ(t)a,ta,. 
kl 

that the field is weak. that is. it introduces only small 
density. which we can treat in linear order. 

As we will the nuclear density oscillates with 
we obtain resonances whenever the frequency w is 

of the system. (n this way: 



In 
A1'Rftllllrnftj!"jl; (ota/+ ami ,). 

equations. 
system the external 

energy. and so on. 
the RPA equations for density· 

1 Derivation of the ........ JILILIL""' ....... Response Equations 

wave function 1/11(/» or a nuclear system in an external. time· 
t field is no longer stationary. It is a wave packet, and its 

_ ........ ..,,, density 

(S.BS) 

llOW time dependent. We want to calculate this density explicitly under 
following approximations. 

(i) We assume that at any time p(t) corresponds to a Slater uterminant
p2 _ p). Then p obeys the following equation of motion. 

lAp == [ h[p] + J(/}. p]. (8.116) 

the time-dependent Hartree-Fock (TDHF) It win be 
in Section 12.2. Here hlp] is the Hartree-Fock (NF) 

Eq. (S.33) and f is the tirne-dependent external of 

(Ii) We assume that the external field J(t) is weak, that is, it introduces 
osciUations with smQII amplitudes around the stationary density p(O). 

"'L ............ is it!lelf a solution or the stationary Hartree-Fock equation (5.36) 
~p(O)]_O. Therefore, the density bas tbe form 

p( I) -= p(O) + 6p( t), (8.117) 

6p-p(l)e-,*.1f+p(')+e~ (8.118) 

linear in the field In the following we work in the basis in which p(O) 

h[P(O)] are diagonal, that in the HF-basis: 

P(O)_ 8 .n(O}_ {O 
'h' - kl t'k L 

for particles. 
for holes, 

(S.J19) 

(S.120) 

following derivation of the RPA ahows that it is ju.st a lime dependent 
Independenl picture (see Chap. 12), 
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In Section 5.3.3 we saw that the condition pl fill.: P 
non-vanishing matrix elementll of 1'(1) are and lip IIYI,IW;.'I.A __ raba j 

aDd pl,!.). They are determined by the TDHF 
(8.116). We insert Eq. (8.111) and expand up to linear order 
field f, 

iMp - [ho.lJp 1 + [ : 'IJP. p(O)] + [I. p(O)}. 

where 61t /6p· 6p is a shorthand notation for 

- ( an -all ) ~ -a - '8p",;+ a ·8PInt . 
iliff p .. " ... p(1It P,. p ... ~I" 

Uling the rules for the calculation with HF 
D, [Eq. (0.30)lf] we find that the pp and the IrA 
(8.121) vanish identical.ly. From (8.118) we Obtain for 
elementl the liMtU raponM «JWtton 

{ (~. B ) -hw( 1 
A" 0 

with 

(8.123) 

These matrices correspond exact.ly to the matrices A and B of the RPA 
method, if we use as a residual interaction [see Eq. (5.32)] 

_ ohP'l i}'-£ 
v - -.... (8.124) 
,. apI'S 3P4PoPn' 

In the case of HF theory without density dependent forces, we can use 
the ex-pression (5.28) for the energy and thus we get back the RPA matrices 
(8.71). However. the above derivation is more general. h can also be 
applied to theories with density depeNknl forces (see Se<::. 5.6). (n this case. 
for the calculation of excited states we have to use the force defined by Eq. 
(8.124) as the second derivative of the ground state energy with respect to 

the density. In particular, thls force is no longer necessarily antisymmetric 
in the indices q and r. 

The linear response equation (8.123) is an inhomogeneous equation 
can be solved by inverting the .matrix on the left-hand side. We then find .. 
linear connection between the external field f and the change in the 
nuclear density (i.e., the response of the system): 

P~/I)- ~RkJpf(w)fP'l' (8.125) 
/Xl 

The function Rw.'Pi(w) is called the response junction [see Eqs. (F.51) and 
(F.68)l. We have calculated it here only in the mean field approach (Le., in 
URPA order"), because we restrict ourselves to product wave function. 
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p'l_p. Therefore. the kJ and pq run only over ph and hp 
no longer true in the general case. 

respome function R depends on the frequency of the external field. 
poles at the eigenfrequencie.s of the system. where already an 

1U""'_"IlU4IlN field f is sufficient to excite the corresponding eigenmode. 
o find thae resonances «(.,)-0 .. ). we have to look for the solutions of 
homogeneous equation (S.123) with vanishing external field. With the 

'r.&Wi~" •• of Eqs. (8.73) and (8.75) we obtain 

(~-AG .. ~)p(I) .. -O. (8.126) 

exactly the RPA equation (8.70). Its solution gives the transition 
(8.69) 

(8.127) 

derivation of the RPA equations is more general than the one given in 
S.4ol, because it can also be used in the case of density-dependent 

forces., which is a crucial point for the validity of the mean field approach 
in nuclear physics. 

On the other hand, the derivation shows u.s aLso very clearly the 
connection of the random pttase approximation to the Hartree-Fock 
theory. We allow the average nuclear potential to oscillate around its 
stationary value, which corresponds to a minimum in the energy surface of 
aU pHssible pn<duct wave functions (see Sec. 7.3.1). In the limit of smaU 
amplitudes we thus get a linear eigenvalue problem for the determination 
of the normal modes of the system (see also Sec. 12.3.2). The RPA 
approximation is therefore nothing but the small amplitude limit of the 
time~dependent mean field approach. 

The energy surface in the vicinity of the stationary point Po can be 
obtained by expanding the HF energy E [p], up to second order in 8p· [DG 
77]: 

(8.128) 

We find that the stability matrix ~ has again the form (7.37), but now the 
matrices A and B (8.123) are also defined for density...de-pendent forces. 

It is easy to show also for such forces that we eventually obtain spurious 
lOiuriolU at zero frequency in the case of a broken symmetry P. We have 
only to use the condition (5.68), which slates that 

p_ e kiP p(O)e - /.rd', 

'"In deriving Eq. (8.128) we must be aware of the fact that 8p has in second order 1.00"
and M matrix elemenlS. The)' a.re. bowe\'er, not iDdepe.oderu variable-.. 'becalJ.5.e any staa.e:r 
del.ermill&.nl can be expressed by the ph 1.00 hp matrix elemebts of /jp. We can use the relation 
pl ... p to them. the "nn Tr(lIo . lip) Jives a qwu:inuic contribution. namely. JUI! 
the ph 1M - ifi in the matrix A. 
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lnIinitesimal changes p_p(O) + p(l). with pcn p(ot~ 

[ 110. pll)) + [ ~ . pCI). pCG) J-o. 
which shows that pO) I that is, just the ph and hp 
correspond to a spurious solution at zero energy 
in the case of density-independent forces. 

Knowing the eigenmodes of the system. that 
the RPA amplitudes X and Y. makes it possible 
response equation (8.123). Using (8.76ff). we find 

:!)-

which can be inverted: 

pO) - ! ~w-O)-I~~+f. 
This is equivalent to Eq. (S.l2S)-we have now an expJicit expression 
the response function, III! namely its spectral representation: 

1. «OIa,ta,I")<"la,~af'IO) <Ola,ta,,' p. ><plaf+a,lO) 
R,..'q-{w)- - ~ . - . ".,>0 w-D,.+11J w+n .. +nJ 

(8.1 

Again, the index pairs pq and p' q' run only over ph and hp pairs. AU 
matrix elements of R vanish in RPA order. The form (8.l3O), however 
more guzeral. If we use exact eigenfunctions I .. > and exact energies itO,. 
the system, RPf ,I-w) in Eq. (8.130) is just the exact response 
This can easily be seen by using time-<iependent perturbation theory 
[No 64&, Chap. 2D for the calculation of the change in the exact 
function produced by the e.xternaI field F: 

I+(I»-IO)+~. 'P){ < .. IFIO) , e- 1wl - <"IF+IO>, e1w } • 

• >0 h(w-n .. )+ 117 1)«(&)+0 .. )- M1 

The states 10) and I p) are the stationary eigenstate!. of the system without 
perturbation. The transition density corresponding to this wave function 
p(t) is tben given by Eq. (8.12S) with the exact response function (8.130) 

If we introduce the response function ROof the free system {without: 
residual interaction v in (8.124», 

• For the lake of oomplel.e:nea we have added the infiniLeIllimal positive parameter 1'1. whicb 
deten::lli.Da the bowldary condition in tbe cue of unbound tUlles (see Sec, 8.S.-4). In a bound 
state problem." caJl be let equal to urn. 
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a~other equation for R("'h 
-"'-_L[I;_ tl_""ri~1NI tJe.1w~"::HrJlH~/W equation 

Rpq ;tt(- R~ P'f'+ ~ ~ ,rf,o',faif,h,RMa ,," 
'I'll 
hill 

(8.131) 

iVW.,.,.,..'m .... 1t1il. of this equation can be verified simp1y by multiplying by 
and using the definition of R 0, the representation 
and the RPA equation (8.126). 

of Excitation Schematic 
Model 

property of tbe linear response function in fact that 
part is related to tbe lotal transition probabil.ity (8.72). We 

R,(",) :-Tr(f+p(I)(w»- ~ 1;, 
pqp'q' 

l/(w+ ill)- P(I/c.J)- i'lr6(c.J) in Eq. (8.1 

ImR,(w) - -" L 1<"IFto>lzB(&l - M)F)' (&) O. 
">0 

(8.132) 

to obtain 

(8.133) 

We get the energy-weighted sum rule (8.154) by integrating 

the 
pole c.J-

element 1< rl FIO)11 as the 

(8.134) 

The extremely in the schematic model, the 
separable alUatz. ror the Ifound state correlation matrix element is now: 

- AD"" D ~, iJlfIUIij - >J)". D I4j • 

where D is identical with the external field operator F. From the Bethe-Salpeter 
equation (8.131). we get 

with 

R~(w)- D;'~t(D,,(-
ptfp't( 

Solving fOf RD(CA) yields 

The poles of RD(w) give the excitation energies Q .. and tlnu in the schematic model 



Figure 8.11. Graphical solution of the dispersion relation (8.1 

(We can drop the "we are only interested in bound 
for wb.k::h 0 .. 

~'ioIIA,"I""'" (8.135) can be solved IraphicaJ1y u in the TDA cale. \...N.IUIJ'<IU 

S.1l with Pi", 8.4, we notice two qualitative difierenu.s which In due 10 

lJOund state correlatiODJ: 

(i) 1.n the cue where the residual 
(i.e~ A < Y Lhe 

imaginary . 

nlelfll(:hoD become. stroll.eIf than 
of the low·lying collective state 

(T-O}-RPA state is shifted further down than its oorrespondinl 
state a comparable A. 

can study this more closely in the depnerate c.ue. If we put all 
we from Eq. (8.135). 

- +2(A~ IDmtf'. 
mI 

the degenerate cue, therdore, we have for Ami 

mi 

(for example, D ..... ,Jy~. In a ......."u • .,..... 

( --2 



trln.Cion matrix We have 
...,- 0,. In the vicinity of Oli'l RD(w) has 

yields 

Low-lyin,g .tates the transition probability is enhanced al 
OOIlIlPl~rea to value (8.21) by a rl.Ctor f:/Boou . for Ihe COI.1eC11.rYe octll1PO,le 

q11l.drupole states thil fa.cto.r can be u larp all two. """~kIJlIlN 
are found in calculatiOO8 (see Sec. 8.6). 

8.5.3 The Static Polarizability and the Moment of 

response theory to the change of 
derormatlon in a static external 

to the solution of the constrained HF equation 

[ II [p ) - Aft P : - 0 (8.136) 

linear reJponse theory. the change or the density, we get rrom 
i i8) 1 

p(l) - -AR(w-O)j-AS-t.j. (8.1 

a is defined by the change of the ...... ,,'"" ... ' ..... 

(AI Fl"> - (01 FlO) + A' a; (8.1 

the .... u ............ in energy is given by 

H (8.139) 



modulWl [BOO or we 

d',£ d d 
a- d"A1 - dA(XtFIX)- dX Tr(f+p(l) 

From (8.132) we have 

a- - R,(w-O)-2!: 
.>0 

which that the static poiarizability 
rule S _I [see Eq. (8.l50)}. Using the exact states I') and exact 
obtain Eq. (8.141) by calculating the exact ty 
order perturbation theory. The derivation that we 
ability in HF-approximation aHF by usin.g 
ener)'icl on the r.h.s. of Eq. (8.141). 1'1tis can 
dynamic polarizability [SLO 78]. 

The calculation of the moment of intrtia within the 
ing theory (lee Sec. 7.7) provides a simple application of 
atiolls. 18 this cue, the externa.l field AF is given by the cranking 
W1l.' An exact solution of Eq. (8.[36) bas been 
Thoulcss and Valatin [TV 62] proposed to solve 
theory. In this case, from Eq. (8.123) we get the 

~p{l) -wJx ' 

which is equivalent to Eq. (8.106). As discussed tbere, we 
with the solution, since in this case S is Ii singular 

Nevertheless, we get the result for the moment of inertia from 

_ dl~ I -2 ~ 1(II'~J ... IO)12 , 
dw ... -0 ~>o E. - Eo 

UJnlll'TII'\ the sum over I) does not inc1ude the spurious state. This is a 
pn::SllIOD. It contains., as special cases, the Inglis formula 
ph states) and the Belyaev formula (3.93) (I') pure 

states). But it also contains the more general case in which 
......... ''''..., ....... are included into tbe RPA theory (see Sec. 8.9). In this 

III) are solutions of the quasi·partic1e RPA equations. 

8.5.4 RPA Equations in the Continuum 

Up 10 DOW we have always a discrete spectrum of eJlc:lted states 
fact, only the low-lying excited states are really discrete levels. All rugher eU'. 

the conunuW'I'L. t.bat they are resolUU'lce8. As discuued in :r;.ec1t100 

they are obs.erved as maxima in the crou section of I. suitable reaction. 
way to overcome this problem is 10 work tD a trWlcated "",""IID""'OI_~ 

basiL llllUCh a bull there are only discrete levels. Single-particle resonances of 
.......... -.. are approximated by bound single-particle states. Since the l"e1ll14J1·U1IU 



S{w)- L l(pIFJO>(28{Aw-AD .. ), 
.. >0 

for 
the case of surface 

La Ihe problem 

(8.143) 

, ..... '.-.. poles or discrete values of , (bound states) and haa a resonance 
bll!!tJtA'VilM for continuous quantum numbers ,. In fact we have Eq. 

for the example of the giant dipole resonance thil iI tbe 
"IIUKlIIIIU..I!I'!;; qWUltity. From Eq. (8. L33) we jet: 

S(w)-

TII'l'I!<r.H"""'" we have to calculate the r~nle runCbCm "'._',.1'\-1 
It turns out that the of 

(0 wave function of the giant resonance is 
states, where the ,-state i& a fCatteriq 1()I~Itk1rn 

This meana it alwl.)'I a 
will decay into a free particle and a hole state in the A - I OW;:IC\liIi. 

of it caJled the d«ay width (MW 69a]. We are IU we see 
nKl~l'I1Cmt. to describe this if we use scatterinl solutions of the lingle-

the R(w). 
are more complicated states, ror instance, 2p - 21t excitations, which 

can contribute to the wave function. They are neglected in RP A 
approximation. It means that in reality a ph-component of the wave function 
it out over ma.ny 2, -2h Therefore is the 
spreading width. We are not able to calculate this in the present approxima-
tion for example {WS 72, HA 76. SSV n, OKS n. AY 78, BBB 79b].) 

Several have treated the continuum within the TDA or the RPA 
DH 68, LV 68]. Because of the continuous variable ( of the 

energy in the continuum. we find a set of integrodirferenti.al 
that are similar to the continuum shell model equations [We 67, 

MW 69a]. Their solution requi.re! a big numerical effort [RMS 67, BH 67, 
77]. We not want to present thil matter further here but will 

lIJI.I.A:I~_"" U.I""'~" a method for calculating R(w) for the case of zero range 

cues which the residual interaction consists only of a 8-force or 
of it [such as the Skyrme force (4.104)fr]. B~h et aL 



eJa~mlltlllCtlOl1S 0·' t.be lingle-partiele 
DClIIr..alWR; of the of 

the function R 0 for r I -'1 and r. - r; : 

{
I 

RO(r.r',w)- ~ 'Pl*(r)(r1 . ofr>'P,(r) 
i ~+~+I1J-h 

+ "1·(1")("1 1. 0 Ir>",(r)}. 
-Aw+e:,+ITJ-h 

To see that (8.145) foHows from (8.l44)~ we must insert a 
11><31 and realize that the bole oontribuLions vanish. 

In the c.ue of a pure 8-force. hO contains the kinetic energy and a 
We CID apply scauering theory in a one-body 

(see [Me 61. Vol. n. Chap. ~1~J3D and derive for a liven 
the radial part of the anile-particle Green's function viz; 

I 2m o(r»w(1' <) 
G(r,rt~)!\!(1'1 . 01">--1 W( . 

~+n.,-h " 0, 

and denote the greater and the of I' 1" and 0 

lleI:ten<1eJll solutions of (ho - w)v -0 with the oo\looal 

conditions: 

1'-0: 0(1') regular, w(l') irregular: 

1'-+00 w 0, v(l') increases and w(l') exponentially; 

w 0, v(l') standing wave w(l') wave. 

W(v, w) is the Wronskian of v and w. 
a solution the HF problem. we know the 

wave function .",(1'), and the v 
in coordinate space. For w, we can therefore 

o(r, r', CI) from Eq. (8.145) and (8.146) with the 
11.16 ....... momentum coupling. 

the local function R(r. r') "'" R(rr, r'r") with a 
we get from (8.131) 

R(rtr',w)-Ro(r.r'.w)+ voJ d11''' RO(rtr",w) (r .... r',w). 



three
ODI""o1UMmlll0o,ll integral over the 

,..,.,.ce. we find an 
",' .. UiVll 'IIlUl'IIll"IIIIII8I IOlution give, R(rt 1'). 

(for imtance, a muhipoie operator). we are 
ly p( ll(r) from Eq. (8.1 which 

fomt ItNlOI' = 

O(r,UJ)-J d'J,' R(r.r'.w)F(r'): (8.148) 

UOC11l0n (8.142) 

- ! 1m J d'J, d1r' P(r)R(r. r/t LrJ)F(r). 

example of such a calculation is given in Fig. (8.13).) 

AppUcatioos and Comparison with Experimeot 

(8.149) 

has been I.Il enormous number of aDtl"l.ICltUOliUII 

RPA approximJ.tionl in nuclei _tattinl with simple 
ph le'Yell in 0" up to the extended RPA aU~uJ.ations witb IUIioiIVIIII".tU 

nuclei. it loa far beyond the ~ 
We wi.sh only to pick I 

tL We therefore restrict ..... """'.-
and ·Pb. In I spherical 

57] to d.i.agonaUu Ihe ....... UIUu,.IZIl_U 

This fact redu.ca 
In N- Z nuclei., we can fhrl·lWH'rnnlN! n'~_ 

approximation lod use the IYmmelry. 

Particle-Hole Calculations in a Phenomenological Basis 

non--collective 
on tbe in fact, usually 

energies of the phenomenological have used. 
the measured single-particle spectrum ""n,.'rtn, ... 1f: determined from 

nuclei 

£"" - E(m, A + 1) - £(0. A), 

f, - E(O, A) - E(/. A-I). 

calculalions of this type is: the calculation of Elliot and 
.. ft .. , ...... parity levels in 1'0. They one shell below the 

above the Fermi surface - I d shell). This: gives 



coneentnled mainly one level shilted away 
MeV) . 

... nAlTllI"Ulevell is in plOd 
dipole states, wb.icb are discrete levels in 
peaks in dipole.JUOnance (Fig. S. L)~ 1'he al)lolut. 
probability the 3 - state is, however. a 
t.hiI ia ltate 
the lndudet only 
(tee below). 

Gillet et 64. OV 64, OS 64. OOS 66] investipted r.be 
TDA with RPA calculatioDs 

low·Sying 0 nates.. however. were reproduced better by the 
the RPA u,cltal:lOli pnjloalMDDeS were lUFf than the 

altbouab the apaimtDW value. 
~~ ~I~ 

poor results for poot1bve parity states.. 
depend very much on the residual interaction. As we 

\..ll,laptl!r 4, bave been attempts to derive IUCb an in 

n~;aetilD foroe. It is tberdore very interating to apply f 
_ .......... w~ ... _ also. In thil c.&H. we bave no free 

neceuarily expect the same agreement with ~ experimental dati U 

adjusted force. Several sroupt [MMG 67, BK 69 
Kuo-Brown effective interaction [KB 66]. As dilCUssed in ...... .11>.1'._ 

many open problea:aa derivaLion of this foree.. 
not bow to modify an ded 
pp..caIculatiol1l for a ph theory. Nevert.bdas. the results are encouraging. 

collec11iVe ... n" ....... '_ are reproduced quite well. It turns oul the 
term (Pi,. 4.1) playa an important role. Without it, enerl)' of the 
state -Ph becomes [KBB 70). The calculatiol1l have 

out in an oecillator basis and the c:onfipration 
'h;!l!1Mft'lo7"'~ the absolute strenl\h of the "''''''''UU,IVll 

[RS 744] used the of system. developed 
MijdaJ (Mi 67]. lbil theory stans from quite a difrereot of view. It 

mU"'~CIlCl.n between quasa"'P'rtielea and by a renonnaJized 
latenlC1l108 which is short ~ and density (f4 (4.113» and 

RP A equatiolll for the calculation of c:olIective states. The 
phenomenological in as rar as its parame1ers have to be adjusted to expe 
values as energies and lnlnsition of collective states 

elOctJ()m!HUl!ellc moments and 
9.3.5). This been 
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Figure 8.11. Distribution of muhipole strength in 2QI.Ipb (fTom [RS 14aD. 



....... It_'.,. .. , it e:aJl~lIiG 
h_,,,~,,,,,,,,,, OODILlII of diBcnrm 

streElgth. In particular, it shOWl the low-lyiq 3-
alIo resonanea.. .ucla II I - 100 

IpUt a 0 part and a T-l pan). I (0+) .It -
higher resonances. To gel 8 continuous resonance In RPA must be _.~. __ 
in the continuum, as has been discu.s.sed in (KBF 74. TW 78} . 

...,lLUJ, ....... ~ calculations in a discretized basis have been carried out with a 
interaction [KH 76]. 

8.1. Ener&if!S and excitation probabilities allow-lying 
ltata in lOIIPb, MigdaJ force in RPA 

[RS 741.~ 

E(I) [MeV] B(!)I [~ fmll] 
[ ,,1 fmU - 2] 

theory a.p theory up 

3- 2.63 2.61 S46 540::!::30x 
5-- 3.39 3.19 285 462::!:: 55 x 10' 

3.82 3.11 301 330 x leJ6 
4.49 4.07 3010 2965 

4+ 4.69 4.32 757 1287 x 10" 
4.77 4.42 210 230 x 10' 

1+ 7.50 568 5.9 
i+ 8.30 7.99 11.00 10.0 

7.51 I 1.00 x l()l 

8 Particle-Hole Calculations in a Self·Consistent ....,11&.::1'.&0 

AI we bve seen. RPA calculations phenomenological cJeJUlltv.cJ.cPC!lnGenI 

are able to mlny of the Cltcited. slates in spherical closed 
nuclei. In Chapter S we learned that ground Illite propertia are reproduced 
well in HF theory with Skynne forces, and in Section 8.5 we constructed a methoa 

derivina RPA theory from the den.s.ity dependent HF theory: we have 
use the second derivl.tive or the total with respect to the density •• 
plt·force [u:e Eq. (8.U4)}. In 1M bu~t few years this concept has been 
NVera1 groups [BT 75. LB 76, 76. 11}. 

from an HF ........ ,.u.A« 
raulling HF single-particle ...... .. 

to obtain discrete l,UnJiUe·!Jlln 

or ute the HF wave function and calculate in coordinate space. 
we diK:rele equation. in particular 

bound states and dilCretized resonances. In the other cue, the continuum i. 
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1.13. The photo cross section of the giant dipole resonance in 1'0 and 
Pb calculated with • continuum RPA The d.ubcd !.iDeS correspond 

to experimental values. (From (LG 76b].) 
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reIOna.nc.et. 

8.5.4) not 
higher conriguralions rucb as 2p - or 
the R PA approa.ch. In Fig. 8.13, we nll'H~'''' 

theoretical curve for the giant reIOnl,nce i. into 
coupling to higher configurations wIsh this out. 

8..7 Rules 

We already seen that calculation of the total cn:""IIK~u 
the dipole resonaDce (8.J.J:h the sum 
important tool in theory of excitations. In II'lI"aIl,ftW ..... 4""'''". 

allow a calculation of global properties in a simple way and are 
useful testing different approximation schemes. Sum rules 
detailed information than the RPA solutions, but they are 
calculate and easier to interpret [No 78, BlM 79]. More particularly. 
allow connections to be made to the older macrosc.opic or 
models. 

8.7.1 wm Rules as Energy Weighted Moments of 
Strength Functions 

In general t a sum rule is related a Hermitian single-particle opera 
F - + a, and given by 

Sk == ( - EO)kl<"IFIO)11
. ,. 

It gives the ktb moment of the distribution of the excitation s 
the one-body operator I .. )s represent the complete 

of eigenstates of the exact Hamiltonian H with the energies 
completeness relation, we find 

We wiU see that in some cases expression caD be calculated in a 
simple way. 

FoUowing Lane et a1. [MBF 76) BML 76, BlM 79}. we can define a 



Sum 

(8.1 

strength dis.tribution (8.150). If it is sharply peaked 
_""!'II"III'V then aU coincide. The degree to which they are 

the width of the distribution. 
inequality for the moments +2 

_ SI 
1< <£I<E s< < ... 

o 

the mean square fluctuation about the mean energy [BlM 19] 

pl= - £2 <: *(£~ - £D. (8.153) 

we shall see, we can evaluate the moments l' S I' and S3 rather 
,,,Ilera . Therefore, in way we can gain information about tbe ... n""l"O"U 

a re.l5Onance and 

8.7.2 The Sf'Sum Rule and the RPA Approach 

important sum the energy weighted sum rule SI' It can be 
written as a double commutator [see Eq. (8.42») 

[ [H, F]]IO). (8.154) 

holds for a set of exact eigenstates Iv) of We 
only approximative states and approximative energies E,.. It is a 
the validity of any approximation to see whether it fulfills the sum 

Thoulcss [TIt 61 a] showed that the sum rule (8.154) satisfied if the 
left-hand side is evaluated with RPA wave functions and energies and the 
right-hand side is calculated using the HF ground state wave function. In 
the following we give a proor of this theorem for the case of Hermitian 

operators F [La 75]. Using notation of Eq. (8.72), we 
find for density independent forces with (8.76) (8.19) 

(HFI[ F, [ ]JIHF)-(P- F)( A !.)( _~.) 
.. f+ !x'n'!Jt~ + g. 

expression (8.72) for the strengths (OIFI") yields 

[F, [H, G ] = ~ ftSl,( (01 (O/G .. 

(8.155) 

FlO». 

(8.156) 



It is easy to OIiII"'n_lw#' UUI (OUd _:. r~g- ~(Mlr)A 

In the case of density deptndeftl forces, bowever. 
defined by Eq. (8.124), and not ann:lv 

In fact., in general we set additional ''''' .......... 
Neverthe~ it can be shown that the theorem 
operators F(r) and interactions whose density..(lependent paI1I do 
mute with F [80 71], as is the case for the usual Skyrme fon:e (4. 

From Eq. (8.i55) we also recognize immediately that the sum rule 
violated in the TDA approach, which is obtained by simply __ ...... 
and conversely the TDA approximation conserves the sU!ll rule So
is violated by the RP A. The pure shen model without residual inler 
fulfills both sum rules So and S I . 

The tum rule S I is of special importance because it can be reduced 
ex,pectation value of a one-body operator which can be evaluated 
easily, as win be seen in the following section. 

8.7.3 Evaluation of the Sum Rules Sp S -It and Sl 

To evaluate the energy weipted sum rule, we shall restrict ourselves 
to an isoscalar single-particle operator F- LI f(r) and neglect mc.mc:mUIII 
dependent parts in the residual interaction.· 

In this case we have only a contribution coming from the kinetic eRaD. 
thus 

s. ~ ~ <ot[F, [H. F] 

However, the dipole cue is extremely simple, because F is" linear and 
no longer depends on r (8.39). This part of the calculation is I"' .. • .... • .. 

model independent. In aU other cases (V rr is still a single-particle 
tor wbich should not be too sensitive to correlations in the ground 
10). It can therefore be easily calculated within a model. 

For surface vibrations we have already seen that F-- yAY.\O" Using 
gradient formula [Ed 57], we may derivet 

~ 2,,2 (2A + l)J\. 
Sl(r"~"AO)- 2m A (OI(VrAyAO) 10)= 2m 417 ·A·(rlA

-
z). (8.1 

... We an 100.". [ilL 76J !hat Eq. (8.l58) hold. for tbe Skyrme fOftt, too. because of 
S-cbuAc.ter 01 the pl~tetml. Thil is, however. DO JOllier true for isovec:l.Ot" operators suclIl;I 
lb. dipole operator (8.39). We also pin contributions (0 the dipole lum rule from e~CJIlAIIi" 
f~ lUI dlKuaed in Section 8,3.3 (tee abo [Ki 78D. 

fpC/(' I nucleut with .. OOIW.ant deillity and a &harp lwface we oblAin: 

3 <"L>"" "L"+JRI.. 



radius (".2). 
mOOClr-ltn which F ex ,1. 

polarizability a is 
inverse energy .. weighted sum rule I ; fact can be 

.............. __ it RP A approximation using the solution of a 
l"'''':I}&WVJ (H in the limit small (see a1so 

(8.160) 

To calculate the sum rule S3' we can use the identity [La 75, MBF 76~ 
LOL 76]: 

S, - <OIF(H - £o)'FIO) - - ~ (~2) '<01 [ G, [H, GJ)IO) (8.161) 

_(2h2/ m)G-[H, which is a one-Dar 

potentiaJ energy with F. In this we 
energy-weighted sum rule for the operator G. it can 
second derivative 

... 0 

or the energy 

opera tor if the 
can calculate the 

obtained as the 

(8.162) 

(8.163) 

This equation is also if we replace the exact ground state 10) on the 
by the IHF) state and S3 by sfPA on left·hand side. 

In the [oLlowing, we shall restrict ourselves multipole vibra-
tions (f- r)..Y1t.~ and breathing modes U- rio Similar calculations have 
also been made for the modes [BL 76]. 

F or the opera tor G, we find 

I ).. 3 a 
G- 2'(Vr-Y,,-o)'V (i\+0) and G- +r ar (A-O), (8.164) 

where we have used ~,.AYAO-O. We see that 
operation. 

In the case i\ - 0 and i\ - we get 

oqoG I-I' 

in fact, 8. scaling 

(8.165) 

(i\ -0), 
e ~(XI' Yil - { 

t3/11fA cJI.(x .t 1f Y t 1f 

~(x,e-1J', Yie - Tf'. (i\=2), 

with 1}'-1'f'(:5/16w)I/2. The factor el/1'l} in the case i\-O shows the differ
ence between the breathing modes, which cbange tbe density over the 



whole volume, and the ~~ 
nuclear surface. It is euy to ca.lculate the contributiODl 
different parts of simple forces: 

Kinetic energy T 

Voo:. 8{r - 1"') 

V,. exp8(r-r') 

1/3(2e

and to derive the contributions to the sum 
"~I!-"''IU the case of quadrupole vibrations (h .. 

I (2112)2 S 
5,(A-2)- 2 -;;;- 16.".8(T). 

< 
(V,.) 

Toplber with (8.159), we find for the energy (8.152) 

--( ~: r -(;; A (. 

In the harmonic model. the expectation value or equal 
potential energy .. t . If we furthermore assume that aU 
strength is concentrated in a small energy interva1. all the should 
roughly equaJ~ and we then find ror the energy of the giant quad .............. 
resonance (T-O) with 1two~4IA -Ill [MeV].. 

E(2+)-.ff1two~S8'A -Ill [MeV] 

a formula which is in agreement with experiment [Eq. 
which has also been derived in a similar model by Mottelson an 
[BM 7S t Su 73]. It can extended 10 higher surface 
and gives 

(A:> 2). 

~~.lf"'JI!I, (Za 73, Za 14a] shown that b~eathing mode 
described by zero range which are unable to give saturation. 
hu to include finite terms. or at least the pI-terms, in the 
force. With reasonable values for the force constants. we get 

We that the energy of all the surface vibrations is exA - , which 
arecmient with the experiment. From the simple hydrodyna mica I 

~::::Ul:1JeQ in Section 1.4,. we find E).." (CAl BJ I12 a:. A -1/2, The reBJWD 

discrepancy will be discussed in Section 13.3. 



a 
therefore start with the operator F and define 

F(O) - L /",.,;a: OJ + /1m0 ;+ am 

F( I) _ i[ H, £(0)], 

- i[ H, £(1)]' 

(8.170) 

.,ben: the prime means only ph and lip part of corresponding 
,",'elL!."''' F(Jt). The F(t1) is therefore a single-particle operator vanish-

pp and hh matrix 
Using the definitions (S.72) we gel for the ph and hp matrix elements 

j(I!J+t) _ (8.171) 

With this relation we define the operators FCIf) for negative 
values of n. From (S.lS7) we find that 

SZll-l( F) - i 1(0) + (c:JL~)l.It-l~rO) elf'''') II) 

- io:(F(II»- S_I(F'''» (8.172) 

'esDoncll to polarizability with respect to the operator . In 
the operator F(t1) a simple form, we can corresponding 

rules very easily. In the Jut section we bad of sucb cases. 

8.7.5 Calculation of Transition Currents and 

A generalization of the usual sum rule (8. I SO) for the nuclear density (DJ) 
been derived by Kao and Fallieros [KF 70, No 71, 73]: 

Sp(r)- ~ (E,- Eo)(otp(r)lp)(pIFto). (S.173) , 
we assume that a Local, spin-independent operator of the form 
LI/(rt), it can be evaluated for velocity-independent , .... 1' .... _ 

1 hl 
Sp(r)- (OI[p(r). [H.F]]IO)- - 2m V(p(O)(r)V/(r». (8.174) 

where p(O)(r) the density of the time reversal ground state. 



IJ'DIOlllC Vibrations 

o and 

In case, we get 

the (olal sum rule S p(r) 

f(r)-r 2 forA-O. 

d (0) 
dr P , 

d +r-p{O) 
dr ' 

;\-0. 

We have seen that with these operators the giant 
We then get transition 

hydrodynamic models, which 
WOlf ........... in Section 133. In of A> O. we get the Bo/tr-

molkl {Do 52, Ta 56a] of an incompressible irrotational nuid, and 
case ;\ -0 we get the Wernu- Uberall mbdel fWU 66} of a _ ....... 
irrotational nuid. 

Figure 8.14 shows transition densities for the case ;\ - 0 and A -:1 
nucleus Mpb. The simple (8.175) (dotted curves) are 

agreement Vlitb the transition densities obtained from a con ' 
calculation with the Skyrme I force (fuU lines). ThlS shows that 
resonances (A >0) to a Jarge correspond to the surface 

tions of a liquid drop discussed in Chapter 1. 
Suzuki and Rowe [SR 761 sa 77] a similar sum 

density 

SJ(r) = L <O~(r)lp)(pIFIO) 
p 

__ 1_. p(O)(r)V fer). 
2ml 

In the case. where one Slate exhausts the entire sum. we 
calculate the transition current 

the current which is the collective motion in 
sense as the density (8.30) corresponds to the 

in tbe c~Uective motion 13.3). We then can 
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TRANSITION 
DENSlTYIXA 2 t 

-OJ 

GIANT L z 2 

... _- 8.14. Isos;ca,.lar monopoJe Ilnd quadrupole 
[BT 7S).) 

(S.I79) 

V X,,(r) =0 (8.180) 

local one-body opeTators F. Furthermore. in the case of 
rAy,..o, we gel incompressibility (1.25) viz: 

1I .. IJ.u;'i:tiL."". however, that the simple classical picture of a local 
which exhausts the entire sum rule, is on.ly an approxi-

mation. Usually a of the total strength is distributed also over some 
lective (see Fig. 8.12). 

In genera.1, the excited state can be written in the form-

r= 0",+ with 01'10) = 0, 

are exact 1St 
up with tbe RPA aDOrotK:n. 



we obtain for the wave packet (8.27) the 
(E<I): 

1+('»-10) eO/IO)e

_ e4'A(/) 10) 

with the Hermitian operator 

A (I)- - i( 0,. 

We can also express Ii'(t» by the generalized !., 
momentum ~ '" as defined in (8.95), with (' - (2/ M .. O .. J~)1/1: 

lir( I» - D",t +"'" cos n"/) J 10). 

ground state 

TO· + - 0 + 
'" '" 

+ is time even, 

TIO)-

of time-even 
..... , .. _ physically different 

0",/) is time odd and induces curren 

COS{! ... I) is time even. It 
the operation exp( - ie' 
Both effects oscillate with 

0",. 
expecta tion value of any 

1)1 Tlit( - (01 

... 
for the operator T 

for the transition density 

p"'(r)- - i 

" 

in the state lit(t» is 

D",' 

0,,1 . 
" the density p(r) or the current j(r), 

current: 

J'(r)- ~M':, <01 [i(r). !l!,jIO). 

respectively. The state I.,) completely determined by the -1"1' .. .1" ... ·'1"111 

. The corresponding "momentum" can be calculated from Eq. (8 
As an example. we obtain for a velocity independent single-particle .n1l'V~ 
tor 

i 

a local two-body interaction corresponding momentum 

1M" - '2 0\, V!(ri ) + h.c.). 

S«1oon 12.3.1. 



- - TIMory IRing .. Spethl 
• • . Bohr - TO.Qie -Mode. 

IYal •• 
Sta.nford J 

fIpre 8.15.. Theoretical and experimental radial transition density of the lowest 
3 - state or lO8Pb. full lines indicate the experimental errors [RFM 741 the _.» ...... line {TW 73} is based on RPA calculations with the Migdal force, and the 
dotted Hne corresJxmds to the model. (From [SI 79].) 

The constant M.. is determined from the commutation relation (8.96). 
Again the velocity field irrotational. 

In general, we do not know ~,. a priori and obtain this operator only 
after the solution of the RPA equation. It then turns out that the low-lying 
collective have large nonlocal components in ~ [Si 79}. cannot 
be represented by the simple hydrodynamical models above. 

An example is the low-]ying collective 3 - state in Figure 8. J 5 
experimental and theoretical transition densities 

mental values deviate rather from tbe 
Bohr-Tassie model. The fully ca1culation obtained by the 
solution the RPA equation with a density dependent force is in much 
better agreemenL Again for the high Iyi.ng 3 - state the agreement with the 

model is good [St 79]. ' 

&8 Pardde-Particle RPA 

8.8.1 The Formalism 

As in the Tamm-Dancoff C8Se9 where we distinguisbed between ph and pp 
TDA (Sec. 8.2.3)~ we have a pp RPA corresponding to the ph RPA. The pp 
TDA and the pp RPA give us stales in the A 2 systems. Dr they are 
collective, they are called pairing vibraliolU 8.3.5). Since 
formal features of the pp RPA will be almost identical to those in the ph 
RPA, we will be quite brief in this section. 



J.4O Harm,Qnic Vibrations 

Corresponding to the ph-ansatz (8.65). in the pp caM for 
of the A + 2 system we have 

\A +2, ~ ytiD/,at ) 
1<) 

- R/IA,O). 

The ground state (belonging to the A ~system) defined by 

RrIA. 0) - 0 

and we get in the same approximation as in Eq. (8.69): 

X;;n-(A,OIQ"Q""IA+~'f); Yij- ,Olaj Qj IA+2.'f). 

Proceeding as in the ph case (Sec. 8.4.1), and using the equation of 
for ~ .... we obtal.n" [FIS 64, Sch 64b~ MLE 67, Ro 68a + b, RP 69] 

( - AD,. + Ei + S) r; - - 2: vfIM'If,X;'n' + L vlJl'f r;r 
m'<n' ,-'<l 

hSl" - ETA +2_ Et is the excitation energy of the A + 2 nucleus related to 
ground state of the A -system. 

We get identical equations for the A - 2 particle system 

( - hn,. + <; + t.t)Xy~ - 2: VIJi'IX,~ - ~ vljW'm' Y;m" 
,. <j' n' < m' (8.184) 

(hO"-<,.-(,,.)Y;"-- L VNftqX/j+ ~ vNIM'm'YIt\H" 
j' <f III' < ",' 

We can therefore combine Eqs. (8.183) and (8.184) into one matrix 
equalion similar to that in the ph case: 

with 

A~'It' - «5",,..,6,,,,.( (1ft + (,,) + ... -~ ---"-' 
= - ~jl·6Jf( fr +~) + 

- - "''-0' 

(8.186) 

It The EqI. (B. 183) CIll also be derived (-rom the tlme-depcndent HF Eq. (Itt 16) ....... , ...... "UA2.> 

to include :piiW' oondations. [Jl application to nuclear physics this !hoary has been set by 
H. Schmidt (Sc:b 64e.+b). 
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( Rp>' 

(Rh).. )lj- ~ 
(8.187) 

that, in general. the hermitian matrices A and C have diHerent 
aunetw()ns and tbat B is a rectangular matrix. 

Equation {S.IS7} thus simultaneously yields the eigenstates of the A :2 
which are different from the ph case in which we had only 

_iii ....... ' .... "" belonging to the same particle number. This, however, does not 
mean that the particle number violated in pp RPA as it is in the BCS 
moore! (Chap. 6). The ansatz (8.181) conserves partic1e number. (n practice, 
we recognize the solutions of Eq. (8.1 which belong to the pp system 

to their wave functions: They have large pp components X_ 
sman hh components Yy, and energies in the of the pp-energies 
c,.. cases where the pp a.nd the hh components are of the same order 

we are, as in the ph.RPA, close to a phase transition, and 
RPA approximation is not justified in any case. 

Most of the other RPA features remain the same as in the ph-case. We 
list here. without proof. the normalization conditions: 

~ X'I'"'X<'" ~ Y""y.or' ~ L.J _ 1'1'111 -..t:.J ij il - u,..,.. .• 
fI'I<:n i 

(8.188) 

and the closure relation (r<s, r <$') 

(8.189) 

The pp-RPA has been applied with success for closed shell + 2·nucleons 
nuclei [Va 71, BV 71. KS 76}. It turns out, however, that in most cases a 
simple pp TDA calculation gives simiJar results. The If 2 states are 
usuaUy much less coHe(;tive than the 1ow.lying ph states. Therefore. the 
violation of the Pauli principle in the RPA approximation seems to be 1ess 
justified than in the ph case. Therefore. the TDA approach is used in most 
of the If 2 nuc1ei. 

8.8.2 Ground State Correlations Induced by Pairing 
Vibrations 

We have already seen tbat the ground state of the A-system is defined as 
the vacuum with respect to the boson operator 0, (8.91)~ and in Eq. (8.101) 
we derived an explicit expression for it By analogy. we now require that 

R.,.IRPA>- R~IRPA)=O. (8.190) 
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This yields an exponential factor of the form 

with 

IRPA) NIPP( ~ Z"wjA:"A; )IHP), 
JIIIII <. II, i <.j 

A + - +0 + . A ... - 0 a 
MIl °lft'" iJ i ) 

and 

If pp well as ph correlations are important1 the U''I'''It'\;lilftft 

simultaneously the vacuum of the ph and pp ~tOD'. 
'-C.,iIUU for the ground state baving two eXt!on.:n 

factors commute in the quasi-bown approximation. 
Expanding Eq. (8.191). we see that the correlated gound Itlte ..,.,. ... ". 

the IHF) state, contributions with two boson", four ~...,.nll! 
on. The particle number is conserved, because the number of pp DOeona 

___ w", equal to the number of the lin bosons. 

To " in more detail. we restrict nnl~IVM 
pure force (see Eq. (4.140)] and Ii spherical dOllIed shell n1JM:Ia 
Since the pure pairing force iI_perable in the pp direction, we can 

ICD~IDC mOOCI. la anaJOIY to Eq. (8.13S)~ we derive 
Eq. (8.184) the foHowing ditpetliOD relation. 

1. _ ~ 2J,. + 1 + ~ 2ji + I • 
G ,. 2(II-Ml I 2f, +hO 

where 1'1 and I run over the particle aud hole respectively. and 2) + 
is the number of levels in each of these shells. The single-particle 
are counted from the Fenni level, that is, '" > 0, ~ < O. The ground state 
the form 

IRPA) .... No· exp( ~ Z",A,t A/ )IHF) - No ~ ~ (~ZmAII+ A/ )'IHP). 
m ..... 0 II. IV 

(8. 

where A'" - 2:",>00;0:", is a 0+ pair in the corresponding shell. and 
matrix Z is given by the equations 

i,,+ 1/2 I L Z . - for aU T values. 
I'f ", itO,. - 2(" ItOt' + 2~ 

For an increasing force constant. the number of virtual borons oecom •• 
larger and we come to a phase transition as 

(8.194) ( 
~ 2jl'f + I ~ 2j, + I ) - I 

G ~-2 ~ +~ . 
If t 

the excitation energy U goes to zero, and the RPA approach breaks down 
[Ho 61, BRS 681. 

It is instructive to write down the Bes ground state in the form 

IBCS)- N~exp L -A,,,,,, + L -A/ IHF). ( V" 14.) 
I'f ,14" i )'i 

(8.195) 



.. N' f i (L 0I'lU; 

p-o p! m U" "', 

."_"""_. we know that ror smail values of the 
_ ... ,"" .... (6.60) 

2 
G 

j 2 

2j,+ I 

IS 

(8.196) 

constant G, 

(8.197) 

(A-O). We find the same critical value as in (8.J94). 
we use the correlated RPA ground slate, and for Gc we use 

etale. Both approximations poor in the vicinity of . A 
avoid &hill problem would be a variation with to the 

OCCUp,llUOG probabilities 1'2 after projecting the particle (see Chap. 

Quasi-particle RP A 

from the c:l0Md shells, pair correlations oec:omie 
of these correlations on the smJrUC'aPII.n 

neglected any more. We have already seen 6 and 1 that 
of IHF), the BCS or HFB ground state is appropriate in 

it is also a determinental wave function, we can """'"1 •• 1.1 

and RPA theory in complete analogy to the [Da 6Oa]. It 
thereby turn out that ph and pp RP A (fDA) may encapsulated in 

one equation (see, fOT instance. {So 71 D. 
derive these equations, we have to start with the quui·partic1e 

representation (E.l8) 

(8.198) 

[mila,a of (8.65), we now use the ansa tz 

(8.199) 

to the derivation of Section 8.4.1 the ___ ."" ......... 
equation whose matrix form identical (8.70). Only the 

run through aU pairs (k < k') of the In 
means ph indices (mi) and pp. and Jrh 

"""' ............ ,.... have been derived by BoIOliubov within !he Gn:en'. funelioo 



matrices A and B are now (It < ,1< I,· 
Akk'll'-<HFBI[ ~a"" [H.a/ai~] ]lHFB) 

-(EA;+ E",.)8kI8k,l' + Hk~U" 

Bkk'lJ' - - (HFBI [a,t.ak • [ H. ora, ]]IHFB) -41· 

Together they fonn the stability matrix (7.37) of the HPB 
we have used the representation of Eq. (E.18), In tht 
the case of a Nilsson + DeS ca1clllation. this means tbe 
Sec. 7.4) we find, for a time reversal invariant IH ,round stale 
real matrix elements, 

i (~;·Eu~ - ~;~i; ) 
- .1(. + ++ - -) + f)klk'l' 2 'lJklc'TlN' . YJ.u·Tllr 

- Vtl'f'Ti("1k't,'1; - '1,tk'1J;); 

where 

In the HF·lim.i1 we get 

~-O; -I; -1 +- 1 ... .... 0 _ + I • 'r'I -. .. • on ~ _ 'r'I - - • 
• 'r_ , '111M 'Il} • 

which means that the set or qulUi-particie RPA equaliofU is decomposed. 
thi~ case. into the set of ph RPA equations (8.70), the set of pp 
equations (8.186), and a set of hh RPA equations [the comp]ex 
of (8. J 86»). 

Furthermore, we see that the matrices A and B contain two types 
matrix elements: pp-matrix elements f)u:rr multiplied by the factor! 
which are dose to one for pp or hit pain; and the ph matrix elements 
multiplied by factors 1). which a.re close to one for ph pairs. In 
derivation" both must be calculated with the same density-independent 
interaction. For density dependent interactions, however, we get the 
force [tenns with Tl in Eq. (8.20t)] as the derivative of the self..eonsiltellt 
field r with respect to the density p. The formalism of linear 
theory can also be extended to the HFB case, working with the generalized 
densities ~ [Sq. (7.27)]. In case, we get the pp force [tenns with ~ 

• As we will He in Sec. 9.2..3.1. we QIl derive the quuj...partkle RPA from a perturbt.tlYG 
balloOn exparu.i~ LOO. We (0 be aware, however, that the matrix B obtained in Eq. (9.4) 
dev:i.ate:a from the matrix JJ Eq. (8..200) by Ii factor or 3. This h.u ita origin in the fact Lbal 
hiJhu order tefm.I ill the bollOD expansion are nqlec:ted lsee IWo the di:Ku.ss:ion afla' 
(9.134)]. 



lI'tM"v.l~I'\I"!III of field .6 with n.wpect to pairing 
64, Mi 61, Bi 68, Ka 69, BEL 10]. 

ualII-OInILC&e IlPA equations have been widely used in connection 
.. 1ID't:I~JOI'ra, as the pairing-plus-quadrupole or the surface-
mt4lir1A~twG (ICC 4.4.6 4.4.7). As in the case of the schema tic 

JD(lGCI (Sec. 8.5.1), diagooalization problem is then reduced to Ii root 
relatively functions. This method provides a microscopic 

description of a large number of low-lying collective states~ such as 
in spherical 8upcrconducting nuclei [Ar 63, ABV 63. A V 63, 

ASV 64]. It also has been successfully applied in the deformed rare earth 
actinides nuclei for the deSCription of 11. Y. octupole, and psi_ring 

vibrations [SV 63, Be 63. So 65, FPM 67, MSU 67}. To each of these: states 
DClonJP a rotational band, wbich can be calculated in the framework of the 

&u.J ...... «u,e. model: We si.mply have to solve the RPA equations in a basis of 
rotating quasi-particles provided by a solution of the self-consistent crank

model as discussed in Section 7.7 [Ma 76b. MJ 78, EMR SOb]. Most of 
caJculAtions were concerned with the low-lying coUective states. In 

recent years giant resonances in deformed regions in tbe framework of the 
quasi-particle RPA [KMY -75, ZS 75, MNS 76, ZS 76] were also investi .. 

Calculations with reali3tic dmsity--t.hpendenl forca [ZSP 78} sbow 
qain (as in spherical nucla) that onIy a smaUfraction of the multipole 
awn rule is exhausted by the low-lying coUective statCl. The giant reso
DUtcel are much more collective and to the surface 
OICiUation (for instance. fl or y vibrations). 
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Boson Expansion Methods 

9.1 Introduction 

chapter we studied collective vibrations within 
..... "' ................ , ........ Harmonic oscillations are characterized by an 

spectrum. As shown in Fig. 1.5, the quadrupole ca&e we ...... ""_ • 
.... -.J .... "."' .... 2'" excitation at energy hw, a two-boson triplet 0 +, 2 + t 

twice this energy, a three-boson quintet 0"",2+,3+,4+.6+ at three 
this energy, and so on. Experimental spectra of spberical nuc1ei 

Fig. 9.4) in some regions of the periodic table qualitatively 
this structure. In detail, however., we always find some more or 

deviations from this simple picture, as, for instance, splittilll 
the higher multiplets and a shift ill the position of the energy centroid. 

Such anha.rmonicities are caused by two effet:t8: 

fermion pairs'" 

2: C.-a';a, 
"." 

are not exact bosons. Applying this operator twice, in the OeSCl'1lPlltoB 

of a twoaphonon statet we do not obtain two uncoupled 

IiBIpbc:lty, in lhiI chapter we iovestipte mainly DO&OJU 

pfiIIlCIplII. we could I.bo use RPA boIons of the 
IS. 70], beuWIC m the melbod 

account anyway. 
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DnllC1:Dle exdudes all configurations, where the 
""""'."'V'JAi'W by more than one ( or bole). We call 

.H'~!I ICt"1Im1Q111C efftICl3 because they be connected with the 
foUowina sections. 

exact many-body Hamiltonian contains not only second-order 
the bosons, which are diagonalized in the TDA approach 

(or the RPA method)t but also higher-order terms. Such are 
in the harmonic approximation and provide a coupling 

between the different collective modes and also a non-
collective such as rather pure two-quasi-partic!e We 
ca.ll effects dynamic effects, because they are by the 
properties of the Hamiltonian. 

a double magic nucleus with a 
add more more partjcles~ we 

of the 
we 

rotational 

come into a transitional region where 
is lost and a rotational struclure deveJops. 

up in the region of weB-deformed nuclei with pure 

We are able to anharmonicities and, in principle, also the 
to deformed nuclei by the methods dis.cussed in this chapter, 

idea of methods is to represent the fermion Hamiltonian by 
pure boson B/ and to diaionalize it in a 
Mathematically, to a mapping of the Focle SPilce 
fermion of boson states. This will be 

Section 9.2. 
The advantage of such a boson representation is that 

modes-for the quadrupole mode-GaD be by 
rather simple wave function!. namely one-boson states B,,+IO). For such 
states the quadratic approximation of the Hamiltonian is already 
good. as we saw the We can therefore hope that higher 
terms the of the Hamiltonian drop off rapidly. 
Section 9.2 we shall see that the case for coUective modes. It 
is often into account only fourth- or sixth-order terms. 

On the other ph operators 0:0: which are needed for the 
description of have a complicated structure in the 
boson space. of aU boson expansions is therefore to restrict 

'l"Jllrll';liVII"!lI to a few collective which span a collective subspace of the 
full Hilbert space, to diagonaliz.e the Hamiltonian within this sub-
space. If there a.re of the exact Ham.iltonian in this subspace, 
that is, if we can neglect their coupling to nonaoeollective states in the 
Hilbert spacc, we a rather simple description of these 

This not fulfilled for aU states or for aU nuclei. In 
many problems explicitly take iDto account the coupling to 
non-collective states. This is in particular always the 
case for odd 9.3 we will therefore treat techniques that 



deal with the of collective modes Irtll~""""~ 
to single·partic1e One of the simplest 1IKli<1e.1a 

vibration particle coupling (VPC) model or Bohr and M(J,ttellOn. 

9.2 Boson KellJre!i\el)lmDOOS In I!.;Vt.,-E 

9.2.1 Boson Representations of 

many-fermion systems. 
with the algebra of the momentum .nrw.t"III'~ 

J,t which obey the commutation relations of the 0' .. ...,.,_ 

r.r.I!'1",.41:nn .............. Hilbert space is spanned by eigenvectors 11M 
Hilbert space is now mapped onto a boSOM, 

10) and boson B +, which fulfill 
relations 

BIO)-O. 

are ways to carry out mapping. that is, to represent 
by the boson operators BJ ... 

(I) TIle 
to the subspace characterized by the momentum quantum 
I. we can map the operators J::I: and J, in the (ollowing way. 

J+ , 

J _ ~(J ->Il-(J +>; - . B, 

)8=-1+8+B. 
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roots are formal abbreviations for the corresponding Taylor 
8iIIr1M. It is easy to show that the operators (J ~)B and (J,)s in the boson 

__ I.~~ momentum algebra (9.2). 
The boson lpace ia spanned by the n-boson states 

In)- _1_. (B +)"10) 
[,J 

for n -0, 1,2, .... (9.5) 

cont.rast to the subspace with angular momentum I. which has -the 
1/+ I, the boson space may have infinite dimension (n~oo). 

other hand, because B + B counts the number of bosons (n), the 
roots in Eq. (9.4) are not defined in the whole boson space. Thus we 

e the coDdinoD 

n <2/. (9.6) 

subspace which. at maximum, contains 21 boson! is called the 
subspace of the infinitely dimensional boson space. It is spanned 

the 21 + I states 

10), B + 10), ...• (B ... )2110) (9.7) 

has therdore the same dimension as the angular momentum space. 
The mapping (9.4) provides a One-to-one correspondence between the 
angular momentum space characterized by I and the physical subspace. 

it conserves the commutation relations, it is a matter of convenience 
which space we want to carry out actual cakulations. All physically 

important properties are not influenced by this mapping. 
This is the basic idea of all boson representations, and we already see 

the two basic ingredients that have to be fulfilled for this concept: 

(0 We have to be sure that tbe algebraic rules for calculations, that is, 
the underlying algebra, are conserved by the mapping 

(ii) One is only allowed to work in the pbysical subspace, i.e., in our 
example all the vectors have to belong to the eigenspace of the 
operator J2 with the eigenvalue 1'(/+ 1). In general one can express 
this fact in the following way: One can only work with vectors, 
which are eigenstates to the Casimir operators of the underlying 
symmetry group [Ya 74] 

As an example, we express the eigenvectors of the angular momentum 
Ita tes by boson 5ta tes: 

11M (9.8) 

In practical applications we have to use the Taylor expansion of Eq. (9.4). 
It converges well, if the number of bosons is small compared to 21. It is a 
disadvantage of this type of boson representation that, in principlet an 
infinite number of terms is needed to fulfill the co.mmutator a]gebra (9.2). 
There are, however, other ways to avoid this difficulty: 
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(0) 11ae 0.,.. Representl.dou [Dy 56}. Dyton the 

J ~(J ) - hj B +(1- _I B ) + ... 8 V£. I. 21 ' 

J _ ~(J -)8 .(fi B. 

This representation is very simple. but it violates Hermiticity 
(J +); is diHerent. from (J -)BI and leads to a non-Hermitian 
However, as we see in the following it cenain 
tages and can be in the many-body problem. 

(UJ) 1be Schwinger RepreseDtlltiOD [Scb 65]. SchwingCf introduced a 
representation of the angular momentum operatorl whicht u weB as 
finite, is alw Hermitian~ He used two bosons A and B. 

[A,A+J-l, [B,B+]-1. [A,B]- A,B+ 

which act in a of states 

In,412B)- (A +)"A(B +}I'I",O, 0). 
~nA!nsf 

The Schwinger representation is given by 

}+~(J+)8 B+A. 

} -)8 (}+);-A+B, 

J,~(JZ)8 === t(B + B - A + A). 

The eigenstates of the angular momentum operators can be 

1M) == [(1- M )!(1 + M)!) - tll(B +)I+M (A +)1 .6110.0). 

The boson number operator 

N-B +B+A +A -21 

is proportiona] to I. Rotational invariant Hamiltonians must 
conserve the number. This is different in the Holstein-Io"n" TUUI 

representation. which yields boson number violating tenns. On the 
band, it can be shown that there is a nearly unitary 
between both representations (BM 78]. 

It that these representations of the angular 
can be UJed in models p in which the Hamiltonian is expressed 

spin or quaa,i-spin operators, like the model Sec. 5.4) or 
seniority (see Soc. 6.2). In ca.ses, we obtain Ii 

boIon representation of the Hamiltonian. Such models have therefore 
widely used to study the properties of boson representations [PKD 68, 
68b, KI 691 and we will come back to some of tbem in the 
sections. 
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of the ulular momentum operators have 
in the 1'0101' model (see Sec. L5). Marshalek. [Ma 7Sb] 

' .......... 'Ul!"'lI''ll'I a generalization of Eq. (9.4) with three bawns corresponding to 
of freedom Ulua11y detcribed by the Euler angles. 

amamura et [YSI 78, IY 78] Uled an extenslon of the Schwinger 
lI)I'Cseex:atatlon with four bosoM. 

of larger angular momenta, 
a classica1 rotation around a fixed axis. In a 

bOElOU picture, d~viatioDs from this rotation may be described as small 
osciBatioDS of the rotational axis, so-caned wobbling [8M 75. Ma 
19]. 

9 .. 2.2 Concepts for Boson Expansions 

the last section we discussed several examples of boson representations 
of the angular momentum operators. These methods can be generalized to 

case of a many·fermion system. We shall first restrict ourselves to 
with even particle number, systems with odd particle number will 

be described in Section 9.3. 
As in the angular momentum case, there: are many types of boson 

representations. Some of them are equivalent in certain limits. Before we 
go into the details. we want to discuss a few basic concepts which so rar 
have been used in the theory of boson representations. 

AU these methods start with a many.fermion Hilbert space which 
contains ve<:tors and operators. In second quantazation the space is Com
pletely specified by the vacuum 10) and a set of fermion ope-rators ale' ~+ . 
In the following we always work in the qua&i-partide pic~ureJ that is, the 
operators are the Bogoliuoov quasi-particle operators in the sense of 
Chapter 7; the HF-quasi-partides are just a special case of them. 

Since bowns have integer spin values we prefer to use pairs: of fermion 
operators 

. (9.15) 

In fact, we can describe all wave functions and operators in an even 
system by such fermion pairs and the corresponding quasi-particle vacuum 
10),-

This fermion space is now mapped onto a different Hilbert space, a 
space of bosons ~ B 

(9.16) 

.. H we start With a vacuum 10) to an odd system, we are, in principle. alto 
able to describe odd by pair opcmuon (9.15). Singie-fermion opcTll.lOr5 
are only needed for trlUUfer prooesses. For praclicaJ reasons (non-d.e'Jenente vacuum), 
however, we pfda to UH only qwui-particle vacua With even particle number. 
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The boson space is given by a boson vacuum 10) and boson creation 
annihilation operators· B,.. B/ : 

=0. 

As in the angular momentum case (Sec. 9.2.1)~ it generally tums 
the boson space ~B is much larger than the fermion space f(},. 
the mapping (9.16) is only unique in a certain subspace t\,b)'l of the 
space 

There are now two basic concepts to introduce this mapping t explicitly: 
(i) Belyaev and Zelevinskii [BZ 62] propose to map the operators in 

a way that the commutal;on relatiolU are preserved. Usually all ·rnA ........... 1I1 

operators can be constructed from a set of basic operators whose 
tion relations form an algebra. An example is the set (9.15) and 
example is the operators K:t and Ko in the case of the Lipkin model 
5.4). It is then sufficient to map only these basic operators onto openUotI 
in the boson space in such a way that algebra is preserved.t All 
operators can be represented as polynomials of these basic operators 
their boson image is obtained as the same polynomial in the images or 
basic operators. 

To obtain the mapping of the vectors one only has to define a l'Inl'''II"IIIw. 

spondence between the vacuum in the boson space 10) and the 
particle vacuum 10) in the fermion space. AU other states can be found 
successive application of the basic operators. . 

It is evident that the vectors obtained in this way do not span the 
boson space but only the physical subspace. It is an eigenspace to 
Casimir operators of the corresponding commutator algebra. as U-Io:I,,",U'_IiII¥. 

in Section 9.1. In cases where the commutator algebra is fuUiIled 
approximatively, we can have ad.mixtures of unphysical states. To a 
them~ we to ensure at least that one works in eigenspaces of 
Casimir operators [Va 74]. 

(ii) Mammon [MYT 64a and b] proposed to map vectors in the 
spaces ~ F and 4} B and to define the operators in such a way 

·111 !.he following we shill] It]",ay, UIe 

aDd rou.nd braclceta I ) ataUl i.ll !.be 
fenm.ion opm'a&on ud Latin 
letlen Ie. I. .; 
COf1l!IIPOOdi to Il fern\iJtWl 

tWe ea.a UN coordilllt~ melhod to introduce boson 1Mft..-~n 
64, JDF 71, Ho n. HL 9riU siudy !.hill leelmique in more del&il in :secuon 

'In the cue or the Lipkin modC'~ for inltanc:e, thi.s is achieved by one or tb.e .......... .....nrtrUC .. 

discuued in Section 9..2.1. 
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elements are by the mapping. In 
full orthogonal set of basis states In) in the 

(nln')-
" 

onto states I the Fermion "'u ......... . 

Ul .. ~"" .... of an operator OF in the fermion O ..... l'\ .. ·~ is then by 

O,-i>OB - 2: (nlOpl (9.18) 
J'IJII' 

definition obviously cOnJerves the matrix elements. The mapping of 
stales In) to boson states by this prescription, however, is not 

In Section 9.2.6 we will see in some detail how this can be 
out in a unique manner by restricting ourselves to the 

two concepts of mapping operators (B:elyaev-Zelevinskii) or sta/ttJ 
(Mammon) have been applied in different ways. Before we some 

methods (in the roHowing we wish to strea that all Ihe 
we must.. to a greater or extent, use drastic 

which are justified only in special physical cases. For u.o.,. ..... u,_ • 

......... , ........ ""'.""u of Eq. (9.4) in a Taylor series with only a few is 
for large values of I. that is, in a case where J + already 

boson properties. It is therefore important 
fermion operators that are to be mapped in a first a010f()XlIna 

a boson in a proper way. such that rapid convergence 
Mathematically it is possible to start with pure two-quasi.pa,rticle "'FlO'''''''' 

+ 9.2.6). Since they only fulfill the boson 
approximation, the corresponding Drn;on _ .... ~,_ .. ''''._ •• 

I"fl'",VPII"DP rapidly and is useless in practical applications. 
are therefore only meaningful if we start with 

fermion pairs 

(9.19) 

the following we caU collective fermion pair operators." The 
C/ic can be obtained. for instance, from "fDA calcula
or we can use operators of a given type, such as the 

operators 

2, ... +2). (9.20) 



They are easy to handle because of their group th .... ,,_'tw-.. 

have been widely used in the literature. We have to be .w'a'lNll!! 

that whenever we restrict the num"ber of given operatoR ... 
(9.19) no longer form II complete system in the t\III(KlILlUI"'plllUeIe IPlIA 
and we fail to describe certain states not taken into IILC()olIIDL 

it is impouible to approximate a pure 
spanned by pure quadrupole bosons. 

So far we have conIidered the collective low .. lyinl aa::tQlltJo1ll1 

many-fermion system as approximate bosoM IJld to COllltrUCI 
theory based on the corresponding ideal boSOIll. A different 1W1em. 

which we have had to deal with approximate is that 
superfluid system of Cooper pairs studied in Section 6.2. In 
do not start with an ground state as quasi-particle vacuum 
excitation as quasi-bosom. We start with the bare vacuum and COd. 

pairs of particles to the As we shall see Section 9.2.1, 
an approach is closely connected to the idea of the Schwinge'I' I'lrpriUfl,N'Gt., 

Eq. (9.12)]. It tbat symmetrie&. such 
number cOD5«Vation. are guaranteed from the but 

that we have to construct the ground state of 
DatIOn&. _'nU"'n lioli,LUL&"-" be It very complicated task in the &tIIle1'lU 

cue. 
After these general remar4 in the following sections we shall use 

bosons based on collective ph (or two-quasi-partide states) and discuu 
more detail a few methods UAed to describe the many-fermion system ill 
this way. 

9&2.3 The Boson Expansion of Belyaev and Zelevinskii 

We begin our discussion with a quasi-particle representation of the 
fermion space. It is bued on a generalized Slater determinant 
represents the vacuum. of the quasi-particle operators {a I ... a.M}. 
Hamiltonian has the form· (RIS) 

(9.21) 

In an even system it is sufficient to consider only the fermion 
operatont 

• H2fJ does not OCCW", .DOI we IUUII'M that the FOuDd lUte 10) is Ii MlJ'<'OIUUlleftt IOlU" 

of the ywtional principle (1.31). nu. fact ilS, h~. oot caential for the ........ " ... -
d.iJ.cwIIaioDJ,. 

tIn 1he foDowing we will always UIe loWl Latin letters for fermion pair openu.on 
c::apitllJ La.tin letten for boIIloatI. They tlke the pai:r iJ:Idex (I. k) in the ~Ilecl.ive CUI 
the Ored:: ind.ices p., P, ••• in the ooUotlivo cue. 



form an &UCE<UI [which 

[ Dlel' b.,1' ] - 0, 

to the group SO(2M)]: 

[ bklt b.":1' ] - 8u ·8N, 8lk ,ak l' - (k HI), 

[blel , ] - BII,Du ' (k ~ I), 

(9.23 a) 

(9.23 b) 

(9.23c) 

(9.23d) 

principle~ non-collective can be represented by 
orrelponding bosons" and we will show how do this in more detail in 
«lIOn 9.2.6. However. as in the last for aU practica1 
pplications we need We with the coUec-

fermion pair operators 

(9.24) 

""" + (9.25) 

coefficien ts - or we wiH use for 
obey the orthogonality and 

(9.26) 

U; long as we take into account (9.24) represents a unitary 
ransformation in the space of fermi pair operators. In practical applica-
ions we often use only one or a few which means that care bas to 
e taken in using the completeness (9.26). 

We can now use Eq. (9.24) to the commutator algebra for the 
ollective fermion pair operatol'l (9.24) (9.25): 

[bJj • b/] - 6~. - Q,. •• 

(9.27a) 

(9.27b) 

(9.27c) 

(9.27d) 

(9.27e) 

vhere M is the dimension of the single-particle configuration (This 
lctor drops out in the final formulae, so need be DO worry about an 
Minite space.) The coefficients r;.~. If 



which we shall need later on, are defined by 

-
- « .. '" 

r IA II: "'" • • ,.'It' - L..I Cf.,ClJ . 
I 

Figure 9.1 an obvious graphical representation of Eqs. (9.23). 
quantities r are closely related to the fact that the fermion pair 
b,.,. are not rea] bosom. They take into account the Pauli principle by 
care of eKchange corrections. Using Eqs. (9.26), we can prove 
relatioM, 1.1, for example, 

... - -(M-I)r::r .... , 28,w ; 

~ r:;r: (M 2)r~ + 48p 8)..'f ; 
IfJP 

To get Eq. we need the inverse of (9.25), which reads 

and can be verified by a. insertion of Eq. (9.25). We can 
the Hamiltonian (8) in of the collective fermion 

k 
\.I. ~~k' 

~k \.I. ~. 

Ckk, r~'k' k -::::sz= k" 

\.I.V ~=x:=:~. IJVp IJ. \.I.' r ~'IJ' v v' r lJ'v'p' 
v' 

p p 

JIlpft 9.1. of C and r. 
graphs are not graphs in the sense of Appendix F.) 
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blland tip: 

HII = 
JU' 

H'l,l. V:;bp:b". 
lUI (9.32) 

H 31 • +"W'p + h.c., 
fWP 

40. V:b,.+ b,,+ + b,c.~ 
pi 

- - M~ I a~ )Ek • 

12. Hk~Ct/·C~. 

}i. 
2 Hi~Ct'· (r;- M I 6p1'8fN1 ). 

klpq 

V4(). 
IJ''' 

H4() Cll·C"· 
k1pq kI "fNI' 

A special ClSe i.s the Upkjn It'I.tHIel Sec. 5.4), which we shall later on 
in some detail. In foilowing. we awly this model Uliog the qu .. ui·particle 
representation. in which lhe operator • c: (and fJ: -c _ l'1li) correspond to 
creation of a particle the UpPCI sheU (and a bole in the lower In the 
state the lower (D particles) is completely rilled 

(9.34) 

The Hamiltonian commutes with the quasi-spin operator K2 (5.47), As we 
restrict. ourselves to with eigenvalue K - g/2. we only have one 
conective (9.24) 

The number of statcs is M-20 And the quantities r (9.28&.. b) are given by 

2 :r'2) _ + ; r(4) _ + 2 ; '" . 

The alaebra (9.27) now to the angular momentum algebra. 

(9.36) 

(9.37) 

The Hamilton of the model is given by Eq. (5.45). terms of 
the operators b a it takes the form 

H- - ;0+ ~Oa - ~ Q(b+b+ + bb). (9.38) 



From the of Section 9.2.2 we could 
expansion for the a and b; lViI1I""",,,pw 

general cas.e further. 

According to the prescription of Beliacv 
ClUe [BZ 62], we have to start with a set of pure bOIlOn ~-

[Bjilt B/]=8M1l" [ B~.J-O. 
and to expand the boson 
fonowing way.· 

of the optralors b, ...... 

8,,+8/ B). + .... 

The coefficients x(') and y(l} are determined by the condition 
commutation relations (9.21) are satisfied. 

Two methods have been developed in the literature to achieve 
requirement: 

9.2.3.1. The PertuJ'batl,e 8OIOn Expa_Ion. This method is 
"small parameter" and the algebra is fulfilled order by 

method was by Be]yaev and Zelevinskii [BZ 
and later its properties were much investigated by MarshaJek [Ma 71. 
72, Ma 74). In tbese papers the have concentrated U& ... UJl.hiIV .... 

fermion pair operators coupled to good RLU ........ "'. 

parameter" is then 

1 

2j+ I 

where j is an averaged single-particle momentum of the 
the vicinity of the fermi surface. In fact. parameter is not very 
and the method works much better if one treats collective fermion 
in Eq. (9.24). As we shall see, the "small parameter" is in this 
quantity of Eq. (9.28a). If the which one uses for tbe 

are really collective. that if there are many small values 
C!J, the vaJue of r<2) becomes small. An example occurs 

in the Lipkin model [see Eq. (9.37)], where we have r(2} f-ljg. In _ill_, the higher vertices r(l), r(4) of Eq. (9.28b) are of the order (1. 

The commutator (9.27) is now fulfilled in two steps. First, 
can show by a straightforward application of the relations (9.29) or 
that the subalgebra. (9.21e) can already be satisifed with a finite 

not unique. but it to a.uu.me that 
bill· iDcrCilUleS lhe or QOIOfti by DOC 

nftlI''I'IUIY Q,., docs Dot lhe boson OUR'Del" 
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(9.4Gb): 

(9.42) 

- r:t and all other vanish. In the next we 
Eq. (9.27b) at each r. The zero'th order 

first order is fulfiUed - - ! r:, and so on. a 
" ........ , .......... ., calculation. which we not want to present here, because 

II n:sullt<.:an be obtained in a much IilUTinu"'r way by the methods 
:sec;t1(l,n 9.2.6, we end up with the expansion 

! L r;:B/ Bp+ B" + J~ r;:'~~BI'+ Bp: B"IBp: B(l2 + ''', 
pq. ~PI~I 

P'lfJa 

(9.43) 

the form (9.4Oa) with 

x(lJII+ I) "",. _ ! ( J /2 ') . rFA.PIA.-IPt'·, 
fU'PI#J1PJ"l1" "AtG" 2 11 jIItIlfll.CfA~I"·· 

(9.44) 

can also verify that the expression obeys relations (9.27c and d) in 
The boson expansion obtained in this way is not in 

with respect to the boson vacuum. 
In deriving these at many places we use tbe completeness 

(9.26) for the coefficients Cfr and similar equations of the type 
(9.30). means that) in principle, we have to include all indices J.L with 

solutions of the TDA equation (8. i 0). Among them there 
non-coHective bosons for higher terms {"<It> do not 

rapidly. The whole if we 
ourselves to a few collective spanned by them 

collective subspace), the coefficients r have the 
property that they do not mix these collective bosons very much with the 

of Hilbert space, For instance. this is the case in the Lipkin modeJ 
(9.37)]. where SU(2) symmetry provides a complete decoupHng of 

the collective subspace. In the general it is not always possible to rind 
a collective subspace. 

On the other hand the condition that r provides no coupling of the 
collective subspace and the rest of the Hilbert space is onJy a kinematic 
condition. that it depends only on the of the underlying boson 

It is Dot sufficient to guarantee a expansion. In 
""""l.;IVU we saw the to a collective subspace is 

in cases where provides no serious 
rest of the in cases where the 

subspace contains to a good some eigenstates of 
this condition depends on the Hamiltonian, it is called a 

dynamic condition. 
Both conditions are sometimes fulfilled for group theoretical reasons. 

Again~ an example is the Lipkin model, where we can restrict ourselves to 
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the collective subspace with quasi-spin 0/2. In this case we only have 
boson B and get from Eq. (9.35fO and (9.42(0 

2 
QiIIII {1 B'" B. 

_1-B+B+BB+B-'" 
8D2 ' 

which can be summed up to 

b+-B+~- ~B+B 
This corresponds exactly to the Holstein-Primakoff representation (9.4) 
the angular momentum operators K:t ,Ko' The perturbalive boson "' .... I_li'" 

sion of Belyaev and Zelevinskii therefore often caUed a Holl 
Primakoff expansion. If we expand the Hamillonjan (9.38) up to order 
we get, after normal ordering.. 

H. - 2 + f.B + B - V ~ (( 1 ik ) B -+ B + - ~ B + B -+ B + B + h.c.). 

The perturbative boson expansion has the advantage that in lowest nllY_ 

it corresponds exactly to the RPA approximation of Section 8.4. To see 
we use non-collective boson operators and stop after the first term in 
(9.43), which means thBt 

Inserting these expressions into the Hamiltonian (E.18) and taking into 
account only terms up to B + B. B + B +, and BB, we find the RPA 
Hamiltonian of Eq. (8.90) in the quasi-particle representation (8.200): 

H-EHF + ~ {(Ek+E/)Bkk,BII'+Hk~'I'}Bk;Bk'l' 
k<1 

k,' <: I' 

+ 4 ~ {HIt"tk'l'B/i Bk0' + h.c.} 
It. I 

k',::: I' 

(see, however, footnote on p. 344). 

(9.48) 

We can now also understand, in a very simpJe way, why the RPA 
approach preserves the symmetries [Ma 74]. Since the boson expansiOD 
(9.43) constructed so as to satisfy the commutation relations ID 

order separately, we find for two arbitrary operators A, B with 

[A.B]-C, (9.49) 

[A{II) J B(I)J + [A(III-I), B(2)] + ... + [A{I), B<I'I)] - C(IfI-I)! 

where A(II), B(II). and C(JI) are the nth order tenns of the boson parts 
the operators A, B, C. which contain n operators B or B +. Since the order 
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j,J'S&"'"'''' parameter (. 
would imply that 

operators are not in 
with a fixed num-

a order in f. 
with H, we find Eq. 

(9.51) 

the RPA equation (8.104) zero frequency mode 
arguments can be extended in the boson 

' ... _""""', ..... The practical applicability of this however, is re-
by the fact that it is only true if the algebra fulfilled 

higher orders we usually need additional drastic approximations 
instance, the restriction to only a few collective 

property. 
Mathematically. the RPA Hamiltonian (9.48) has the same structure for 

as the general Hamiltonian of (7.59) for 
ren:DI(I,na. Both are diagonalized by Bogoliubov (Eqs. (7.1) 

1); lee also Appendix E.5] resulting in the HFB (7.42) 
the RPA equations (8.70). The only difference is that the 

equations are nonlinear. They contain a part of the fourth-order term in 
fermion Hamiltonian (i.e., of the two-body interaction). to 

IUJISI"""""" orders in the expansion in (9.48), we can proceed as in 
(7.,571.) and bring all terms that we want take into 

normal order with respect to the new ooSQn vacuum. All quadratic 
B + B, B + B +, and BB can be brought into the (8.90) with single-
ooSQn fields depending on the boson densities. We thus end with a 
self-consistent random phase approximat;un 76.11]. 

"The term H(I) corresponds to in Eq. (1.36) and d ••• :.mc:lIJ to ..... u,JI .. " 

solution 
73j.) 

2.0 Exc'olion Energy 

1.0 

QO~ ________ ~ __ ~ ____ ~ 

1.0 x 2.0 

self--consistent RPA is compared to the usual RPA and the exact 
Lipkin model as a function of the coupling strength X. (From 
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Figure 9.2 shows solution in the cue of model 
We see clearly how the breakdown of RPA in the re.lOll 
tl"ansition (as discussed in Sec. 8.8.2) is avoided by the 
terms in the expansion. For very 
and RPA begin to coincide, indicating that in very 
be phase lraUlitions, whereas in fin.ite systems the phate 
always smeared out to a certain extent (see Chap. 11). 

9.1.l.1. Remidioa to II Few CoU«tl,e BoIoas. In WIlle 

reuons for restrictions to a few col1e<:tivc: bosons, such u qw.dr1ilpc~e ·OIC 

and pairing vibrations. The expl!I.nsion (9.43) does not then 
algebra exactly. Followin, [&;I 67], we Cl!l.n ne'lfat 
(9.40) up to a fixed number of boson operators with variable 
xP} •... X(l.<I+l) and ,(0), ,(I) •... ,(a..) as unknowns. BY''''''''''"LI 
the algebra, evllluatma the commulators and then equatiDI the 
ume types of operaton, we let I!I. let of equatiODl (whicb a.re _ ...... l1li 

for the coefficients x(i) and y<'). For example, in the case of only one ........,.,gIvu. 

1_ /0) _ ufl, 

- i l ) -2(lx(l) +xrx)+ I), 

The evaluation of is and has been carried out by satllIfIftIIIl 

[~ 61. 68a + b. 69, 70. 71, 13] to fourth order And by Kisbimoto and 
[KT 72. 76] to lixth order in the Hamiltonian abo [SP 77bD. 
parameter Y<0) is always open. A cbange of this parameter COfTeSJ)OltlClS 
tranlfonnation within the boson space [S- 68b). It an influence 
converpmce properties and bas been used in different. ways. 

kind of boson expansion is not a perlurbative expansion, in the aenJe 
the in a certain orde.r are not cbanged if further terms are induded. 
this IeDIe it may be better adapted to the collective under COIl.IlCllera 
The dynamical condition that the Hamiltonian should nOL couple 
subspace 'With the rC':Sl of the Hilbert space is n.ot touched by these 

9.2.4 The Boson Expansion of Marumon 

Marwnori et a1. [MIT 64a + b] propose a method which starts 
one-to-one mapping of states in the rennion space to states in the 
subspace of the space. The procedure is carried out for 
collective and we shaH give a short of the mathe 
details in Section 9.2.6. Since, in this case. the convergence properties IIIl'C 

very poor, Holzwarth et al. [LH 75] have use~ in practical appJicati 
somewhat modified venlon using a few collective bosons. The 
method hu also been applied to exactly soluable models [PKD 68, KI 
Starting from collective fermion pair operators b~+ of the rorm (9.24), 
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normalized 2n-fermion states 

In)-<!1L,{n)1 1'1'" ~,{n)bp.~...'" 10), (9.53) 

a normalization not 
assume, however, that they are independent. 

true if only a few collective are taken into 
the number n not too large (i,e~. the whole number must not 

exoeeo the corresponding fermion space). The nonn NNI' given by 

NM ,· 11.".A.I,ui... (9.54) 

closely related to the quantities r of Eq. (9.28). 

Nil: 111 = 6"",-. 

Nll : < "",II1'p') - 6"",.6", (I' ~ ,) - ,. 
(9.55) 

- B~,8R·8pfi - 6pp,r:,~-N1J : 

(+ several permutations). 

The diagonal matrix elements define the norm factors; for we gel 
for two phonon norm 

~,(2) - (I + 8iJJ' - ) -liZ, (9.56) 

M arum ori now introduces a boson the normalized 

In)- 1'1" • .u..)- +10). (9.57) 

of the form (nl!n1L .. 1/2 unitary 

U= L In)N,;.l/2<n/l· -I(n') (9.58) 
Nt 

the space of ferrruonJ this space. 
In practical (see Sec. 9.2.8). the N diagonal, 

otherwise the application of N -1/2 means an orlhogonaLiz.ation. We there
ourselves to this case and gain, for the transformation of 

operators to the boson space, 

(9.59) 

The operators In)(n'l in the boson space can be by the projector 
onto vacuum* 

10)(OI-:exp( - ~B""'BI'):-= 18 - ~B/B,.+ 2! ,..,. 

(9.60) 

.. doll : mean nonna. ~I of the .......................... macron (9.60) ill to prove in 
the cue of one 

BfO)(0I-B(I-B+B+ ~B+B"'BB- ... )-B-B+B+BB- B +8B+ ... -0. 
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in an obvious shorthand notation 

With the assumption that the Hamiltoo.ian not scatter out of 
collective space, the sum over p and (J is restricted to the few ... v .......... 

indices only, and we are Jeft with the problem of cakuJating the norm 
matrix (9.54), which in applications is a rather ............ ... 

they take the corrections the 
form of the quantities r (9.28). 
one often uses approximation 

re1ation (9 .. 27c) fulfilled within the """"'u ............ 
if the sum over p on the 
that the double commutator 

does not scatter out of the collective 
have 

(9.27b, c) we then can a 1'«111':11011 

1ST 77, SP 78D= 

,..., ILl .. "'n I ... 
+ ~ (I-'I excba.nged with Jl2 •. . tJ.,.) 

- ~ ---1An1 --. 
A 

- 2: [ #1-1 P-1 e.)f.changed with aU pairs in (P.I-· .1',,)]. 
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two-phonOD norm (9.55) we are therefore able to express 
elements by r 1). Holzwarth et a1. [HJJ 76] have 

of this approximation in realistic transitional nuclei 
1000 with exact for the norm matrix 

:se<::ltlon 9.2.6 that the quantities < 1'1"" .,...,.Ip,"" .... ,,> a.Fe .. 
elements of the projection operator P onto the 

licit! 11L1bipac:.c (ICe 9.99). They take into account the fact that the 
've two-quali-particle operators b,t are not rea) bosons. The fermion 

illI1oMIU.&.lI~""""" by these operators are finite, the space 
.JIIII'IIlU..LL........." by the corresponding boson operators is infinite. Therefore, we 

the quotient of fermion to boson norm, 

< POI" ·".,,1 Ill' .• ".,,> 
... ( n) - , (9.65) 

(1'1" ,1&,,1 Ii, .. ,~) 

very for large n-values. This means that the effective 
space is truncated drastically by the Pauli principle. In particular, 
that the matrix elements (n + 21 H 1171 which couple states with 
v_.v.u. numbers, become smaJj for large n-values. As a conse

!lii4Y~"'U"""". we can restrict the sum in Eq. (9.59) to low values of nand n'. In 
cases [HJJ 76, SP 77c], a Marumori expansion or the Hamiltonian 

to fourth or sixth order is therefore a very good. approximation. 
Summariz.ing these results, we see two conditions under which the 

collective Marumori expansion is valid: 

(i) The first condition is a purely kinematic one (i.e., it has only to do 
with the collective operators b,..+ and the quantities f): The fermion 
norm matrix elements have to drop dramatically for large values of 
n, with the consequence that higher-order terms are cut down by the 
Pauli principle 

(ii) The second condition is a dynamic one (i.e., it has to do with the 
properties of the Hamiltonian H): The coUective subspace spanned 
by the vectors I "'I" .~) under consideration has to coincide with an 
approximate eigenspace of the many-body Hamiltonian, that is, H 
should couple only weakly to the rest of the Hilbert space. 

The first condition seems to be in contradiction to the condition of very 
collective bosons and smaU f-values in the case of perturbative boson 
expansions (see Sec, 9.2.3). For smaU r-values, the effective rennion space 
is indeed rather large. In fact.. the first condition would be best fulfilled for 
a few pure two-quasi-particle operators, where the effective fermion space 
is very small. In this case, however. the se(:()nd condition is hardly fulfilled. 
Only for collective bosons is the corresponding fermion space large enough 
that we can find caies where the exact eigenstates of tbe Hamiltonian can 
be represented in this way. It turns out, however. thai the effects of the 
Pauli principle are still strong enough in these cases to guarantee rapid 
convergence (see [HJJ 76D. 

As an example, we again investigate the Upkin model of Section 5.4 (for 



details, see [PKD 68D. From 
relation for the norm, 

(9.31) and (9.64). we 

which in this cue euct. For the 

- -
and for the Hamilton (9.38) up to four ....... UlITli 

(9.59f). 

H =-~n+EB+B-VU[ ~ B+B+ 
B 2 2 V1-n 

We see that the Mammori representation does not correspond 
expansion in I/O. Each coefficient contains aU orders in 1 
expand them to a certain order in J /n, we get the equivalent 
Zelevinsldi of Eq. (9.47). On the other hand, we the 

by tmng all of the Belyaev-Zelevinskii eXf>anIJOlIlt 

DODging them into normal order, and summing up the coefficients 
ing to a fixed number of operators. because botb 
equivalent in infinite order (see 9.2.6). The advantage of the 

it takes the Pauli principle into account euctly in 
order n. 

In fact.. the the Msrumori operator in a l)OIK>n IPI ... · 
of N IIIIU. to the 

.. _ .......... L< in the space spa.nned by the fermion 
with"" NJItIU,' In the lauer case, we would have to calculate the 

From Eq. (9.59), we see that they are obtained 
"J of the M arum ori operators in a boson SDllC& 

to a picture is the fact 
'I'lI'!,fi!'fn ... ,II>tI'I to a va.lue "m.u under the ......... ,,'LOA 

that the order rna trix.. 
containing only the low-order f .. nm,"1R 

bp.+ non-collective 
to a shell model calculation in 

lpace. In lowest order, we get not the RPA,. 
but the TDA approximation. 



Boson 

lS01wn Expansion of 

Nuclei 361 

so far are infinite expansions which 
as a high collectivity of the 

particular. near closed shells 
into account of collective two-fermion 

U~""""'e.!!> with the collective In such cases. we must 
for $everal types of baSODS with a degree of collectivity. 
WJ;"'l~"'" we hope that, at least for low-lying states. convergence cali be 

the number m of dilferent OUl-um:l 

is quite a different type of 
It can be investigated by the om.OD re]'.1.r~iCniUl 

method ends 

convergence 
_Lil''''':> .... 'u region of soft nuclei has convergence 

many dilferent BOions-but only a few of them at one time have been ._1' ...... in the region of the magic nucleus [1 80]. 
In general, there will most probably which many different 

of bosons, as weU large numbers of are needed, a 
(characterized by a question mark 9.3) which is difficult to 

The Dyson representation is based on the fact that the commutator 
algebra (9.27) can be satisfied by the mapping· [RS 771.] . 

bp. -7 B
I1

• 

QpI-4 ~r:Bp+B6' 
pq 

(9.691.) 

(9.69b) 

(9.69c) 

It is a generalization of the representation (9.9) of the anguhu 
momentum algebra. By mapping the fermion vacuum 10) onto the boson 
vacuum 10), we obtain the representation of vectors in 

HUbert space. 
From the finite (9.32) and (9.69) we 

Hamiltonian. which terms up to sixth order 
B +. The operators H n and Hl1 conlerve the 1)O!K>n 

assume that the coefficients et of (9.24) are 
equation (8.10)~ we get after a straightforward 

22 = 8jU'01ll - 2: r: . 
k 

and 

HII+H22= L0,.B/BJI+ ! 2: WjU'fJ'IIB/B.. B." 
It lU'f"tJ 

OIl For &.D early venion of this repl·CiClnUUJOft.IOC (Am 67]. 

boson 
B 

(9.70) 

(9.71) 



n 

1IOi,.,._ ,.3. Schematic reJ)rraOlltltlC)D of the two idod, of conyergelk;e we 
faced with in bosoll the number of different 
B.+ .. . B: and n lives of one type (Bt)". 

with the matrix elements 

(9.12) 

The other terms of the Hamiltonian violate the boson number and can 
found in [RS 77a]. 

A disadvantage of the Dyson~re.presentation is tbe fact that it 
Henniticily, as we see, for instance, from the operator Win Eq. (9.71). 
images of the bra. and ket vectors 

11'1' "1',,)-+ B~7 ... 11: 10). < #'1 ... ... B"I 

no longer form an orthogonal set. 
In analogy to (9.54), we get for the nonn matrix N: 

N(IJ,,,·p,., l'i· .. ~)-(OlBPLI .. ·B~B,.r ... 11:10). 

Since there are flit computer programs for the diagonalization of 
Hermitian matrica, this it not an essential shortcoming [RS 74b, SWR 
Sell 76]. We wiU dilCUll lOme of the mathematical details in Section 
and 9.3.6. 

The method is extremely simple if one can the coupfuta 
sublpaces with different numbers. In such CUCI the HamiUoniaa 

by H II + H 22. It can be expressed entirely by the 
amplitudes Cf" the TDA energies n", and the' quui-particle energies 

9.2.6 The Mathematical Background 

In lhi.s we want to mathematical properties of boImt 
representations treated so far. We can thus clarify the 
between the different. methods. The reader who is not interested in such deWls 

section, is mathematical. On tbe other band, we are nOt 



MIiIIII,WIIIil_LU,",IIU .trueture of the boson representations it is 
-nA:ftoC)OIJIDetlve" bosonll BIt,- - BlIt • 1'hd.r index it abe iDdex or 

obey the boson commutation relations 

-0; [BkJ ,B:i.]-6kk,8n'-(k-H> I). (9.14) 

from a complete orthOJOnal in the many-fermion space 

in)-lk1/1,,·kl'l/,,) - ak~a,: ... at!al,.+ 10). (9.1S) 

we can orthogonal act of IUles in the boson space [MYT 

(9.76) 

where P runs over all ........ 'uu'"' of the indices Ie I .. . In • new 
B.;B:S: and B~Blt are each counted only 

are (2n)!/(n!2")- I)!! tenJU. 
(9.76) !pan a linear subspace of the boson spa.ce, 

we shall see, there is a one-to-one CO£Tc:spollCence 
between this ........... _ ... 

states: Bk~/, ... B";I..to),. 
the fermion The rt':$l of the boson space: 

are not completely antisymmctriz.ed in 
the Pauli principle. States that have k •... /,.. They therefore 

this type can provide contributions to the expectl.tioD values of .... '" ... """ 
operators. 

Janssen et 81 PDF 71] have shown that the basis states in Eq. (9.76) can also be 
written as 

with 

_ 1 ,A::~ ... j~I,.IO)t 
,J(2n- on 

operators (9.69a) 

Sir - s,: - L B';B'; B,.. 
ff 

An (tilt. mpLe is the two-boson .tate 

(9.n) 

(9.78) 

(9.19) 

12)- ~ B,,~/ISA:;,210)- _1_(B":/IB.:'2 - B":k3BJ~~ + Bt~IB"~/l)to>. (9.80) 

The projector P onto ph~ aubtpace: hu the form 

p- - I (l"~ J L llk-:J,· .. I~IO)(OIBk."J,,'" ./1 ' (9.81) 
kl· .. k .. 

After a straightforward application of the relations 

III'" A';:'i,.IOXOI Bkr,1,. ••• Bklll 

- - I)!! L Sk:/!" . .8.4::1,.10)(018kr,(. ... B.6: I " 

kl, .. kn 

II .. I,. 

(9.82) 



a.nd 
.... ,.--. 

(01 Bp"q., ... B','I,BIc,/
"

" 

we obtain for the quantities 

the foUowing properties 

[1, BkT 1-OJ PBkJP-BkIP. [P.(B +B)k/l-o, 

0+ ). 2P8:~- -P(B+·(B+8»1c1' 

There are " ... "" ....... 
subspace of the DOIlOnl. 

mapping the fermion space onto the nn,atil'llil 

exp { I ~ Blcr lIrlit 
lei 

Inserting. a complete set 
written 

in me fermion space and using Eq. (9.77). it can 

.J(ln - I)!t In){nl. 

It is obviously not We therefore to define a conjugate operator 

0-

where II is the boson number operator (9.84). If ) p is the unity operator in 
fermion spac.e, we 

IF and UO- P. (9.90) 

The fermion are mapped in the following way. 

+ ++- -+A blcl -+ al U- BId' r, 

U«rllk if - Bltl • P. 
0-(8 +B)k/' P. 

with 

~ ( 40 B-+I.:+ 40" ) H, - + L., HklM kl ElPf + HiJPfBklBI"f 
A k~ 

+ (Hl~B';; (B + B + + B)pqBu) 
Ie", 

I n - + + 4' HlcJpqB., Bn' 
klptf 

AB long. as we to physica.l wave fun.ctions we can neglect 
projector and equalion 

Hsl+)- Elit}. (9.94) 
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However, we have to be aware that there are also SPUriOUI SO]utions 1'1',) wruch 
COBle from a or the Pauli . Since fl does not commute with R. , 

am have cotnpoGlimta in physical subspace. that is, PI+,)~O. To recogniu 
we have to apply the criterion (1- P)lw .. ) ","0. In cases where lhe eigenvalue 

IPIJro:timillled by restricting the number of collective bosons they CIln 
solutions. It is therefore of Len meaningful to decompose 

HIJ- H3+ VB. (9.95) 

with H3- ~k Ek(S + B)u' From Eq. (9.85) we see that H3 commutel with P. ,The 
solutions of Eq. (9.94) therefore obey the eqWltion 

(H:+ IVB - (9.96) 

a decomposition of any lOlution - .PI'I')+( 1- 1)1'1') into a physical and 
a pan, we see that its spurious part is an eigenvector of Hg with the 
eipnvalue E. 

Hi(l- P )1+)- E( I-I )1'1'), (9.97) 

is, the unphysical solutions of Eq. (9.96) have the eigenvalues of Rg. They are 
Jiven by 

EL + E, + EJc + E[ + .... 
'" I I 3 3 

(9.98) 

The lowest spurious eigenfunctions of H O are two boson states of the type 
BI~BI~to). The lowest spurious solutions of (9.96) therefore lie at the free four· 
quasi-particle energies. isUluaUy mucb hiaher the interesting low-lying 
part of the spectrum and an approximate solution of Eq. (9.96) does not provide 
serious mixing between physical and unphysical states. 

In practical applications, it is meaningful to start with collective ool(ms. The 
Conn of the HaDultonian Hs has already been derived in Section 9.2.5. To apply 
Eq. (9.96) we only need the matrix elementB of the projector P. We see from Eq. 
(9.8H) that they are given by the norm (9.54) or (9.13). 

(fllt- ..• AtIl'1 #,~ ... ~)- (OIB"I" .B.""PB,.t ... B:IO) 

I 
-(2n-I)!!(fll'" 10' .... (9.99) 

If we have physical eigensolutions of Eq. (9.94) or (9.96) we can calculate the 
matrix elements or a tranrition operator Q by transforming to the boson space 

(9.100) 

and get 

(9.101) 

This shows that we can calculate all interesting in the boson space 
without transforming back to the fermion space as Ions as we know that 1+) 

no spurious componenLs. This can be by diagonalizing lhe norm 
matrix (9.99) and to the space with non·vanishing eigenvl!l1ues. 

Mammon avoids non-Hermjtjan operators by a unitary mapping 

U-LI (9.102) 

" 



m 

and obtains from Eqll. (9.91) and {9.86}, 

b~t U".+cr/ U+ - BJ (I +2N)-1/2 P- P(B + 

bkj-+ U«tak U + - () + 2N ) - lOB/til - /J 

akJ~ Ua/Got U'" - 1(B"" B )1Ir" 

In all prac-tic.al applicatioDS-. the square roou in Eq. (9.102) have to be repllAQ!Jd 

i. Tayl;o-r series .. Therefore, the Marumori thcory ends up with an tDltDtte 

even if we reatrict ourselves to the pbYlic-Il subspace. 
The expansioo coefficients of the square rool ue (- r(I£2). Ji'n:natiftn 

therefore corresponds exactly to the perturbative bo.wn (!xpoNUm in Eq. (9.43). 
go to infinite order it is equivalent to the melbod of Mammori. The 
obtained after normal ordering. Stopping at I. finite order gives 
both these cases [see, e.g~ the Lipkin model in Eqs. (9.47) and (9.68)~ 

We also see that I. formal expansion of JI- B +' B does 001 

of IIlOn .. coUec:tive bosom [Ok 14]. Only by introducing collective DO.OOl 

appropriate deooupling of the corresponding subspace can converpnce 
cusMid in Section 9.2.4 be achieved. 

9.2.7 Methods Based on pp-Bosons 

So far we have aeveral ba.sed on 'boIons the vicinity of 
fermi surface. These boIonJ were, to a good approximation. Biven by ph 
two-quasi-particle pairs. As a natura] con!equence-. the hogan number Will DoA 
conserved in aU these methodl. The corresponding Hamjllonians included lerml 

the form B +-B", B'" B +- B. 
We now start from quite a different approach1 Crom the bare VICUuttt 

- (or, in practical cases, also from a completely inert core) and add pairs
particles coupled to an approximate boson. An example are Cooper pain in • 
single j-sheU· fEq. (6.3)] 

(9.104) 

01' quadrupole pairs 

In the seniority scheme (Sec. 6.2), we can the ground state a.s a 
of Cooper pain [Eq. (6.19)] 

10)(( (S +)N/ll 

and some ex-cited states by replacing one S +- operator by " D/ [Eq. (6.27»): 

(S +- )1'0'/1-1 D/I-). (9.100) 

In the general case, we can start with ooUective two--parlide pAirs 

b+-!~C'fa+-a+ .. 2-'J Itti. I 
hi 

(9.101) 

81"h1111 c.o-ntra&u 'llrith Qur OO1lventiOI1 of winl capitaJ leHers fOf bosons; S ... (9.104) ud. 
D,..+ (9.IOS) an ooUoctive fermion p&iB. On !.he otbC'f side. the opcral-On S + ud d'" in 
(9.119) IUC pure boson&. 



the particle number is coll$erved. we now have only 
that CODJeI'Ve the Dumber. In the Dyson method, for instance. we get a 
l.twJalMJ'<UMILU of fourth order Eq. (9.71)}: 

(9.1 OS} 

e<.>efficients Ck, are now the pp-TDA amplilud<es, and the quantities Of are 
by the corresponding energies. In the other methods we end up with similar 

Da,mlJU01llBJil3 (perhaps infinite and bUllxwn mmtbtr cOfI.Krving). 
The disadvantage of this method is that it can be applied microscopically only 

very few boson!~. for instance l in the vicinity of 8. magic nucleus with a realty 
core. For nuclei far away from magie we need a large of 

,..·1)050118 whose corresponding Ck, coefricientJ are detennined on the of a 
eompletely inert core. For a large number of active particles this need Dot be I. very 

however, as we iml<aine in the extreme CJUe of a 
core for the description of nucki in the lOIIPb region. Thus.. for nuclei far from 

magic, the pp-boson might not be valid if the amplitudes are 
ratricted to the inert core basis. We may, however, try to consider the amplitudes 
ell III adjustable parameters to be determined. for example, by a variational 
calculation. 

On the other hand, configurations consisting of a large number of bosons can 
only be treated by group theoretical methods. So far, one has investigated only 
phenomenolo&icaJ models. One of this models is the inlerocling motIel 
(SU(6)-model) of Arima and lacheUo [AI 75a and b]. It two types of 
bosoDs~ an s-boson corresponding to a Cooper pair of Eq. (9.104), and five 
d-oosons corresponding to the five quadrupoJe pairs in Eq. (9.105). The Hennitian 

, number conserving terms up to fourth order [see Eq. 
(9.119)}: 

Neglecting the fourth...arder terms which describe the intenlction between 
DQ'IiUIIJI. we have an unperturbed ground Slate as a product of A /2 s-bosons and 
excited slate~. where some or the s-bosons are replaced by a d-oosons. OriginaUy. 
the model was introd:uced on purely phenomenological grounds. For one j-shell 
with a pairinl~plw-qWldrupole interaction (4.141), however, it c,an be motivated 
from a microscopic point of view by mapping "-fermion pairs onto a suitable 
boson representation [AOI 77]. We sha1l discuss a few applications of this model in 
the next section. 

Another example for pp-bosons is the Schwinger representation [BM 78]. Working 
in a single-particle buis, where a:; and 0 ,,'" create particles above and below the 
fermi surface. we can introduc-e two types of bo$Ons: B-bosons B",,~. which 
correspond to the creation of a pp-pair o~ai+ (with one: particle above and one 
below the fermi surface); and A-bosons Ai} • which correspond to the creation of 
pp-pair at OJ''' (with both particles below the fermi surface). Both types of bosom 
are ideal bosom; with the commutation relations 

(9.109) 

For the description of even systems we need only the densily operators Ok'" at. They 
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a.re mapped iD. the way. 

a:.a.. .... (a:"""").- ~ 
a, ... ~ .... (a,+ai).- ~Al"jAu. 

J 

a:ar-+(Q;,,/).- ~ B~ql 
i 

a/·a ... ~(Q/a",). - (o':a;);. 

This mapping contefVell the corresponding commutatioD 
operators ",t a,. Hermiticity, and furthermore eDds up with finiu: eXI)f.III("" 

space. from the vacuum 1-). 
)- B""I-) -0, 

c:onupoadl to the bare vacuum in the fermion spue 'W'e c:.a.n COIlM:JtIIet 

HP IfO\lDd lUte in the boson apace by the 

(a:.a.> .1.0> - 0, [8t( - (a,+~). )~ - O. 

I.le by 

-). 

A tH' ··.AI'IN 

1 
l~o)- --detA'" 

/NT 
) 

are by applications of the 
(al'll . From Eq. (9.110), we see that the effect of an operation is to rev~u. 
the ith column of the operators Ay+ by a column of B'; in the 

reprexntation is straightforward generalization. of the ~l'lIrW'"!'" 
nprest!l1to.tion (9.11) ill the momentum case. A problem connected witb 
type of representations the fact that we have introduced too many 

in the 
and the many-particle~many-hole states built from it form a 

subspace of the bosons. We tan show that the operat.or 

(9.1 

i' and leava for i that 

(A +A + B +B 

in the subspace. It corres-ponds to the cOIUlraint (9.14) in the .. "UftIUI:I' 

""""~""UI" lhe boson A and B enlarges the 
" we get a :new daiS of additional spurious 

(9.115). 
III principle. we can we the constraint (9. J 1 S) to eliminate the operators 

This it dooe fonnally by writing 

A -·/1 - 11 ... B . 

Insertin& the expression into Eq. (9.11Oh we again end up with 
Prim.a.koff expression (9.4) in the phyJicallUbspace. A detailed --.7""- IIn.nww 

the elimination (9.116) co:rresponds to III canonical transformation within the 
space (BM 78). 



9.2.8 Applications 

J1S 

1DOCI1e. of Ari.ma and 
HOilaIlUl-·Pr1IIlUlIJmrr rc:on*1:l1alLiOlD of this model 

....... 11 ......... of the type (9.116). In this form 
Jarussen et 11. [JJD 14]. 

ftlu!'ti",llll nmn_r,tAi:inn to discuss the Schwinlet' 
I. pnmaJ Schwinger repreHD.

Fu 17~ 

groups have applied the of boson expansions to the 
dacription of transitional nuclei, with weakly anharmonic vibra-

through strong anharmonicities} the limit in well de-
nuclei. Basically, we have to two types of 

namely phtnomcnolDgical which parametrize boson Ha-
aiJllOIUrulS of a simple structure appt'ooclJn, where the 

in the boIon Hamiltonian are derived from an underlying 
many-body Hamiltonian . 

. PhenomeDO'IozicaI U'IId Model!. We can express 
the Hamiltonian by operators whose physical 
structure need not be specified in detaiL According to the number of 
different bosons and the order to wbich we go, it contains a number of 
parameters him' An example is provided by the quadrupole bowns d/ up 
to fourth order. (The word quadrupole in this context only means tbat 
these operators are spberical of 2. I t does not specify the 
radial dependence of a corresponding fermion operator.) 

H-=hoo+hu[d +h20[d + [d+d+hd +]o+h21 [[d+d+hd ]o 
+ h40 [ d+ d'" ]o[ d +d'" ]0+ h:H( d+d + lo[ d +d]o 

+ L [[ d +d+ ]L[ dd]L]O' (9.117) 
L-O.l.4 

ization of such an nn."' ... ~ 

its matrix elements _t~u ... " .... 

of the angular momenta. The diagonal
problem. One usually calculates 

_ ... ..,.,iI!' ....... states and diagonaiizes the corre
matrix can only be kept within 

tbeoretical properties of the undedy· 
the quadrupole bosons obey the SU(S) 

which studied in great detail in the literature [WHO 
66~ KPW 68. WP 68, KT 71]. 

The diagonalization of phenomenological Hamiltonian (9.1 17) gives 
a spectrum that on the constants him' In the calculation of 
IrOJUitUm JNObabilitin. we need a boson representation of the transition 
operator containing additional constants. The fitting of all these parame-
ters to experimental allows a test, to see if the observed physical 
phenomena can be by the corresponding baWDS. If they can. we 
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get about the HamHtonia~ 
the On the other hand, as we no 
we have to be careful, if we use 
times quite different physical phenomena 

The of such 
five quadrupole a fourth-order coupling term ".HIlI'lIi<V,U&l. 

In such cases, we can fit the highest angular 
members of different quadrupole reasonably 
DDK 70, HR 74, fA 74]. To describe the other members we 
more general like (9.117) [KS 62, 11. HL 721]-

Starting operators B, B +. we can define COtTell·PODell'_ 

momenta P [see, for (8.95)] 
into a potential and kinetic energy 

H(P,Q)-

The depends on 
leads of 
[Ho 71a], In the quadrupole model, the potentials 
depend on deformation parameters Eq, (1.13». 
such a curve as a funclion of fJ and the r.nl'I'lI!".fI,nnlni'11 

in the The constants of the boson Hamiltonian were 
using a fit of four phenomenological 

One is the transition from a spherical 
spectrum, to with a rotational band 

E 
(MeV 

6 

" 5 

,. 
o· 

, 
2' l' 
l' t' 

J 

" 
,. 

l' l" 2 o· " 

1'--- ---1' 

0'--- ---0' 

of compared to 
fun curve showl 

I"nI"1"1IrV in the fJ - y frame at y "'" rf. The ...... 11 ..... 

from a microscopic calculation. (From [LH 15J.) 



an appropriate choice of the parameten; Hamiltonian [Ho 
70. DB 70, 71, Ho 718). A band structure 
potential V( Q) a well-pronounced minimum 

cases a large number of (up to 30) 
lrelmen04)US numerical effort brought about by the 

CO[DDC;)DeIUI with high also serious doubts from a physical 
point of view may exist, since they strongly violate tbe Pauli principle and 
we do not know if tbe phenomenological Hamiltonian takes care of 

Over the yean, a large number of phenomenologically based models 
developed whose diagonalizations are simplified 

the use of group theoretical techniques (HNL 70~ 
L#lLJJno.. 70. VNR 75, RD 76, RGB 77]). Of these§ probably the best known is 

inJera'1ing boson model (SU(6}model), which was by 
et [JJO 74] and later on much investigated by Arima and 

JacheUo [AI 75a, b). Its six blocks are five quadrupole bosons d,/ 
(p. - - ... t + 2) and one boson s +. The boson number is con-

it is a mode) having pp-bosons (a boson representation of tbe 
Schwinger type) as discussed in Section 9.2.7. The Hamiltonian has the 

Hflllllf; +t:d[d+d]o+ [d +]L[dd]t]O+140 S 
L ... 0. 2. 4 

+{ [[d+d+]2[ ]z]o+co[d+d+]o-rS + 141[[d+s+] dshJo+h.c.}. 

(9.119) 

It eight parameters I.: - Ed CO' '2' ' .. , UO' 142 , which are 
fitted to experimental data. In addition, we need two further constants to 
define the E2-transition operator 

(9.120) 

In the case of a vanis.hing interaction (eL = tlL = 141~ =0), the ground state 
consists only of s-bosons: 

in which ) is the bare vacuum and 2n the number of nucleons. 
Successively replacing one or several s-bosons by we obtain 
quadrupole in the same with the excitation energies 
(=f.d-~' 

The unperturbed spectrum is therefore a purely quadrupole 
spectrum, as shown in Fig. 1 

Adding s-bosons, we 
with numbers 2n + 2. 2n 
seniority (see Sec. 8.2). 

stales in the neighboring even nuclei 
... , etc., as was the 
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n - Ii, + n ... - j + 2: d/ dll 

" can be used to operalon oS and s +- • a fixed value of If 
are completely characterized by the quantum 

the proper matrix elements the 
we s by 

s~~n- ~d/d •. (9. 

Applying ru1es to the operator (9.119), we end up with a Hamiltoniad 
containing only the quadrupole d/. However, it no longer con-
serves the boson number, and by eJitpanding the roots in Eq. (9.121) 
we obtain an infinite series of terms d +-d. .. . is the Holstein-
Primakoff of the SU(6}-model [HO 74]. 

therefore a very elegant tool for 
by the Pauli principle and ending 

rplI'u·,.II#On OdlL 1. ........ We emphasize. however. that 
of freedom for a 

the unperturbed ground 
the 2p - 2h type as 

...... ,,_ the introduction of the 
adjacent A + 2, A + 4, . .. nuclei. 

Uf!!J)elnOJIDa on the values of the 
correspond to various 

analytically soluble. They also 'iI' .... I"\~'''''' 

in actual nuclei: 

not intco-
number. It is only 

contains no 
in Section 8.3.5. On 

very im portan t 

(i) - 0, U2 -0 (i.e., without coupling to d-bosons), we obtain 
scheme in a single (SU(2)} as discus~d in 



BolIOI'! 

and 

"0=-

nian 

Nuclei 379 

(.1- -0. 

- t. we the vibrational 
s·bosons play no role in 
only interacting quadru

fA 74D with the Hamilto-

Its eigenvalues and rates can given in analytic form. 
If certain relations npru.r"",,,,·1"l the parameters of the model are full-
fille~ we can rewrite (9.119) in the form 

. a]a> (9.l23) 

with the parameters (.IC, • the three angular momenta 

I", 

and the five quadrupole 

Q -d +c<+.J 
III p. "'-.. 

For (= Ie' = O. we obtain the rotational limit [AI 78a] based on the 
group SU(3). It is an of the Elliot model [El 58], which 
was widely used for whose group theoretical properties 
are in [Ha Ve 68, JDJ 75]. It has the 
spectrum of an axially rigid rotor (with degenerate 2; 
and 2; levels) 

E(A, p..K. M)=HK ICJL·(L 1)-IC(A2+j.L2+Al'+3(A+Il»). 

where (A. 
(iv) At the of 

0(6) seem 
spectra [AI 78b~ 

M) are the quantum numbers of the group SU(3). 
another subgroup of the SU(6), the 

an important role for the of 
78, CBP 78). Again, the eigenvalues can be 

In a limit they are identical to those 
of a completely 'Y-soft oscillator. the WHets-Jean model 
[W J 56, Me 78]. 

Since the SU(6) model so many important physical effects 
and also has a rather number of free parameters (up to eleven). we 
can get excellent agreement with many experimental spectra i.n spherical, 
and weakly and strongly defonned nuclei (see also [la 77. AOI 78, la 78]). 
We ca.n also give a justification for the case of a pairing-plus-
quadrupole interaction a single J-shell [OAI 78). A full microscopic 
derivation. which single-panicle degrees of freedom is, how-
ever, still missing, 
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9.2.8.2. MlO'OSroplc Although 
models bave great success fitting experimental IDC~[J~. 
tion we can never be lure that they do not .,"'"IL,",' __ 

different physical to do 
suitable choice of parameters. It 
to demonstrate that we can~ in principle, derive tbe 
HamiltanLan from a microsc<>pic point of view. 

Lee and Holzwarth [LH 75] have used tbe Mammon m.ethod (Sec. 
with collective bosons for the of anbarmonic 
rather pure quadrupole structure. They expanded the Hamiltonian 
surface delta interaction [see Eq. (4.1 J7)] up to fourth order 
[)ollorll with angular momentum two and found that the fesulting ""'"'1"-1'" 

sion coefficients htm in Eq. (9.111) are generaUy in good agreement with 
parameters detennined by fitting the levels [HL 72a]. 
(9A) the microscopically determined [)o!lOn POl~111WU 

V(Q) (dashed line). 
the . method described in :3iO::lKJll 

61. 68a + b, 69, 70] he 
modes near closed quadrupole modes in transitional nuclei. 
used a slightly modified pairing-plus-quadrupole interaction [see Eq .. 
141») and expanded the Hamiltonian to fourth order. He 
reproduced, at semiquantitatively, the main features of such 
However~ he in where the coupling to non-collective 
two-quasi -particle are importa.n t. 

More complete investigations based on the same method have 
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[KT 72, 76]. In addition to the 
mCfnlU::U(l'D they used a quadrupole pairing force 

Hamiltonian to sixth order in the 
(1- 2}-bosons. The coupling to the non-collective 

be important in many nuclei. It was taken into 
the sense of Feshbach 58t 62], 

Hamiltonian in the collective subspace. 
be replaced by energy-dependent renormaJ· 

of these complicated calculations 
data not only for vibrational, 

even purely rotational nuclei. Figure 9.5 gives 
u example for the 
RaliOD. Table I 

to deformed shapes in the 
properties. 

Table 9.1. Spectroscopic quadrupole moments and BEl values of the first 
UClIIea. 2'" with boson expansion method and compared 

experimental data 7JD 

[t· b] 

Experiment Theory Experiment 

14ISm -0.91± -0.91 0.141 ±O.OOS 0.1'2 
ISOSm - 1.31 :t 0.19 -1.17 0.274 ::t 0.006 0270 
1'2Sm - L7J::t020 -1.72 0.666:!: 0.0 14 0.697 
1SoISm - 1.91 0.922 ±0.040 0.884 

9..3 Odd Mass Nuclei and Particle Vibration Coupling 

we only systems with an even number or 
with particle number also. of course, have collective 

states. one of the famous is the septuplet of 
1 hg/2 of couples to the 3 - vibration at 2.61 

MeV of the -Pb core. proton perturbes this vibration only 
slightly, to a splitting of the seven different 
states (see Fig. 9.6). These are very often treated in the vibration-

2096. 

lk'1-__ 9.6. Sehematic of the experimental spectra of 20IPb and :zo!'Bi. 
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particle coupling (VPC) model [8M 75}. It turns out that this is closely 
connected to the boson expansion in odd systems. 

9.3.1 Boson Expansion for Odd L"' ... __ :s~rsttmll 

In the DeliY&lI:V-~£Ctt: 
fermion 
tOtl a,t l' and 
product of the usual B/ and a lP&~ce 
r .. P1Mt ... ,.. fJt com.mutes with the bosom~. 

[B .. ~ fJlrt ].. B".+, Ii...-] - o. 
Since there is only one 
relanoDl [Ok 74} 

fermion at a tim~ the operators PI/: obey 

The vacuum projector in space is given by 

which again means 

(9.127) 

The basis states in the product space are therefore given by 

(9.121) 

In addition to the algebra (9.27) of the operators b,t and Qp' we now 
also have to consider commutation relations between single-fermion 
fermion pair operators: 

{a ... , at}-

(9.1 

with r!t defined by Eq. (9.29). 
We now proceed as in Section 9.2.3.1 and the following 

the boson image of the clilferent operators (arguments for the specific 
choice of the ansatz are given in (Ma 74D; here we want to conte.1 
ourselves with the fact that the commutation rules are satisfied order by 
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oruer": 

.. 
II 

(9.130) 

fJ/ 1 L r:cB,,+ BfJ/3/ + ... + L CtJ-BI)+ p" 
~I ~ 

formulas we can construct the boson image of the Hamiltonian 
·An.tI_fjr'lif' (9.32). 

9.3.2 Derivation of the Particle Vibration Coupling (Bohr) 
Hamiltonian 

.... _..., ........ or (9.130) into the HamiJtonian (9.32)} (9.33) yields to rirst order 
the Ps if we neglect for the moment ground state correl.tiol"., that is. 

Bet: 

with 

H- ~O",B/BIl+ "LE/r.f:J/P,,+ '00 + Hcoupl ' 
jj k 

H oouPI = 2: ~ (y~B/B//3,+h.c.) 
ll. k. I 

~ L V:;' (r~rB".+ B). + rv:B>,+ B,I )fJ,t /3,. 
/JI).. 
Id 

Ji -2"'·H J1 Cjil· 
"tiel - '- rr1t1 .. " 

f':J 

(9.l3l) 

(9.132) 

where Ch are the TDA amplitudes and Oil the corresponding energies. In 
Eq. (9.131) we neglected B + B terms containing two fs, since they are 
usually smaUer than those with one r. The first term of the partide 
vibration coupHng H coupl is known as the Bohr coupling Hamiltonian [8M 

·11'1 the non-oolleclive cue we CIlIl, in I.nIJOIY to Eq. (9.103), sum up the infinite KriC!& for 
(b~ >. and (at).: 

(Q6) I'J'" ~ Sir" BkI + Pi'" Pit. , 

(bk.~ ) .... (8 "'1- B +B )k./+ ~ [(/l- B +B),.,. BJ] .B/Pt , 

(at+) ..... L({I- B+B ),JJt+ + BJP,· 
I 

t Si.nce we Deglect H co, terms like B'" B + and SB are miuina. We could take tbcm inti. 
account by tn.n.AIorm.i.q, to RPA bosooa with (&e:e Appendix E.5) 

B,.- ~ C:;(X!.rQ_+ Y:;Q_+). 
"" IJ 



9.3.4). 
treatment of the bOIlOD ~~~'U 
we shall see. matrix element H'I caD 
basis (see 7) from Eq. (E.2.S) for Iwtcans 
anee: 

1 1 
H~- 3"' 4 {-a,g('Jn "7;; ) 

+ (~ - "7';(; ) 

+ 

where occupation factors E,1J are Eq. (8.202). 
foUowing we investigate, in more detail, cases witbout pairing 
The operators Pt+ then be 

2) c; or hole 
i. j for boles). Instead of we 

the used). We obtain two types of VPT'IIU"'._ 

our we can represent a 
(indices v', ... ) or a pp (Jm) vibration 'T', •. • ). Neglecting 

therefore. if we consider a coupled to a Ip I II 
(note that the originaJ are antisymmetric) we obtain for the first tenn 

l! " + h (9 I L.J c,en + .c. . 
3 2 T )11 ",'1.1' 

............. .,..... of the factor t comes 
three times as large as our having 

of coupling a particle to a ph.vibration and one 
coupling a bole to a pp vibration below). Using our 

(Chap. 8 and Appendix F), we can the two 
y;' as shown in 9.7. In order to 
want to disregard the possibility of pp for the moment, that 
the term of (9.l34) will drop out. Of course, we should rederive 
Oo.!K>D expansion rrom the beginning under this we do 

to do this here., but rather state we find that the factor ~ in 

t 

n n 

l1l'i .. ,,_ 9.7. (Of the a to a particle pius 
the coupling of a particle to a bole plus vibration. 



- ~ ~ (",,':'B .. +c,:cjt + h.c.). 

1:1- L C:'~rVm'krl' 
(9.135) 

to tnat collective vibrations or odd nuclei, we must formally 
GI&&OIlAWte the Ha.m.i1toniaD (9.131) in the muhi-phonon-one-particle ba

(9.121). Of COUJ'Ie, io practice again, often only one phonon (for 
rllllmulCllD, the quadrupole or phonon) will be taken into account 

more anharmonic the underlying vibrator is, the more multi&phonon 
OOIUP(:Jm:Ul.l we need for the diagoruliization of the Hamiltonian (9.131). 

procedure has been pursued in a somewhat more phenomenological 
by Alap and collaborators eg., [At 67, APS 75] and refer-

ences therein). As we have seen in the case of even systems, the boson 
description works quite well even for rotational nuclei. The Hamiltonian 

13 I) is therefore. in principle, capable of describing all the eFfects 
if an odd particle is coupJed to a rotor as, for instance, rotational 

alignment or the pattern or triaxial shapes. Few attempts in this direction 
been made [AP 76, PVD 77]. Applications of this HamjJtonian 

[(9.13 n. (9.134)] have, bowever. been made mainly for rather hannonic 
vibrators, to which we shan now turn. 

Y.3.3 Particle Vibration Coupling (Perturbation Theory) 

As we said previously. the Hamiltonian (9TJl) is suitable for treating collective 
vibrations in odd nuclei. In the simplest case we consider me neighboring even
even nucleus to be a harmonic vibrator, and the first collective state is then I. 

vibration particle state. furthe.rnlore it sometimes happens that the vibration 
particle coupling (VPC) is so weak that H co",pt can be treated in perturbation theory 
(weak coupling situation). If we want to calculate, ror example, the energy shill of 
the vibration plUticle state due to the coupling terms, we obtain 10 second order: 

(pl'l H~lkNXkN I H I.X'Iliplipp.) 
~E-fj.EI +tJ.E2 -(pp.IHC01J,pllpp.)+ L _ . (9.136) 

kN 
+",. 

Ip#')-P,"*'B,,+IO) is the unperturbed conFiguration and the IkN) are derined 
Eq. (9.128). In fiBt order only the second term of contributes, and we 

"""_,,ue from (9.33), (9.26). and (9.131): 

(J1jlIH coop I PIJ) - - t L ( v;'lr;" + c.c.) , 
- - ~ L (Hk~Cr;C;" +c.c.). (9.137) 

AIq 

with H U defined by £q. (8.200 and 8.201) . 

.. The iotaaction that we use here i;s forma..lly the bare one. as in ali bown expaoiion 
lheories we ha .... e WICd 110 far. since we 5tar1ed from the original fermion Hllmiltonian. 11 CIJl 

be shown. however (see Appendix. F). that the bare interaction in. the vertex (9.135) can be 
replaced by an effective ph bole force. wbich is Dot ne-ceuarlly al'llisymmetric:. 
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As we already mentioned. there are several other techniquQ 
that can also be applied to odd systems (but which will not be pretented here). A 
somewhat different but related method is nuclear field theory (NFl) (see 
below), which has. been introduced by Bohr aDd MouellOD [Mo 61, BM 75} 
worked out in detail by Broglia et aI. [BBB 71 and ref'trefllftl!!lll 

applied to odd 'Yttems. In order to facilitate the 
treatment with Nfl we introduce an additional ruJe: Whenever 
a IDA amplitude like C;' in Eq. (9.137) do not go to the MJ'l'le 

are not summed over. we shaH have to u.se the TDA equation (8. 

in order to make type of amplitudes to ones 
on the lame C and arc summed over. Applying this rule to the first-order 
(9.137) and going over to the HF limit (see Eq. (8.202)]. we obtain, if we ........ 1 .. _ 

ounelv~ to pit vibrations only, with (9.135) 

(9. 

In second order, 0Dly the 
t.enru coming from. 
(N-2) bosom. Again: in the HF 

term of H coup conlributes~ and we obtain 
slates Ik,N) containing uro (N-O) a.nd two 

we have· 

(9.139) 

¥ 

According to our graphicaJ rules (see Chip. 8 and F). the first 
second term of l1E2 a.re repr~nted by the graphs a and b, respectively, in Fig. 9.1 
and l1EI by graph c. The process shown in Fig. 9.8d clearly involves a matrix 
element of H 40 (see Fig. 8.10), and we would have obtained it by laking in&o 
account H"IJ tenns in Eq. (9.131) and transronninl to RPA botons. as previOlwy 
mentioned. This quite lengthy procedure would have given I. second first-orda' 
contribution corresPO'nding to graph d. Neglecting the small RPA amplitudes. 
lUuuytic is given by 

1)''''12 

L pi • 
i D", + ~ - (i 

(9.140) 

The physical meaning O'f the different graphs g, as foUows, 

d.riot appIic:.atloD or pmurbitioo theory (9.136) alva different weiJbt factOR fot 1M 
YlIlrIiIDWI COIIltnl*tiou than LbOM Ml down. fIbe [tnt I.cm1 in (9.139), fot' .. 
mwtiplied by " faetot n It is, bowtv«. qulte a tricky poiat that in diIaooalW:oI 
tm:a or m Eq. (9.131). that is.. in ill perturbation to 
addltimW like ~ ~va (9.139) a.re generated (m adwtioD to of ","uIIWIL 

IIldDdina fa.cton (one) that we write down. Fonnally. thillooU 
hI.d wpprcued the factor I in Eq. (9.135). It would go beyood the K:OpIIl of thia boot &0 try to 
apiIUD. in IhiI coma about. T'his factor j h.u. however, a IOQlt-I1aDClUIII 

rnlllh'tlvl8'lW in the literature [10K 69, El 10] and we CIUI make the followinJ IlI.r.emM.: 

\V'Ae~ II fun ~tion of the rouptiol tmn (9.131) iii made. the factor I mUll be 
kept; whenever we wlnt &0 do only lowat-order perturbation theory this flctor should ... 
d.ropped. to uy c.e..tIe, we IhoWd b&ndJe II perturb.live tralmenl ~ for thal of I 
collective ~ with care.. smce the boIoill, of ooune. amtain 1m illftDIM 
number of perturbative inten.cDOU ud 
coUeoctive boIot:uI 
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p p 

p ~ p ~ 

Q} b) d d) 

1111l1li'89.1. Four possible diagrams representing the second-order contribution to 
particle-ph vibration coupling. 

The vibration and partic1e combine into a particle which afterwards disinte
gnues once Ipin into a particle and III vibrat.ioo. 

(b) As the particle and vibration travel ~don .. the particle excileS I! vibration and 
.. itself scattered into anotbeT particle slate which later on the 

incoming vibration. 
(t) The incoming vibration disintegrates into a particle-bole pair, the hole of 

which later combines with tbe partide. forming an outgoing 
vibration. Since "tbis represents nothing but an excbange of the hole from one 
particle partner to another, this process takes into account the Pauli princi-
ple. We also see that this term comes from a boson term in 
where we know from the for the even system, they represent 
corrections to the Pauli principle. 

(d) This process is the &ame as the OI\C in graph a. only the intermediate particle 
is changed to an intermediate hole. As we this is due to 
correlations in the ground s18.te. 

The terms Q and b have been taken into acc~unt by Kisslingler and Sorenson [KS 
63], for example, but that the coupling to boles may also be quite important wu 
pointed out for the fint time by Hafele [Ha 67]. The relative importance of all 
grapbs for the particle 3 - phonon coupling in 209Bi hJi.S been discussed by 
Mottelson [Mo 671. 

9.3.4 The Nature of the Particle Vibration Couphng Vertex 

Refore we go on. let us briefly discuss in some detail the vertex yl, (9.135). 
which is the main ingredient in all four processes shown in Fig. 9.8. For 

purpose we want to write the vertex in the r-representation viz: 

ytJ - J d)Y 1 dJY1 cpk(rl)y~(rl t 'z)CPr'" ('z) 
(9.141) 

yJli(r2' ' .. )= L J d3rl d 3
y) o(r1r:!'jr4)cp,:(rl)C':;-q;t,(rJ). 

Mf 

For the purpose of this qualitative discussion we approximate the force for 
the direct term by a pure Wigner 6-interaction (see Chap. 4), neglect the 
ex.change, and obtain 

y JIi(rl t f2) = 6(f) - r2)yl'l(fl). yl'l(r) <x 6p Jl(r), (9.142) 
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where 6pll(r) tbe transition 
sum rule 8.7.5) and lM"U.u'-'!lifiI.OiJli,-,&1 

considerations, we find the foUowina 

Bp). a: 'J..iA - I Y AO • 

We see. that the particle 
nantly region of the 
very relationship to tbe liquid drop (BM 15] 
M usual, this model the equipotential surfaces of the nuclear DOllenl 

V(r), for a fixed value of r. are to given for small 
lions by (1.7) [Ha 74a): 

to the equation 

V(rD' U) - Vo(r)~ 

WlClCI~:Jrni1ea potential. any ro we can 
pol:enlUI "" .......... ,.J by rescaling the coordinate: 

For smaU deformations we can .... 1'Io~"iiLLJlU. and obtain (we replace 'a by 

VCr, 

The coupling term is therefore of the form: 

Hct:Np! - k(r) ~ a~ YA,,(U). (9. 
;\.., 

with 
dVo 

k(r)- r dr . 

After quantizing Lhe surface as in the liquid drop model 
we obtain an expression similar to H CVllpa of (9.135). With 

follows the density, we get for 
tbe quadrupole mode (up 

(see 13.3.3) and the liquid drop 
"""-'''''.,.''' for higher multipoles. This kind of 

coupling vertex been used in numerous aDI)IICaOC}1W 

for coupling of a nucleon to either the 2 + or 3 - SUJrfl~ 

(seey for irunance, the articles by Arima 
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7Jb) and Hamamoto [Ha 74&] and references cited therein, and the 
erencereport on Problems of Vibrational Nuclei. by Alaga~ Paar, and 
lAPS 75D· 

_raoa. we apply boson expansion method to systems witb odd 
MrUcie number to study the concept of the so-called UeHective charge." 

purpose we start with the Hamiltonian [(9.131) and (9.135)1 make 
canonical transformation to RP A bosons (to lowest order in the coupling 

not difficult). and obtain the foUowing expression. 

H-ERPA + L£kCk+Ck+ ~O"O/o~ 
k II 

+ ~ yft a/clI;'" c/+ h.c., 
p.kl 

(9. ISO) 

(9.) 51) 

(We have dropped the factor t. since we are going to apply lowest-order 
perturbation theory; see discussion in footnote on p. 386.) In first-order 
perturbation theory, the wave function of the odd system is given by: 

y" 
-ctIO)+~ IJc O/ctIO). (9.152) 

pJ (A: - ~ 

We are interested in the contribution of this "particle-phonon" correction 
to the matrix element of an electromagnetic multipole operator T. For this 
purpose, we first have to transform T into the boson representation (9.130). 
Using the formulas (E.!l), 

L T~ICjc.+ + L (Tm1c,:c, + h.c.),. (9.153) 
mit ij mi 

we find, to first order, .. 

Ts - L T I'NI c:'c" - ~ TljcJc/ + L (TPO/ + h.c.), (9.154) 
m.I'I Ij I! 

with 

(9.155) 

We now can calculate the effective matrix element, which is defined by 

TJc~r -(kl 

(9.156) 

• In the roflowing. we ilLUume lbat the expectation value TO or !.he core vanish •. 



390 

lot k 

x- :. X-- + 

9.9. 

From formula we see that the particle vibration 
bare element T kI to an effective 
by the fact that the external field can excite 
which interact with If the vibration very colliec:aylt 

to reproduce the 
probabilities. The reason 

phonon excitation as 
element (9.156) can be written 

of the matrix eleinell~t 
rell,~~nt.ea In 9.9 . 

..... "'''' ... ,''' .. is the effective .... roul_._ 

Section 2.7.2 we saw 
for protons and 

experimental electric 
this of course, the 

9.9. Our effecrive 

the polarization charge ePQI (/) is now an operator 
depends on the energy difrerence (,. RepLacing this operator 
constant number corresponds to the concept of the effective 

(9.1 

requires 
COJrre!iDO'n.a:ma energies C/oi' The 

131) ~ + =~can 
"_"IVI" an for [Mi 

9.3.6 Intermediate Coupling and Dyson's Boson 

The perturbative treatment of the particle vibration coupling as 
in is, of only valid in the 
coupling limit where the off diagonal matrix elements of are very 
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U,14lI1A"',UCU ones. As a matter of fact.. is 
prototype of weak coupling, namely the 

CUI(,:WISlc'n below). In order to resolve the probJem, 
Hamiltonian [(9.130). (9.131)] 

-O}, but at the same time we 
the further to sure 

verRellce has been achieved. This nr.n,OTIll 

not, however, been far, and it is rather a different type 
boson theory has applied mainly to odd nuclei; this is 

DUCleBJ field theory (N [Re 75b. BBB 17] and references cited 
This theory nonlinear, it can be shown [IRS 79] that is 
mathematical relationship which reduces NFT 10 the linear theory 

Dyson's boson expansion (DBE), which bas itself ruso been applied to 
cases [OJ 73, RS 74b, SWR 76t IRS 80]. Since Hnear 

simpler to handle nonlinear we shaH present only 
We can also use the which we derived for the even case to 

a extent. It is not that the OBE is also fi,nite in the odd 
cue. 

operators are In 

see [DJ 73l). 

2 f;!B,.+ B/ B. - ~ rjB,+P/ Pt • 
• ~ k~ 

(b,J 8 =B,., (9.160) 

(ap)s == 2: r!:Bp + ~ f:t'fJ/P,. 
~ hi 

Inserting these expressions into the Hamiltonian (9.32) and diagonalizing it 
in the basis 

+ I. -
p 

the following matrix equation. 

L j 
2 y~. (QIoI + 

1 
2 

"1;, defined in Eq. (9.132) and 

_ ••• .&7 •• - - L 
I 

(9.161) 

c, 
(9.162) 

) (9.163) 

In (9.162) we use the quasi-particle equation [(S.IO) and (9.70)]. 
The evaluation of the matrix (9.162) is straightforward. and only 
the treatment of H 11 [see Eq. is lengthy. The summation 
over /L', of course. includes ph and pp vibrations in the limit of no-nil] 
correlations. can easily be out with (9.I33), (8.201). and 
(8.202). As can be seen from (9.162), is, as in the case of even 

number, non-Hermitian. In the significance of the 
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matrix 11, we have to 10 over to the 
between ph and vibrationl. We ICC that 11 CUI ....... """ .... _ 

h - pp oonfiluratioDI as 1.1 p - ph with P 
9.8c, the latter case takes care of Pauli J)flDaple 
__ ........ ,~ because, obvious, there is DO problem 

The meaning of the of COW'lle, IIKIIJCllle& 

the collective vibration built up the uncorrelated 
quasi-partide and the collective vibration of the even nucleus 
scopic factor). The quasi-particle can be a particle or a hole. The "1MIiI.WN< 

cients 11'), therefore, give the probability of, for example. bow "i&",",~",g 
states the in 209Bi arc built up from a particle coupled. 

and bow much they are built up from a 
to pp vibrations of 1IOpO, and 2IOBi. It should be Doted 
(9.162) corresponds to Ii ncnorlhogonal basis, aond therefore 
about relative probabilities can be made. 

The of matrix (9.162) of course, much 
the but we can hope that it can 

~"_t.6I_ of the collectivity of the ........... , .... ,.. 
COItnP,leU!IDCIIS of our 
as in the even Eq. (9.98)}, they at 
particle energies, and then are much higher than the interesting 
vibrations. Therefore, for cases where vertical convergence 
has been achieved, these cause no trouble. [n this case, all the 
are also real and the non-Hermiticity of the matrix causes no problem. 
cases where we do not have very pronounced collective and 
spurious solutions are therefore intermingled with the physical 
advantageous to transform (9.162) to a Hermitian problem in vU"'AU'_~ 
izing the norm matrix. and eliminating its zero (Le., practically smaller 
a certain value t:) eigenvalues [IRS 80. BSL 79]. Taking the square root 
the remaining diagonal matrix and inverting yields a Hermitian 
problem. This corresponds to an orthogonalization of the basis. The .... "",,,aLUII 

of this procedure are explained in Section 10.2. The dimension of 
Hermitian problem can, of course, never become Jarger than the 
fermion space. and therefore no spurious solutions will enter the 
Ul way. An ortnonormalized basis is also preferable for the ...•. u ........ 

of probabilities. 

In studying these questions it is very instructive to treal an 
tboup academic, model: In the case of no pairing correlations and three 

a closed core, the verlices 'Y in (9.162) and we l .. lI.n&lU 

following simple matrix equation (p. m, n are and ., • .,' pp-vibrations): 

(9.1 

with 

(9.165) 

where C~ a.nd 0,. are wlutiom of a pp-IDA calculation. As our model, we Lake 



o 

---'.10. 

P1f2 

-.--".,...- S"z 

confipration of the model. 

cue of three valence 
only one stale with 

an Jill and Pill level (see Fig. 9.10). There 
and spin up: 

+ !ID). 

calculated to be 

(alHla)-(DIHID ! ... -i+O.f!,.i.fI,I+o,~YI"-4,i 

-f:+ G+ H. 
We now bave to slltes; we suppose that only the 

diagonal elements are nonzero and obtain the following five relevant 'T 

.tales: 

- i,l- 1. 

e;'!" i-I, 

C:·i, -~ - I. 

C;'i,- ~ -I, 

-G; 

The corresponding five pr configurations are djl!iplayed in Fig. 9.1]. 
We can clearly see bow the Pauli principle in the stales enlarges 

the dimension of from one to five, that is, the space is now over-
complete. Let u.s the corresponding matrix (we abbreviate the 
different by I, n, ... ): 

8 1m -

BlfV-Blv·O. 

Continuing in way entire matrix, we arrive at the ronowing ~II..U.AI 
equation for the eigenvalues or (9.164). 

1[+£-""<"') -H 
-F E+ _tlj(lIr) 

-F H 
0 0 
0 0 

It is obvious that the f".rU'1"lI";IIr'l"llnnn11-n 

checked that the eigenvalues are: 

w(1) _w(2) _",,(3) -E; 

We 

-G 0 0 
G 0 0 

f+G ....,( GI) 0 0 -0 . 

0 E -<.>(l1li) 0 
0 0 2(-(,,)(111) 

matrix is non·Hermitian, and it an be readily 

W(4) -2E; w(5, -(! + F+ G + H. 

and four unphysical ones whicll lie at the 
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~ ~@+ 
D In IV V 

FIpre 9.n. panicle: boson configurations. 

unperturbed. particle energies. This, of course, is the: same as what we 
discussed in the ca.se of the DDE for even systems. The suues all 
the unperturbed particle (hole) energies. Of OUT model hiS only 
pedagogic order to explain the: principle involved. In realistic 
where there quite states of the even the actual 1ITl ...... '" 

be diagona.lized is the fc:rmion space. 

[MeV) 

0,2 

OJ 

o 

-,~ 
-0.1 -912 

-0.2 

03 

209 Bi 

~p [BI!IlI!t n][AH71 a] [ICII'U D] III) 
p~ ,-ph 

F~ 9.1l. spectrum of the particle vibration coupling states (septuplet) in 
2 Bi as given by experiment and the calculation different authors. For the 
column, the matrix Bt -".. p-f#' of (9.162) was omitted in order to demonstrate 
strong influence of flu:: Pauli pnnciple. The zero energy line corresponds 10 

of the 3 - state at 2.614 MeV in -Ph. 
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As an example, we show in 
~,._,_ solving Eq. (9. J 62) 
VtllOl"lt,_ convergence Fig. 

nuclear field theory are 
of other authors [AH 71 

In Table 9.2 we give 
....... ,,..,.- to see their relative 

to treat the Pauli 
the p ph, P 

I.JJWI&~UUl!" discrepancies with the 
One obvious feature 

2p 1 h components are the 
treated the weak coupHng to the 

- 2h configuration; by 
included, a task much barder to 

septuplet of 209Bi. which has 
the dimension successively 

achieved. In Fig. 9.12 the spectra 
[BBB 77] together with 

74b] using different approaches. 
(11') (spectroscopic factors) in 

9.12 we show how 
This can be checked by 

matrix B of Eq. (9.162). The 
spectrum can be due to 

omjued is fact that 
of the septuplet and we 

the coupling to the 
shou1d then also be 

9~ several staleS in 
septuplet of given by lbe Cit'. The laraest 

component fl~/l®-Pb(3 -) is normalized to unity. (From [IRS 80].) 

Pure single particle 
fl~/2®lOIPb (3-) X 
flh,r.t®lOIPb (6;> 

Pg9/20 - Bi (6{) 
lI'i l1 / 20 lO1Bi (6r) 

lI'ili/1®-Bi an 
(fld,rV I ®2IOpO (0+) 

(")rJ- 1 ®21~ (2+) 
(ffd1/.J-1®1IOpO (4+) 

(lI'p)/.J-l®21~i (1-) 

(J7',/.J- 1® 2Ioai (2-) 
(vp)/-J- 1 ® 21OSi (3 -) X 
(IJfPl/~-1®2Ioai (4-) 

(lI'p3/ir t®llOSi (5-) 

O.ODS 
1.0 

-0.385 
-0.406 

0.100 
-0.318 

0.326 
0.233 

0.286 
0.225 
0.151 

9.3.7 Other Particle Vibration 

As we said at the beginning, there are many 
coupling fOnIUllisms aU of which we do 
",co._dU • ...,.., we have not treated any of 

0.001 
1.0 
0.266 
0.356 

0.1 

I 
0.200 

-0.181 

0.026 
1.0 

-0.133 
-0.320 

0.211 
-0232 

0.090 

0.191 
0.255 

-0.235 

-
V 
/\ 

./ 

V 
'-
1\ 

theories {KS 63, DJ 73] for pairing 
correlations have to be included. One of tbe advanced in this 
respect which is, however, beyond the scope of this book is the one set up 
by Marumori and coworkers [KMM 72, 75(a+ b)]. theory able to treat 
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Wl!'Qk Q 
I 

I 

f'I&we 9.13. 
lb.ree-quui-particle state. 

mode 

not only the weak. but aJse the strong coupling cale where 
particles are strongly intetWoven (Fig. 9. J 3) (of COUrIC, thil i. 
for the DDE) and takes into account ground state correlations 
for instance, a proper elimination of the spurious componentl 
particle number vto)ation of the Des theory. A nice ap1Plu::alllOn 
theory, in which can be seen a from to ... r ... .."..' 

the h, odd neutron to the 2'" phonon 
different Xc in 9.14. Xc we 
~.- of the 'rom I»Xe to 

middle of the hU/2 IheU for the splitting 
the lowest member-that the 9/2 (correlated three 

than 11/2 of tbe odd neutron. Such 
are and are due to two effects: 

(i) a geometrical reason, which is that in a j-partide 2'" -phonon coUw 

pling the (j - 1) state is always the lowest member of the multiplet 
(see [KMM 75aD; and 

(ij) the of the ground state (BCS) correlations as the middle 
the shell approached. It can be shown that graph c in Fig. 9.8 
becomes very important. 

The coupling pronounced in the Te IsotOtJeS. 

coupling occurs. The experimentsJ trends are nicely 
theory. 

20 

&ersY IIYllematllCl 
{From [K.MM 

particle vibrational coupling slate3 for Ii 
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~,y.IoJ'AA&A.JIIii. in Even Systems 
different kinds or weak coupling 

not occur only in odd mASI are 
coupling situations in even nuclei. For example., the two 3 -

'DDii)n<;1D quadruplet in lO8Pb (3 - ® 3 ~ ~ + • 2 + ,4 + • 6 +; only the 0 + and 2 + 

experimentally identified so far) is likely to be of the weak 
type [BBN Sch 76]. On the other hand, it is preferable to 

I 
2 

a formalism able to describe intermediate} 
"""", ....... JUUL situations at the same time and we seen above 

DO!ton expansion (DBE) is such a fonnalism case or 
to magic nuclei. Treating the coupling of one- two-

we can write for the wave function: 

Ji}= 2: C~")B/IO)+ 2: C:t~ii,.~ Bf&:IO). (9.166) 
" I'1~:l 

......... 'P. of course t again include ph and The 
has the fonn 

1 "'" ' .. ~" - 2 LJ ytl,r;r;- (JL~ H 14) 
/1:1 

(9. J67) 

with yt given (9.132), r~ in Eq. (9.29), and W"II'I11'iJl4i (9.72). 
equation been numericaHy solved for the 3 - ®J - quadruplet in 
[Sch 76}. in the vertical direction (see Fig. 9.3) has been 

achieved for about 10-20 configurations., and the splitting of the quadru
plet found to be of the order of )00 keV. indicating quite a coupLing 
situation. 

in the case of superfluid nuclei. a more elaborate theory has to be set up 
due to particle violation. This has been done by the 
group [IMS 76]. it has been to explain, for _ .... "' .... :0:"'. 

the of the second 0+ state some Ge 
interplay between the 

1,Ll" ,UAV'" 1 of a (2 + ®2 +) quadruplet. The fact 
.tIl!.nllnn. ... ~ are '''soft'' with respect to pa.ir vibration can be 

understood from Jow-Ievel density U - 1/2 states) below the fermi 
surface and the high-level density just above the fermi level U - 9/2) 
in these . As Chapters 6 and 7, pairing correlations are 
favored by a high-level density, and the nucleons therefore bave a strong 
tendency to exploit the phase space offered to them just above the fermi 
level. This the nucleus very anharmonic in the pairing mode. These 
considerations conclude our studies about anharmonic effects in nuclei, in 
which we have seen that boson descriptions are adequate to describe 
even and Odd numerical applications have, however. to 
"'~1"..,.'n out to method aU its aspects from a practical point of 
view. 



CHAPTER 10 

The Generator Coordinate Method 

1 0.1 introduction 

The description up to now been D&l1CQ 

on a generalized product state so as to include as many 
as Using this picture as a correJa tions were 
taken into account by including n.n4~nn In principle, it 

to obtain the eigens ta tel boson picture. but in 
we are restricted to a limited number 
describe harmonic vibrations in .IIu .......... 

and anharmonic in tbe 
are 80 soft that they are just about to ....... A' .... V'.'" 

phase transition), boron ....... 1""""" .... < .... "." """''WU;UI''f 

no lOB,geT be sufficient. We 
infinite order. I t is for 
whc<i"e really large ...... ,IIjp;;r .. ,<_ co/"«,'tve """' ..... £1."'1' 

a candidate for a theory 
handle these 

quantum mechanical 
superpolition many 
a generaliz.a tion or 
method in molecular for 
functions {MEL 76]. The method cao 



........ ,........ the general 
Lipkin model. The close 

lOll e.1ql1lD1101lLl is treated in Section 10.4. A very example 
la!Ue ascl'lllator (Sec. 10.5). Complex geoerator coordioates are 

10.6. One of the reasons to apply the GeM to the 
is the fact that we can a fuUy 

which provides a 

~:uc'n 10.8, a method is presented 
functjons. Some applications of 

10.2 1be General Concept 

1 GeM Ansatz for the Wave Function 

coordinate method consists of a very general ansatz for a 
function. It is a continuous superposition of the generating 

integral a 

are labeled by an unlimited of real or 
{a}-a"a 2 , ••• ,ai • the so-called 

as wave function in the many-body 
coordinates 

J do f(a)I~(o). (1 I) 

as are not coordinates in the strict sense. 
redundant coordinates. They are only a kind 

index in the (l0.1). The runctionf(o) is a 
weight and is called a weight junction, although as we shaH 10 

the mathematical sense it no wave function. 
The of functions well as the limits of integra-

tion in (10.1 be chosen to be a.nything we like. Depending on 
nature the 1<)(0» and the number of parameters 01' the 
(10.1) may eventually contain the exact solution of the Schrooinger 
lion. In cases we use product wave functions An example is 
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Nilsson wave functions in a potential of deformation fJ (see Chap. 
this case, {1 would be coordinate. 

Another example is the most product HFB-type wave 1W1~ct1iOftlI. 
l<l!(z not orthogonal to some function They are given by 
theorem of (Sec. 

I~(z·»= Not-XP{ 
k< 

where lick' (k k') are 

Hamiltonian H can 
(10.2). However. 
large in case. For Dr2lCUcaJ 

as much as 
genera ting functions 

situation 
l.U ... u,,"',.....,. In general, 
are only able to a 
H by an ansatz of the form (10.1). 

10.2.2 The Detcrmina tion the Weight Function j(a) 

The weight function j(a) of assumed to be a weB 
behaved function of the a (in square integrable), 
that we can perfonn the following mathematical operations. t For a deter· 
mination of the function f(o) we use the I principle: 

--~--o. (10.4) 

Variation with respect to j(o) the equation 

J da'(4I(o)IHf4l(tl»f(a') = E J dol (4I(o)l4J(o'»f(o) (1 

This equation bas become 
may be formally written 

III 

• for we WIO 

t The reader who is 
reFerences [La 14. La 76, 

Wheeler [HW 53}. 

~Ier mlUMmallctJ foundatiON! i4 to tbe 
mallleuluauC:aI properties of the 

techniques are treated witb complete rip. 
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the overlap IUIllctlllc:ma 

a') - <~Q)IHI.(a'»~ ( 10.7) 

a')-

it looks very similar to the diagonalization of the Hami.ltonian 
nonorthogonal "basis" of the generator states 14t(a» [Wo 70}. This is 

II"IlIunlV true if the parameter a (we win restrict ourselves in the foUowing 
oDly one real parameter) has only a finite number of values a ..... ,aM' 

case there is a finite number of functions ,.) -I~ai» that are, in 
Hnearly dependent and not complete. In fact.. the HilI-\Vheeler 
(10.5) is often solved numerically by discretization. We then 

get a matrix equation of the form (10.6). In the general case of 
Ii continuous parameter Q, however. we have to be a Liule careful. as we 
lhaH see in the following. 

The formal solution of Eq. (10.6) is easy. We could try to invert the 
~ and diagonaliu This yields a non-Hennitian eigen-

{ problem~ and this is only possible if bas no zero eigenvalues. 
However, this very often the case, since the set of lc!J(o» in 
UD~~lly dependent. Therefore. we solve the problem by an orthogonal. 
ization of the set I«p(a». There are several methods by which to proceed. 
The best known is the procedure of Gram-Schmidt, which corresponds to 
I. decomposition of the matrix 9t into two triangular matrices Sec. 
8.4.4). Another method which is also applicable to the continuous case is 
the so-caned symmetric orthogonaLil.8tion. It corresponds to a diagonal
ization of the Hermitian operator 

(10.8) 

In the following. we assume that the spectrum flJc (k == I. 2, ... ) is discrete." 
Since is a norm~ its eigenvalues are never negative (flk ;;.. 0). 

The functions uk(a) form a complete orthononnaliz.ed set in the space of 
the weight functions J(a) 

~ ulc(a)u:(a')= 6(a- 0'); 
Ie 

The opera tor in this _vel"""" can be decomposed 

~1/2(a,a')_ ~uk(a)r,;; u:(Q')~ 
Ie 

( 10.9) 

(10.10) 

Cllb.i. is the cue if '?Jl of the Hilbert-Schmidt Hermitian and with I. flllite 
true 01 I!:l +C!l. [RS nD. 111 m.Il1)' ~ CUfII the ud X do DOC. have 
prop«ty (for ~. Eq. (IO.49)~ HowevtIr. il I:w ahOWD Lbat by Ii IIwlabk dum. of 
the [TP 78) or by muitipltCltkm of the aeneradn, Iltlltee with I. sui ..... 
refi;1)ml~2bc:m factor rC") (La 76~ we can always achieve thill property. The theory may also 

de'Ii'e:li'il1'W!!l:l more or leu in the IULme wa)' with weaker llaumptioolL, in wbk::h there is i 

t ... ."..",. ... lIJPC'Cb'Um QTP 78): see .lso Sec. 10..5). 
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and we can formally deduce the Hermitian eigenva]ue problem 

~I -Eg 

with 

I/lg. 

The invcraion of 12 is impossible if bas zero eige.nvaJues (nt - 0). W 
fUDCtions f¥..a) which lie in the corresponding produce many~body 
functiolll vanish identically: 

-J do da' r(a)GJJ..a, a')f(o') - O. 

if there exists a zero eiaenvaJue, the weight functjonl f ~ing to aD 

stllte are not de1amincd uniquely. We can a.lways Idd a runetioDf 
same find I unique correspondence I'i') 

function j, we should therefore at least restrict J(o) to weipt rUllctioal 
linear combinltiom of &ft(a) with :pO. For each of these 

a vector in the Hilbert space 

- I J uk(a)I~(a» do. 

These vectors ue called natural slal~. It is easy to show that tbey are orthogonal 
They span II sub Hilbert space o\}c. the so-called "collective"" subspace. It is 
1NW1ILLl.v." Hilbert which all the generating states l(1I(a». The projee.. 
hon onto IpaCC is given by 

(10.1 

Instead of Eq. (10.11). we now diagonalize the Hamiltonian PcHPc in the 
collective subspace 

( 10.(6) 

with 

&I~ (a) &I -(a') -f da da' _A_ X{a. a') Ie • 

.rn; rn; 
(10.11) 

The .... A''' ..... are given by 

Ii').... 2: gklk). (lO.II) 
it. n ..... O 

From (10.14), we find the corresponding weil,bt fWlction 

(10.19) 

If there is only 8. finite number of eisenvalues "k (or. more if UfO 

not a limit point or the I1k8), the function J1a) is always well defined by (10.19). In 
th.e continuous case, however. there are of len infinitely many non-vwlbiDg 
vaJues nil: with zero as a limit point. It therefore haPlX!us tbat the fun.cbons J(Q) 
diverge, even if lit) (10.18) has a finite norm a:1 ~12 < (0), al we see from Eq. 
(10. J 9). This means that there are vectors in tbe Hilbert spa.cc ~c that cannot be 
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of form (10.1) with well-behaved functions 
rUII~iJM J haV., the character of distributions [see Eq. 

CUI llewr solutions of the Hill-Wheeler 
the intesratioo .... 

OCM IIl)Htz (l0.1) represents an. expansion of the 
IUlliC\l~iJM 1+) term, of the nonortbogonal generating functions 

...... 1~ .. Ai'U coefficients are given by the weight function lea): For a 
unl~I''I'UlDQ.1.D& of the physical meaning of this function, it is useful to 

mfirodlLJee die so-called biorlhogorwl basis [Wo 70]. It is given by the states I~a», 
the property 

(cf.(a)l«a'» .... 8(0 - cr). (10.20) 

If the norm has zero eigeflvl.lues, we can obviously only require 

.. p J. (a, a')- L uk(a)ul(a'). (10.21) 
1c./IIJe .... O 

~- P l the projection onto the space orthogonal to the eigenvectors u.(o) of 
Bq. (l0.8) with eileDvlLlues Itk -0. We can construCI vectors Icf.) with this properly 
by expanding them in natural states 

.,"'(o} 
Icf,(o»- It Ik). (10.22) 

k. ,...,...0 
The biorthogonal states I~a» defined in tbis way, however, do Dol geocraUy 
belon.g to the many-body Hilberl space, because their norm is not necessarily finite. 

we can now the weight function j(o) belonging to the 
Hill-Wheeler stale I (10.1) in term, of 

j(o)- 00.23) 

Therdore.f(a) measures the overlap between the function and the slate I~o» 
in the biorthogonaJ basis. It is not the probability amplitude for findmg the 
generating state 1«>(0» in the wave function I The latter is given by <~Q)I't). 
The fonnuJa (10.23) again makes c1eu that j(o) is not necessarily a weU-behaved 
fun.ction. 

So far, we treated only questions connected with the structure of the 
GeM representation (10.1). These properties were completely determined 
by the set of generating functions !cI>(a» used in this ansatz. In analogy to 
Chapter 9, we can them kinematic properties. because they have only to do 
with the underlying basis. We did not ask the question of whether the set 
l¢l(a» is useful for a description of the eigenstates of the Hamiltonian. that 
is, if Ii') can be represented at least in a good approximation as a linear 
superposition of these functions. means that we did not investigate the 
dynamic aspects of tbe GeM ansatl.. 

We only can expect to obtain from Eq. (10.16) wave functions Ii') which 
are close to exact wave functions of the system. if the Hamiltonian 

.. The mlthematical ~[I for these probk:m~ is the raet that the tinear space formed by 
the Hill-Wheeler nates (10.1) wit.h mathematically well-behaved weiJht runcaioos /(0) iJ.. in 
general. no Hilbert space, becawe it is not clO6ied in the senile that for each converging tel of 
vcc:1.OTs Ii'j) there ex:istl a converg,i.ng let of welJ·behaved weight functtoNi fr(a). 



a 

[ 

10.23 Methods of 

Based on the above COlI11l4:leJ'auon. 

numerical methods for 
(i) The obvious 

points for the 
energy E and for the wave function 
the weight function !(o). 

Small eigenvalues of the norm are connected with approximate 
linear dependence of the functions. I t is !herefore not meaning-
ful to increase the number of mesh too much. Usually we limit the 
number of points in such a tbat there is no eigenvalue of the 
cQrresponding norm a posItive constant (, 

(ii) In some physical problems we use generating functions that allow an 
analytic solution of the eigenvalue problem (l0.8), such that an eXJX1.1Uion 
in ntlillmi slates of (J 0.(8) can be carried out. The approximation 

COI:Ullits of cutting after a finite number of D.alural 

In the 
difference (0 
They are 

In 

a finite probl.em (10.11), where 

Q')~ we can 
plane waves 

nonn a') only depends on 
the eigenfuDctiorUI II ) immediately. 

(10.25) 

(10.26) 

natural corresponds to a Fourier 
limitation to eigenvalues larger than E excludes the 

wave function with high k·values. 



pm_ble to 
this property. In 

!tWIll"" with to 
by perturbation theory [LL 77}. 

pproJl.tD'l.u:on uses properties of the overlap 
'1IiP1lJl!lmllllil!l X(a, a') and a'). They are often sharply peaked at a - Q'. 

fact, we can transform the HW equation (10.5) into a differential 
tltII'ItlIllDI'I of order. We will discuss these methods in more detail in 
ZM!lC11JOn 10.1. 

103 1be ... ..,. ..... _ Model Example 

order to fix our ideas on a specific example we apply the foregoing 
InoM to the wen-known Upkin model (see Sec. 5.4). 

In th.i.s model, from Eq. (5.48) we have for Eq. (10.2) 

(ala)-I 

and, with Eq. (E,51), obtain ror the norm a.nd Hamiltonian overlap 

~a. b)-(I + aeb)o(1 + lal2) -0/2(1 + Ibll) -gIl 

Ind 

b). 

Decomposing the integral equation 

J d(Re a')d(lm a')(X(a, a')- a'»1(0') =- 0 

(10.21) 

(10.28) 

( 10.29) 

(1030) 

into its real and imaginary pan we obtain two coupled two-dimensional integral 
equations for the rea] a.nd imaginary part of j(a'). As we shall see, this equation 
contains the ex.act IUlswer. It even contains the exact answer if we restrict ourselves 
to only real parameters a -tg(fP/2). This yields 

where we use the same letter ~. J for the transformed functions: 

with 

( ( 
,,-4f' ))0 

':Jl( fP. ip') - cos -2 - · 

~I[( ') dl { cos 'II J 
-'".ql. ql ... - T cos (+/2) + 2 

4'- .,-,,', 

(10.31) 

( 10.33) 

In order to achieve the diagonizatjon or the nonn overlap analytically. we use the 
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identity 

and t.hAt the 

with 

,0- t D (0 
k~O k 

0{2 (k: 0 ) 
l1li L IE 

Ipm -0/2 
(I 

a of 

"k - 2" ( k: 0 ). (10.35) 

(10.16) is a 

L HkJ/ g.' - Eg.. ( 
Ie' 

Hkk•• 
dip 00.37) 

. y.'" 2 ... 
!lfdcJJ (10.38) 

am::icmilon in Eq. (1O.J6) clearly reflects the faet that 
o partklcs we cannot excite more than n + I different ph 

Op - 012 up to the Up - 012 stale. Since we started from a 
arrive at (10.36), it is that eigenvalue 

the exact answer for the Lipkin model. 
easy to evaluate the matrix elements (10.37); thus we have a straight-

the Lipkin model exactly. This us that. at least in 
"U~ioU"''U. is very powerful. We have to "" ...... ''' ..... ~u;,o,. 

10 .. 4 Generator CoordlDate Method 

we mentioned the GeM is a method in 
going beyond the techniques. Never-

limit of weak anharmonicilies it should contain tbe 
We will show in this actually the 
11]. 
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general product wave 
of generati.ng runelions. 

representalion (E. IS) 

* 

In(l-zz'*)}. (10.39) 

-h z'·)· 

(10.40) 

Z/lll)={Z---} ~z.z'·)-
1- Jd 

(10.41 ) 

Z'*)={--1-

l'.)=-{ I } ~z, z'*)= 
1- Z lei 

we use Zlel and ::1 (k 
we obtain the 

I) as independent 
< I, k' < I') 

the sense of Section 

[ a~., · 1-0, 

Then the quantities PAl' KId' i lft • and therefore h, can expressed as opera-
tors acting on '9t(z, z'·): 

- fir'lf 'III) ( ~ d )Y'Il1 I.)' - ... z''''). I(kJ"""z,z = zkJ ~zlcpzlf-~- ~""z.z = # 

pq uzP9 

z'*)- _d_ E :'*), (10.44) 
aZId 

,.) ~ a -'" Y'Ilf '.) 
Z - ~zlp-~- =P,d..r",Z,: . 

p uZkp 

The relations (10.44) are somewhat tediolls but straightforward to verify in 
differentiating t.he norm overlap. For the reduced Hamillonian (10.40). Eq. 
(10.44) means that the operators 1(. i( and p can be replaced by 

.. The defmition of the tlVll!l!1An functioos 
1:1eY1,lIIrS from Eq. (10,1) fOl' of z. II makes it UOCIIOtlS depend 
IIl.clualJy 00 t and DOt 00 t· 
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differential operators. In a shorthand notation we therefore gel 

z'fII)-h(z.z'·)9t(Z t Z ''') h(Z' aa
z 
)~Z.ZI.). (1 

With Eq. (l0.5) and the definition 

g( z) =- J dz'J(z ')GJL(z, Z'fII), (10.46) 

we the SchrOdinger equation 

It turns out that the operator h in Eq. (l0.47) and the boson Hamiltonian 
(9.93) of the Dyson expansion are identical if we identify the operators 
and a/,aZkl with the operators B: • Bid' respectively [JOF 71}. z 
ala: are correspondingly the Bargmann representation of B + and B 
62. J5 64]. At this point., this step is completely formal. Its 
background is discussed in Section 10.6. 

Since we showed in Section 9.2.6 that.. to infi.rute order, aU boson 
expansions are equivalent and that they can be mutually transformed into 
one another, it is not astonishing that the Marumon and Belyaev
Zelevinskii boson expansions can also be derived with the GeM [Ho 72~ 
For instance, the RPA was deduced in this way in an early paper by 
Jancovici and Schilf [J5 64]. III 

We know from Chapter 9 that we can the exact eigenfunction 
of the Schrooinger equation within the boson space. It is therefore now 
clear that the ansatz (102) contains the exact solution not only in the 
Lipkin model (Sec. 10.3) but also in the general case. Contrary to the 
Lipkin model. however, the representation (10.2) is not necessarily unique 
in tbe general case .. because there is no unique solution I of Eq. (lO.41) if 
the integral operator Z/) has zero eigenvalues. In fact, this is usually 
the case, z) is totaUy antisymmetric with respect to the 
indices ilk" i2k 2 ,. .. in the arguments .z:-Jt~ and projeets a.l.l symmetric 
parts of the function j(z') onto zero. To a unique description. we shall 
therefore restrict ourselves to functions It which are totally antisymmetric. 

To solve the Hill-Wheeler equations for all generator coordinates ZiI< 

exactly is certainly impossible. In practice, we are restricted to one or 
perhaps a few coordinates. It is a problem in itself to deterrni.oe the 
optimal genera. tor coordinates and wave functions. We will come back to 
this in Section to.8. 

In most cases we rely on phenomenology for the choice of a few 
collective parameters QI' a~t' ... as generator coordinates. Then the of 

I.llV1UaJI wave functions (10. t) contains only a tIlrt of the many-
body Hilbert space, but we hope that we are able to at least de9tribe the 
coHective modes a nucleus undergo. It is dear that this is only 

OIl See also ! BW 68]-
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po1N1IDIC if the collective is well aU other degrees of 
freeG4:>m that are not taken into account by the ansatz (10.1). 

The One-Dimensional Hanoonic OsciUator 

!DOGe. whicb is often u.s.ed to show the problems that can the GeM is the 
o.D-4JlIDc~alOn8.1 barmonic It is of great 
COlleCltlVe mOUOl1l. linte we have seen that the collective at low energy 

described quite well in the harmonic approximation (Chap. 8). Assuming 
ODe collective degree of freedom, we get: 

H- 2~12+ Mw
2 a2

• (10.48) 

in the 9-representation (QI9> 

(10.49) 

".r ..... _u. for norm and Hamilton O'II'erlap FUnrU1:1ft 

(10,50) 

( + ~-) }. (lO.SI) 

analytical solution of the corresponding Hill-Wheeler 
(GW 51]. But to conSlruct the collective 

the method (ii) described in Section 10.2.3. 

(10.5) can be 
apply in the 

TV..,' ...... has a Gaussian form and depends only on the difference 
41&cuased in Section 10.2.3, it is diagonalized by th.e u(le, a) 

n(Ie)-

u(le. a) - _l_t!-Uui. 0)- (10.52) 

_n,,.'N" Ie is now iii. conlinuoWE index. As we see, the spectrum has no uro 
eigenvalues for finite Ie's, but 0 is a limit point for k-+oo. of the 
Hamiltonian in thi.s is 

"(Ie -Ie'), (10.53) 

iJ the momentum space version of the " ... ,", ... 
important point is that the parameter .1, which depends on 

This is 

um;pa4:e I.S 

(lO,,S4) 

-The •• uc:: ..... lU <!X. in (lO.so) is DOl of Hilbert-Sebmidt 
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The solution for the ground state is 

go(k)- ( .. ) 
1/4 

with 

b-

The corresponding weight [unction JrJ.a) can be 
(10.52) or by an explicit solution of the HWequation 

Jr/..a) = f die 8o(k)--u(k,a)-

In 

+r/..q)- f do Jr/..Q)(ql~a»)-

We thereby fouod the correct ground state wave 
UD4COCmI It can also be explicitly 

we can ICe th.at the function fo 
just was to IN'TIi'''_ 

atate. However, th.i1 is only OOI:I1t)lle 
lunclulln is that or the solution, 

can only increase. Eq. (l0.56) is therefore only 
If. on the b J, Jc/...a) is no longer given by In 

a distribution ill in order to 

( 

However, we can derive Jr/..o) from the integral (lO.S6) by expanding the integrand 
in powers of (32 - b~; then: 

10(0)- r;- ~ (!(.f2 -b'l»)"(->" 6(~l(a) (10.58) Vj 11-0 2 12 

is a solution of the HW equation for !J > b. It is obviolLS that we never 
obtained by discretiring the integral equation. 

'Th.is example very for,l b it is not 
exact ground state with a well-behaved weight function fo. The coUective 

in this the whole Hilbert space. We have to C::1.uvm~u.e. h, ... ..., .. 'IJ' .... 

_IU.'_ with diJcrete mesh points to the right 
wave '+'o(q) (10S7) for all vaJues of the width :I (lhill can 
the pneral Tauberian theorem [Wi 33D. Only the weight 

1IiUlI'''-W4IPw& way to avoid this difficulty. We can use 
CO_lOItD1 complex Q. For we DOlam 

with the analytical of Eq. (10.56) in integrltins a10Dl 
(Q - Dr + iili): 

- 1/4 -rr1J:) e . (10.59) 

Here we have only used the fact that in giving the generating 
we have its analytic continuation ioto 

then have to deform the path of integration a as to enter a 
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is weU behaved. For a numericaJ solution. 
~"'.U4_ in ordror to find tbe"'good" 

to know the 101ution. 

10 .. 6 Complex Generator Coordinates 

formulation of quantum mechanics exists based on operators with a 
spectrum-the so-called Bargmann representation [Sa 62]. The 

corresponding basis functions are not orthogonal in the usual sense. The 
corresponding Schrodinger equation is therefore of the Hill-Wheeler type 
(10.5) with complex generator coordinates. The method of complex genera

coordinates in the general sense is closely related to this representation 
quantum mechanics and we will discuss its properties in this section. 

the sake of simplicity we restrict our discussion to one dimensiond 

10.6.1 The Bargmann Space 

The states of a quantum mechanical system Icp) are vectors in an abstract 
Hilbert space. For concrete calculation we need some representation, for 
instance, tbe wave functions in coordinate space 

tp( q)- (10.60) 

that is, we use the eigenfunctions of tbe stU-adjoint operator Q as a 
basis. We can also use the momentum operator P and then have the 
representation in a Fourier space. The eigenvalues of these operators q or p 
are real, therefore we can work with real coordinates q or p. This is an 
advantage of such representations. A disadvantage is the fact 1bat the 
eigenfunction Iq) or Ip) has an infinite nonn. They can only be normal
ized to a 8 function 

(qlq') - 8( q - q'); (p! -8(p-p'). (10.61) 

Instead of Q and P, Fock [Fo 28] introduced the operators 

wbere the constants wand M are arbitrary at thics point. They obey the 
commutation relation 

( 10.63) 
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Bargmann [Sa 62] used the operator 0 to derive a new f'tjIr(f<~..--ft ..... ",.VY 

non-Hermitian operator 0 can be diagonaliud and has 
numbers z as iu .... " ... ft'l./Q 

o 
The eigenfunctions are called. rnl"'l'I~flU : ... u.""'~" 

great use in the of 1'''''''1''_,,",,1' pUI~u~'wt:milll 

rep:resc~tc:a by the eigenstates 
functions) 

in the foUowing wayt 

is the ground It is easy to derive 
relation from the nrt''\iII'IiiIIIIlrn.1 II)J. U""~'4lN 
get 

0+1 -dl'z), (10.67) 

The orthogonality relation (10.61) now has the form 

.... exp( z· z') : - B ( z" , Z/), (10.68) 

which means that states have a finite norm. but are no • ...,u, ... _ 

orthogonal in the usual sense. it is to define a 
positive measure d,.,.{z) in the complex plane. 

1 _I 12 dp,(z)--e I dxdy. wherez-x+ry, (10.69) 
'" 

which allows us to derive the closure relation 

-f dp.(z) (10.70) 

where the integral rum over the whole complex plane. Equation (10.10) 
can be proved with (10.66) and (10.69) using polar 
z - ,-elf', 

In analogy to Eq. (10.60), the wave functions in this representation 
given by 

(l0.7I) 

From (10.66) we see they depend on z, not on z". The measure (10.69) 
allows us to define a scalar product 

(~tI"'2) - f dp(z) -Vr(z)"'l(Z) - <~JI"'2>' (10.12) 

... For A pn.eraJ group t.beoretia.l ddinition of roherellt lIi.ate.s, see [Pe 771. " 
'We use the IWter-Campbeli-Hl.usdo:rff formula [Wi 67) 

eA. e. _ eA +6+ 41 .... 6j 

fQr operalOB A and S, that commute with [A, B]. 
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with respect to the 
'I"IIM"II·r~·n ",,'U'L.IU for the ........ "'11'" .. 

-~(z). 

d 
- dz.p( z), 

d 
O-dz' 

(10.73) 

(10.74) 

_un .... obviously fulfills the commutation relation (10.63).· 
with Eq. (10.70) it is easy to that the function B(z·, 
has with the (10.72) properties in the 

.... , ...... u the 6 function in the usual 3VC1L........, • 

.p(z) = J B(z. z'·).p(z') dp.(z'). ( 10.75) 

F ...... ,.. .... It,,.,._ often Bargmann's complex li function. In 
it is an entire function and no distribution. 

10.6.2 The SchrOdinger Equation 

We SchrOdinger equation 
~I"'.U,.U ~'r"ifI' by mUltiplying by 

l.p)- EI+) as represented in the 
inserting the complete 

(10.70) 

J H (z, z"~)tJ!(z')d}1 (Zf) - Elft(z)~ (10.76) 

H(z,z'''') (z·IHlz'*) (10.77) 

is a function of z, z'·. It does nol depend on z* or 
We can rewrite Eq. (10.76) in two [UB 68]: 

(1) We can use Eq. (lO.75) and gain an of the Hill-Wheeler 

J (H(z.z'*)- EB(z. ( 

to the GeM 

1tJ!)-J dp, (z)*(z)lz·). (10.79) 

where the coberent states Iz") of (10.66) have been used as 
generating functions with the complex generator coordinate z. 

'" One not be oonf'Ullfld by the ract that ('0.74) is different from (10.64) and (10.67). 
Thc reason is that there are two dilTerent 0"',0 actina in dirrerent Hilbert 
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advantage of 
corresponds to 

functions is thal their overlap B(z. z'*) 
in the Bargmann space. It has the 

more or 

(ii) We can introduce h(z. Zl*) 

H(z. z''')'' h{z, :'·)8(z, z'e) 

and use 

a az B(z. 

to transform to the differential equation 

: lI(z, a ) : .v(z)- E.v(z). 

10.7). 

hO'WlI'!'lfrl'!r we 
form of the Dorm 

approximatioQ 

Because of the 6 function property of the function B(z. Z"") in Eq. (10.75) 
the function g of (10.12) now with the weighting function, 
that is, the nonn overlap in the identity operator. 
fore, the weight functions are now well behaved, which was not true 
in t.he case of real generator 1'''''',. .. '''' However, we have [0 

that this holds only for functions of a form. In 
general cue the use of complex does not automatically 
well·behaved weight functions. 

10.6.3 Gaussian Wave Packets the Harmonic Oscillator 

__ "",,,,.u wave packets in the harmonic 
theory of coherent states. in the some 
their properties and, particularly. 
Dot need aU of the following context of the 
coordinate method, in which we treat only the stationary problem. 

The coherent state in (10.66) is represented by the boson 
operators 0 + and 0 of a harmonic oscillator Hamiltonian . 

.... 1 1 

Ho-' {M + M
2
w 2=:Ilw(O +0 i}t 

with the oscillator length b -(hi MW)I . (10.66) is not 



normalized. In the following we 

Iz.O)= e 

corresponds 10 the 

produces a shift in the DO~K)n 
" S, == 0 + 
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normalized stales: 

stale of Ho> The unitary operator 

+ z·O) 

by an z (see Sec. E.S) 

=O-z. 

Decomposing z into its real and •• ""' .... I'!i •• ~ 

1 z-

A 

we can also it by and Q, 

S,+ -exp~ (PoQ- qOp)-exp( - ;Ii po'lo)exp( ~ PoQ ).exp{ 

which shows that it produces a shift the ""',...' ..... "inale by an amount qo and 
the momentum by an Po~ 

~+QSJ- -qOl 

The coherent state 

Iz, (10.84) 

is therefore nothing but the ground state of a shifted harmonic oscillator 
... 2. 

(P-Po) Mw' 
Hr; - 2M + ~ - '10)2, (10.85) 

It is neither an eigenstate or P nor nor of the original Hamiltonian Ho-
We obtain for the mean of the coordina te and the momen tum 
operator 

'" OIQlz. -
A 

Plz, =Po> 

for the 

(z. 

Therefore, the coherent 
can be found~ 

We can represent 
function 

0)- 2 ' (10.86) 

• ....,. • ." ... "" the uncertainty 

... 
0I4P 

are the "most classical" wave functions that 

in coordinate space by the wave 
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Using 0 + - 0 - iii bP / 1'1 and 0 "'" 0, we obtain 

~O<x) a e - 1I~<x-1f 

This is a ~.a.u wave function centued around Ii bz a qo 

"'o(x) -
-1/2 

b) e-

-I 
-( b) 

an eigenfunction of the original 
nian Ho' the t'nrU"N'ft 0) fonns a wave packet. We obtain its 
evolution by 

i 
I 1,0) a e It HoIl z, 

Decomposing ze lUi into and 

iwt,O). 

we find 

ze iWla-L(q(l)+iP(I»), 
b Mw 

where 

( ) 
Po . 

q t - qoc~s wI + MwSln ~t, 

p( t) "'" PoC{Js wI - Mwqrflln wt 

describes the path of a particle with the initial conditions qo' Po at 
/ -0. To obtain the time-dependent wave function in coordinate space. we 
nave only Po qo in Eq. (10.87) by p(/) and q(/), and to add 
the trivial phuc -

c -1/2 i 
~O<X,I)-(VW b) exp Ii (S(x,/) (oI). 

with 

-W(t)+p(t)(x q(/» i~w(X_q(t»l, ( 10.88) 

I hw 
W(t)- 2 p(t)q(/). ~a T' 

~UllJI wave packet whose center q(l) moves like a 
with constant frequency w. The wave packet 

itself preserves no that it moves 
"'cohereD tly ... • 

We obtained wave packet as the time evolution of the stationary 
ground state of a shilted harmonic oscillator Hamiltonian, We can 
take internal excitations of this wave packet ioto account by starting witb 
the excited the shifted oscillator (10.85) 

I n)-S/I - _1_(0+ -z*)"lz, rnr 
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Again'll their time dependence is given by 

I z. I, -M 
:t 

COITel~J)Ona:lnl wave function in the coordinate space a lengthy 

_,IfJr"'" HII are the Hermite polynomials and S(x, t) is given in Eq. (10.88). 
"...._"'"., these Hermite wave packets ",,,(x, I) oscillate al,ong the 

q(l). their shape. At each time they represent a complete 
orthogonal set, which may be an efficient tool for the investigation of 
time-dependent processes. So far we started with stationary wave functions 

a Ibilted oscillator (10.85) having the same frequency w, that is, the same 
OIciUator length b as the original Hamiltonian Ho- We can go a step 

still and start with the eigenst.a.tes in a harmonic osciUator potential 

) 2 -2 

H Po Mw (Q'" _ )2 1--2-M--+ 2 qo 

with a. different freqnency w wand the corresponding oscillator length E. 
Its eigenstates are given by 

I i,n ;. (0 + - z"')·S/IO), 
vn! 

with 

o + - -= Q - - P and 010) - O. - 1 I(A i "') --
lib MW 

Without proof. we give the coordinate representation of the time
dependent wave function (for details, see [86 76. LR 69D: 
_ i _ 

",.(x, I) = (xlt' - i HollE, It > 

-1/2 
= (2/1n !G b(t») H,. 

[ 
1 (x - q( 1»2 i j. 
-2- - +~CP(X.I), 

b (/)2 n 

(10.898) 

with 

b (I) - b( a + f' COS 2wt)1/2 

MW2 f' sin 2w1 
4»(X./)- W(l)+p(t)(x-q(t»- -2 (x-q(/» W 

a+ l' cos t 

-tt( n + ~ )arctg( : tg( wt) ) (IO.89b) 



and 

(10.89c) 

10.6.4 Double Projection 

In Section 10.5 we treated the case of a harmonic oscillator 
ing wave functions, which were shifted in the configuration -Pl'''1; 
amount a (10.49). Up to a factor e , these are coherent 
form 

a l:", Rez, /3=11 tmt, 

with a real parameter t: a"'" a, p - O. Using complex values of z means an 
analytic continuation of functions into the complex plane 
introduction of a second generator coordinate fJa:. a. which 
shift in momentum. 

Such a treatment-using generating functions depending 
only on the coordinate a, but also on the corresponding momentum 
fJ-wu first introduced by Thouless and Peierls [PT 62] in connection with 
projection onto eigenstates of hnear momentum, and is therefore caned 
double projection technique (see Cbap. II). In the case of generating 
functions of the oscillator type, this method is useful insofar as it 
equivalent to the use of coherent states as generating functions that are 
very well behaved in the Bargmann space. We do not run into trouble, 
even if their width s is w-ger than the width of the function we wish to 
represent (see Sec. 10.5). 

However, as we have seen in Section 10.5, we already get the exact wave 
function with one generator coordinate a if we construct the collective 
space ~c in a proper way. Only the weight functions are very ill behaved 
in some cases. This means that the collective space ~c spanned by the 
generating functions I~a, 0» is the same as the space 4}c spanned by 
functions I~a, fJ» in the harmonic OiciUator case. The coordinate fJ 
redundant. 

In general. this may not aJways be the case. We might sometimes be 
tempted to introduce a two-parameter generator coordinate for physical 
reasons. For example. for the case of quadrupole oscillations. one might 
thin.k that not only the quadrupole moment a is a good generator coordi
nate, but in addition al.so its time derivative a (or the corresponding 
momentum 13). thus forming a set of generator coordinates of two conju
gate variables. We will see in Chapter 12 that in the time-dependent 
Hartree-Fock theory, we always have to deal with such wave 
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"'-0 .... ""' .. "'. bowever. it often happens that the 
in the space already formed. by 

redundant The determination of 
W:U;:fUoiD!(a, fJ) through the variational principle becomes very 

luch cues, or, in other words, the norm overlap ((/3') 
a Il.Jlte gl,~ualJ\IIR."'" with vanishjng norm. 

&.m.Clcrs (a~ /1) are certainly redundant. ir they only enter 
the combination ex + iAP. where A is ill real constanL From the relation 

subsequent partial integration i.n the HW-ansatz (10.1), we can rede
new weight functions depending on only one rCcC11 parameter. 

A function l$(a, (3» only depends on the combination a + rAp if 

(10.90) 

means loca] redundancy [Re 16a+ b]: The change of the 
by an infinitesimal variation of the coordinate fJ can be 

.ylr\f"'"'IIU ...... by a corresponding change of the coordinate a. It is a sufficient 
condition for redundancy. 

The double projection method in the GeM theory has not.. up to the 
present, been studied in great detail. it is not dear whether there are cases 

which it has great advantages. 

10.7 Derivation of a Collective Hamiltonian 

10.7.1 General Considerations 

As we discussed in Section 10.2, the direct solution of the HW equation 
(10.5) can be quite cumbersome. In particular, the construction of the 
collective Hamiltonian (10.17) in analytical form is hardly possible in 
realistic cases. On the other hand~ there are, at leruiit for heavy nuciei, a 
number of suggestive approximations more or less based on the idea of 

Eq. (10.5) into a differential equation. which looks similar to 
a ScbrOdinger equation in a collective variable q [Fe 72. HW 72. BB 73, 
Ho 73, GO 75, Re 76a + b]. These theories bave also been used to derive a 
collective Hamiltonian (as in Chap. 1) from a microscopic point 
of view. 

We start with a set of time-reversal invariant generating functions 
where q is a collective parameter; it characterizes. for in

stance, a certain deformation. The methods discussed in the following are 
based on two facts: 
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(i) In 

live parameter, for ... """"'_ ..... 
win be Q1J4CUSseo. 

shown tbat in many cases ~ has 
variable q - q'. Only the width of this 
the center of mass H q + 1)· 

(ii) We ASlUIDe that the overlap functions and % are JWI0 bel,l/aW. 
tllat differentiable-many times. This &ee11U reasonable fo 
pbytical in particular when we have to deal with 
tive not however. when level 

the overlap functions of HF 
there is a numbers 

77}. The occupation numbert 0 1 in HFB functions are .u~ ........ 
gives smoother but perhaps rapid changes of the 

and However, we must real.ize that in the HFB case we 
the chemical potentia} X; t.his a nonlinear problem 

causes additional difficulties. There may be more than one 
and sudden jumps between them. We shaH therefore omit 
of level crossings in this section (see also Sec. 12.3.7). 

There are three different methods in order of increasi~n&ly 
simplifying assumptions: the symmetric moment expansion (SME), the 
approximation (LA), and the Gaussian overlap approximation (GOA). 
shall them l1Iuccessively in this section. For the GOA we win ......... _"" 
au independent derivation. Readers who are not interested in the 
may therefore skip the two subsections. 

10.7.2 The Symmetric Moment Expansion (SME) 

",,"0 usumptions of difrerentiabHity and sharply peaked overlap functions 
be used to transform the integral equation (10.5) into a second-order differential 
equation. In principle we already applied techniques in Section I 
the derivation of expanlions. However, at that it WIJi a 
me1.DOO. and we ended up with a diffcre~ntW equatioo iD 
hundreds of vviabl. ENe' We shaH now restrict ourselves to one (or a 
collective q. 

Using the identity 

(10.91) 
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(10.92) 

'~U.u.l.11! normal orderins. 50 thaI powers of ('I' - 'I) are to the 
we can write ror the integral equation (105) (we drop the nonnal 

lI"W"nft1"1I in the tolJowing): 

J "'1'(%('1, 'I') - EGJt.('1. q'»e -1(t(-If)PI"!(q) -0. (10.93) 

DOnn overlap is It rapidly decreasing function of 1'1' - 'II. 
mll)OClt:ion of formula (10.39) that the 

1ll0iUl<I also be a rapidly decreasing function of 1'1 - '1'1. 
exponentials up to second order. We first 

operator we will obtain on 
(10.95) is noll term by term, a operator 

(Ho 73): 

f_+tJQ«l ds + sl21H - £1'1- J/2)e u l'/'VIj(q)_O. 

(still) euct 00.96) is. DOW approximAted by ....... 'n ........ r .. 'x 

up to ~:)OQ order in J: 

with the moments 

lUld the 

H,.('1») _ J... 
NII(q) hit 

+00 H 
\lQ dss ll('1+J'j21. 1'1-312) 

of I. symmetric ordered product of operators 76b], 

:- ~(AP2+2PAP+ p 2A)_ ~[P. [A, p1 ... 1. 

(10.94) 

(10.95) 

to 

00.96) 

(10.97) 

(10.98) 

(10.99) 

The odd moments van.i.sh identically. H] - HI -0, siDee we assumed that the 
set of generating :states is invariant under time reversal~ means 
the overlap and ex are real. The only quantities we bave to 'know are 
the zeroth and moments 01 the norm and the overlap (10.98). 

P Kg on the puame1a' q and not OIl (3.) in the 
.... ve Ic.(q». II is therdore convenient 10 use • miluJI lip in itl defidutllOft. In the 
cue or pure i:l.DJllitioa. where q iJ the oripn of the new ....-.nn'lhullt... tIIlVlUfD'n. 

,-,»-141<-. 0» and !;(A/i)(S/ilx,)i.)- -(!/I)(a/~.). In the M'I!!IIIlII!!ftt 

minus sign does not matter, Ance the Hamiltonian we are pn, 10 derive is 4B11Ldn 



Equation (l0.97) I. equation for /('1). 
However, it iJ soU nol of the UJuaJ SchtMinpr type. To amv:e at Buell an 
we have to decompose the operator I N?'1I) in the folJowiD' way. 

(No-!N';Pl)_(K1/l)+(KI/l). ( 

Starting from the a.rua1Z 

K-

we un insert into Eq. (10.100) and bring the result in each 
form defined by Eq. (10.99). This us to determine the fWllCtiloru 

see that DlOIt CUCI we ouly need them up 10 ,,<: 4. [u p£acoce,. 
are quite kmsthy. Abo, we Ulually Degkct derivatives (W' /'dqll4)No and 

(10.100 

for II 2 and stop after second order. This is oonsjlt.ent with the quadratic 
approximation (10.97). 

For the of in the following we will neglect all derivatives of N. 
and N2 - This is rea.1iud in all the cases where ('I. 'I') depends only on Lbe differeDCI 
('I - 'I')' In this ca.se, up to p'J we get: 

K~1/2-No-I/l(1+~ ~:P2). (10.102) 

In the next step we have to calculate the collective Hamiltonian K - 1/2+( 

t H;P l)K -1/2. Apin, we have to bring all orders of p"]. into the symmetric 
(10.99).· We usually neglect terms of order higher P 2 and the derivatives 
(0111 ;dqlll)H ror " :> 2. At this point, this is certainly not weU justiried. We should 
calculate the coefficients and see if they are lmaU. In 
fact. we can show, en the of the Lipkin that they are of the 
(l/Oi [Ho 73 j, but this is probably not very 

III general. we expect that this method is justified for mO'tions with large 
amplitude&, but net very 1arle vc:locitie$. 

Under these conditions we get from Eq. (10.102) the following Schrodinger 
equation for the function g( 'I) - K 1/1(q). 

,...---......, 

( 2~(q) p1.+ V(q») g(q) - Eg(q), (10.103) 

with 

] Ho N"]. H1 ---- -M(q) No No 
(10.104) and 

where the mean with respect to q. We have also neakcted in 
1/ M the derivatives Ho. H; oonmtent with the fact that p'l is already O'f s.eoond 
order momentum. 

Equation (10.103)., with Eq. (10.104) is the transformation of 
Eq. (105) into a HermUian IerC(Jnd-order differential equation. This is a Full 
quantum mechanical equation. Since the mus parameter M depellds on the 
coordiruu.e q. the relative erder of P and M in Eq. (10.103) is important. Here we 

OIl Tbe8!C calculatioo.s .....-e rather simple if we use the formula [Re 16b] [for any function 
X(q). X" mea.rua ~ ;ar>X]: -

pr;p ... p,,+ P,.X---;""'pl-2Xpl+IIIJ .... + H(,. + 1)- (R-I)~1f2x:p1+ ... +.-2. 
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se04)na moments of the norm and Hamilton 

Therefore. we 
approxima lion. 

10.7.3 The Local Approximation (LA) 

over their whole 
cbecked immediately 
reproduced by Eq. 

norm overlap 
function if this is the 

the following (in 

+ ... }~q+ l' q- ;). (10.105) 

Because of reversal invariance, are DO odd Eq. (lO.IOS). 
Expanding both sides of this equation in 1i"W"o'll ..... 1I"!I! .I yields a system of equations 
for the coerticicnlS A. B •... . To we obtain the foHowing eJttm:llllO'DS. 

A(q)------

B(q)- - ------If 1,. .. 0' 

The upper primes mean differentiation with l""iI':t."",.,., 

inserting the (10.10:5) with (IOJ(6) (10.101) 
00.98). we for the first two momenU of Hamiltonian (j 

HO<q)- No·A, 

N2 2 
H1(q)- . Ho+ -No· 

Using the approximate eltllifesU0I11 

achieved a reduction of 
that of a knowledge o! 
is naturally an advantage over 
Hamilton overlap over its 
we still have to know iu DonlocaJity over the 

(10.106) 

(lO.107) 

q)-I and 
integrals 
-0): 

(10.108) 

(l0.109) 
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I'ielCCXlG roomeD'll enter 
equivalent to thaI of 

10.7.4 The Gaussian Overlap Approximation (GOA) 

In order to derive 
Hamiltonian, the 
J864. 68. Vi 
center of mass r-rl.c",,,n.ln 

of the form 

a') 

With the definition (10.92) for the 
(I 

(a - a') 

(IO.1l 

(10.1 

The expectation value of P of reversa] i Dvariance 

leO. 

Before we apply the Gaussian appro,umation, we. first have to a,.:uas 
the conditions under which it valid. To be more we suppose 
a moment that I is a set of detenninants depending on a cotlecl~tve 
parameter q. as may be obtained. for by a ............. 
Fock calculation (see Section 7.6). 

Thouless" theorem us that we can a function 
vicinity o,f Iq) II (E.40) and (E.26)] 

where 

{ ( 11 



where the matrix A 

.. L (10.tI6) 
". 1f2 

values of s~ we can expand the exponent of Eq. (10.1 15) and 
UVI,cu.u the overlap'" (l0.111) 

+ ; ,q 2) -exp ( - ~ y(q)S2)~ (lO.1I7) 

y(q)-TrA - Mi P.,I',/1f2- ~l p2Iq)_(qIPlq)1). (10.118) 

see that the crucial parameter in tbis approximation is the nuctuation 
the operator P in the Slater determinant Iq), If it is large compared to 

we can neglect higher terms in Eq. (10.117) and end up with the .. 
For a. general collective operator, P, y grows roughly with 

particle number. Therefore. the Gaussian overlap approacb is justified 
beavy systems. 

The function y(q) determines some sort of a metric along the path Iq). It 
out to be convenient to introduce a scale Lransfonnation for an 

absolute coordinate IX in such a way that the norm has a constant width Yo. 
u achieved by the transformation 

a - fll Jy(a')/Yo da'. (10.119) 

first order we then get~ in the exponent of Eq. (10.117), 

y(a~ )(a-a,)2- yo(a-a'/' 

the following we assume that we are working with this absolute 
coordinate. 

In the case of a overlap, it is rather simpJe to derive an 
equation of motion in the coordinate q [Vi 75, GO 75, Ka 73. OU 75]. 
because we can now cakuJate ~1/2 in Eq. (10.10) analyticalJy. It is easy to 
show that ~(a, a') can be written as 

~(Qta')- f dq~GJtI/2(a.q)~}12(q.a'). 
with 

(10.120) 

The expectation values of the Hamiltonian H for the GeM Function 

"In the cue 
(11.79)~ 

= f do f( 0)10) (10.12 J) 

odd oomponena, we pin an additionaJ ph.ue [see Eq. 



are then given by: 

('ltIH "'" J dada' r(a)'?Jt(a,a')h(a~a')f(a') 

q)h(a~ a1f(tI')~ (10.1 

In the next step, we replace l1(a, a') by I 

collective Hamiltonian 

11(0,0') Xeon( q. aO,). 
which no longer depends on a and a'. To achieve we use the fact 

12(a, q) is sharply peaked at a" q and expand h(a, Q') at 
0- a' = q up to second order in the dirferencea (0 q) and (a 
we again use the property 11(0, a!') is a weU·behaved ImOOl~n 

l1(a, a')- 11 + "x ·(a - '1)+ h,,' (a' - q)+ t(hK,,'(o-q)l 

+ 2I1A)"( a - q)(a' - q)+ h)'.~· (a' - q)2). 

where 

h=h(q,q) H h = x a lI(a.a')l ,Ii)"- a~' h(a~ 
"""g'-q 

~-h(o!a')1 . ; 
If-d "1M II 

a2 
0 

hxx = - l1(a, 
aa 2 

a'-q 

The linear derivations do not contribute to the 
invariance. To see this and to get a simple 

second derivatives, we write the full Hamilton overlap as [see 

a'} .. <'1leI(D-f);/"He -1(.- 9);/"lq), 

and get [with a similar expression for ~(a,o,)l (~(a.a)-l)-

aOo h(a. o')a ... ',- ... II" ( X(a, a') ) 
a') Q"'o'""q 

- PH =0 

and 
i A A 

h -h =- PH+HP -0. 
x Y h 

In the same we find 

:= -

- (10.128) 
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10 on. The L (linked) in this context" means that we have to 
the product of the corresponding matrix eletnents for the norm 

the expectation value of H. Similar expressions can be derived for hx:y 
Ir".. In particular, we get 

t(hu - 2hJ;)' +h",):= ~~} (qlfiH -= ~~ (ql{ p. [H, PJ ... ] ... I'1)L· 

(10.129) 

e DOW come back to Eq. (JO.J22) and insert 00.124). Since the functions 
q) have Gaussian form (10.120), we can express terms (a-q)'" by 

_q)~"/2== _1_ ~~1/2; (a- q)2'!)t1/2= (_1_ J:.. + _1_)0t1/2. 
2yo aq . 4y~ a'l2 2yo 

( 10.130) 

partial integrations we return to the general coordinates (10.119) and 
wU' .. ~. jf we neglect higher than second-order derivatives of h (we have to 
i_ ............ that despit~ of (10.127) the term %qhx - h}U;+ hxy contributes): 

(IOJll) 

where 

g('l)- J 12('1,a)f(a)da. ( to. 132) 

The collective Hamiltonian is given by 

1 a Ii 'Xc~l:;;;;; - Ii a'1 -2M-('1-) aq + V(q) (10.133) 

with the inertial parameter 

I - I 
M(q) - 2y2(hxx -hxy)= ( 10.134) 

and the potential energy 
-V( '1) 00: V('1) - f;,('1), V(q)- HI'1), (10.135) 

hxy 
~('l)- 2y -

,,2 a2 .. 
+ 8('11 21q) a'l2 V('1)' 

(10.136) 

a1 ... 
112- V('1)=-

a'l2 .. 
P, [P, H] _] 

We end up with a collective Hamiltonian in the variable q. Its potential 
energy V(q) is not simply the static expectation value of the HamiJlonian, 
but is corrected for the value f.o(q), which is caned the zero-point energy 
[Re 75c~ 18]; because an oscillating wave packet Iq) of the form (10.84) in 
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just energy (in this 
133)-(10.136) are again ex

IO.S.They also tum out to 
if we to uaUII", 

norm.· 
If we solve the equation of motion 

potential V(q),. we get a ground 
than the minimum in the potentia1 
that the potential V - V - fa has a 
HFva.lue (see fig .. 12.6). 

The inertia parameter M in (10.134) turns out to be C()()fOJlnalte 

It is usu.ally called Yoccol-il'U!rtia for 
1 J .4. In the case of pure translations, it is the bare mall 

It is a great theoretical disadvantage of the primitive venlioa 
of theory that it does not proper mass. This 
hi·U1U.iInJ...... mean that the results of bad. 

aUempts have been maCIe 
the proper mall. (PI' 62] proposed 

with two generator coordinates, a coordinate q and a momentum 
;:,;ec:nOID 11 yields Gamei invariant wave 
translational case the proper mass. 

On bAnd, it to use two generator ..................... " .. 
Holzwarth and Villars [Vi 75] therefore proposed to 

GeM ansatz in the following 

a/(Jq acts only on the function f(q). whereas the 
particle operator S(q) acts on wave function. With an 
"" ........ _ for the operator S, we obtain in this way the proper mass 
using only one generator 

10.7.5 The Lipkin Model 

In order to give a demonstrative example of this theory. we take 
model (Sec. 10.3). particle numbers 0 norm overlap 

(l0.32) behaves . With .p - - • '" - H cp + cp1, 
we 

- (10.137) 

order \0 verify this, we have to rea.I.iu /2) 

'lD lb.ia context, alIo [HW 71. 74, GO 191-
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3~----------------~-----------------.------~ 

Q :: 40 

2.0 X 

F1pre 10.1. Excitation energies of the fint and second excited states for 0-40. 
(From [Ho 73].) 

and 

X(i'+ f<p. 'I' }.p)- {X(i'. '1')+ ~ B('I') + B(i') !2 }~(.p); (10,138) 

with 

(10.139) 

From Eqs. (10.104) and (lO.lOS) or (10.134) and (1O.135)~ we get for the 
mass 

(10.140) 

and for the potential 

V(ir) - - ; n( cos i' + ~ X Sin:!'+') - ~ (2 cos it + 3X sin2it) + o( ~). 
(10.141) 

These two quantities are shown as a function of Q' - '¥ /2 in Fig. 5.2. The 
dashed bnes give the potential V and the chajn curves the inverse mass 
parameter 1/ M. 

The solution of the collective equation for the two first excited states 
with these potentials are given in Fig. to.) and compared with the exact 
ones. 

The approximate solutions and the exact ones cannot be distinguished. 
This is not very astonishing, since we know that the GeM is able to 
produce the exact result (Sec. 10.4) and the terms neglected in the symmet-
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ric momentum ""AI"'_I14"'""U and the _a._,.u overlap !fI81"!d'Wll"ililll"h 

are of the otder lin. 

10.7.6 The Multidimen~ional Case 

For the sue of we have far treated ODe IIII!I!ftril!l!!l'& 

the general case of several coordinAtes 1Il-(a ••...• a,). .n..&RIMlIa 

et al. lOU 75] have used a aenera1 lnutz for 

~1Il.1I')-

where + Ill). s ..... -.'. aDd 

is the squ.an>d .aeoGa:M: w .. _u~ 

II.. Applyina theory of n..H.J..U'LU.LI ..,.~ OM caD 1"!rn'1~!!t'l as in :secltlOD 
end up with Ii collective Hamiltonian 

+ V(q), (10.144) 

where ..,.(q) is the detenrurumt of the telUOt ..,.,. defined by the &.nIlIi&_ 

(10.143). The inertia tensor aJld the potential have a form analogous to Eqs. (10. 
rn: 

( 2~~q) t --H ~9' ~~ h ('" q') - ~9 ~~I h(q, q') t.: (10.145) 

V(q)- V(q) - £o<q); Veq) l1li 

( ) (,,2) !1 J 6 6 Y( ) 
to q .". "ty 2M + i"t 4q'!J.q1 !III. 

where III !J.qi are covariant derivations or the tensor fields as ddiDed. for n .. ~ •. uo.. .... 

in ILL 59, vol. H. Chap. to]. The operator of the kinetic enerl)' La similar to 
operator we get from PauJi quantization [Eq. (1.53)]. In the latter UK, however. 
inertia tensor is identical with the metric tenaor. Now we to 
between the metric determined completely by the kinematical properties, that 

a.nd the i7fl!rtia given by the dynamical behavior of ')C. 

10.8 The Cboice of the Collective CoordJnate 

In Section 10.4 we saw that the ansatz (10.2) contains. in principle, the 
exact answer to tbe many-body problem if we choose enough generator 
coordinates. Unfortunately, this is by far too large a problem to be 
handled exactly, and in practice we flre restricted to the treatment of one 
or perhaps a few generator coordinates at a time. It is therefore very 
important to choose the proper generator coordinate, that iSt the most 
... uitable set I -I~q». In the following, we again restrict ourselves to a 
real coordinate q with time even functions Iq). 
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a path in the multidi-

H 

this we again apply the variational principle and 
the expectation value of the energy in the state 

Ii') f f(q)I~(q»dq (10.146) 

not only with respect to variations of tbe weight function j, 
with respect to the path I~q». This double variational method 

of coupled equations [HY 74~ Vi 75] 

f dql ~~(q)IH - EI~(ql»j(q/) -0, (10.l47a) 

J dqdq' r(q)<8~q)IH - EI~q'»j(q')=O. (1O.l47b) 

which, in principle, have to be solved by iteration. 
At a point q, the variation is not completely arbitrary. We can only 

allow for changes ~ that are orthogonal to the path itself. A variation 
paraHel to the path could be absorbed in a variation of the weight 
function. 

Since the length of is arbitrary~ Eq. (10. 147b) may be written as 

J d4' (8tfJ(q)IH- EI4>(q'»1(q')-0. ( 10.(48) 

In the next step, we make two essential assumptions: 

(i) We again use the fact that the overl.ap functions ." l4><q'» are 
sharply peaked at q - q', such that for fixed q only a certain q' 
region contributes to the integral (10.148). 

(ii) We assume that in this q'-region. the path does not bend lOO 

strongly, such that It54>(q» is orthogonal to the path in this whole 
regwn. 

Under these conditions, the second equation (10.l47b) decouples from the 
first one (l0.147a)~ and for variations 16 that do not change the norm 
of It) [Vi 75] we find 

.L (6tfJ1H I -= O. ( 10.(49) 

The variation 16<).L is restricted to be orthogonal to the path. A variation 
parallel to tbe path is given by 

115 
I A 

-l~(q+&j»-I~(q»- &j II PltfJ(q». ( 10.150) 

The operator P is a representation or -(I'I/i)iJ/aq in the many-body 
Hilbert space. It acts on the particle c.oordinates in but not on the 
parameter q. Variations orthogonal to the path now have the form 

18et> -Iat» - Plclt) <t)I~la~) . (10.151) 
.L < 4»1 pllet) . 
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an unrestricted variation. Variations of the I.JIIUILC:n 

l4>(q» to path are by 

and those oriliogonaJ to itbave to VB1I'III.n 

- --:---Itl» - O. 

In deriving this equation, we have used (10.152) 
time even. The problem (10.153) is a conltrained variational pn:OCIIPIC. 
the constraining operator is not Hermitian; we therefore _IV""~" 
to cues in which P can be decomposed. 

P=i(A+-A) witbAI~>-O. 

Examples are Slater determinants I~q». where we have A + -0 
~mP.ll'lIQ:Q" or RPA wave functions. where A + is a creation operator 
a also [ABC 77bD. 

In such we can define a Hermitian constraining operator 

Q" - ,. (A ... + A ) 
2(<)1 21ct» 

and from Eqs. (10.152) and (10.153) get 

tl>IH_dV'Q 
dq -

( 10.(55) 

(10.1 

which gives us. the optimal path. It is determined in such a way (hal the 
energy surface bas a minimum with respect to aU variations perpendicular 
to it. This means, for instance, that it follows the bottom of the 
vaUey Sec. 7.6). Equation (10.156) is a constrained variational prob-
lem. The constraining operator Q is not imposed on the system't but 
determined seU-consistently by the system itself. It does not push the 

into unphysical but acts like an inertial force in the sense 
of d' Al em bert [Vi 77]. 

The actual of Icl>(q» requires a double iteration: Starting 
with some initial value <20 for the constraining operator, we have to 
determine I~O<q» by a constrained HF calculation. In a second step, we 

" have to calculate the operator P at each point q. It can be done, for 
instance. by a solution of Eq. (8.106) in linear response theory 

A A 

(8.136) and (12.120)]. From the operator P a new constraint Q is deter-
mined. has to be continued until convergence is achieved. 

At the end, we have to solve the Hill-Wheeler equations (10.5) for the 
etermme(1 generating functions 
This doub1e iteration. naturaUYJ extremely time consuming, and the 

prescription of a self-consutent conltraint in the GeM has up to now beer 
tested on a three-levellipkin modellHY 74) and in the s - d shell [PL 
77) with quite results. For heavier nuclei the gradient method 
described in Chapter 7 could facilitate the problem. 
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1 Resonances 

Coordinate Method for 

functions 
projected onto good 

HiII-Wheeler equation 
very few mesh points were 

of tbe norm. We 

... "" ......... ,& mode and quadrupole oscillations 
Slater determirumts .JI',t/ .. (b, 8) of ctPlnrTll'IPcI _' .... _,.v. 

onto momentum J. AI momentum P-O; they 
lengths b-(b;bl')l/l and deformation B-bx/bg leBA 

75}. B-1, the parameter b or the radial coordinate. 
therefore a breathing mode. (It has used in a very early 

(FV 56D. The coordinate 6 the quadrupole ........ ,~~ 
HiIl-W'beeleT Eq. (105) is solved by discretlutioo (up to SO mesh JK>ints) 

of Brink and Boeker [BB 61). for each 
the ground state rota tiona] agreement with 

wave functions. The excited slates are vibrations. One finds ID-

the spectra and for the momen15 couplings between the 

761 have 
9Ozr, and 20IlPb with ................. 

conslnlining opera tor 

The distribution sure constnlining operator is bounded and 
the corresponding HF Hamiltonian hal The coupling to the 

is neglected. The interaction is I, modified B·interaction of the Skyrme 
type, where the overlap integral X can caJculated in a simple way. With the 

HF caJculation. the scaling caD be checked and one finds 
that it is justified. Equation (10.5) is solved by discretization. The ground 

PnIl''I''OV of the GeM agrees very well HF energy. The excited states 
modes. 10.1 gives some 

*Pb is I MeV and cone· 
sponds quite well to the liquid drop model with an incompressibility (Eq. 

MeV with the RPA force (RS 741.1 . 
.,. ... u.W'." (see Stt. 4.43) 

oscillator parameters pU·"','l.nn 

'Were used by Giraud and 



loti 0.56 10J 9.7 
«lea 0 

SOl 0.55 20.4 
90zr 0 

17.46 0.45 49.8 
0 

I 0.36 127.4 
0.04 130.6 506.59 

239 0.04 26.3 ~.Q 

rc;;AJ,J'D.UlI'lVU. (see Sec. 10.7) for the description of mO'Dotl<'He m~tJeI • 
.. th" ........ {FV 75. 76} tb.e HW Eq. (10.5) 

tU","I,o excitations of U'!IlI'O.IU ............. 

\::I.r." ......... force by 
well with HF state. Figure 10.2 IU\.rMliIl 

(10.12)] for the ground stale (gO> and the 
lllVUQ ( in ''0 and the diagonal pari O'f the overlap 

oscillator 

-I 

Figure 10.1. 
of .""V1 .. ..., .. """_ 
[FV 76}.) 

1 more or to potential Y(r) 
We see that the functions g behave qualitatively like 
potential. 

gllr),' , 
• , , , , 

functions 

'-, 
# , 

DrIlD01la and the ~J."'U4llY 

1/'/' 
\ '//' 
\ .. ~~1 

I 
I 

I 
/V(d 

-Ul 
E 

{MeV) 

states in the 
enet1ty overlap VCr). (from 



For ....... WA m.uII or the go For heavy 
1Ii""..-. it is sba.rply ~U;CG at a certain value of the pnenuor coordinate. This 
meaM that the ",aw to a ,ClOd approximation, by a Slater 

with this paramete:r. 
GeM haa also beeft apptied to low-lying Ytape vibrations i,n light nudei. As 

loD& u we reslrict them to a configuration space which includes only an s - d shell 
IOMA 7S, MMR 75], can be compared to an exact diagonalizalion of the 
Hamiltonian in this subspace (PW 72, Wh 72, SZ 72], and one rinds good 
aqreeme:nt for m.l.D.y Levels. 10 some cases, however. the agreement rather poor. 

means that the corresponding stale does not lie in t.he space spanned by the 
functions. A pure quadrupole constraint {KK 74] is then effective 

a constraining operator determined by the system itself, as discussed in 
:Hc'bOn 10.8 [PL 77]. 

10.9.2 Pairing Vibrations 

In Sec. 8.8 we saw that in the description or pairing vibrations by Lhe RPA based 
on a normal fiu.id ground state, we find a. phase transition for a critical coupling 
constant Gt:' I,n this region, neither the RPA. nor the BCS model works weU. The 
OCM provides a method to overcome difficuHy. 

Several authors [JMR 72. ISY 73] proposed the use of DeS wave functions [see 
Eq. (6.3 I)] projected onto good particle number (see Sec. 11.4) as g~nerating suues 

(10.157) 
(I. m 

where pN is the projection operator onto particle number N, and a -(nlj) are the 
quantum numbers of the diHerenlj-sbelis. For independent parameters p~ - U".!VfJ!' 

these states span the seniority-zero subspace or the fuU Hilbert space (see Sec. 6.2 
and [JMR 69]). for occ,upation probabilities ua' r.a of the BCS-fonn (6.59) that 
depend Qnly on one parameter, ~, this is still true to a good approximation. Since 
we eXJ)'ect the pairing vibrations with J"", 0'" to lie in this subspace (see Sec. 8.8). 
the a.ns.att (10.157) is particularly ror describing them within the GeM. The 
second parameter, the chemical potentia] A, can be determined by the BCS-number 
equation (6.53) for each point in the ~ mesh, or an be used as a second generator 
coordinate (Sorensen et a1. [SS 12bD. 

This method works equaUy well for superconducting nuclei, non-super
conducting nuclei, and in the intermediate region. It has been applied with the pure 
pairing force (SS 72b. FOP 73] to simple models and to pairing vibrational spectra 
in the Pb, the Ni, and So regions. 

Figure 10.3 shows the components of the OCM wave runclion for the ground 
state in lOiPb and for the so-called pairing vibrational slate at 4.87 MeV, which is 
to Ii large extent a 2p - 2h state or a superposition of the 2p pairing vibration in 
JIOpb and of the 2h*pairing vibration in 206Pb. The Op-Olt. 2p-2h, and 4p-4h 
components an given. as a function of the pairing strength G. The of 
G, which gives the right mass difference. M(Z06Pb) + MellJpb) 2M(-Pb), is 
G-O.l166 (MeV). At this value, already 10% of the ground state is 2p - 2h and the 
pairing vibra lion has roughJy J 2% 4p - 4h Idm ixture.s. 

More realistic fOfcel have been used by Faessler el at [AGM 74] in the p - f 
Here the BCS functions in Eq. (10.157) were replaced by constrained HFH 
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FJ&ae 10.3. Percentage of ground state and pairing 
MeV. which is Op-Oh. 21 21t, and 4,-411 as II. function of G. 

opera lOr is a pairing poteDtW 
is the resuhinl coerI)' 

pller.UUllJE nJmCllOllI 'Were determined from these 

... wIIT+i .... II ....... '................. and -11._11.1 

V!IIi,"'-UI C4)Ufl'liDlltS between different modes by 
trOIiJW::e more CPI!'!I1Itl'!nI,tiW c:oordinata, web u defonnation 

"Vb 

CJeIlIeD«len4ce of gap b. on 
by 1lT0WI for a few nuclei 
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7S]. We can even include single-porticle 
ansatz [DMG MGA 77): 

-f tID j(a)l«o» + ~ J dtJ l(a)I~/(a». (10.158) 
I 

!c)(a» are. for instance, the ground states of a comuained HF calculation 
c!ep4mdent on some deformation a and 14>,(a» are the corresponding 
1p - 1 II states., and so on. 



CHAPTER 11 

Restoration of Broken Symmetries 

11.1 Introduction 

In the investigation of the properties of the nuclear interaction (Chap. 4), 
we showed that the exact ma.ny.body Ha.miltonian H is invariant under a 
number of symmetry operations, that is, it commutes with the correspond
ing symmetry opera tor S: 

[H,S -0. (1 L1) 

Therefore. we can always find wave functions that arc simultaneous 
eigenfunctions of H and S. Examples are the three components of the 
linear momentum P, the particle number N. and the angular momentum 
operators J1

, J" 
We have seen that this general property is very useful in cases of a 

few particles, where it can be used to reduce the size of the corresponding 
eigenvalue problem dramatically by working in appropriate eigenspaces of 
the symmetry operators. The elimination of the center of mass coordinate 
in a two-body system or angular momentum coup1ing techniques appJied 
for a few partic1es outside I. closed shell are examp]es. 

In the general case of many particles and strong correlations.., the proper 
treatment of symmetries is a serious problem~ On the one han~ we want to 
describe the system by simple wave fimctiOflS, such as product states of 
independently movingpartic:les (or qwu:i·particles); on the other hand, we 
are not able to take into account important correlaJions between. the 
nuc1eons by such simple wave functions if we require simultaneously the 
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proper symmetry behavior. onJy translational invariant product wave 
flUIClliona. for example, are products of plane waves. They are certainly not 

n~~1"I1~ the stronl correlations among the nucleons. whicb cause 
into a finite nucleus. 

_ ........... ' ...... 2 we however, that such correlations can be described 
a mean field (the abeU model) and that product stales of shell mode] 

provide til very reasonable description of many nuclear 
ptopll!fties. Such wave functions, however, break the translational symme-

It is a genera) procedure.... which is very important in nuclear physlcs, 
correlations are treated by a symmelry-viololing mean field approach. 

such a description is possible and is a good approximation 
certainly depends on the nature of the correlations. The long·range partiv 
cIt-hole correlations which cause stable deformations, and the pp
correlatiolll, which provide superfluid properties. are in any case of the 
mean field type. In Chapter 7 we saw lhatthey can be treated by the HFB 
theory, a mean field approach that violates angular momentum and 
particle number. It tums out that the stronger the correlations, the better 

an approx.imation. In analogy to solid state physics, we say that the 
undergoes a phase transilion to a symmetry-violating state, as~ for 

in8tance~ to a deformed state or to a superfluid phase. Of course~ clauical 
and macroscopic considerations enter our arguments when we say the 
nucleus is localized, is deformed. or has a superflwd phase. We will see 
later in this chapter that tbe mean Field description of phase transition 
eventually becomes exact in very large (macroscopic) systems. This means 
that for certain measurable quantities it may be irrelevant as to whether we 
calculate them in the symmetry-brOken mean field approach or in a 
symmetry-nonbreaking theory, which of wurse is, in principle. required by 
quantum mechanics. Imagine a droplet of the quantum fluid JHe with 
various numbers of particles. Once the drop is so big that it can actually be 
"seen/' it is certainly an exact description to consider the drop (or its mean 
field) as localized (wave puet), though quantum mechanics would stiU 
require a transiationally invariant treatment for stationary states. 

Nuclei are, of course~ not macroscopic objects, but the heavier ones are 
big enough that a mean field treatment-which for a macroscopic drop 
would eventually become exact-is already a very good description for 
certain quantities. These quantities are. of course, which are also 
ma.croscopically defined as, for instance, radius, deformation,t superflwd 
current, ground state energy, etc. Those quantities which are. however, of a 
quantum nature, I.&, for example, discrete energy spectra and transitions 

.. Por .. more del.l.iled 0I1hlI point. KIC [Li 6Oa]. 
dAd101n11&1k~ 01 a DOC.. 01 ~ not a diroctJy meuutable qu.a.ntity u in .. 

~ic I')'Nm. but it CIl.Q be in a model-depmd.ent way only raduw' ~ 
O"Itlf the ~ ~pole mommt Sea. 1.5.2 and 11.4.6.4); ooee this reiatJoubjp ill 
..... btilhed 0'Ilee ad ror aD., the lIIG.D theory also rwrodw::.ea the nuclear dd~ 
rather weD 0Ym' the wbole periodic: 3y&.liem. 
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between excited states., will not be describable in a pure mean 
approach. 

In particular, the product wave function is a very poor 
the exact many-body state. As we shan it 
the symmetry*v1olating wave function as a 
coordinate frame moving with the nucleus. All ... "",aul.J.Y' __ 'IftI4"'''' dler:M1I'Id 

only on this internal function are eventually rlllOl""1"O;I''lrU''liIIl!II''I 

mean field approach. 
There are, however, two reasons to go beyond the mean field IPI:JrOadi: 

(i) In nuclear physics we are interested in 
transition probabilities and electromagnetic momentll 

never be calculated from a symmetry-violating 
tion alone. 

(ii) The nucleus is a finite system. The phase-transition is 
always I.meared out. We often find a gradual transition from COI_r", 

va.tion to weak. violation, and eventuaUy a strong 
symmetry. In of weak symmetry violation we have 
beyond the mean field approach and incorporate the 
properly. 

In Section 11.2 we wiih first to i.n more detail the 
symmetry breaking in the mean field approach. It gives us a 
understanding of the methods used in Chapters 5, 6 and 7. We present 
UJ.iiI .... ·LWliiIl\./U here because in those chaplers we did not yet have the 
niques of Chapters 9 and 10 .. 

To restore the synvnelries broken in the mean field approach. there 
been attempts to transform explicitly to an .. irurilUic~' system. Such 
tempts, however, are often intimately connected with basic difficulties. 00 
the other hand, such ideas are used. in many phenomenological models 
Sec. 1.5). We therefore discuss them briefly in Section I 1.3. The usual 
means to develop a symmetry-conserving theory on the of wave 
functions obtained from a mean field approach is provided by 
technique3 onto eigenspaces of the symmetry operator. These are discuued 
in Section 11.4. 

We should also mention the RPA approximation. wD.ich goes beyond the 
static mean field approach. It includes hjgher correlations and provides 
approximate restoration of the symm.etry (see Sec. 8.4.1 and [UW 65. OW 
68, MW 69b, MW 70, Bi 16, Ma 77aD. As we shall see in Section 12.3.2) we 
can a.lIo derive this method in Ii. time-dependent mean field theory. which 
!hows that this more general mean field approach can already restore 
aspect3 of symmetry violation. 

In this cbapter we treat mainly the symmetry violations of 'ran.!loliOnDI 
inwzn"anu (transition to a localized n:uc/eus), of particle number (phase 
transition to a !ftIJ1CrJluid SUZIe), and '"'gWar momentum (phase transition to 
a. tk/.()I"f'Md nale). There are. of COUllC, other symmetries, like the 
parity [BSB 69] (which is also broken in the context of pion condensation 
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[MKS 74. BF 74. BCD 75, BW 76D or the isospin (which is only an 
symmetry [GW 68D. can be handled in a very similar 

nvc.Uaal[lOlli have also been on the possibility or a crystal-
of nuclear matter with a "-1!"'1I"W"'I' long-range order described 

D01!i-DiUll'lle-''''-B"e HF-stales, which translational symmetry (Over-
U_1._j states [Ov 60, ALP 77, 77D. that for realistic nuclear 

wave functions generally a bigher energy than plane 
waves. Only very low subnudear crystalline 
structure of a (see 

In 

Certainly. there are also other 
Tbey can sometimes be treated with 

11..2 Symmetry Violation 10 Mean Theory 

As we saw 4.3 there are very 
different correlations: On the one hand, there are the very sbort-range 
Brueckner correlationsct whicb have nothing do with symmetry viola-
tions. On the other band, there are correlations caused by ph 
and pp forces.· If they are can treated by the RPA 
approximation and yield harmonic vibrations and a correlated 
ground state. If they become and modes 
that are lowered drastically energy 
energy surface becomes very nat in one direction with sufficiently 
strong correlations, a sudden symmetry-violating minimum develops. In 
such cases the mean field approximation in Chapter 7 yieJds 
non-vanishing deformation potentials r or fields ~ as solutions of 
the nonlinear "gap equations" (7.41) 

where cph and v" are the eHective (orces 
the densities p and K [Eq. (7.22)] depend 

-1'6 

the diagonalization of the HFB equations (7.42). 

K" ( 11.2) 

the pp channel and 
on r and ~ through 

Since the densities p and K are calculated symmetry-breaking wave 
functions, they have a monopole part Po, "0. a quadrupole part "2- and 
so on. They are obtained from , and s to IiIU.1.I~""'iU 
momentum 1-0, 2,. .. . Po corresponds to a density distribution 
and yields the spberical part Vo of the potential It well pronounced 
for all nuclei and corresponds to potential In the 
(on owing we shall work in this basis. 

• We have to cmphuize. howeYer, that this does DO( mean thaI me 
produce these com::latiODS is large. 
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x>O. 

'k+ ~ 'ft. are particle in the spherical shell model and 
the corresponding eigenvalues of T+ Vo' The quadrupole operaton 

by 

The ·'deformation'" equation (11.2) now has the form (7.75) and 
the deformation q" : 

(II 

(B.4) 

(11 

To avoid the problem of HF in open we furthermore auume that for 
vanishing interaction (x-O) the spberical sublheUs i with ~ <; ta, 
occupied and the lubsheU. ~ with ~ > (F are empty. 

For non-vanilhing the behavior of the sYltem depends 
....... , ...... on the relation of the average level in the vicinity of 

to X. For level for for 1JU.'iI!ifI"'I" 

LA ...... , ....... or for ImalJ of X we the calC of spberical nuclei. 
"deformation" equation (lL5) only the solution 'jI -0. It correspondl 
to a in the energy surface and we can calculate vibrational 
with the frequency D in the framework of the RPA [Eq. (8.135)]: 

2(fm-~) - (I 
x 



Symmetry 

With increasing level (Le .• if we go to nudei far from closed major 
tlllniFlLlllJ or for increasing strength X we come to a point where tbe RPA 

to is equivalent to the fact that the sphericaJ 
(l1.5) no corresponds to a minimum in the 

8.4.3). There at least one deformed solution 

o for at least one 14. (l1.7) 

OYLDODAI symmetry. We are now able to define an illtrimic 
t:fJCraJtMrs "'.J't.rm. for by the principal axis of the mass distn.bu-

in the fUI:M:tion At the same time we see that there now a 
WD(J'le set of solutiolll 1¢,(D» to H equations that are obtained from 

by an arbitrary rotation in space characterized by the Euler ......... l!IJIIlW .. 

Q-(at (3, y) [see Eq. (A.4)] 

I~n» R(O)IcJ>o) (11.8) 

it is schematically shown in Fig. It.l. 
Because of the rotational invariance of the Hamihonian~ aU these 

ba ve the same energy 

<~(D)I ( 11.9) 

I.D particular, this means that tbe deformed state does not correspond to a 
minimum but rather to a point of the bouom of a vaHey in the energy 
surface. In Section 11.4 we will see that this degeneracy in energy can be 
u.sed to construct a linear superposition of aU these wave functions I~n», 
which is then an eigenfunction of the symmetry operators J2 and i z . 

The transition from spherical nuclei in the vicinity of closed major shens 
to deformed nuclei in the middle of major shells is often a phase 
transition. This is analogous to a macroscopic system, where with increas
ing correlations we have the same mechanism: a sort mode connected to 
the of a symmetry. There are. however. two l.mportant diUerences 
between a usual phase transition in solid state theory and a "'phase 
transition" in nuclear physics: 

(1) In a macroscopic system the transition is strictly discontinuow, that 
i~ the different quantities (order parameters) change abruptly at a 
certain value of a continuous parameter. For a finite tbe 

z 

F1pre 11.1. Schematic representation of the fact that the mean field approach 
defines an internal coordinate frame. 



E 

o x 
XOtem,II11C representation of lowest ~._,_ IDCflY 

lion of coupling strength: eUct (full 
in the spherical basis (dasbed line) and in tbe defonned 
latter c~ the lowest RPA solution is t.be spurious state. 
rotation Sec. 8A.1). 

sharp transition is washed out and a more or grat.lu41 cllcurf'e 
the order given by the deformations q,. (or the gap ~) 
observed. This fact is somewhat hidden if our procedure it 
If we calculate vibrations around a spherical shipe in RPA we 
that with increasing coupling strength x! one lOCI to 
at a sharp critical value Xc' For all values X> Xl!' we find a deforn'led 
solution. However, in a finite system both methods-the RPA in the 
spherical case and the deformed HF-method in the deformed case
break down in the vicinity of the critical point and do not provide II 
method for describing the transition quantitatively. In an euct 
solution, as shown schematically in Fig. 11.2. we rind that 
vibrational mode is lowered dramatically in energy in the transition 
nOO'ff''''T> and goes over into the 2 -I- rotational state in the deformed 

which goes to zero only in the limit of very large n ... lrn'l"'ll'n 

lions or strong correlations. 
(u) Whereas in the case the mean field approximation can 

provide an exact of many quantities, is no longer the 
case in the finite nuclear system. As we shall see in Section 11.4.4, 
the approximation good only in the limit of strong symme
try violations. There are many nuclei in the transition region. where 
a static mean field approach is not applicable. From that point of 
view, the three symmetry violations of linear momentum, angular 
momentum, and particle number are very djfferenl. The quality of 
the mean (ield approximation very good in the case 
for aU and heavy nuclei. the rotational CASe it good 
only for the weU-deformed regiolUl. However~ we abo observe ~I'IWOI!II'_ 
jcal nuclei without rotational symmetry violations; there are 
large transitional regio., where the mean field approach breab 
down. Bes correlatioDl in nuclei are usuJJy quite w~ 
the corresponding mean approximation, the BCS theory. is 
often not good enough to reproduce the experimental data.. We 
therefore investigate, in the following section.s, methods of improv
ing the deficiencies of the mean field approximation. 
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An experimenJ,aJ measure of the strength of the quadrupole correlations, 
an indication of the validity of the mean field approxi

by the fluctuation of the quadrupole operator in the exact 

Q'QIi') (I ],]0) 

(The dot means fit scaJar product of the five quadrupole operators.) Since 
expectation values ('I'I Qllli') vanish in the ground state with J - 0, we 
that6.Q 2 is proportional to the quadrupole correlation energy of the 

Hamiltonian (11.3) 

(ILll) 

The quadrupole force is attractive. therefore lhe system wants to increase 
6.Q2 as far as possible in th.e spherical single-particle potential Va. 

On the other hand, there is direct experimental information on the value 
of 6.Q 2 in realistic nuclei, because it is proportional to the non-energy 
weighted isotCAiar quadrupole sum rule [see Eq. (1.43»). 

6.Q2_ L 1(i'rIlQII+)12 -5· L BE2(2:~0). (11.12) 
r ~ 

In contrast to the energy weighted sum rule [Eq. (8.159»). which is propor
tional to and roughly a constant, the non...energy weighted sum 
increases dramatically during the transition from spherical to deformed: 
Whereas the contribution rrom the giant quadrupole resonance stays 
roughly constant, the BE2-value of lhe lowest 2+ state increases from --20 
lingle-particle units [see Eq. (B.85)] in the spherical case to -100 in the 
deformed case, where the lowest 2 + belongs to the ground slale rotational 
band. 

The quadrupole strength. which in the spherical case is concentrated in 
the giant resonance, increases in the deformed case and is then concen
trated into two regions, the giant quadrupole resonance and Lhe collective 
rotation. In the classical limit, therefore. we have, for the spherical case 
only vibrations, and in the deformed. case vibrations as weU as rotations. 

Further experimental evidence for a phase transition is the existence of a 
Urolatiorwl" spectrum. In Section 11.4 we shaU see that in the case of strong 
symmetry vi01ations we gain, besides the deformed ground state, a whole 
band of excited states which differ from tht' ground state only in the 
quantum number. of the symmetry operator S. There, excitation energies 
are proportional to the eigenvalue of S2. The simplest examples Me 

rotational bands in deformed Duclei (-/. (J + I) /2§), pairing rotations 
(-(N - No)2/8§/i (Sch 71a, BB 76]). or trans1ational excitations 
(-p2/2M). 

Phue transitions can also be described in the bmon picture. On the one 
hand, we saw in Fig. 9.5 that we can, in principle, reproduce the transition 
from spherical to deformed shapes by a boson expansion or the. fermion 
Hamiltonian. Most of these calculations have been carried out in a. 



spberical boson To represent a deformed ltate in 
very complicated wave functions, because we atways work in 
tory frame and do not violate rotational symmetry. On 
can try to represent the defonned wave function in the 
bosons: Accorcling to Thouless' theorem (E.26), we can represent a 
formed SLater determinant in the following way. 

- exp( ~ ZlPJic,: c,)IO), (1] . 

where 10) is the spherical HF solution and ~ is a normalization "",V" .. WilIa:<", 

In a well-deformed case, we have many non-vanishing coefficients, 
the collective fermion pair operator 

with 

(11.14) 

is to a good approximation a ooson (see Sec. 9.2). and the deformed stale 

I~) - exp(cBo"')IO) 

is a coherent state (see Sec. W.6. J) containing only the collective boson 
8 0+ . Therefore, we caB it a coruit!IUale of the bosons Bo'" in analogy 
the Bose-Einstein condensation describing cerUlin of phase 
tion of condensed mailer (see also [Sf 77a}). 

This interpretation of the 
DtlJIQ'lI'4I" of the mean structure of 

I.U",""<,, ........ by the variational equations (11.2), "" .... ,."" 
""'LUlIbU6' ..... with We can however. that in the 

deformationl it ex.actJy [0 the ph part of 
DOII,On,. which goes to zero frequency at the In 

.... jJ~p we can 5ay that during the phase to zero 
energy fOrml I. condenate. We this picture in 
BCS·model, where we interpreted the BCS ground as a ,t1f 
Cooper 

So rar, our hu concentrated mainly on the violation of 
rotational symmetry. In the fonowing we show that the lame consider
ations can be applied to symmetry violation in connection with the pairing 
CQI"relatioM. Here we investigate first tbe simple seniority modeJ (see Sec. 
6.2). The In a j-sheU is given by 

(11.15) 

where S, are the quasi-spin operators defined in Eq. (6.6). They act in a 
three...dimensional quasi-spin space. 52 and Sz commute with the Hamil
tonian. We can therefore the eiaeMtates accordinl to their senior-
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Figure 11.3. Schematic representation of the qu.a.si-spin model. 

ity s [Eq. (6.11)] the particle nu.mber N 

3=0- N=2S +(1 z 
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(11.16) 

S is composed by D 
length of this vector 
the following ~" .• .u .... ,,,,,, 

s(m) Fig. 11.3 a.nd Eq. (6.6)]. The 
by the seniority s. and we will restrict 

to a fixed value of s. 
The other quantum COl'TCSOOlrlCll to 

about the the following we will 
Hamiltonian in more 

[H. -0. ( 11.17) 

particle to S, (11.16) and therefore 
oo~po~tou a~~~ 

the quasi-spin "'JJ'a.......... B.,fe caUeq gauge Imru/ormtlliol'lS. 
corresponding q; ~he gauge angle. 

A 

We can represent the n.,......... N by this gauge angle. 
A 

N 1 a - == - -- + ........ n8t 2 i aq; .....,. 't 
(I L 18) 

in analogy to the ............. .,.._.",., tbe angular momentum operators J by 
Euler angles,. as in 

For fixed values of N, that is, 
Hamiltonian (I 1.15), the vector 
symmetry axis with a freque'QCY 

for aU exact eigenstates 1+) of the 
pe~onns a precession around the 

dfp dE 
--2--2>\ 
dl dN • 

( 11.19) 
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"'1 ... - II.A. An experimental rotational spectrum e~f). where 
correSIPQlllQ to states with different I-values and a pairing 

correspond to states with different A 
the neighboring nuclei). (From [BB 761.) 

cbenuc:aJ potential [Eq. (6.41)]. We call this motion a 
different values of the particle number, we obtain a 

11.4). 
values of Sx and S" vanish, 

1+>-0. (11.20) 

in the same way as the quadrupole moment of the ex.act ground 
1- 0 in the case discussed above. 

The length of the projection of S onlO the x, y plane is given by 

!-('I'IS+ (It I) 

proportional to the correlation energy. Since there is now no 
part, the system always prefers the largest DOt.I

in its ground state, in which all the 
model, therefore. we have for aU values of 

state. For large values of that 
N <0. we can therefore expect to obtain a 

breaking the symmetry. 
state It;) a BCS wave function. It 

•. U.,iU<'"' ~. 

1.('1'» - IT (&I + oe"'c: c ~_)I-) = en,N/llfl(O». (lI.ll) 
_>0 

The usuaJ (6.31) corresponds to ~ -0, that is. we have fixed the 
angle in a way. Again, all the states I~cp» are degenerate in 
energy. The symmetry violation is measured by the gap parameter A 
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which corresponds to the tllIIIIIrnl"lm Eq. (11.20) in the rotational case 

6- G<O)(O)IS+I~(O» G L uv- G·Ow. (] 1.23) 
m>O 

The u. v a.re determined by the variational principle, which 
W"""'.iOLLl'O the Ulual. gap equation [(6.60) and (6.65)] 

1 u- v= -. (11.14) 
Ii 

state can therefore also be represented in the quasi-boson 
approximation by a coherent slate with quasi-boson S + 

(11.25) 

It vioLates the particle number, but its component with the proper particle 
number N corresponds to the ex-act eigenstate (6.19) of the system. The 
relative fluctuations flN / N (6.63) vanish for large particle numbers. In this 
case, the mean field approximation is therefore excellent. 

In more realistic applications of tbe BeS theory. we have the model of a 
pure pairing force in addition to a single-particle part 

H - L f./J:clc+ clc - G· P + P, 
k 

P+ = L '''+'/ . 
k>O 

( 11.26) 

An exact analytic solution is now no longer possible [KLM 61. RS 64, Ri 
66]. It can be solved with tbe help of a computer, and the solution shows 
that the BeS approach is still a reasonable approximation, particularly if 
we use only the component with proper particle number (see Sec. 11.4). 
The particle number Ii commutes with the Hamiltonian; however. tbe 
corresponding gauge symmetry is broken by the BeS approximation and 
we find a phase transition. In all the model works in full analogy to 
tbe quadrupole case (11.3). The only difference is that we now have to use 
8. constrainJ on the particle number (by adding B. term - AN to the Hamilto-
nian). we are not interested in a state with a vanishing expectation 
value of In the case of rotational symmetry we also sometimes want 
wave functions with non-vanishing expectation values of Jx ' We then end 
up witt the Cranking model (see Sec. 3.4). 

To show the dose analoJY between the transition from spherical to 
deformed and the transition from normal to supernuid systems, we give 
the following list of the which correspond to one another [Sch 
71a., BHR 73]. 

The model Hamiltonian in a spherical. basis ill 

Hp .(- GP+P. 
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smaD coupling ..... ,~ ...... the ground state is uncon-elated spberical 
mocel state 10). 'The .......... 'vu. taken into account within the RPA, 

'libra. tions, ........ J.'"~ l' 

quadrupole vibrations 
with 1-2 

They have enhanced 

2-value (in 

particle unils) 

+ -+O+}::=~20B.; 

With increasing coupling 

o(g.s,(..4 - »:=: 100., 

...... ~ ..... the lowest RPA to zero. 
on there a 

deformed superfluid 

........ 4""'."", ...... in the energy It is described by a product wave function 
on the spberica.l (normal fluid) ground state 10) 

the quasi-particle 

- L Dbftc,,: ~ 
Ie 

0./+ - ~ D:cA;. 
k. 

- rr~fO) 
Ie 

coefficients Did 
lingle-particle opera tor 

• ~ are determined from the diagoruUization 

~-q(Q+ Q +). 

The strength of the field is the parameter. It is CletemUDIIid 

HH-conmtently by the "deformation eqWltion'~ gap equation 

q- I~). 6- let). 
In the quui-boson the wave function ,.) can be written at a 
coherent atate (boIon conden"te) 

1.)cx:exp(cBo+)to). 14»0.: exp(cA:) 

with the boson 

B + I 
o -c. 

1 --c 
.... ++ 1 c. -c 

The meI.D field IlPI),roxmll:iJlOn violates the iliil'IIUUI!;;U 

(H,J1-0, [H.h]-o. 
Itt solutions I.> In orientation given by anaJes Q -(a. P. y) 
coordinate space. and cp in th.e quasi-spin space. The solutions are degenerate with 
.. _ .......... , to rotations 

10. the deformed we 

fJ. y vibrations 

(time-dependent deformation) 

vibration.s 

(time--dependenl PI' 6) 



with I 

L" ..... ' ...... to an 

the RPA, see 

pairing 

(ground stales the 

A :t 2, A :t 4 •... ). 

4S1 

A,UAll.JtYlllill IAIUVllili. the members or the ground state bands are 
or the deformation parameter (q or 4). Typical values 

are 
2+ -+o+):::::::! 100 B., a( g . .r.(A - 2)-+ g . .I.(A 

B( + )~3 8., a(g.s.(A -

rotations can be treated (see Sec. 11.4) either .... J, .. ~"II ... i;IIl • .1 

model: 
the 

H H-AN; 

or by projection 

pLICa: f D.{,~Ol)R(O) dO, pH C( f e-I(fPl"l)HG(rp) dtp. 

our general considerations about 
the mean theory. and it is dear that a list can 

of phase transitions connected with a 
pion condensation. We shan now tum to 
of the broken symmetries. 

113 Transfom.1atioo to an Intrinsic System 

11.3.1 General Concepts 

Symmetry violations in the many-body wave runctions are con-
collective motion. To explain this fact in more detail we __ ~4U 

use the example rotational symmetry. A deformed wave function 
defines a orientation in space, characterized, for by the 

axes of mass distribution. All wave I~{I» 
only in this orientation have the same internal 

and yield the same energy expectation value. They lie at the 
valley the surface. In the classical picture we therefore a 
type of stays, it is slow enough, close to the bottom of this 
valley_ It to rotational motion with an approximate nll"ll'''C:.IOII''USli 

tion of the If the deformation is large, there are 
particles involved motion and we calJ it collective. (For a further 
WSCWW(lID of quasi-classical considerations. see also 12.3.) 

In the states 14I(Q» span a subspace or the 
body Hilbert the collective subspace in the sense of the 
method (see 10). If this subspace is large enough-that as: we 
shaH see 11.4, if the overlap < ~O)I~g'» is strongly ~II!."'W 
{I - {I' I which happens for strong deformations-it contains not only the 
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ground ltate to a good 
with the same internal 

Since the i.ntrinsic 
good approximation in the collective motiont ." •• rlln'V aWDOlrl 
separate intrinsic and collective degrees of freedom by 
coordinate transformation from the 314 particle f, to COIlIeC*,,_ 
coordinates qp ... ,q, and intrinsic coordinates E .... EJA - f [Vi 51a and 
58, SG 68, FKS 12] 

(11 

The collective coordinates are usu.ally weU defined by the 
symmetry as the canorucal conjugate variables to the generators of 
symmetry group. In the case of translations, there are the center of mas 
coordinates; in the case of rota tions, there is a set of angles as the 
angles; and in the case of superfluid systems. it is the Gauge angle fP. 

The definition of the intrinsic variables E is a serious problem. It 
simple in the translational case of two particles. where it is the 
coordinate r;;o:r l -r2 , In the case of a few particles, we can introdu~ 
instance. Jacobi coordinates. but this procedure in the trlUUlational 
and procedures in the rotational case get extremely compUcated 
the case of our many-particle system. Nevertheless as we sball see in some 
examples, we can sometimes deduce the structure of the HamiltOnla.D 
the coUective variables without explicitly specifying the inlrinsic coordi
nates. 

The main idea of these theories is to decompose the nuclear Hamilto
nian into the following three parts 

H .. Hcoll(q) + H1nr.r(0+ HCOJiJPI(q! E). (11.28) 

where describes the collective and Hif.ll:/ the intrinsic motion. The 
coupling tenD H roupl' it 1S hoped, will be small or or a simple structure. The 
case of nuclear translations is an example of where this concept worb 
weU. Because of Galilean invariance, H rou~ vanishes identicaUy. 

If we can neglect H roupf' we find the eigenfunctions of the total system 
as products of a collective wave (unction Xc(q) and an intrinsic wave 
function (JI,,«() 

~ - Xc( q)' ftl,,(f), ( 11.29) 

and the energies have tbe form 

E:- Ec+E". (11.30) 

For each inU'iDaic state cp" tbere exisb a collective band labeUed with 
index c. 

practical applicationa of this procedure,. we are always faced. with two 
probkIWI: 

(i) The decompoaition (11.28) is not unique. It depends on the actual 
choice of the intrinsic coordinates. It is evident that the size of the 
coupling term depends on this choice. Therefore, some-
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minimal coupling has been used to 
56. 8M 58, RV 69, Ru 73]. 

H uu,«() does not depend on 3A co~ 
only on 3A - f variables E. None of 

them can be identified with particle position coordin.ates. This is 
particularly unpleasant, iJ we want to describe the intrinsic motion 
within the particle picture. We already have tbjs prob-

A authors used lbe concept of reliuncilJnr variables 
(LST 55, Li VC 70]. Here it is attempted to 
combine the of canonical transformations with 
the advantages coordinates to 
intrinsic motion. by embedding the A-body Hilbert ""1-'''._ 
in the particle coordinates f ..... ,fA (the physical subspace) into a larger 
space with the 3.4 + I, where I is the number or 
variables. We additional unphysical degrees of freedom 
by the coordinates , ... ,81' physical subspace is then 
by the conditions 

(II I) 

Physical operators, !..hat operators which depend only on the 
fp .... r A for insta.nce, the Hamiltonian. have eigenfunctions of the 

(11 

where nm{g) is an arbitrary orthononnal set of functions in the redundant 
coordinates. eigenvalue is therefore highly degenerate in 
enlarged space, but corresponding eigenfunctions are identical in 
physical subspace (11 I)." We are now able to transform the coordinates 
g I .. redundant laboratory system into the 

the collective coordinates ql.· ... qJ and the particle 
coordinates x ••... , "AI : 

fi==rl(qIP .. ,qpxp""XA)' i-I, .... ..4 

= (ql.···'qpxp ...• xA). i-l .... ,f. (11.33) 

In this we a Hamiltonian in the variables q and x of the form 

= Hcou(q)+ Hing{x) + Hcollpl(q. x). (11.34) 

In the next step we apply the usual approximation techniques for the 
diagonal..iz.ation of question remains, however, as to whether we 
can find an appropriate transformation (11.33) sucb term 

small. and we can separate the admixture of states 
obtained by approximations in a proper way. Before we these 
techniquu in the of trana1ations and rotations. we 

• P\l.& thet detlil& OODceRWia the calall&tion with reduadaat V!IU'1illl.bIl. 

q\W'lWm et .1 [LST SS~ a.nd for die dallliClJ 
[Wa S6]. 
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symmetry 54, 
Vi 5Th], but for which 
Hamiltonian. 

11.3.2 Translational Motion 

In the 
already it 
symmetry violation. It is the only case where the 
completely the intrin!l1c degrees of frudom. 

center mus 

1 
R- A ~fi' 

I 

(II 

we do not use redundant ,,.,..,'c .... u. Without specifying the 
C()C.rdJnatcs f, we from (11.27) for 

a 1 a ---+ A aR (11.36) 

............ _ Ei depend only on f, - rj • we get 
"'" 0 and find a complete decoupfing of the collective motion 

". (a)1 
- - I + v- + DiJ'(~)"'i'lTl'+ V(~)~ 

II' 
(11.37) 

momenla "'1- (It/i) 

(J 1.38) 

A.l!I we cannot p!ln of (I 1.31) 
LVUMlUI Therefore. we now apply the method of redundant 

COC}rClIIIUlILeS. The coordinates Xi are in particle coordiWltes in the 
center of :ma.ss and fOT the we 

or (11.39) 
rJ .. 

j 

subspace is characteriz.ed by 8 - o. lbe momenta we find the 

" a I - P+p; PJ' i 
(I 1.40) 

It a p- It a 
p,- i i 
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IUmliWllJIIn in the coordinates x:~ R takes the fonn 

H- (J 1.41) 

a complete decoupling. The coJlective Hamiltoruan (1/2Am)pl 
III eipDfunC:lions. To each internal eigens1.&te exists Il continuum 

COITarpQDCIlq to the traDlllltional motion. Since we are only interested in 
4mA)UllD to investigate only H lrm ; 

~ -2; I +v- (11.42) 

It 1000 very similar to the original Hamiltonian H in the coordinates fi' Only the 
term (t/2Am)L'pI'J' which is sometimes called the "recoil tenn," is subtracted. 

IlUfJ DOW able to treat with the Wlul!I.l techniques. We 
not have to worry about translational invariam:e, because we are in 

avsumrl. Using. for inst.a.Dlce, th.e Hartree-Fock method, we would get a. localiz.ed 
and localized wave functions. There are only two things we have to ta.ke 

(i) We have to subtract from the usual Hamiltonian the tenn (1/2Am)LqPiPp 
which contains a two--body interaction. This is oHen done in HF ca.l.cuJa
tions. In a pure phenomenological shell model, we sometimes subtract at 
leut the expectation value of this operator from the finlll energy. It is the 
kinetic energy of the spurious center of mass motion.· 

(ii) We have to be aware that because we use redundant coordinates there are 
spurious solutions our eigenrunc:tions. In in which we 
problem in the center or mass frame exactly they do not mix with the 
physical solutioru and can be separated out by specillJ tecbruquea. In the 

of an approximate solution, however. they can mix with physical 
solutions and it is sometimes hard to decide which slates are and 
which are not 

To undentand the structure of these unphysical solutions Ii little hetter. we ute a 
purely harmonic interaction [GS 57] 

Ie "" 1 v- 2" L.J (r/-rj ) . (11.43) 

In this case we can write 

H,.". Ho + HI' (H.44) 

with 

(11.45) 

and 

(11.46) 

"The: MOle term is llHomalical1y obtained~ if we worl< with the: Hilmillonilln in me 
laboratory sYltem (ooordinaLQ Iilld treat the: ground sl.al.e COf'l"eIIU.iOOI in tbe framework of 
the RPA IlpprMcll [s.oe Eq. Il)~ It is the oontnoution of the: uro-frequency mode 
connected with the translation to the pound slaLe correLation energy. The RPA i.s asymmetry 
conacvin,g tb.COI}'. II il thc:refore not necesn.ry to introduce redundant coordirulC5 here. We 
also get the &.ame term in oi.ber symmetry-comcrnnl theories. like projection techniques [see 
Sec. (I L4.4)J. 
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Ho is a single-particle harmonic oscillator potentiaJ with corresponding Slater 
determinants al H. commuta with He it can 'be 
neously and the exact of iI 
function corrected for the center or mass motion. On the 

.......... ..-" .... of the center of mass .-(1/ A)l:;"x, of the 
UJfV'~ oscillator potential with frequency (d-

particle. motion is certainly 'becI.UIe in we 
the condition 1-O. The spurioWJ solution. correapond to OICilIationt of the nW;.;u:!I1I 

U a whoLe in the shell model potential. 
In shell model wcuiatioDi baaed on an harmonic oscillator th.ey can 

sepa.rated by group theoretical methods [BR 37, SS, S8, Kr 60. Vo 60, 
66, AMK 69, Mo 69, He 71, Sch 7Th]. Since the center of problema ue 
especially important in lij,bt nuclei, and on the other the 
V-.LUAlL",,' potentia) I. appro.xim.atioD for the 
region of the periodic !.able, this basil is preferred for many practical ...... II>'''t' •• u~lI. 

In the general case the problem is very complex. An euct separatioD of 
spurious components ohen hardly possible. It has been tried LO ramove 
spuriOUl components approxi!ll!.tively by adding an operator S(a) to the 
ruM, which vanishes in the pbyaica.l space (g - 0) and is large and positive for 
It shifts the SPUriOUI eileMtates to high energies such that they do not mix with 
low-lying states even if they are only calculated approximately [Pa 67, SO 68, 
72]. 

In heavy nuclei the spurious center of mass motion c,an be neglected in all 
where it an effect only of the order 1/ A. AI an eJUlmple, we calculate the 
orbital of the magnetic moment in a nucleus with one odd nucleon outside a 

configuration (for or Bi~. The orbital angular momentum 
of the ith particle with respect to the center of mass of the whole system is given by 

(11.41) 

where X; • pi are the coordinates of the particles In the cente.r or mass system of the 
magic ccOre. index 0 characterizes the odd particle. Only the protoD. contribute 
to the orbital part of the magnetic moment If p characteri.z.es the protons in the 
core~ we get 

Depending on whether the odd particle is a proton or a neutron. g, is one or uro, 
re&pectively. Within a shell model approach whose center coincides with the center 
of of the core. aU the protoDi are in dosed shells and the first three 
tenDI in Eq. (11.48) vlllisb and we are left with a g-factor corrected for the center 
of mill motion g;: 

( 11.49) 

TIris is a 1/ A effect 
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11.3.3 Rotational Motion 

to the translational case; there are, 

(I) is no counterpart to the Galilean invariance in the rotational cue. 
we cannot expect ill priori decoupling between collective and 

tft'lntbil'" mClrUOD. We only can hope Lhat the ooupliDg terms at 
for oot-too-la.tp angular momenta. How large they are depends On the 

choice of the intrinsic system. 
(ii) There is no well-defined center of mass angle. The most natural choice of 

the IeeI'DI to be provided by the principal axis of the ma.s:s 
distribution. It turns out, however, that the spurious motion of the system 
around t.bete ues yields very large coupling terms between intrinsic and 
colLective deJrees of freedom [VC 70]. 

(iii) The underlying symmetry group, the rotational group, is no longer Abelian. 
Whereas the first two difficulties are already encountered in the ooe
dimensional rotations in a plane,· we have additional difficulties with 
noo-commuting operators. This requires some lengthy calculatiom involvinl 
angular momeatum algebra, which we do not want to go into here. The 
reader is referred to lhe literature for aU the detail .. [LST 55. Na 5', Vi 
57a. hJ. We present only the main results. 

As collective coordinates, Euler angles 0 - (0:. fJ. 'Y) are lba t c()nnect the 
to the body-fixed system. whose precise defmition is still open. In 

a first step. we can again try to use 3A - 3 intrinsic ICOOrdinates t Villars [Vi 57&, b] 
in this case derived the following general structure of the Hamiltonian 

1 33 

Hai L (g-l(O)r./;,/.I;+ !BI(~)I,+Hlfa~()' 
til-I i-I 

(1150) 

The operators I, are the components of the angular momentum operator f with 
respect to the intrinsic axis i -(I. 2.3) expressed by Euler angles (see Eq. (A.l4)]. 
The rest of the Hamiltonian, particularly the tensor of inertia and the qu.antities 
B" depend only on the iDtri.nJic coordinates ~. They provide a between the 
coUective ud the intrinsic motioD. 

If we determine the body-fixed system by the principal axis of the m.a.ss 
distribution, we find that the tensor ~ik is diagonal and that !.he moments of inertia 
are liven by the hydrod.ynamK:ai (1.48) derived from an irrotational liquid 
drop motion. They are in slronl disagreement with expenmerual evidence. ~~
quently, the coupling terms Bj have to be very large. 

We can also give the general structure of the eigenfunctions to the Hamiltonian 
(11.50) .. Sma it is invariant. and since the Wigner functions Dl;1(D) 
provide a complete system in the variables D~ we find for the eigenfunctions of Eq. 
(11.50): 

+IM(O,~) - 2: D:;K (Q), gK(~}' (l1.51) 
K 

AI in the translational case, the coordinates ~ liTe not very w.efuJ for ............ "'''' 

.. The violation of pup symmetry in the DeS wave functkm would oom:spond to such II 

one--dimelUliowU rotation. 
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applicationa. Several authon the COI1CleJpt 
Again we a.re faced with the problem of a propet' CDCJ1t:e 

we choose the principal axes of 
moments of inertia and large 
remove them by a unitary ltansfolml.tlon or a proper choice 
[Co S6, HM :51, BM 58, VC 70, Ru 73]. However. 
with very complicated equations. Their solution i:.I only ......., ....... _ 
drastic approximationl. The mOlt elaborak of 
carried out by and Cooper [VC 7OJ. They obtain a re~!)n'Jl"b3!;11". 
irrotatiorua1 moment of inertia and end up wilb the 
(8.113)1. 

III these we can that the DolI',orrnatioD 
system and the c-ownruction of 8 collective Ha.miltof!.lan in 

encounters serious problems that have not yet been solved completely. It 
the case of translations that complete separation of the collective a.nd 
degrees of freedom can be and where in the of an 
OIciUator basis an elimination of results is by group-theoreticll 
metbocb. 

In viev.r of the rot.or model of Bohr and MC)ltci:lICm 
Chapa. I and 3), we expect that it 
Cllllle to achieve at least an approximate decoupling of collective altd 
mOllon. The essential problem is the determination .of the moments of 
rontradiction to the trlUl.'Slati.onal case. where the total mass is independent of 
residual interaction, the pl.EI.meten of the rotational motion are 
by the correlations. This is a dynamic dfect which can hardly be LIlken into 
account by a pure coordinate transformation. 

A mucb more general way to treat symmetry violations is given by the method 
of generator coordinates. In many ca.ses these techniques corresJX>nd to a projec
tion onto the corresponding eigenspace .of the symmetry ope rat.or. We will treat 
these projection methods in the next section. 

11.4 Projection Methods 

11.4.1 Projection Operators 

Projection techniques are a case or the generator coordinare 
method (GeM) in Chapter 10. The concept of this method 
is a diagonalization of the fuB many·body Hamiltonian H in the subspace 
spanned by a set of generating functions \41(0». which depend on one or 
several continuous parameters O. This space is called !.he "collective 
subspace." 

We now have a symmetry group. generated by the symmetry operators 
Sf' which commute with the Hamiltonian. and a symmetry-violating wave 
function· (4))- Applying aU the elements R(O) of this group onto we 

"Ill the followinS we a.lways have product wave fU.DcUona in mind, although Lhe method 
can be generaJu.ed to oi.bc:r types of lIymmetry·brwm, functions. 
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get a 

(11.52) 

where runs over the of the group. 
All the wave functions I~D» have the same ener&>, expectation value. 

and yoccoz [PY 57] therefore to use them as 
the GeM technique, that to make the roUowing 

the wave function Ii') of the system· 

1'1') == J dO f(D)I4>(D». (11.53) 

of the energy with 
corresponds to a diagonalization of 

(see Sec. 10.2). 

to the weight function f(fl) 
the space spanned by the 

V"V"''''''"' is invariant under the 
the symmetry group [Ze 67]:t 

R(D)Ii') = J dff f( + ff)I4l(D'», (ll 

whicb means that the projector p .. onto subspace commutes with the 
symmetry operation R(D). Thus we sec that we may find simultaneous 
eigenfunctions of P.HP. and the operators. In other words, 
there Q function f(D) which minimizes the energy QJU/ causes to 
we the proper symmetry. 

To a function~ we expand f(O) in a complete sel of eigenlunc. 
tions of the symmetry operators the variables 
Abelian corresponds to a an exam-
ple, we use the case of the gauge with particle 

(sec 11.2). It has one group parameter cp. and the 
operator IiI /2 has the representation ia /drp. Its eigenfunctions are expo
Dentials 

(11.55) 

with integer n because of the periodicity in tp. From Eqs. (I L53) and 
(l 1.55) we 

(ll 

with 

.0.;1 I L111' ...IN-A) P .. - e·..... dfp. 
2'l'T 0 

(1 J .51) 

'f!tc opet"ator " a projection operator in the mathematical sense 
(p2= p. P + _ P). whicb projecots onto the subspa~ with particle number 

,. For a review methods bued 00 the GeM 11'tIatz.. see also [Wo 75J ud.. for I. 
teVaew OD more aeneraJ projecl.On, see [Ma 10]. 

'Note that for noa &Toups - 0+0' depends on the and means the set of 
................. 't_ COl'1re11llOn<ling lO the tn .. lJ .. domtation R - '(O),R{O') .. 
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I 
No.,N'c.' 

Since we are a wave 
particle number A t we 

2n 

(11.59) 

and 

P'~(rl .... !r ... )-J dlqe'MJIICb(rl- ..•• r ... 'I). 

For Abelian function f is therefore completely 
determined by 

different for non-Abelian groups. Here we do not end up with a 
projector in the we also use tbe term 
'"'projection function f is not com· 
p]etely determined by the important example 
case of in three Since this group i,nvolves 
many not want to interrupt the general U&U,,",LUlIiOIU 

we will come back to three-dimensiona] 

11.4.2 Projection Before and Alter the Variation 

(1) Variation before the projection (VBP) [PY 57). In this case we 
proceed, for as described 7 and determine the 
optimal product wave function I.> by the variational principle 

(11.60) 

A udefonned" equation a superposition 
of coI'f'e$ponding symmetry operator, for instance. of 
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the angular momentum· j: Applying the projoction operator pI, we 
get a wave function 

1,+1 .. (11.61) 

contains only components with the angular momentum I. It is 
no a product wave function, but a complicated superposition 
of Slater-determinants as discuued in Section 5.5. Insofar it contains 
many more correlations than the function As we shaH see in 
Section 11.4.4, it therefore has a lower energy expectation value and 
it is certainly a much bener approximation of the exact wave 
function of the system. 

The method is father simple insofar as we get the whole rotational 
band based on the intrinsic wave function if we apply the 
projector pi for diHerent values of 1. The variational equation 
(11.60) has to be solved only once. However, this method. does 
vlolate the variational principle, since we do not vary the projected 
function 1'1'1) and it does not aHow for changes of the sell·consistent 
internal field within a rotational band. We can therefore improve the 
method in the foUowing way. 

(ii) Variation after projection (V AP): (Ze 65, RY 66, Yo 66]. Here we 
use the proper variational principle 

-~-::--- - O. (11.62) 

which means that we have to minimize the expectation value of the 
projected energy plHpl within the set of product wave functions 

In principle, this method corresponds to a double variational 
GeM technique [see (10.147))" where we use the anutz 

f dD f(n)R(n)I~) (11.63) 

and vary tbe energy with respect to both the weight function f and 
the generating function 1«-). Since the function f is determined more 
or less by the symmetry, only a variation of I~) is left. 

This method is certainly better than a variation before projection, but is 
a150 much more complicated We must repeat the variation for each value 
of J again ... and the operator p'Hpl is a multi-body operator. 

Only in the case of particle nwnber violation within Lhe BCS model 
(Chap. 6) have both methods been. carried out exactly. We win discuss 
these calculatiolll in more detail in. Sect jon 11.4.3. 

• Si..Dce in thil MICtion we livc only a very qualiu.tive diKUMion of different pr~ 
techniques., we UJe Ibe lJIIUlar JIIIIOIDUtt.I.iD j bere only U IJl eumple. without ,otJ21 irl10 f.b,.e 

deta.ih ·01 !he rou.tioul group. j could be ~ced in the following by l.Dy oilier IIYIIlIDetry 
operator. 
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we have only to vary with respect to 
probabilities . In where we 
particle wave functions the YAP method.s DfX:OUie "',lffrllM'nlll'Jv corDDI1-
cated. 1n principle J we can write down (in _UI!.<I .... !!U 

HFB equations in the mOlt genera.! cue 65, On 68, SO 
detail they corrupood to 1& of integral equations 
that have not been solved 10 fu. 

In aU therefore, one used, to a 
._ilU!l'fl" extent. rather drastic approximations. There are two 
Eq. (11.62) approxim.ately: 

(i) We use the exact projection operator and restrict the 
functionj druUcaliy, aHowing only very few important tf#t~ ... 
of freedom. For instance, we can use a Jet of 
1~{3, only on deformation 
we from a diagonalil.ltion of the 
potential. point in the (/1, y) plane we then have to 

the projected energy and search for minima in 
method the complete analogy to the technique in Fla. 

1.1 for the determination of the unprojected HF solution. It bat 
been applied in caicilla WlOSin tbe high spin region, where particle 
nwnber projection is important [DBM 73. FLW 73, FOG 761. 

(ii) We can use rather general assumptions for the wave 
such as, large deformations and nearly Gaussian shape for 
overlap kernels [see. Eq. (l J .79)] to approximate the projected energy 
without specifying the detailed structure of techniques 
correspond to the momentum expansion in the GeM method (see 
Sec. 10.7). We will discuss them in Section 11.4.4. 

Here we want only to anticipate the most important result [Ka 68, 
BMR 70. VS 71, Co 72]: In the limit of strong deformations. we find 
that the cranking model wave function (see Sec. 1.7) is an 
approximate solution of Eq. (1 1.62). This wave function is defined as 
a solution of the oonstrainedvariational principle 

8--~-- 0, ( 11.64) 

and w is determined in such a way that the Iymmetr:y on the 
average, conserved. To each i-value we must therefore use a differ
ent internal wave function." 

ctliI"n!!U: tilHl'Ili are _ ...... " 
melbod.. u it ia 
nAf"IlV'''' Duaba' ,.."....,. 
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11.43 Particle Number Projection 

•. -'~ in Bes wave fUDctions is a nice example of I 
by projection techniques." Over the a 

developed in fie1d [Sa 6Ob. KLM 61. DMP 
DK ~ 10 67, Fo 70~ So 72, FHM 

As an example, we present the Method qJ resid:ut!s 
Pradal [DMP 64]. It starLS with the 

(ll.~7). introducing I. complex va.ri.able z- e"", we can write it as an integral 
complex plane. 

When .PI)IIICG to " 

-
wave l1U.I,cu<tn of the form (6.31), we get 

f r'::. 1] (u,t + l.ik!atal)l- >. -
we have z r - and used the raCl that the of 

atat raises the number by two. p-Aj2 is the number of 
intqrand in (11.66) is a Ul.lR!nt in r. The integration jus, 
component with r I. is, the component with p pairs. 

(II 

(11.66) 

the fermi commutation for the operat.ors ak. a/ • we can ...... ""_«4: 

arbitrary matrix elements by the residues 

R .. ..,,(kl.·.·.k ... ) (11.67) 

lUI. tea of R ( ... ) are to be excluded from product 
under the integral. As simple examples, we find the norm 

01.68) 

probabilities for the level k in the wave function lyA > 

(11.69) 

which shows that in the projected BeS theory the numbers no longer have the 
meaning of They are only variatioruU 

The residues can be evaluated in a rather simple rrom the recursion 
relll.tions 

R,./IIII(kl •... ,k",,) - u;R,.I'fII+ I (kl •... ,km • k) + v;R .. "!. ~ l(k I1 ••• ,k"". k). (11.70) 

A 

A • A quite method 10 Il8It partide Dumber violation by two OI.XldItrairlls on Nand 
N 2 b.u been PfOJpoiled lIlDd Nopmi (U 6Ob. No 64b. NZ 64, 
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The projected expectation 

0-
1 

{ -11.0 • k 
o 

+ 

We that (11.71) for 
mniJar to the analogous fonnu.la for the 
can calculate expectation of 
projected BCS functions (usually method is 

A bit mOR is the FBCS .""""JNIT_ 

projection. 

a structUR ,'NllllUAI 

funher 
Table 11.1 .nt.'~ 

actinide retJ~on. 
bundred k.eV. The part already 
components in Bes wave 
FBCS metbod causes an additionill lowering. 

the form· 

k') }. (J L7l) 

They have 
their solution provides no 

The details depend on of the fermi 
surface. In general, with decreuing Yl'ith decreasing level 
density. which happens Table 1).1 for numbers) we observe an 
increase in the error of the PRCS method. In other for large correlations 
with strong symmetry violations. lhe mean field is obtained by a 
symmetry conservation on the average (in our case wave function) 
already provides a good approximation of lhe solution of tbe projected variational 

Table 11.1. ToW ....... "'~ ... of valence 
in the &.ctinide calculated by 
outside a Z -76 (From (MPR 65].) 

z 
88 
90 
92 
94 
96 
98 

100 

(MeV] 

91.433 
106.005 
120.340 
134.312 
147.956 
160.829 
173.210 

264 

400 

55) 
494 
496 

even proton 
techniques (25 orbitals 

2 
28 
36 
51 
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wave fl.llldion. 
particular, we know that below a critical level density (which j, to 

force Gc ) the pp equation (6.60) only has the trivial solution with 
·'ftL]1IDl1Ul.l6 pp. true in the FBCS method. It c.an also accou..nt for 
·_t'ft_ 'IfMk correlations. AI .I measure or these cornlations, we ca.n no 

A I. theory, &inee it describes a "de--
I)'mmetry oomerving wave function. Instead, we 

I.u.WUlI~ the function 

D2_ L (aleTa/at"'';:.). (11.72) 
Ie, k' >0 

wbich lMUurel the or Cooper pairs in the wave function. D coincides to 
laI.1uq order with A//G in the BCS lbeory. In the projected theory it is given by 

D I. - L R r( k. t') II • .,. "",tk· 
kJc'>O 

(I 1.73) 

Fi&w'e 11.5 sboW'S the qualitative behavior of thia quantity as II function of the 
COtlOl;Ul& strength G. In the BCS and PBeS the pairing correlation vanishes 
for G Ge . The BCS soiulion. in particular. shows a rather s.harp cusp at G- Ge • 

This sharp "phASe ... however, is washed out for finite systems. It 
disappears in the FBCS mood and we rmd II gradual weakening of the pairing 
correlations liS .I function of G. In all cases of weak. pairing correlations we should 
therefore go beyond PBCS theory. An example is calculations in the high spin 
region, where we expect a drastic reduction of the pairing field by either a 
decoupling mechanism or the Mottelson-Valatin effect in the rotating system (see 
Sec. 7.7). 

AI we saw in Sec. 7.7, in these cases we need the full HFB theory. t.h.s.t is, we 
bave to vary with respect to the single-panicle wave functions fIllc' Particle 

m.unber proj~cted H FB theory after the varia lion can be obtained rather simply from 
the method so far. Since general HFD wave fUl1c·tions in the canonical 
basis (see Sec. 7.2) have the structure of DeS functions, we have only to transform 
to the canonical basis and obtain in the same way the projected matrix elements. 

An approximate that avoids these transformations is baMd on the idea 
of Fomenko to replace the integral in Eq. (11.66) by Ii sum over L points '1- exp(2'1riI/ L) on the unity circle [Fo 70. So 12}. The approximate projector then 

o 

-BCS 
/ -- _. PeCS 

- . FBCS 

o G 

Flilft 11.5. Pairing correlations as a function of the coupling strength G in the 
(full). PBCS (duhed), and FBCS (dashed/dotted) method (qualitatively). 
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hall the form 

It is easy to see that pA+2m·Pt 
means that the wave function pf 
numbers A. A lL. A :t::4L~ .... 
ready an.nihila.tes tbe components with A :t 2, If ±6. A 
function (A - 2p) 

L 

J'l'IBCS) I !t-' n (Ilk + c.f,a,ta/)I-
1>0 

iaa "'U"~llndi"'U; of L wave funcboDJ Totated in the 
angle fPt - 2'11' / L; that 
an HFB function 
tion of HFB 

Cit is replaced . Ok- In the same way 
by the ( into a lina..r 

(/ 1, ..• L) with the (rl 
is not nec:eaal 

(11.14) 

smeared out only over a few ...... "" • .,..11"" numben. 
of L. we already obtain a nearly exact pn:J~ecbOl!l. 

"nanrv with variation after particle number rar DDt 

been carried out. In a.ny case, it is much more complicated than FBCS. In 
practical calculations functions fl. 1'. depending on a limited number of 
parameters have been used to the projected energy. 

11.4.4 Approximate Projection for Large Deformations 

A general metbod ror approximate projection for the case of strong 
violations has given by Kamiah [Ka 68) ror the case of the 

rotational group (see also [KG 72D. Since the rotational group shows many 
complicated special feahLTes. and since the method is also applicab1e to 
other cases, sucb as the particle number [DMR 75, Ma 758.1, we shall 
present it here for the case of a one-dimensional rotation around a fixed 

only. It will be described by the operator j and the angle a. 
The projector onto eigenfunctions of j has Lhe form (1 1.51) 

L2
"e ia(i- n da 

and for the projected energy we obtain 

I 
---~---------f do: l1(o:)e- iICll 

with overlap integrals 

{ 
h( a) ) 
11(0:) 

(11.76) 

(t 1.77) 

( 11.78) 



QUe of large and strong deformations, we eXll~CI 
functiona ,.(a) and heal be sharply peaked at a=O and to vanish 

a way that the quotient h(a.)j n(a.) is a rather 
a general property of many-body wave functions (which 
great detail In 10.7). Following 

iM5t;fU[J,n 10.7.4. we obtain· 

(H.79) 

,. 
J-

only difference now being that we also allow for time odd components 
the wave functions. which does not give a pure Ga us.o;i an. but an 

additional phase in Eq. (11 0). The idea of Kamlah is now to 
l.lIIle the opera tor 

i:- - +l-t 
i aa ' 

a representation of the SVIWIleu operator in the ............ ... 
r .. ""' .... ua .. a,t and to expand overlap function h(a) 

way. 

h(a)= h,,inn( a). (11.80) 

MathemalicaUy this es.sentiaHy to a Taylor expansion of the 
Fourier transformed function h(a)j n(a). Since we need h(a) only in the 
vicinity of a -0 we can already to a very good approximation 

function with a few non-vanishing constants ho• h p ... , hM • if they are 
properly adjusted. The number M depends on the width of 
overlap (11.79), that on the fluctuation of the symmetry 
j in the wave function The the violation, the better 
the approximation will already for low M-values. 

expansion (11.80) is not a expansion in the sense that 
coefficients hn are determined one after the other, such 

that the coefficient ho does not going from M to M + I, but for 
each M-value the whole set Ito, ... , hM at once: Operating with 
I, tl,. .. ,iM on Eq. (11.80) we obtain, in the limit Q-40, the foliowin~ 
inhomogeneous system for the unknowns ho ... · .hM: 

AI 

<H(Ai - (I L81) 

solution of these equations for the nrrulIOiiI"", .. n 

• In the following we we the symbol 

1'10 the cue of tb:ree-dimettSionaJ roLluiODJ we thererore me. illS'eM of (1/l)Q/tJcr. the 
I"C1)IlaeotaltiOD of ansulu momonta in A). 



energy. From (11.77) and (11.80), we get 

M 

L h,,'(J-

The simplest case is M - 1. Here we rind 

and 

(11 

(11.83) 

(IL84) 

In a variation after projection method we get the variational equation 

+(1 (11.85) 

It is solved by a solution of the cranking equations'" ., 
a~ 

=0. ( 11.86) 

with 

I 

if the condition hI - w is fulfilled. To see that always the case we use 
the fact that (11.86) to bold for arbitrary variations in the set ,. 
of product wave functions. One such variation is given by 18 «daft.) 
"'" j20I4t) (in the sense of a representation of Chap. 7). 
Therefore, we get 

=0. 

which shows that w- hi in Eq. (11.83). 
We now have proven the remarkable result that in the case of strong 

symmetry violation&, M-I a sufficient approximation in the 
expansion (11.80), cranking model waVe that preserve the aver
age, symmetry are a solution of the variational equations alter projection. 
This fe,wt does nol depend on the structure of the overlap funf;:tions in 
detail. One only needs the fact that they are sharply peaked around the 
origin. 

So far we have in the case of a one-dimensional 
rotation, but the (as we see in Sec. 11.4.4) can be transferred 
with minor to the three-dimensional case. 

Within this approximation, the projected energy given by ho and equal 
to the unprojected energy. This the self-consilient cranking model 
c.alc.ulations for the rotational spectra (see Sec. 7.7). In particular, for the 

·In IIIQJne cues it twm O\.lt that 101l.lLlon doe.t Dol CQf'I"eSp<)Dd to I. minim .. but to & 

na' muimwn. Second-onkr terms (M .... 2). hmrevu. guarantee that thi.s muim .. is 
chuged to a m.inimwn [BMR 70~ 



self-clomnstent moment of we 

III'DlDle resul~ however, 
we to calculate AJLA"'· ..... ""'u 

carry out an explicit Df()J~;UO'D 
Sec. 11.4.6.4). 

C&ICI where the restriction to M - I 
enough~ we have to go to 

ano·, get 

ho-(H>- h l - -
with 

In the case of a norm (11.79), we 

§y 

projected energy now has the form: 

) (i» 

(11.87) 

o identical with that of 

we 
cranking func-

(11.80) is not 
M == 2 we neglect-

h2 ( 11.88) 
y 

(1) .89) 

- and find 

( 11.90) 

-L(I_<i»2. (11.91) 
y 

Let us first study the method of varitU;(JfI rt.B1t."'''.n nrnlPt"1 

originaUy by Peierls and Yocooz [py 
function I.) is obtained from a minimization of H without 

therefore., time-reversal invariant and 
The spectrum then bas the form 

i 1 

- 2!y>+ 2§y . (11.92) 

It is the spectrum of a one-dimensional rotor with the value g r for 
the moment of inertia (see Sec. 11.4.5).t The band head is 
the HF energy by subtracting the spurious rotational energy 

'" meuunllll the 01 the J In the ca.se or II 
~rlJlon it ex.atlly. 

from 
the 

method haa also been inVCltipted in great detail by Vemur (Ve 63, Ve ror the 
IlrCl!l..QlmelUKmAi roLttion in !.Wen and od.d nuclei (or K .. 0 aAd K.".O bands, Thill one cu 

derive expreuious fOT the B C in Eq. (3.1) III well u the 
deooupllU parameLer3 (3.31). 
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symmetry-violating wave function,· This produces a 
of the ground state In weU deformed nuclei 
order of 4-6 MeV. We have already encountered 
for 
in the 
8.4.8). 

not differ very much from a sphere 
of the large particle numbers"! 

peaked at the origin, which 
5JU;r;wn,. transition to a deformed mean field is wen justified. 

11.4.5 The Inertial Parameters 

cases of 
The crucial 
inertia) 

with the violation of a 
(11.9) 

there are no 
rotational type we get ,.",.""rLn' ... 

of the collective 

There one case where we know this parameter a priori: of 
Galilean the collective inertia of translations have to be equal to 
the total mus Am of the system. This case therefore a good 
test of the approximation schemes used so far the treatment of 
symmetry violations. 

We method of variation afler projection Vi 66, R Y 
66]. (l) defines the intrinsic solution for a wave funclion with 
momentum p: 

-0. (1 J.93) 

VLS SO). 
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Transforming from the laboratory lII'UOII!lr""rn to a system which moves with 
velocity v-p/2Am, we find (1l the center of mass coordinate): 

- ( 11.94) 

<'''1, (r/A)"(H - £P)P O. (11.95) 

ClermUlOll (11.59) of projector pp~ we obtain the 

(11.96) 

a local two-body interaction we get 

e u/Ie)pRHe(i/")pR - H + pP + L . 
Am lAm 

(J 1.97) 

p' projects onto states with vanishing eigenvalue of the center of 
momentum P, Eq. (11.95) has the form 

H-E,+L -0. (H.98) 
2Am 

n corresponds to the variational problem for vanishing momentum and 
energy EO, The ene-rgy of the system momentum, is therefore given 
by 

2 
£,_£0+ _,_ 

lAm' 
(11.99) 

which shows that we obtain the proper total mass using the method of 
projection alter variation. This property is conserved if we approximate the 
projection after variation by the selJ-consi3tent cranking model [Or 60] (in 
the case of translations, we usually say "pushi.ngB model): 

H- -0. (11.100) 

The inertia parameter of ThouJess and Valatin (8.113) obtained in this way 
is the total mass. In principle, we have shown this already in Section 8.4.7, 
but it is easy to verify it once more if we use the admissible variation 

(Il.IOI) 

Subtracting Eq. (11.100) from its complex conjugate. we obtain 

<~I[H,R] Y·(P.H] =0. (lI.102) 

In the case or H containing only a local two-body interaction, we get 

v----
Am 

(11.103) 

which shows that the inertia parameter, which is given by the ratio of the 
expectation value of P to the velocity v, is again the total mass. 

We can deduce the simple Inglis formula (see Eq. (3.89)] as the inertia 
parameter abo from the variational equation (11.93) if we replace the 
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two-body interaction in the Hamiltonian H by a one-body pol:enl[W 

variational principle in this case equi.valent to an exact QUll~DAlIlZI~D(I'Il). 
shows that for a local one-body potential as, for 

Woods-Suon weLL the Inglis formul·a also the exact total 
63}. 

It is a drawback or the method of variatlOll before 
yields the inertia of YOCCOl.t (11.90)-that it 
anee. It does not produce the exact mass. From Eql. 1.90) and (l0. 
we obtain for the inertia in the notation of Section 8.4.1 {FW 70D: 

(p*P)(;. !.)(;.) 
---------------------- (11.104) 

where P is the ph part of one component of the vIM'·rn. .. 

consistent basis (Hw_O) is used. In the limit of I vlnilhing reIIllQ'W1J 

interaction, it is equal to 
.2 

2( LIP ,.12
) 

g y{ V 0) _ __ m_' __ _ 

LIPmlI2(~ (J 
(1l.105) 

mJ 

It is obviously different from the Thouless-Valatin inertia (8.108), 

2 
2 SI (R) 

" or 

B ) I(p .) 
A'" p. 

(11.106) 

which in the limit of vanishing interaction goes over into the Inglis formula 
(3.89). 

(11.107) 

-nus 'II DOll. contradiction to the fact tblt the Tboukn-Valatin m.a.u (8.113) differt from 
the fop formula by tb.e residual mtenetioo., becaute ror aU forc:el that produce .. local 
field, I..tM rePduaJ m~n.ction bIB no inf1~ on the ma.a (the time odd part r I in Eq. 
(12.81) vaD.iJhe:s). 

'1M the int.rl:n:Uc wave f~ ~) LsI. lu.perpoGtiOll1 01 aU the _aVII". 
rotl.DClllIId bu.d ~ hat IlIo beIm IJ.IId by styrmelSk 57]: AIilu:miDI that ml:d8IIC 
twlld1iODilm H' .... H - J2/~ hib aD ~tlle, whicb is not lUI ~I.e of .P. we CUI ,hotr 
[U 601.1 that H tw .. rotltkJ&l1 fP4ii'Cbum with ! 81 moflilmt of inertia. To deU:rmiDe die 
01'11 .... val .. of t. Skyrme mimm:.i.zed the ~tioc VI.lue «H'-(H')'1) with respect ~ 
the puam.eter !. and found u I. 101ulion 

1"hiI is for tim~ W"aYe fWllctioOJ i_tical Eq. (11.89). ud l.be1"don 
closely related to § r (see aJw [Wo 7S{). 
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How large and how important this difference actually is. has not been 
investigated very much. It certainly depends on the interaction and on the 
lingle-particle energies ft. For aU models with a constant level spacing 
f-E". -~, both values are identical In Sec. 10.7 we saw that we have the 
Yoccoz inertia (l L l (4) for all kinds of collective motions, if we use the 
simple GeM method with coordinate dependent generating functions. 
Only in in which we allow the intrinsic functjon 14» to also have 
timc--odd components that depend on the momentum do we eventually 
obtain the proper mass. This is the case in the lime-dependenl Hartree-
F«k method Chap. (2) and in the variation.a1ter-projection method. 

To obtain the ma.u in a GeM method also, Thouless and Peierls 
[PT 62] proposed to superpose nol only wave functions of different 
positions [see Eq. (11.59)1 

I~(q»c (11.108) 

but also those with difrerent velocities. 

(11.109) 

This yields a double projection method, in which the velocity dependence 
of the weight function f(q. v) has to be determined by variation. We can 
show that the wave functions obtained in this way do not violate Galilean 
invariance. The method itself~ however, is rather complicated and up to 
now has not applied very much [Ba 69bJ. In calculations the 
method of varjation after projection is usually preferred (see Soc. I L4~2). 

So far we have treated only the case of translations. In the case of 
rotations or other collective motions as discussed in Section 10.7 the 
situation is more complicated, The exact inertia is not known a priori. We 
can only argue in anaJogy to the translational case. Numerical calculations 
have shown, at least, that in the rotational case. the moments of inertia 
obtained by the method of Thouless and Valatin are, with proper handling 
of the pairing correlations, in good agreement with experimental data (see 
Fig. 3.14). 

11.4.6 Angular Momentum Projectiqn 

11.4.6.1. Derivation of Projector-like Operators. The rotationa1 group is 
usually parametrized by the three Euler angles· D -(a, /J, y), and the 
general rotation is given in Eq. (A.4). We have to go back to the anutz 
(itS]) or the wave function 1'+'). As in Eq. (J 1.55), we expand the weight 
function f(O) into a complete set of eigenfunctions of the corresponding 
symmetry operaton: angular momenta represented in Euler angles. As 

* There have been uled other ~tAtioIIIiI aiIo, for wtaD,e;e 

II. - exp(;.,j) 
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a Ht 

D!:K(D). We therefore gain the anutz 

J(D) 2/+ 1 ~ 
I/ilK 

and 

L 
I/.IK 

The operators [RW 54, PY 57. Vi 66] 

A/ If ,. 
PMK """, 8,,2 DMK 

R (D) :;:; e ryj. 

by the 

(D)dD 

can be written in analogy to (11.58) [LB 68, Co 71] 

"/ ~ PMK = "",I 
0: 

(II.' 

(11.11 

( 11.112) 

(11.113) 

a complete orthonormalized Ht space a 
numbers besides the rotational quantum num· 

bers 1 and M. 
From (l L Ill) we see that P~K are not projectors tbe 

sense. We only the relations 

"I "I' ", P MX P M'J(' = 811 ,8/tt1'I(P UK'; (
AI. )+ I 

PMJ( - (11.114) 

show how they act on the 
tion we decompose I~) with 

quantum number K: 

lIB (ILIIS) 

P~I( transforms the componenl into an eigenfunction of j2 
with the quantum numbers 1 and M and all other components 
with K'=#: K. 

principle it is very simple to construct the precIse mathematical 
projector onto the quantum 1, M. It byt 

(11.116) 

WV1IJ1QUliliC n,I!!'IU,,," aD iD.1.ri.D.Iic hame DOr lor:;;u.'IUN_" 

ud the func;bOQ 
coordi.llA. tnUlIIOfUUUI01I., but by 

rcpt_lled by ....."..'-UU [LO 64] iD. 1M folJcJWil11l way, 

'" 
A -.:---=-~+~l~) -.:' II Jz - K . pJ,UJ- II 

L.' K+M -

apsl'UCILbOiU of operator, we up Ii _ of IlJIIIOnIIC l!CI!Ultiiou (see 
MKL 71, MM 76D 1100 do DOC have to over 
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operator rather unphysicaL 
IiIVI"I"I'I'ft .... I'Y".P Niluon function with K - 0, we 

M - 0, which clearly violates the 

- L &KP/.tKI'P) = L gK 21 +.; fdO Dt;K (O)R(D)I¢-)· (J 1.117) 
K. K S17 

ca.sa the wave function I has axial symmetry, only the K-value 
contributu to the sum (11.117), and the coefficient gK

o 
is given by the 

normalization. In general~ however, we have to minimize the Hamiltonian 
with respect to the coefficients gK' The energy is given by 

~ g;g/(.hk/(, 
1 > KK' 

E - --~~- - -----proj- (1 L JIS) 

with the kernels 

The coefficients 

h i -
/(1('-

""I _ 
,"/(/(,-

(1 L 119) 

are the solution of the generalized eigenvalue problem 

L hil(' g/(, = £1 ~ n~/(" gK" (11.120) 
K' K' 

It corresponds to a diagonalization of the Hamiltonian H in the space 
spanned by the nonoriliogonal system fo;'KIf). 

In Section 10.7 we saw how to proceed in order to end up wiLh a 
Hermitian eigenvalue problem. We must either orthogonalize the set 

J or calculate the square root of the matrix nkK" In the case of a 
GaUSl1an form of the overlap function <'PIR(O)I'P). that is, fOT a strongly 
deformed wave function (see Sec. 11.4.4),. we can do this analytically. Since 
we are faced with a three dimensional problem, we end up with a collective 
Hamiltonian like the one of Eq. (10.145). Une et a1 [UIO 76] bave shown 
that it bas exactly the form or the rotor Hamiltonian (1.55) with moments 
of inertia given by the Yoccoz rormulat (see Sec. 11.4.5). 

The close analogy to the collective rotor model can be visualized rather 
easily if we derine extremely defonned many-body wave functions: 10), 
which point like a needle in the direction O. They are nearly localized in 
n..space. The overlap between these functions and the wave function l'tIM) 
(1 LIl?), 

R(D')If), (11.121) 

.. The ooefficia U 8K will ceruiruy depend on J. u we tee from Eq. (11.120). HtwlflllllNljo,r. 

we Qmi l tbe i:I!I.cIa. 1. 
t See Ilho [ABC 77a]. 

l Theee fwlctiou corT'U'l)OUd to tbe blOftb()101:Ul.) buill di.scuucd in Ea. (1 0.20)f r. 
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measures the probability of findin& the l)'Item at the CUII!.l~ 
In the limit where well c14'!ltcmMIII!I!iI1 

11 ;;10 O. the overlap be,haves the '·func·tion 
SJ-space, and we get [Ze 67, FJM 71] 

ex L gKD&K (0), (11.1 
K. 

which is exactly the wave function of a rotor (see Sec. 1.5.1). In 
approximation, the deformed function Ie.) moves in space like a rotor. We 
have to emphasize.. however. that we use no redundant The 
Euler angles g are only parameters used as generator coordinates. 

In the same wa), as the sym.metry behavior of the rotor, under certaiD operatioDl 
of the group Dl for wt.a.nce, fi. 1 or tn Eqs. (1.57)ff.) causes 
between the ex:pansion codficienu ~ we can now derive corr~ 
relations for the if our internal wave function has lbeie BVlli'1J'I::U~U1l~ 

an example. we use a rotation of J80° around the x-axis. We _!~_ 
the internal wave function is an eigenfunction with respect to operation: 

(11.124) 

The eigenvalue ''11 is ± 1 for S'ystems with even and ± i for systems with odd 
particle It is often called the lignotuu [80 76bJ. The ir'ouad state of an 
even--even nucleus in a deformed weU, for instance, has Tx - + 1. 
because a occupation of the degenenu.e levels with i gives the lowest 
energy. The condition '1£ - + 1 for the ground state is therefore a naturaJ 
consequence of the principle. T'his fact provides I. micl'OICOpic founda
tion for the assumption (158) of the rotor model-that the deformed core has the 
eigenvalue + 1 with respect to the operation (I.S1). 

The symmetry (1 L 12J) is rather general ed applies ror cllUlking model 
wave functiolU. So far, no experimental evidence has been found that it is not 
valid. We shaII therefore wre this symmetry in the following. 

If we decompose the interna.J WIYe function into its components with 
good K-qu.a.ntum number, as in (l L itS). we get from (J U23): 

eW ... !4tK)

From Eq. (11.124) we can deduce 
. I 

'" .'wJ" _ ( ) 11.1 
r"II:" - rNK' 

which IInCt'lllflil that the 'tales 

-lkxJf1x) 

(1I.llS) 

(11.126) 

correspond to the same Atate in the Hilbert space. We can therefore restri.ct the fum 
in (11.111) over K ~ O. 

~"""IUIIIII: .tth roualional m~ of OW' method, a 
~ g caD be III a II"Il.UformatioD of 

oc:Mi:ffilc:IeD:t8 1«. IS we may NICI from the relatiOBlhip 

P/.,«R(O)- 'LDkx.(JJ)Pf,,«,. (11.123) 
K' 

AB loq au 'life lake ml.O IAXOql vbibVy ooeffi:cimtll,x. we ate '1M to Lbo ~ of the 
orie:aaation of lit). 
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rcpretmtaUoll 

lir'N>- 2: I;; (P/.n,+(-)',/C-1Pk-K )t4l) 
K;>O KO 

( 11.127) 

dearly shows that an wally symmetric wave fUllction I"') with K - 0 and r,. - I is 
prc~.l.eCI onto zero for odd I-values. For the ground state band, we therefore get 
the spin sequence 1-0, 2. 4 •.... 

In cases in which we have only approximate axial symmetry, as in the cranking 
model wave function. Sees. 7.7 and J 1.4.6.3), the remaining K,.O parts are not 
projected onto zero. They have their origin, however, in admixtures of two-.qWL'!li~ 
particle states and more complicated configurations th.at lie at higher energies and 
contribute only to hilhly excited in the eigenvalue problem (11.120). in which 
we are not interested.. For the ground stale we should therefore impose the 
condition 

(l1.I28) 

11.4..6..2. The Double Variational Method. So far, we have not specified the 
method of determining the int.rinsic wave function I~>. As in the case of 
Abelian groups discussed in Section 11.4.1, we can carry out a variation 
either before or after projection. In the case without axial symmetry. the 
situation is now more complicated, however, since we must also detenn.ine 
the coefficients g/(. In the VHP method, they must be calculated by Eq. 
(11. 120). 

In the VAP metboc:L we now end up with a coupled system similar to the 
system (10.147) [Ze 67]: 

L 
(I L (29) 

KK' 

The first part corresponds to Eq. (11.120); the second part is a generaliza
tion of the YAP equation (1 1.62), In principle. this system bas to be solved 
by iteration. 

Besides the fact that the system (11.129) is much too complicated to be 
solved exactly, in many ases it also contains a high degree of redundancy. 
To see this.. we again use the decomposition (lI.Jl5) of l~) into its 
K-components. Using the fact that flf.t/( annihilates all components 
with K+ K', we get 

(11.130) 

The f-u.nction 

(11.131) 

will, in general. no longer be a product wave function. HowevCT, there are 
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many ca.ses in which it can be approximated by a function of this type.· In 
all such the variation of gK is redundant if we carry out a general 
variation of We then end up the simple operator (originally 
proposed by KarnLah [Ka 68]): 

(It 

It has the property p2 = P, but is not Hermitian. It allO 
symmetry [So 17] in the sense that it is not invariant under a rotation 
the runction Together with a fuJJ variation O'f however, 
procedure stays rotationally invariant, because we find at 
an orientation that the energy has a minimum. By symmetry 
the quantization axis determined by the operator Pk should coincide 
with one of the principal axes of the mass distribution in Ii). 

The operator (11.132) annihilates all components in the wave 
that do nol have the 

(J 1.133) 

In even nuclei. t.his fact guarantees a spin sequence / -0 .. 2,4 •... in the 
ground state band, even if it is no longer axially symmetric. In odd nuclei 
it causes the Al- 2 level sequence in favored and unfavored bands to have 
a different signature (see Sec. 3.3). 

11.4.6.3. Tbe SeU-ConsltteDt CnnIdng Model. In Section 11.4.4, we pre
sented a method of deriving an approximate expression for the projected 
energy without specifying much about the internal wave function For 
pedagogical it was in that section for the case of a 

rotor. It can be applied to the genera] case of 
ree-aunellIIC.D&I rotations 68, BMR 70, Ma 75a]. 
Since the three-dimensional cue involves rather Jengthy calculation.&, we 

give here only the result: Under the following three for 
the Uintemalu wave function I"> namely: 

(i) strong deformation I), 

definite signature (e 
(iii) approximate axial symmetry for small I-values (i.e., in the ground 

state band /(/ + I), 

we find up to second order in the Kamiah ex.pansion (11.80) the foUowing 

"A 

OIl • f.':.Oife ..nih K - 0; Imother eumple II. 

wavCl functlClm ,. ..... ,BU'll from symmetry. 
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expression for the projected energy'" [BMR 70] 

( HpJ) 
E'._ A iii -(H)-

pmJ <p:.,) 2§ + w( JJ(1 + 1)- <j,2) - </~») 
y 

2 

+ 2!y(~/(J+l)-<J,l) -<jx») , (11.[34) 

- --~-~:------=--

These expressions are very similar to Eq. (U.9 
same conclusions: In the case where the term y. which removes 
the spurious contributions in the energy, can be neg]ected in the variatio~ 
we end up with the cranking model 

8(H- ... 0 ( 11.135) 

with the subsidiary condition 

( 11.136) 

It diners from the usual constraint (7.91) by the term (j}). In the ground 
state band of well-deformed nuclei, it does not any role: For small 
J-values the nucleus is nearly axially symmetric with K 0, and for large 
angular momenta it can be neglected anyway. However. it is important to 
take it into account ror crank.ing calculations in K+O bands .. particularly 
in odd A nuclei IRMB 14, RM 74]. 

We thus have a microscopic derivation of the cranking model (Sec. 3.4) 
which was originally i.ntroduced by classical arguments. The cranking wave 
functions have to be understood as internal wave functjons. The wave 
function in the laboratory frame is obtained by an angular momentum 
projection with the operator (1 L 132). Thls derivation is only based on the 
assumption of large particle numbers and large deformations, which guar
antee a sharply peaked overlap function n(n). In that sense, it is a fully 
quantum mechanical deriva~on, which does not depend on classical argu
ments such as large angular momenta with (£ill) {l; on the contrary, the 
derivation is based on the fact that we have large fluctuations <~l» 1 
(narrow overlap), This means also via the uncertainty relation Lbat the 
spread in angle is small «AW) < 1). 

In Chapter 12 we will rederive these relations in a time-dependent 
formulation with wave packets. For example. in the case of translations it 
win also tum out that the physicaHy realized fact that nuclei are rather 

.. P/.t is the open.lO£ dc:fmed in Eq. (l U32). and the wave fWlCUOO I~) is ~ .. eed by I 
simple ket I ). 
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localized in space /2 very small compared to the nuclear 
that a small width of the wave paket) has the consequence that the 
momentum spread is Large. Therefore, the 
model (pushing model in this case) win tum out to be aft good 
lion. 

t 1.4..6.4. ~etk: MOiIIftts IUId Tl'Ulddoo ~. In Section 11.4.4 
we saw th.at for the caJcwa.tion of rotationaJ spectra in weU--dcl'ormed nuclei. we do 
not need an explicit angular momentum projection. The cranking model already 
provides a rather good approximation. The _me is no longer true for matrix 
e1e:menu of operators, which do not behave like a scalAr under rotations, such as 
electromagnetic muJtipole operators ~¥' 

For the reduced matrix ele.ment of the operator ~¥ between normalized Wive 
functions 1i'~IMI> and li'i~2> of the type (11.117), we obtain 

a~IIi'~3)- gi~)·gk~)(_)ll-A'I(_I~ ~I ~2)«211+1)(211+l)1/:Z 
K1Kz I II'"' 

with 

K2 P' 

Q~1:r ( '!l.1~«211 + 1 )(212 + 1)1/2 

X _l_Jdn DIS (D)(Ct 
8'Jrl R.x2 I 

(J 1.137) 

R (11.138) 

The futorl an normalization constants (i refers to the intrins.ic wave func·tion 

To evaluate the overlap inte~ (4lal QA,.R(O)I~:z>. we can 
KamIah eXpaMloD (11.80) and obtain, in zeroth order. 

-
Using approximation, we find 

(11.139) 

of 

(J 1.140) 

(11.141) 

The remaining integrals have to be ClUried out explicitly. Only in the limit of very 
large deformatioJU do we obtain [Vi 66, Ze 61] 

Q: (K:zK:z) - <()lla~I.2)aK~2 (11.142) 

and 

('I'{'IIa"Ui1:r)- L g1.1'>·gk~)«2II+l)(2J2+1)1/2(_)11-KI(_~ : ~l) 
KIKJ~ I 

X a>.,rl~:z>' (11.143) 

I. fe1Juit wbich corresponds to Eq. (1.70) in the coUective modeL The only difference 
is that the int.rin.s:ic mu.ltipole mOments can now be calculated microscopically. In 
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particular, we take into IiCCOvnt c.tifferences between the intrirulic wa .... e funcr.ioll5 
~.) aDd I~ by the o .... erlap <~.I <2",,1~2)' 

In C&IeI where this approximation is not good enough, we need explicit 
Ul .. Un:lI for the norm It (0) in the three·di mensional cue. It can be 
"~MJY;~i1>Y II [lMR 79] 

nUl) - exp( L CiK<Di;.(O»). 
LICK' 

(11.144) 

J)pII'OJtUlUlll(JJn oorresponds to a restriction to L" 2. In arWogy to 
(J we can the coefficients elK' by expectation values of and 

r,lk)' Usi.ns the rel.a.tiollB (A.l7), for luge deformations and smaLl X-admixtures 
(BMlt 70. VS 71] we get 

{ 
<J}) J i } } 

It (D)~exp - -2- Ifl + (cos(a + y) - 0< ,'-> + 2' < .Jr)IJ(s:in a - sin y) . 

(11.145) 

11.4..6.5. Exact Angubr Momeatum ProjectioG. Calculations with exact angu
lar momentum projected wave functions usually require a erfort. 
Th~ expectation value of each ope:rator-tor inSlllnte" the Hamiltonian-amtairu a 
lum over as.eries of tbree-.dimensional integrals [see Ecp. (11.118) and (11.119)~ 
The integrands are proportional to the overlap functions <~IR(Q)I~) and 
<.IHR(D)I4», which have to be calcuh!lled point by point using the formula of 
Onishi (E.49). Only in C&IeI of axially symmetric intrinsic wave functions (with the 
q'Wlntum number K) do the a- and y-dependences become trivial, and we end up 
with s. one-dimensional integral: 

- J d COSfJdkK ( fJ 

In t.bis fonn, the angular momentum projection before or after the variation has 
been applied very often in the literature (for a review, see [Ri 68. Ma 70, Wo 75D. 
Many investigations have been carried out wiLhin the Ip and the 2s - Id shell, 
where we have deformed nuclei with spectra of rou.tiona.i character [BBC 72]. In 
this region of the periodic table the angular momentum projected HF theory can 
be compared with exact sheU model calculations (Re .58, KP 59, Wa 7Ob, MMW 
73], and in many cases we find a perfect agreement In detail, the projected HF 
theory bas been applied in many in light nuclei. In the simplest case 
one often projects after varia Lion (see Sec. 11.4.2) from axially symmetric deformed 
product slates [KL 64, BGR 65, WG 67b, GFW 12]. An improvement obtained 
by EI. projection before variation with intrinsic wave functions that depend on 
several variabla [BLD 61. DFG 68, ABC 69, lB 68, 69~ Sometimes one must also 
take pairing correlations into account.. Tbis i.s usually done in the framework of 
particle number projecled BCS or HFB theory (GGF 73, GGA 74]. To treaJ funher 
c01't"elationa. lOme authors finally have a.lso several angular momen
tum projected wave functions [TO 69, CP 10. Ds. 70. WI. 71. MKL 71] in the sense 
of the GeM ans.att or Chapter 10. 

In lbe 2s - 1 d shell of some nuclei, triaxial HF solutions have been found. In 
such cases one muse out a rull tbree-dimerurional projection. The anu.tt 
(I •. ) 12). however, seem.s to be too complicated for actual applicatiou. So far. in all 
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practical calculations other representations or tbe projection operator h..a.ve been 
used [Un 63, Sh 65, Ke 66, GS 69, Ra 70, OM 71. CL 73, MWW 74. Wa 74, KD 
75, 76] which, however, seem to be restricted to applications in light nuclei. 

In heID'y nudei, an eXlct angular momentum projection bill so fat only been 
carried out in. axially symmetric cases. There, however, the method yieldl 
very prom.i.iing result. for the ground slate propertia aDd for 
members of 1M. sroUDd slate rotational band· in DIXlei 
71]. 

We can conclude this aection with the remark that projection 
connection with the sell-consislent field seem to be a very powerful U'JOi 
for the description of rOlltionaJ motion. though in detail they CI.n be 
raWer complicated. 

11.4.7 The Structure of the Intrinsic Wave Functions 

Until now, we only investigated the problem of how to COillStn 

symmetry-conserving wave functions > from the intrinsic wave function 
I(). We could also ask the opposite question: Is it possible to represent 
symmetry-violating wave function I") as a superposition of the functions 
Ii"), and how large are the components with different I values, that is to 
calculate the spread (AJ1)?t 

In the case of Abelian groups.. the operator pi (11.57) is a real projector. 
If a complete orthogona.l .set. we find 

(11.146) 
Ic. 

and the probability of finding 
symmetry violating function 

a component with eigenvaJue J in the 
given by 

- .. 2~ J dae-Ua,,(a), (1 ],147) 

where WI is the Ith Fourier component of the norm overlap n(a). If 
is normalized,. we can write 

(U.148) 

In tbe case of three-dimensional rotations.. we can again decompose 

- C1NIJI 
lMc. 

The probability of finding an eigenJtate with eigenvalue 
function () is given by [GSF 78a. IMR 79]: 

~ 1 ~"L ~ I 
W1 - L...J ICIM.I - L...J <~IPMMI~>- L...J "MM' 

aM M M 

(11.149) 

1(1 + I) in the 

(1 L J 50) 

.. For the ~f'ft ... nnft 0' excited ltala of vibrational lIL TDA approach blUed on 
u., '''''''''' stala _D1.5 to be a very pow1!'rluJ method lOS 69, K1 70, AG 74. 

HIT 79}, 
tAn u.rly inV'Oltiption oItbu type hu been oat in lAY .s9~ 
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U&r-------------------------------------~ 

W
N 

;;; (4)lpNI4>) 

O,l 

o. 

0.1 

I, 8 '2 

..... - 11.6. Probability compoonents \Vith N particles in the BCS ground state 
wave function with average numbers (N -12 and (N -20 for realistic nuclei in 
the rare earth region. 

Figure 11.6 shows the decomposition of two BeS wave functions into their 
components having eigenvalue N for the particle number. They differ in the 
average value We see that the violation of the particle number is 
rather weak. The distribution corresponds roughly to a Gaussian with a 
relatively small llN 2~4-6. It is therefore crucial to conserve the partic1e 
number at least on the average C'cranking" approach). Consequently, the 
first approximation in the KamJah expansion (11.80) is often not sufficient 
In many cases an exact projection is important 

The situation is quite different in the case of angular momenta. Figure 
11.7 shows the components WI [Eq. (11.150)] of different angular momenta 
in the internal wave function of the well-deformed nucleus calcu· 
lated by the self-consistent cranking model for different values of We 

o 

F1aure n."I. Probability components with fiI..LI.l~~~~:!! 
function of I64Er for different values of . (From [IMR 79].) 



now 

ground IUlte wave rWlctJlOD 

component. The It 
behlvior is the faet angular mcme:aua 
there is a much numb« of ........... h. 

under consideration, of couplins 
11I"1I"''''IIlI .. on in takinl into account as 

form of a seneralized product lUte, we have 
........ "', .... u· .. , •• ,, components. The projection putt all 
Only in the limit of high spins does the maximum of the distribution 
the average value of Jx • 



CHAPTER 

The nme-Dependent Hartree-Fock 
Method (TOHF) 

12.1 introduction 

On the way to describe in nuclei involving large amplitudes like 
anharmonic vibrations or fission and fusion up to now we have 
only used stationary wave functions together with the Ritz variational 
principle. 

On the other side, we can also formulate the problem in a time
dependent way. Let us start at time t - 0 with a wave function 1 

which is not an exact solution of the stationary many-body Schr6dinger 
equation. Such a state represents a wave packet, and its behavior with 
increasing time is given by the time evolution operator: 

(12. J) 

where H is the full many-body Hamiltonian. The infonnation contajned in 
the time-dependent wave fanction in principle, equivaJent to the 
solution of the stationary ScluOdinger equation. since a Fourier analysis of 
1'1'(1) gives us the spectrum of H and the corresponding eigenstates. On 
the other hand. the description of the system by a wave packet IS much 
closer to our classical In the process, for instance, we have 
a clusic.al droplet in whicb at each time has a fixed deformation. In 
a microscopic picture, such a deformed state would be represented by a 
Slater determinant in a deformed potential weH, which is certainly no 
eigenstate of H. but Ii wave packet in the sense of Eq. (12.1). In fact, we 



correlation by H FB 
mation an description of ground states and 
energies throughout the periodic table. At least For 
wen below the the Pauli principle sbould work in a "'ULU ...... 

way in the case, and there is no reason why the 
approximation should break down in the dynamic case. is a 
range of such as low-lying collective excitations, 
fission. and beavy ion collisions at moderate energies., for 
approach seems reasonable. Therefore, we shall in Section I 
TDHF are the basis of thi.s theory. 

become 
theory for 

(ii) 
assume 

involved. We will also present 
density-dependent forces are used, C8..ses 

also have to be included [Be 66, BF 76]. it wiU 
how to do such calculations, we will present the whole 
determinants without pairing (pl_ p) only. 

secc)Da step, we use the adiabatic approximation, that we 
velocities in our systems are in these 

to second order yields the adiabatic 
It results in equations that, are no 

the TDHF equations, but it gives insight into the 
and allows the derivation of a collective Hamiltonian 

for all cases i.n which the motion may be of a few 
collective variables. This will be discussed in Section 

12.2 The Full Time-Dependent Hartree-Fock Theory 

1 1 of the TDHF Equation 

We with an arbitrary wave packet 1'+(0». I exact time evolution is 
given by (1 1) and its one-bo~y density at time I is by 

(12.2) 
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....... ." ..... _ of mOU011L. we calculate ita derivative: .. C,+Cfct H] ( 12.3) 

two-body Hamiltoniarl [Eq. (5.25)] it can be written as 

~ - p I ;a;:.!. 2; - ij,..p~st 
P kp pi 2 pr6 

(12.4) 

introduced the two-body deDJity 

p!~ (t) (i'(/)lc/ c,+ ','"J+(/». (12.5) 

We can d.rive an equation of motion for tbilquanLity in the same way as 
we did (or the one-body in Eq. (12.3). It connects the two-body 

with the three-body and so on (see Appendix f) . 
.. "" ... r.......n of equations [BG 49] is exact. but certainly not dosed. In order to 

it. we have to introduce some approximations. The l.h.s. of Eq. (12.4) 
describes the free motion of the system. It contains only the kinetic energy, 
whereas the r.h.s. contains the interacbon belween the This 
interaction can be divided into two parts- a one-body 
field. which averages over aU particles~ and individual coHisions between 
two nucleons which cannot be taken into account by the mean field. The 
latter causes the two-body correlations. 

To achieve this lion we define a correlation function g(2) by 
extracting the uncorrelated pairs of p(2), 

and 

P(2) -p p kIM - kp Iq 

instead of Eq. (12.4), 

with the density dependent HF potential 

(12.6) 

(12.7) 

rid - L LkqJpP", , () 2.8) 
pq 

which is defined as in the static HF theory [Eq. (5.34)]. The only difference 
that it now contains the exact time-dependent density p(t); thercrore, the 

self-consistent field r is time dependent 
Particles in this system can now undergo two kinds of interactions

collisions with the moving walls of the self-consistent field r or coUisions 
with th.e other particles. Both types provide internal excitations of the 
system. We therefore have to distinguish between ··one-body jriction .... 
caused by the collisions with the wall (see [MSK nD, and M two-body 
jric!liDn," caused by two-body coUisions on the r.h.s. of Eq. (12.7). 

As we discussed in the Introduction, for the static case the two-body 
correlations can be negJected because of the Pauli principJe. They can be 

up in a properly renormaliz.ed effective interaction of a Bru.ckner 
theory. We therefore also expect that two-body scattering plays no essen
tial role in the dynamical case~ as long as the excitation energies per 
particle are than the Fermi energy and g(2) may be neglected. In the 
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Boltzmann AI we 
thia cue, the two-body dem:ity ,(1) bl1 Bq. 
oxpmted oomp1etd:y by the oue-body derllity 
then stays a Slater determinAnt 16(1» for an 
therefore end up with the TDHF «(UQtiOft [Di 30J 

i~p-[h,p] (12.9) 

with h .. 1 + r. It is a nonlinear matrix equation for the one-body denairy 
matrix p and a first-order differentiaJ equation in time. Starting with an 
initial condition P(O), it defines p(/)for aU time& .... 

In the case of an external field F(t)= Ltl Jkl(I)C:C,. we have the 
Schrodinger equation 

ihlq,(/»- (H + F(/»I'I'{I» (12.10) 

that ls, we have to replace the Hamiltonian H in Eq. (12.3) by H + F(t), or 
the matrix II in Eq. (12.9) by h + J(t). This was used to derive linear 
response theory in a time-dependent external field (see Sec. 8.5). 

In coordinate space (it is how to include spin and isospin 
variables) with a spin independent two-body potential vCr. r') the TDHF 
equation (12.9) has the form 

il'tj>(r. r', I) = 2m (Ar - Ar.)p(r, r'. I) + (f H(r) - r H(r»' per, f', I) 

+ f d]r"(rtx(r.r")p(r",r',()-rE~(r".r·)p{f,f",,»; (12.H) 

where r Hand rEx are defined as in Eq. (5.42)f(. 
We see that we get a solution p(t) of Eq. 02.9) if we decompose the 

Slater determinant f~(O» into A orthogonal single-particle wave functions 
cpj{r,O) (i - 1, ... • A) and follow their time evolution by the TDHF equation 
for singh~-particle wave functions: 

iA;1 CJ>i(r, I) = ( - :: 6 + r H(r, t) )CJ>,(r, I) + J dr' rEAr. r'. l)q>l(r'. I). 

(12.12) 

The density p is then given by 
A 

pCr, r'. I) == L epj(r, I)' CPI'" (r', t). (12.13) 
i-I 

This fonn of the TDHF equation is easier to handle for practicaJ calcula
tions, because it is Simpler to solve A differential equations depending on 
four coordinate& (r, t) than one differentiA1 equation depending on seven 
coordinates (r."'. t) as in Eq. (12.11). 

equation b.u been explicitly used iJ'l nuclear pbylrics for tbe finn time by Ferrel 
[Fe 57}. 
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e-<~(t)liA :, - HI~t». (12.14) 

uaump1ioo that I~/» is a Slater aetc~nan 0' Mgle-
H."",~_II! •• (r, I), .. .• 4pA(r. e is a of the 2A indepen-

cp,(r. I) and fP,"(r. t). VAna them as field variables., we 
can define an action 

endpoints 1 2. The Hamilton 

6111 -0 

(1 IS) 

.... " ... " .. ,. ... [Go 59] 

( l2.16) 

with independent variation of fIJ and cp. gives the 
(12.12). 

1 of the TDHF Equation 

COIuetr\lat:loo of Product <..1w'1Ider. In the last we _.AU ......... 

wave function 14»(1}) is a Slater determinant for aU 
condition we derived the TDHF equations ( the 

first we have to show is that the theory is consistent. that is. if we 
start with a density of a Slater detenninant (p2(O);;;; P(O» this is 
conserved for all times: 

(12.17) 

7 we discussed in great detail the energy surface which we 
determinants are parameterized in a suitable way. 

solution of the equation I~t» therefore corresponds to a fll"i"lj'JINOlnru 

on surface. 

12..1.l.l. CoBtenatLoo of OrtbotIollaUty. Closely connected to the nrl'\'f'\IIIII'''rV 

just is the fact that single-particle wave f1J,(r. I) 
aU times: 

-0. (1 lij 

&, ... ,_.7. ColI.Ienatioo 01 Expectadoo VaJues 01 Symmetry Operators. 
time-independent. single.partide operator = 

CI.D. be pnera.lized. If I.> is III Fnen.I wave 
........uilJllll"l equation [KK 76] can be derived. 
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from Eq. (12.9) we obtain for the expectation values in t)le state 1+(1» 

ih ~ (F) - ih Tr(f' p) = Tr(f· [It, p]) 

or 

( 12.19) 

in which the Jut expectation value was evaluated using Wick"s 
(Sec. C.4). Therefore, we find that aU symmetries of Hamiltonian are 
conserved, at least on the average. Examples are 

(i) the particular number: (dj dtXN -(d/ d/)Tr p:JC 0; 
(ii) the total linear momentum: (dj 0; 

(iii) the total angular moment-urn: (dj dl)(J) -0. 

(J2.20) 
(12.21) 
(12.22) 

However, this does not mean that 14») bas to be an eigenstate of 
symmetry operators. Any localized density distribution p(r). for instance. 
violates translational invariance. We will discuss the problems of symmetry 
conservation in Section 12.2.2.5. 

Furthermore~ from (12.19), for velocity independent forces we get for the 
center of mass R-(l/A)~:r, 

d 
dl 

I __ a 

Am 
(12.23) 

12.1.204. of Eaergy. The derivative of the energy with respect 
to time can be expressed by the change of the density. Since p always stays 
a Slater determinant. p only has ph matrix. elements in the in which p 

is diagonal (see Sec. 5.3.3). 

d 
dJ 

>_1- _~( 
dl mi 

(12.24) 

This means ilia t the energy is conserved with time. The motion therefore 
to take place on lines of constant energy in the multidimensional 

energy surface of Slater determinants. H, therefore, our initial oonditioDl 
are inside a valley, such that the energy is smaHer than the lowest saddle 
point1 we can never leave valley. The system runs on equipotential 
lines within the vaUey. 

In Section 5.4 we discussed an example for such an energy surface in the 
Lipkin model. The HF energy (H depends here on the two variables (I 
and cp. One can transform them to a coordinate and a canonically 
conjugate momentum in such a way that the TDHF equations are 

••• ",,,vn .. of motion in the correspondina phase space [liD 80]. 



11.l..l.5. S~. In Section J 2.2.2.3 we have seen that 
SYIDJl1leU1:es of the exact Hamiltonian H are connected. with conservation 

expectation of the corresponding operators. It one of 
_ ... '"' ..... _ features of any mean field theory that the wave functions and 

can break symmetries. With increasing time the deforma-
tion or the of the nucleus may change drastically. 

However, as we have seen in the static case, there may be seU-consistent 
symmetries (Sec. 5.5). They occur in the dynamic case aJso: If S is a 
unitary symmetry operation which commutes with the Hamiltonian Hand 
with the initi.aJ density P(O), then p stays invariant under this operation for 
all times. With p - SpS +. we get 

i~ :r(P-P)- [h(p)-h(p), +[h(p),p-p]t (12.25) 

that is, if the symmetry is conserved p p at a time i, it is also conserved at 
time t + dr. 

This fact has numerical advantages. because the size of the matrices can 
be reduced. However. in imposing symmetries we restrict the possible 
motions druticaJly and they hinder the development of many correlations. 
Even in cases where symmetry brca.king has not much influence on the 
macroscopic shape of the nucleus, the internal single-particle motion can 
change drastically, because se]f~onsistent symmetries restrict the freedom 
of each individual single-particle orbital. For instance in the case of axial 
symmetry, each nucleon has to be aligned parallel or antiparaUel to the 
symmetry axil, 8.ond the statistical nuctuations are i.nhibited. In other 
words, a fixed wall not heat up the system, and to get the full amount 
of one-body dissipation we have to break aU possible symmetries. 

If a continuous symmetry is broken in a solution P(/) we have, as in the 
static case by applying the symmetry operation alone, an infinite set of 
other solutions. An example is transLations of the coordinate system. 

12.2.2.6. TIme Refenai lovariaoce. A density distribution P(/) which is a 
dynamicaJ solution of the TDHF equation (12,9) is not time reversal 
invaria.nt, in the sense that the time reversal operator [Me 61, Chap. XV] 

(12.26) 

where Ko is the complex conjugation. changes p. 

Pr(I) :- Tp(t)T+ p(t), (12.27) 

because Pr =- p wouJd require p = O. On the other band, we have micro
scopic reversibility, which means that Pr( - t) is also a solution to the 
TDHF equations~ In fact, this property is often used to check the accuracy 
of computer programs that solve Eq. (12.9). However, this is only a 
microscopic reveraibility and does not mean that the system can not be 
heated up (within this theory). 
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12.2.3 Quasi-static Solutions 

11..2.3.1. ~. As we saw in the last section, dynamical solutions of 
the TDHF equations cannot be entirely time-even. In CUCI we can 
already find dynamical solutions of tbis equation from a solution of 
static HF equations by a suitabJe transformation that the 
reversal symmetry. 

A exam pie of such I. cue is the GaJjJei to I. 

sYltem moving with constant velocity v. It is reali.z.ed by the operator G 
(see {Me 61, Chap. XVD 

(J 2.28) 

where R ..... (l / A)Lrj is the center of mass and P - LPi is the total momen
tum. To this transformation corresponds a matrix in the single-particle 
space: g(v, t) - exp[ - (i / h)v(mr pI)] which transforms the density 

p(t)~p-gp(t)g+. (12.29) 

"p obeys the equation of motion 

O-illp-g[h,p]g+-g[vp,p]g+-g[h(p)-vp,p]g+. (12.30) 

Usin.g Eq. (12.28) and the symmetry property gr(p)g+ -r(p), which holds 
for velocity-independent and ttan.slational-invariant interactions, we again 
find the TDHF equations in the moving frame 

O-i"~=- 2~(p+mv)2+r(p)-v(p+mv),p]- h("P),p]. (12.3]) 

We thus see that the static solution [h(P), ill = 0 in the moving frame 
transforms into a nontrivial dynamic solution of the TDHF equation in the 
laboratory frame. It takes the form 

p( I) _ e(i/A)",,",( t - (I/A)n, pe(i/A)Y")e - (1/III)mvr, (12.32) 

which shows that the stationary solution Ii undergoes a time-even 
trans] a tion of the coordina.tes by the amount - " I and then acquires a 
velocity by a time-odd transformation of the momenta .. In the coordinate 
space we get 

( 12.33) 

At time t -0 the diagonal d .... nsity p(r~ r, 0) is identical to the stationary 
value p. The collective velocity shows up only by r-dependent pbase facton 
in the noo-diagonal part. 

In practical applicatioDl of lbe TDHF theory to beavy ion reactions, OM 
often URI ILl initiaJ condition a sum of two densities of the form (12.33) 
with velocities "'I and V2 at a distance such that they do not overlap. To a 
good approximation they represent two mOving ions in their ground state 
before a reaction takes place. 
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11.2.3.1. R.otations. In the rotational case we would also Like to lransJorm 
to a rotating system in wbich motion can be described by a static 
solution. However, unlike translations, rotational collective motion is non
trivial. There is no hcenter of mass angle" and no Galilean invariance in 

cue (see Sec. 11.3.3). Nevertheless, we can carry out the first part of 
the transformation (12.28). namely a transformation of the coordinate to a 
frame rotating with the angular velocity (.oJ 

p - e ,.* p( t)e - llIt.1Jt • 

In analogy to Eq. (1230), we get 

illp - eiMJt
[ t + rep) - (.oJj, p]e ~ LwjJ - [h(p) -~, pl. 

( 12.34) 

(12.35) 

We now have the stationary HF problem of the self-consistent cranking 
model (see Sec. 7.7 and 11.4.6.3) 

[h(p) - ",j, p] - O. (12.36) 

It gives us a density p with no time dependence but which contains 
time-odd components~ In this sense it is no static density. Again, 

pet) - e - ~lpetf4i (12.37) 

is a nontrivial solution of the TDHF equations ([2.9). 
Equation (12.36) can also be derived more fundamentally from a pro

jected TDHF theory in the following manner [EMR SOb]. ]n analogy to 
Eq. (12.14), we start with the Lagrangjan 

e - <~(I)IPI (ifla lat - H )PI I4l(/», 

where 1'1 is a projector onto good angular momentum (see Sec. 1] .4.6). 
The variation of the action (12.15) with respect to the time-dependent 
Slater determinant IcI>(t) yields projected TDHF equations. In the limit of 
large deformations we can use the KamJah expansion (1 L80) up to first 
order and obtain Eq. (l2.35). Its simplest solution is given by the static 
problem (12.36). 

If one believes in the Cranking model, one sees in this way that the 
projection is a very important feature in the time-dependent HF case. This 
also becomes evident in other problems as, for instance, in the calculation 
of croa sections, where we have to project on individual reaction channels 

Sec. 12.2.4). 

12.2.4 General Discussion of the TDHF Method 

At a first look. the TDHF method seems to have appealing ativanlages. It 
provides a unified 01 all of coilectiYe motions in the 
nucleus, beginning with the static solution for the ground state and soina 
on over rotational and vibrational excitatjons to large amplitude collective 

such as fuaon, compound nucleus formations, and deep-
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CVClrJlll\Tn determines for 
dimensional which includes aU 
able by In particular, we are not forced to CD40011e 

some collective coordinates. Dar to force the ii:v,nIlllt'lTi 

unphysical fields. We need not know 
pa Hem in the system, or the inertial parameters 
dependence. 

On the hand. the concept does not only collective phe.-
nomena: wave function is a Slater determinant at timet. It takes 
care all Single-particle structure aspects and includes the full interplay 
between and single·partide motion. 

a solution of the TDHF equation also includes friction and 
damping as they are produced by the interaction of the 

with the a time-dependent mean the 
OfU.~-m)QV friction 78] and references 

To see where damping comes from in the case of giant resonances 
we use Thouless' theorem (E.26) and express ~l) the basis of the 
ground "0: 

I~/»-exp( . z/Ill(t)a,ta.)I4>o) 
It'll 

-14>0> + 2: zml(t)a:ai l4>o> + 
mJ 

+ .... 

( 12.38) 

We see that besides the ph admixtures (which are already treated in the 
TDA or RPA Chap. 8) the TDHF wave functions contain 2p2h, 
3p3h and so on~ To obtain the of these admixtures as 
a of their energy, we must carry out a transformation of 
I~/». 

Up to now is unclear how much of the width.. of giant 
--.., ................. _ comes from the 2p2h admixtures kind (one-body fric-

how much comes from admixtures due to ... _.n_ .. l.\!ifO*IIXXIV correlatiODl contained (12.7) (two.body 
approximation that the g(2) of (12.1) can be 

neglected is tum based on the belief [KK 68] that the mean free 
due to Pauli exclusion principle, of the order of the nuclear 
dimensions. The validity of nus assumption breaks down at 

per particle of the order of the Fermi but there is a wide 
range of phenomena which we should be able by the TDHF 

In the theory is not by the adiabatic 
assumptions-namely, that the wave function at each time very dose to 
the state of the corresponding self-consistent well h{/). For dy· 

aware or the fact, however. lhlt 
--...'hnn 8,5.4, which means that ...... £LJ~: .. f''''' 

................... the escape width AI 

teaviol the DOCleW. 



nAmic solutions, the TDHF lill81e-particle functions f'P,(I). Eq. (12.12), are 
different from the eiaenlunetions in thi$ well: 

h( t)I~J( I» 11M ~(t)t'h( t». (12.39) 

means that we do not gain the TDHF Slater determinant I~t) by 
filliDs the A levels in the potential l1(t). The density P(I) does not 

with 11(1). that is, P(/) is not diagonal in the basis of the 
eigenfunctions I~I and the occupation probabilities Pi' which are the 
diagonal elemen ts of p in this basis, 

p/ I) - < ~(I)IP( t)l~j( t» (12.40) 

are spread over many levels, that we obtain a smeared oul Fermi surface 
in this basis. On the other hand the distribution of the occupation proba~ 
bilities should not deviate from a Fermi step function too much, either. 
that is. it should not become completely fragmentated. otherwise the 
exclusion principle will no longer suppress two-body However, 
no detailed studies on this problem presently exist. 

Besides all the great advantages of the TDHF method~ however, there 
are some important restrictions which we should be aware of: 

(i) The theory provides a fully microscopic description, whkh follows 
each single-particle wave function as it changes with time and requires a 
tremendous amount of numerical effort. In particular. we should keep in 
mind that its fuB beauty and power can only develop if as many symme
tries as possible are broken. Realistic calcuJalions of this type not only go 
to the limits of modern computer facilities, they also very often make it 
diHicuh to extra.ct basic physical features of the system and to understand 
them in terms of simple models. 

(ii) The theory, in a sense, shows a classical deterministic behavior: We 
start with an initial density p(t) and fonow it and its velocity p(t) tbrough 
time in a multidimensional energy surface like a classical trajectory. This 
fact alone does not My that the theory is a cl.a5sieal one; the exact 
quantum mechanical statistical operator p obeys the von NeUllUUln equa
tion, which has a structure very similar to Eq. (12.9). The essential 
difference from a full quantum mechanical theory is that we restrict our 
wave function _to Slater determinants at all times and end up with a 
nonlinear equation. We bave therefore given up the ~rp<JSition principle, 
that is, a linear combination of two Slater determinants is (in a.eneraJ) no 
longer a product wave function. As a consequence of the nonlinearity of 
our theory we get solutions of a solilon character (see Sec. 12.2.5), that is. 
density distributions which propagate without changing their shape [see, 

(12.32)], whereas the exact qua.naum-mechanical density P(/)
would certainly show the usual quantum-mechanical disper

sion. The fact that the example (12.32) of the static density moving with 
constant velocity does not show dispersion can also be expressed by the 
fact that we have destroyed translational invariance in TDHF theory, that 
is. we: are in the intrinsic system of the nucleus and consider its center of 
mass coordinate and its momentum as two simultaneous measurable 
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(classical) quantities. This, of course~ is linked to considering SIateT deter
minants as an approximation to the exact wave function. 

(iii) Another quantum-mechanical effect is tunneling through a potentia] 
bamer. If we have two separated locaJ minima in the energy surface, and 
we start with an energy smaUer than the lowest between 
minima in one valley, we win never the other vaUey because of the 
conservation of energy [Eq. (J 2.24)}. It is a coMequence of tbe 
that there can exist two different vaUeys. A theory always has onJy 
one minimum, namely the ground state (see Sec. 5.2). The impolUibility of 
tunneling becomes particularly evident in where the set of Jeneral 
Slater determinants is restricted to a product wave function Ic!l(q» with a 
few collective degrees of freedom (see Sec. ] 2.3.3) as in the description of 
the fission process. In such cases we must either requantiu or introduce 
linear superpositions of product states. This brings WI back to the method 
of generator coordinates (Chap. 10). 

Bamers in the space of Slater determinants, which eventually go over into 
ba.n'i«1 in I collective coordinate, should not be mixed up with barriers in an 
external field V(x) in coordinate space. For imtanccC, Jet u.s study Ii static solution 
wh.icb moves with a certain .... elocity towards such I barrier. The wive function 
of this system. comi..sts of a product of single-particle wive funC·tiODS 'f',(x). Eacb of 
them bas a tail reaching through the barrier. In general. therefore, 14» is split into 
two parts at this barrier, a transmitted part and a reflected part. Separately, the two 
parts are no longer Slater determinants. and the single-particle wave .." 
belong to both parLS. Depending on the incident energy. the transmined and 
reflccted parts ha .... e very different sizes, Figure 12.la abows the results of a 
one-dimensional calculation. where It sllb of nuclear matter is moving towards a 
barrier of Gaussian shape with an energy per panicle equa.! to the height of the 
b2tmer. We see that the whole slab is transmitted. Without the interaction of the 
particles through their mean field, we would have expected a probabil-
ity of 0.5 for each ftngle-partide wave function. The field, together 
with the external barrier, however, gives a drastically reduced effecti .... e barrier for 
the ps.rUcles. Figure J2.1b shows the ume at a higher Now the 
initial ilab is split into two pa.rt1i. We thllt the collective penetrability 
is much rusher thaD the penetrability for one particle. 

(iv) There exist fundamental questions in the physical interpretation of 
the results contained in the wave function 14-(/». Thii is already seen in 
the example of the slab moving towards an external barrier: Does aU of the 

penetrate with a certain probability, or does the slab at each ......... ~ .... i ......... 
break into two separate parts with mallCs corresponding to the intearau:d '.12 on the left and right sides of the barrier1 In the latter cue we 
would non~integer particle numbers in each part~ the scattered 
fragments, as we said, are no longer Slater determinants by 
thus the single-particle wave functions simultaneously belong to aU of the 
fragments. We could also imagine a complicated mixture of these two 
possibilities. PhysicaUy, we are interested in the probability of the trans
mission of A I particles and the reflection of A 2 == A - A I ones, that is, the 
probability that there are A2 particles to the left and A I particles to the 
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(12.41) 

is a practical prescription to calculate mass which 
also been applied to calculations for heavy-ion collisions [Ke 76]. 
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In the genera] however, we would like to know the 
elements for the different channels in such a It is 
question whether we can get such infomuuion from a TDHF _Jl",Q,."U:U. 
In principle, we can con.ider the wave packet I~t» 
equation to be a valuable approximation to the exact wave pacxet 
and so get the S-ml.trix elements from in quite the same way 
would if we had 1+(1»; we could. for exampLe, project I~> onto Ii mOQm 
scattering state. However, this would cakulating the overlap of 
different many-body wave functions, can lead to very erroneous 
resuJts, as can be seen from the folJowing considerations: Let us usume 
that we calculate the overlap of two only very slightly different product 
wave functions, where all the single-particle wave functions in one detenni· 
nant are different from aU those in tbe other by an amount (: 

(1- ()A ..... e -aA (12.42) 

that is, the overlap is exponentially small for large particle numbers. The 
same would be true if we wanted to calculate, for example, the overlap of a 
static HF wave function with the exact one, where we can assume that 
each sing]e-particle is depleted because of correlations due to the 
probability.: [Ne 77]. Though the HF wave function has only very small 
overlap with the exact wave function, we nevertheless get good results, for 
example, for binding energies. This is due to the fact that there we need 
only calculate the expectation value or one .. and two-body operators, 
which involves at most only two single-particle wave functjons. The same 
considerations are true in the time-dependent case: Calculating S-maUix 
elements from I~l» (see above) means that we calculate expectation 
values of an A ·body operator in the case of heavy·ion reactions (the 
configuration of all A nucleons is changed), and thus it probably 
rather doubtful results. Therefore, in the time-dependent case we must also 
restrict ourselves to the evaluation of few-body operators such as particle 
number dispers.ion or mean excitation energies. 

Closely rela.ted to tbe above problems is the question of whether, starting 
from a Slater determinant as an initial condition, the exact wave function 
1+(/» stays close to a Slater detenpinant in the COlLrse of time. To this end} 
Lichtner and Griffin [LG 76&) itlVestigated the time dependence of the 
function 

(12.43) 

Starting with a Slater determinant le!>O> at 1-0, we find for short times, 

D(t)=(~f+'" (12.44) 

with a limit on the lifetime 

(12.45) 
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(v) Perhaps problem in the TDHF theory the 
spurious jinal state In an exact calculation we would have many 
different outgoing which do not interact for 1-+00. In our 
example of a slab moving towards a bamer, we could for 
instance, the penetration of one, two~ or three particles, whereas the is 
reflected. In general, the transmitted systems would have different veloci
ties. Within the theory, however. aU the channels are into 
one common mean potential on the right-hand side of the bamer. 
within this potential. aU to excbange momentum 
nently. Therefore, for we also get an unphysical 
interaction between the difrerent channels. Even if we do not calculate 
S-matrix elements. we thai this 
not also give spurious to mean values of few-body operators. 
In analogy to the symmetry violation in the static HF problem. we should 
therefore do some kind of after projection 11) onto th.e 
different channels. The TDHF function has to be understood as an 
·'internal" wave function. 

fact. one can derive the TDHF equations from a 
approximation in the path integral representation [FH 
exact quantum mechanical lOf [KI 77, ER NLP 
where the above seem to treated more ...... r" ...... · .. lu 

12.2.5 An Exactly Soluble Model 

order to study some of the ",,' .. 1.iU.511i'i01U above. Yoon and Negele [YN 77] 
investipted 
one <111l1en.I10i~ 

maoel of N bosom~ through a 8~rorce in 
by 

(12.46) 

This model has be.en solved bound Ilates [Be 31, Me 65] and for 
scattering states [Va 67}. Hartree equation for I. product 
state where the level with the wave function qt(x, I). in 
a self-consistent field. we use tb.e variation principle (12.16) with 

propGII~ for II!ftI'UDI!'I:!II {NW 76. + 781. 



sao 

and find 

The static solution is 

with the energy 

and densily 

. a I 1-,,+ -at 2 

,j(N -I)- f) 

q:Js(x)"" 2 CMb«N -l)ox/2) 

) 
N(N-I)o 

p (x - -------
If 4 cosh2((N -1)vx/2) 

(12.48) 

02.49) 

(12.50) 

(12.51) 

In the dynamical case for 2N particles Eq. (12.48) hu a solution IZS 
72. Do 16] (for the dehnition ud properties of solitons, lee the revie'W articiet 
[SCM 13, Ra 15D: 

("ILl!. ( ,,-4I(JI'-IO) + [ Xl 1(1: - la)l ]e-1II(3x", A'J)}) + (K ~ - X) 

x------------------------------------------------~--~ 
1 + 2e-~ cosh(2aKt) -2a"'-w Re( t'21K.if I(K+ ;0)2)+ ( X4 /(X] + 

(12.52) 

with 4a -(2N - I)- 'V and K all ubilr1U), real number. It daeribe, the V1IIJWIIIlURKJD 

of two solitary waves through one another with relative momentum 2X. The wave 
function is given in the c~nter of Il'l!lSS system. To find ~e demity in the 5)'lIItem of 
one part of the wave, we write y - x - Xl Ind set 

N·(N-i)v 
p(y, t)-2N'I,,(y,,)!1,~ 4coabl«N- i)vy/2) • (12.53) 

which, for large N-vaJues, agrees with the static density (11.51). We also can show 
that the time delay resulting from the interpenetration of the two waves agreet with 
the euct time for luge values of N [Do 16]. On the other band the lifetime of 
the determinant (llAS) goes to UTO for large N. This model therefore gives us an 
example that results from I. mean field theory and may be exact in the limit of large 
systems, even if the wave fundion bas no overlap with the exact wave function. 

12.2.6 Applications of the TDHF Theory 

The oldest application of TDHF theory is the description of vibrations 
around a static solution Po in the limit of smaH amplitudes. In Chap. 8 we 
saw that by linearizing Eq. 02.9) with respect to 6p- p - Po we gain the 
random phase approximation. 
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ampH tudes. we get the 
with its applications in 

_ ............... here to exact numerical 

n_'W"'tI has been 
an example the last 

to exactly soluble models. We gave such 
Another case is that of the Lipkin mode] 

[Kr 77 y KLD 80]. the of this model is shown. The 
of the TDHF "'lId'l.I4U'UUilI are of constant energy 

[KLD 
In all the more realistic calculations [BKN 76, KDM 77, CMM 78~ BGK 

78. FKW 78). Skyrme forces were used. The effective range corrections 
(--il) were or in some cases by a Yukawa force with 
finite range and a special which it to contribute 
only to the direct term of exchange term 
in tbe Coulomb force is 12) is only a 
differential equation and not an as it would be 
in the general case. 

5!";U,HRHI to of mailer 
which have is a one-dimensional problem in 
the coordinate l: 

ifup,(z, 1)- ( 

Discretiza tion 

Finany; !.he time I is 

or 

q:t<It'" I) _ ( I * ~/' h(It) )cp(lt) . 

Since (J - (i/It}ll/' h(III» is not unitary. this 
avoid this is to replace Eq. (l2.56) by 

i/t 1 

or 

",(111+ ______ tp(.!r), 

h(") 

with a unitary to the 
Nicholson operator [eN 
and recently a truncation of series of 
few terms bas proved to be satisfactorily accurate 

The force constants were 
matter the case. 

(12.54) 

02.55) 

to proceed would be 

(12.56) 

( 12.57) 

instabilities. A way to 

(12.58) 

(12.59) 
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slab, the inili.w conditions were chosen a.,~ 

(12.60) 

where '1'i0 are the static single-particle wave fUIlctions. The function S(r) determines 
the velocity distribution for t =0. which is defined by the distribution of the current 
j(r, f), 

or 

A 
y{r, t -0) - - V S(r). . WI (11.62) 

For 5(1")- a.:~, wc sct v(z)- (2Jtj m)az. With this initial coadition the slab st.a..rU to 
oscillate. Figure 12.2 UOWI sucll vibrations" which col'TelPODd to breathing mo_ 
for dIIfen:nt values of ~. Even for small a: these OIcillatiODi are not 
they do not teem to be with a sinale frequency. For large 
otciDatiou show drutic nuctuatiolli. Finally. the excitation is too IIf..rOOl Uld the 
IIlab splitl into pieces (Rot Ibown). 

5.0 

4.5 

E 3.5 
I.L 

.. 
N 
v 3.5 

3.0 

3.0 

0-5 1.0 1.5 2.0 
Time (IO-:u sec) 

Jl'1pre n.1. Root mean square length of an oscillating slab as a function of time 
in TDHF approximation for different values of the initial velocity 0:. [BKN 
76J.) 
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Density profiles p(z. I) at 
at an intermediate energy. 

times for tbe 
[BKN 76].) 
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FIgure ratio of kinetic energy to initial transl.ationaJ 
kinetic as a fu-nction E / A a of two sJabs of nuclear matter. 
A value of :zero denotes fusion. (From [BKN 76].) The dashed corresponds to a 

U_LLU __ calculation. in Sec. 13.3..3, (From (WMW TI].) . 
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Starting with in opposite directions. 
find a great variety of 

Depending on the bombarding energy, inelastic scattering. 
we 

COInlJ(JUDQ nucleus formation, resonance behavior, strongly damped colli-
D\'IU_ transfer fragmentations have been observed. Figure 

an[~W1C p(z, t) different energy. After an 
1''1,,<11 ..... .-. the compound system begins 

UB'I"lUdllll!l; and one 
For other occurs. As we see in Figure I we always. get 

fusion for low the compound system for 
high energies; in a resonance region. In detail. this 
depends very much on mol ion in the neck region at the 
scission point If single-particle effects a depietion of this region 

moment of otherwise the system 
One diuipated in 

together. Such resonance 
structure has actuaUy been i'llnoIUI>MJH1 in the total fusion of 
heavy-ion reactions (SVE 76]. 

The slab geometry is not since the Iranslational invariance 
in the x and y dire:ct.ions prevent ..... , ........ ,"'. maUer splashing during the 
bombarding process. and high of symmetry the 

[Ko 76. eM 16. Me 76J, 
and fully 

[CSM 76, CMM 18.BGK 78, FW calculations have been carried out 
They require a great deal of numerical effort and give nice pictures of the 
density and current distributions in such heavy.ion scattering 

Fig. 12.5). 
A TDHF calculation 

[NKM 78]. Starting 
followed until a""~N:IIIU'.u 
ever. here we do not 
numerical calculations 

been used to describe the 
to the saddle point, the has been 
separated fragments has occurred. How. 
go into further details of tbe numerous 

theory. 

12..3 Adiabatic TIJue...Depeodeot Hartree-Fock Theory 
(ATDHF) 

12.3.1 The ATDHF Equations 

As we saw the last 
full TDHF equations 

however. is 
which makes Ii 
that the wave 
characterizes the 

.. For aft 

nowadays complete numerical solution of the 
~iII.I"""'" in some cases. The interpretation of the 

section we win therefore study a theory 
approximation: Besides the __ w_~u 

a Slater detenninant for an (which 
approach)~ we investigate only slow and 



expand 
to solve the 
in a fully D]JC::tOlICODtC 

collective Pro,callel _ ... ..., ... 

proach. 
Since the """' .............. 

compared to 
neglect 

pn;»OI':::DlB in In.llI .. IIIO,U 

able to give 
a somewhat 

the velocities, we are _,tf· .. • .. t......t 

collective mc.,utl,n 

tude. low·lying in nuclei. u_ .......... ". n~)D. 
and heavy-ion at lower energies. Th.e name "adiabatic" in this 
context means coBective velocity is smalL We often compare the 
corresponding that is~ the corresponding Fourier components 
of the time the case of a large amplitude motion (for 
instance, fission) frequencies have to be smaU to get a small velocity. 
For the case of small amplitudes, however, the frequencies need not be 
restricted. We can have adiabatic motion with ralber high 
such as those for resonances. In both ca.ses for the kinet.ic energy, it 
sufficient to go only to second order in the velocities and both cases are 
treatable by the For ,maU amplitudes we can~ 
___ ... .., ..... stop order the potential energy and obtain 

limit (RPA, see Cbap. 8). For large amplitudes this is no 
The approach is therefore a theory of collective motions 

of arbitrary amplitude small velocity. 
been numerous attempts to develop 

and the field is still very much 
within thil beyond the SCC)De 

this book. Therefore. the following we shan present the 
Baranger and Veneroni [8a 728., 76. BV 78] in some detail and 
the connection with work of Villars [Vi 11, 75, 71]. Other important 
papers In ale given in (he references [Be 65. 
WSR 71. 73, HY 74~ RB 74. Pa 75b, EBG 
Go 76bt RB Ma 77b}. For pedagogic: reasons we shall 
ourselves to Slater determinants (pl_ p). although it is 

in many practical cases to include pairing correlations. 
The theory involves two approximations: (i) the TDHF assumption, 

where the wave functions stay a Slater determinant at all times; and (ii) the 
adiabatic approach. where we must include the velocities only to sec:ona 
order. Within ATDHF theory the cia.ssica/ aspect of the theory is 



that we define 
which obey 

motion. 
fint problem, therefore, consists in defining these coordinates and 

TDHF theory is detennined by the single-particle 
P(t1 which DOl invariant Since. we want to have 

invariant coordinates. Baranger and Veneroni proposed the 
following decornpOtition of the p( t). 

(12.63) 

and~X are both Hermitian, time-even malnces, that is.. 

Pr{t) :- Tp(t)T+ -e po(t)e(i/')x{l) , (12.64) 

Apin, Po satisfies P~""'Po. Tqlo·N, that is, it corresponds to an N
dimensional Slater In the fonowing the Po shaH be the 

we shall see, X shaH be the momentum. 
We are much more familiar with a time..c:ven determinant Po as coordi· 

nate than with the TDHF density p, which mixes time-even and time-odd 
components. In Chapter 2, for instance. we have used Nilsson runclions 
with certain derormation coordinates qt which correspond to time-even 
densities. The s.am.e is true for CHF calculations (see Sec. 7.6.) with a 
time-even constraint 

From the property that po<.t) is time-even, it follows thal the total current 
associated wilh t.he density prJ./) for all times: 

j- ! Tr(pPo(t»-O, (12.65) 

because the trace of the product of a time-even and a time-odd operator 
unless it is purely imaginary. 

In the following we therefore· caU a static density. It should not be conJuaed 
with a bme-independent density nor the stationary density, which is a 
of the static HF equation [h (P), p] - O. However, it will tum out that Po is the 
solution of a static HF equation with a suitable (time-dependent) time reversal 
invariant constraint [see Eq. (12. l2Ob)]. Amdogously, we can represent Prf..t) by 

(12.66) 

where !p(/) is a Hermitian, time-odd single-particle operator [Eq. (E.40)] and ~ is a 
(.arne-independent single-particle denaity (for instance, the solution of (he static Hf 
problem Ih(p). p]-O). 

We bave already bad an eu..mple of such decompositions or the density P(I) in 
the cue of translations [Eq. (12.32»). where X is the time-even operator ",VI' and cp is 
the time-odd operator I.". In Uu: case or rotations ( 12.37). I",j is time.-odd,. t.ha t is. it 
COITCI;DOlnds to the operator ". The density p contains time-odd components 
(lee Sec. 7.7) and iI time independent. Since lhet'e is no center of mus "angle.'" in 

cue we are unable to give an explicit eltpreaioo'" for the operator X. 

"'It hu ca.lculated, for instance. in RPA order u !.be wlulioo Q of the Tbouleu-
V .. latin equation (8.106). 
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In the following we win only work with the decompoaition (12.63). It caD 
be shown Sec. 0.2) that it is unique under the following COnditiODI. 

(i) X Iuu only eigenvalues x,. with 

-~~(~<~~. 

(ii) The pp and hh matrix elements of X vanish in the 
diagonal, that is! 

(12~67a) 

in which Po. 

xM=poxpo· O; X" - tJoX0o -0. (12.67b) 

Here we have used the fact that Po is the projector onto hole states 
and «70 - I - Po is the projector onto particle states in the bas,is in 
which Po is diagonal In the following. we will always work in this 
basis. It should be noticed. however, that the depends on the 
time since pcJ..t) is a function of time. 

We might ask whether the conditions (12.67) are In faell thil 
is not the case-it is only a quite natura! choice, • because the pp and hll 
matrix elements playa rather important role. Baranger and Veneroni [BV 
78] have shown that any other decomposition with non-vanishing matrix 
elements X" and X M gives results which deviate from the ones we will 
derive in the following only to orders in X that are neglected in the 
ATDHF approach, anyway. It is therefore consistent with this approxima
tion to use the conditions (12.67), and we shall adopt them in the 
following. 

The adiabatic approximation now conJiats in assuming that the dCnJity 
p(t) of the system is at all times close to the density prJ./)' that is, we have 
at all times a nearly static denaty. In other words~ it means that the matrix 
X which introduce, time..odd components is small. is certainly not 
true for aU solutions P(1) of the TDHF equations. but we are only 
interested in the ones for which this holds. We can thus expand P(/) up to 
second order in X a.nd get 

(12.68) 

with 

PI == ~ [X. Po]. x:a - i1t(pJo Po], (12.69) 

Pl- 2h! [XI [X,PoJ]- ,,~ (xpoX- ~ (XlpO+poX
1»). (12.70) 

Equation (0.32) shows that PI has only ph- and Itp- and that PI has only 
pp- and hh-matrix elements: 

(12.71 ) 

(12.72) 

.. It hu bee1llbown, b.ow'evu. that Ihia cboice iI uu::ompil.l.ibL~ 'With the uwmption that X IA 

loa1 ~k'I 'p.KC (BQ 78] I.Dd someti:.ma Ii local X seems to be the Dl.tura.I choice, &II 

we see in the cue of tranllations (12.32). 



h(p)-t+ =ho+r.+r:z (12.73) 

(12.74) 

CXtUlDllllOllJ of p II even terms are always even time 
the odd are always 

we the expansions (12.68) (12.73) into the 
behavior under we can decompose it according 

two ATDHF equtJtions: 

0) ""Po'" 

As we shan see later. only the ph 
equations we 

we have to know the 
anaIYSH they a 

get 

(12.75a) 

( 12.75b) 

lip parts of both equations are import..ant. 
higher-order terms X. To be able 

X of the time .... In a 
~ where w is the COITellDOI1ICU'll 

to distinguish _r''''''''''..... amplitude motion 
In the large case, fA) has to be or the 

we have !Mm, that means p~ is an order higher in X than 
IJ'U"IIU.~ case fA) does not have to be of the lime 

i.I the same order in X U Pi' 

X and small; as 
in P" In the small 

as x. that is.. pj 

In (f) above we all terms that are equal to or of 
...... l!o~ ... - order than second and in (II) aU terms that are equal to or higher than 

order in X. In addition. the term tho. Pl] h.u been neglected in Eq. (1I) for 
re.uons which we 

zeroth oTder static case 

(12,76) 

................... (I) and (H) therefore always take into account the fint nontrivial order 

x. the tm.n tho. Po) 
fact that Ito and Po 

02.16) is aLmost satilfied. 
a.nd the motion is slow. 

we shall see 

lArge amplitude case, P. is of second 
(12.15b) is also at leut of of 

This meanJ 

Section 12,2L2~ we can a classical 
interpretation to the X are canonical 

coordinate a linear connec-
tion between velocity which on Po, that the 
co!Te!IJX)lnamg mass is dependent. Equation 
derivative of the momentum on the th.s. The r.h.s. therefore r~r.re~~tI a 
force. It depends on the term on further in the 
momentum X. Starting from ao.me [hOt Po] is 
therefore the force which the system at the Since the 
momenta stay small for an the smallness of rho, pol for a11 times is 

(E-J9). 
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therefore a neoetl8,ry and suIficient condition for the of an 
adiabatic motion. If there is a whole region the of time-even 
densities Po in which [hOt pol is smallt then we can find a trajectory P(/) in 
this region which corresponds to adiabatic motion. 

We stiU have to show that Eqs. (I) and (I[) should only be WIed in aDd 
space: The pp- and hh matrix elements of Eq. (1) are aU leut of second order in X. 
For instance, from Eq. (0.32) Po has only pit and hp matrix elementa~ and from 
(12.71) the same holds for PI' The only non-vanilhing hh matri.x elemenll of the 
r.h.s. of Eq. (I) are therefore 

P<l[Ito. p,lpo· - Po([hod>o]PI + Pl(ho• PoJ)Po. 02.77) 

which is at least of second order, since rho, Po] is of second order in the Large 
ca,se and of first order in the small ampJiludc: caM. same holdA true 

for the pp matrix element.s of Eq. (I). 
l!! Eq. (n) we have left out the term [hot PlJ. From Eq. (12.72) we Mil that Pl only 

hultla and pp matrix elements. The ph matrix elements of [hot p:J 
ph and hp mam.x elem~ta of hot which are of at least first in x. 

bereJolre [ho.l>2] can be neglected in the hp Ind ph Sq. (n). In the hit 
pp pa.rI..s of Eq. (II) we can no longer neglect this Lerm, the pp and M matrix 

of ho Ire We can show. however, that the pp aDd hh mal.rlx elements 
of Eq. (U) with inelualon of the term rho. P:l] vanisb This requires a 
1011&« calculation [BV 78]; bere we give only the most important steps. First we 
expras P2 by Bq. (12.12); then we UA.eEq. (12.11) and get for the M matrix element 

of PI 
(12.18) 

Pinally. we Lnserl: Eq. (0 for Po and find that tbe pp and M pans of Eq. (II) vanish. 

The set of ATDHF equations 02.75) allow us to calculate pJt) and PI(I) 

at all times if we start with some initial values pJO}, PI(O) or pJ..O) and PJ..O). 
This is, however, a problem. which is at least as difficult as the exact 
TDHF equations. and nobody will do that in practice. The main advan
tage of the adiabatic theory tiCi in the fact that it allows us to derive a 
classical Hamiltonian for the des.cnption of the collective motion. 

12.3.2 The Collective Hamiltonian 

We are now able to express the lotal E of the system by the 
variables Po and PI or Po and X. From Eq. (5.28), we find 

E-Tr(tp) + tTrITr,(pijp) 

=K+ V, (12.79) 

where we collect into the kinetic energy K all terms which depend on the 
velocity in second order and in the potential energy V all terms which 
contain only the static density Po' Linear terms in P I vanish because of the 
time-reversal invariance of the Hamiltonian. We get [or V the static HF 
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,," ... ,101"0"-' of [he density dilLribution Po: 

V-Tr(tpo)+ ITr,(pouPo)' ( 12.80) 

kinetic energy assumes the form 

KaTr(hoP2) + tTr 

depends quadratically on p, (or X). 

(12.81 ) 

(12.751.) also 
quadratically on the velocity Po- We can it in 
use a basis in which the pp part as well as the hll part of 

always . Po is not 
call the eigenvalues ~ (particles) 
(0.35) and the matrices 

- (t;.., 

we find with X.im X!n 

K- _1 (x.x)( 
21;2 

+ -
A 

we 

(12.82) 

(12.83) 

where tbe index of the matrices runs over all (mi) in It 
very to the RPA notation in Chapter 8. It 

general~ since the single-particle energies and X on time. 
We can also write the ATDHF equation (I) this notation: 

A 
B* 

which connects velocities and momenta and 

A*) -1 

represents a ma.ss tensor which depends on the 
see, it corresponds to the Valatin value 
(8.142) in the rotational case. The kinetic energy ( 

tha t the matrix 

assumes 

K I (. * Po ) I T (. 
- 2 Po P6 -"2 r poX)· 

(12.84) 

(12.85) 

(I 

We have thus derived a classical Hamilton function, 
coordinate Po and quadratically on the momentum X 

ing on the 

( 12.87) 

V<Po) is the expectation value of the full Hamiltonian in the 
static wave function The kinetic energy has its 
the time-odd parts of the wave function. As we see from I). it 
made up of two contributions. The first contains the static potential 110 and 
the second the time-odd potential r I' Neglecting this time-odd part would 
mea.n th.at we forget about the residual interaction i3 in the m.ass 
(12.8S), and we wou.ld obtain the Inglis formula (see 8 



To complete the we 
ATDHF equation (I) (n) (I 
function (12.87). independent are Po x· 
changes 81)0 and 8X, which 
produce changes in the 

only ph and hp matrix cac,wems 
(12.81). The first part is very simple. For 

fixed Po we get 

- 1( X) . x. -Po' 
i3H 

which shows the first ATDHF equation 
to be identical to the Hamilton ............ """ 
second ATDHF equation 

..... _-'"&'- of PI P2 by a 
and (12.70), 

8PI - ! [X. 81'0] 

The change energy (12.79) is 

8E - Tr(r l8PO + r 18PI ho6p,) 8 V 

(12.88) 

-= Tr{ (r2 + r ll X] - _I [[110 1 X]. x] )8PO} + 8V, (12.90) 

Since X and 61'0 have only ph and hp 
elements of ho which contribute to these 
elements. These are, as in 
X. To be consistent we therefore have to 
and find as Ii second Hamilton equation 

. i3H oV + 
-X· -

elements, the only matrix 
are ph and hp matrix 
of at least first order in 

term in Eq. 02.90) 

(12.91 ) 

Of course, we have to use only the ph 
With 

hp elements of these equations. 

. ,. 
OoPlPo - " oOXPo' 

and the fact that the derivative 
the density Po gives the ph matrix 
that Eq. (12.91) corresponds 
(l2.75b). 

second ATDHF equation 
system. Besides the static (i3 
have their origin in the coordinate <1el,erl<1e 

We have now established 
using the Hamilton 
Lagrangian formalism [BY 78J. 

In the limil of Jm,QJJ amplitudes, we can 
the wual one (see Set:. 8.4.). We Ulume that PtA/) 

(12.92) 

with respect to 
(5.32)], we see 

ATDHF 

of IhJ! 

terms that 
mass ( 12.85). 

to a system 
done this using the 
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of 

(J2.93) 

expand the potential at the point r; up to second order [s.ee Eq. (7.34)1: 

( 12.94) 

With [Eq. (7.37)] (curvature we get tbe energy 

(12.95) 

This is a Hamilton function fOf coupled correspondiq equaLion.s of 
1O(~iI'ed by harmonic oscillators of the frequency n, and we end up with 

orODlel1D [Go 59] 

( 12.96) 

The frequencies of the matrix 

-(~ - ~). {I 2.91) 

They can be fouDd by f!JLi onlYt which is 
This is only because the inverse of the mass tensor has a !dructure 

to the curvlture tensor . 

12.3.3 Reduction to a Few Collective Coordinates 

We come back to the prob]em of ]arge amplitudes. The system of ATDHF 
equations (12.75) still contains aU degrees of freedom and is much too 
general for a practical application. In particular. it is not easier than the 
full TDHF equation (l2.9); the adiabatic approximalion. is also 
valid for only few trajectories. 1 t may therefore be possible to drastically 
reduce the Dumber of degrees of freedom. 

The selection of the proper collective variables is certainly a great 
problem. Before we tbis in more detail, we shaH first assume that 
we bave achieved such a reduction lind have a family of time-even Slater 
determinants 

(12.98) 

with corresponding densities pO<q) which have tbe property that the solu
tion of the ATDHF problem will always stay within this subset of Slater 
determinants characterized by the real parameters q; that there exists a 
path q(t) with 

poe I) = Po( q( I», (12.99) 

from which we gain for the velocity 

ap . 
. () . 0 , • [p Po I =q- := - It q , (12.100) 
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Since (o/thVPo has only ph hp elements. this equation defines 
the corresponding elements· P of the 
P==(P1 ••• • ,P,). The single-particle 

single-particle operators 
P have the elements [see Eq. 

(0.36ff)] 

P .-p* --""Ii ,m It 1.. Ii)' i Oq , P 1IVf'I' == P,,. = 0 

in the basis in which Po is ..... -J .... " ....... 

Since we now have an Po 
for the kinetic energy from Eqs. (12.86) and (12.100) we 

and the real coHective mass 

I 
--( -p 

1t2 

We also can define collective momenta Pp and 
(12.100). 

and gain for the Hamilton function in the .................... u 

with 

It remains to be shown that 
defined this way obey 

equations derived from 
trivia1: 

from 

(12.101 ) 

(12.102) 

(12.103) 

(12.84) and 

(J2.104) 

(I lOS) 

(l 1(6) 

In the second case we get, with Eqs. (12.81), (12.90). and (I 1(4). in an 

matrices correspond to the 
10 that they a.re Dot mixed IIp wilh the ooUieco.'ife l"nOMill'Ull 
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obvious shorthand notation [BGV 76], 

-= Po 

(12.107) 

because and qjj. are independent variables W~/aq,Jp;a' 0]. .. 
One often introduces a set of Hermitian operators Q wbich ha.ve 

only ph and hp elements defined by 

I( A 
- B'" 

- B ) I( p) 
A" - P" />I: 

(12.108) 

They are closely connected to the operator 

x :L q"M~.Q~. 
fLII' 

(12.109) 

and anow a simple retl'faiCn:m of the mass tensor M: 

I(Q 
Q'* 

(12.1 ]0) 

They obey the reJation 

[PIA' QJI' ] (pe_ P) (Q ) 
I' Q_ . 

. ' fA 

(12.11.1) 

.. .. 
which says that PI' and Qp4 are "weak(y" canonical variables. 

The P and Q aHow us to a representation of t.he wave 
function I~> in the vicinity of an arbitrary point ". "local" represerua
lion shows a analogy to the case of pure translation ~see Se~. 12.2.3.) 
and will be used in the following sections. The operators P and Q act like 
inrinitesimal generators for the wave function in the vicinity of a point 
CIa. If we know the "momentaH p (12.104) and the "'coordinates" q we get 
for the A TOHF function at a point '10 + q 

(12.112) 



and 

p(t) - e( i/III)P(I)Q e - (I/AH1'(I)P PO< qO)eU!II)f(t)P.r -(i/l)po(I)Q, (12.1 B) 

that is, we can obtain the wave function in the vicinity of flo (i.e .. locaUy) 

by a shift in coordinate generated by the operators P and a sbilt in the 
momentum generated by the operators Q. These operators depend in ... .. 
general on the position '10. An example, where the P's and Q" are 
constant operator" is given by a GaJilei transformation [see Eq. (12.32)]. 

~ A 

In this case, we see that Q is the Clenter of mass coordinate and P the 
total linear momentum. The tensor of inertia is a multiple of the unity and 
its value is just the total mass A . m of the nucleus. Unlike in GeM with 
one real generator coordinate q (see Sec. JO.7), we now get in the ATDHF 
approach the proper inertial parameters. The reason for that is that the 
ATDHF method is a dynamical theory whjch allows for time-odd compo-
nents in the wave function (see also Sec. 11.4.5). 

Starting from an arbitrary set of time-even determinants Iq), which 
depend on a set of parameters q, we developed a theory which uses these 
parameters as collective coordinates. We also defined corresponding mo
menta such that the p's and q's fulfill the classical equations of motion 
derived from a Hamilton function in these variables. 

It is certainly a major disadvantage of this theory that we end up with a 
classical Hamiltonian. As in the case of the collective model in Chapter 1. 
we have to requantize this theory to get a collective Hamilton operator, 
which allows us to calculate wave functions. The requantizatioD 
involves some arbitrariness. There are several methods. One possibility is 
the PauLi quantization [Eq. (1.53»). Goeke and Reinhard (GR 18) proposed 
a different method, which has the advantage that it reproduces the same 
zero-point corrections Eo(q) of the energy surface as the GeM theory [see 
Eq. (10.136)]. However. before we why such a quantization is 
nC(:wary. we want to present a method that determines the optimal family 
pO<q) from whicb we should starL 

12.3.4 The Choice of the Collective Coordinates 

In deriving the Hamiltonian (12.105) we have assumed that we could 
restrict ourselves to Ii few collective coordinates q 1" ••• , lJr The question 
arises of how to determine these coordinates (Le .• the corresponding wave 
fu.nctions) and how many of them are needed. Of course. we would like to 
have as few as Since we bave seen that the solution of the 
A TDHF Eqs. (12.15) with certain initial conditions c()rresponds to a 
one.-dimensional path in the multidimensional energy surface, it seems 
that one coordinate q would be sufficient if it is properly chosen. The 
whole concept of deriving a collective Hamiltonia.n this coordinate, 
however, is only iI the path determined in such a way does not 
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depend on velocity q, tbat is. we ShOllld find more or the 
same path I-»O<q», if we start from different initial velocities. In general, 

will be the for a one-dimensional path. We could then try 
(W~c)-(]LlDl,en:!IOIUU surface and so on. The number of the necessary 

coordinates q."", 'I, therefore depends on the dynamical behav
ior of the system. The restriction to a few of them is only possible. if there 
exists a l4a(ql .. .t/,» of Slater detenninants such that the solution of 
the ATDHF problem (12.75) ,tays within tbis subset for many different 
initial conditions. This requirement is very similar to the condition (l0.24) 
in the GeM method, in which we had to ask for generating wave functions 
with the property th.at the corresponding coUective subspace contains 
eigensolutions of the full Hamiltonian (see a110 [RG 78D. 

In many physical problems it is not clear whether such a set of 
coordinates exists that describes a collective motion decoupled from aU the 
other degrees of freedom. If this is not the case, we can try to include the 
other degrees of freedom in an averaged way. This leads to the concept of 
friction (see, for instance, [BBN 78D. Within this book we do not wish to 
go into these problems. We shall assume in the rollowing that there is a 
fixed number of collective coordinates. 

Under this condition we are faced with the question of how to determine 
the optimal set of wave functions lct»oCql'" q,». There are several ways. 
The first, which has been used in most of the realistic applications. is 
physical intuition. For instance, we know that for the fission we 
need at least three coordinates. describing the elongation, the neck, and the 
asymmetry (see Sec. 1.6), and so we choose Slater determin.ants i.n a 
defonned lingle-particle potential with these parameters. The second way 
is more sopmsticated. We use constrained Har/ree Fock (CHF) theory (see 
Sec. 7.6) with several constraining operators. The physical intuition is tben 
restricted to the optimal choice of these operators. The third way is given 
by the ATDHF method itself and will be discussed in the following. In this 
way we will find a close connection to the formulation of ATDHF theory 

given by Villars [Vi 75, 77]. 
In deriving the collective Hamiltonian (12.105) we assumed that we 

knew the of static wave functions and used the first of the ATDHF 
equations (l2.75a) to calculate the corresponding momenta and inertial 
parameters. The second equation (12.7Sb) was only used to derive the 
equations of motion in the few variables p and q. This is only a very small 
part or the information contained in this second equation. Additions] 
inIorma.tion will be used to determine the optimal set of wave functions 
[GR 78]. 

In Sec. 7.6 we saw that any Slater determinant (with density pJ C3.n 
be fOllnd as a solution of a CHf equation with a suitable constraining 
operator F, which has onJy ph and hp matrix elements in the basis. in 
which Po is diagonal: 

o. (12.114) 
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In fact. the second already of the fonn of II eMF 
equation .. To make this I'IVlI,,,,,n 

in Section 12.3.1. only the ph 
we shaU it soJ:nellll'nJl 

hp part of this 
With (12.69) it can 

+ ! [ ] n • X , (12.115) 

which the are given by 

.... <10( - X - ,x] )PO' (J2.H6) 

We assume that we 
and use Eq. (12.109). 

X from the solution of the first A TDHF equation 
lime of X then given by· 

x= ). (12.(17) 

With the (07) we find 

«(2.BS) 

Since and [f l' xl are quadratic q, (12.116) we gain for the 
constraining operator 

dV . Q O(f). (12.119) 

To get a consistent description. the 
neglected. We therefore end up with the of determining the path 
pJ..q) from a constrained HF the constraint Q given by 
Eq. (12.108). The mass parameter M(q) in this equation is determined, for 
instance, by the condition (12. J 11). following set of equations 
[Vi 75. Vi 77D is therefore up to equivalent to the ATDHf 
equations (12.75) 

( -~. -!. ) (Q ) -= i~ ( p. ), 

[ho 1iQ, pol ~o, 

This system very similar to that 
determination of the path the U""I"I,prg 

For a practical application we have to 
constraining operator (12.l20b) 
pO<q). From Eq. (12. H10). we can at 

i . 

.. We restrict ouradves in \be foUowiog to one «:ouecu'VI: 

(12.120a) 

(12.120b) 

(12.12Oc) 

a seJf-consistent 
10.8). 

for the 
the corresponding 

the correspond-
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a new constraining operator Q. This 
until convergence is achieved. 

local harmonic approach [HY 74, RB 76, Ma 
where P determined from Eq. (12.l20b) in a 

[see Eq. (8.131)] neglecting curvature cor-

- ) (P ). = ill C ( Q) 
A* p. - Q •. ( 1) 

-(d 2V /dq2'h that the curvature of our """"t, ... nh We can 
a frequency D(q) [RB 76] by· 

fCW 
rl(q)- VM(ii) 

and .(12.121) correspond exactly to 
(8.99), tbe operator A + caD be found II 
at point q (local 

(I 122) 

Dot want to go into further details of and llllUJUlI&II meUlClIQI. 
which are stiU under investigation. Summarizing the results of 

that there are methods to determine an optimal path or an 
(in cues where we need more one _ ............ .... 

in the large set of aU Stater determinants. We thus obtain the 
potential and the inertia parameters as a function or the CIt that 

'l,,;lalNU.'-'Al Hamiltonian function (12.105). 
r .. "' ..... '...... for a fun of the system, we still 

\rJWiI>Ol'l,,;flU picture it by the 
obtained from the of the equations 

(12.107). In the quantum mechanical case we 
Hamiltonian before solving the corresponding equation in 

coordinates. 

1 General Discussion of the A TDHF 

11.3.5.1 WIly 
up wilh of a .... VI.' ....... 

a rew collective variables. In particular, there is no VV''''''' ........ 
througb potential barriers, therefore we ... €.i ........... .. 

• In tUft, AI or C II ___ , ... yc;. 

P and Q are weU determmed 
8.4's). 

F method ends 
function in 

of tunnelJing 



operators or the 
by c-numbers. In 
and it therefore seems 
that the theory is completely 
quantum mechanical wave function. 

not mean, however. 
detenninant is a 

We have already seen in .................... A 12.2.4 that restriction to Slater 
as soliton solutions determinants includes some 

without dispersion. These 
ourselves to a few collective 
functions 
variable (see Sec. JO.7.4). that 

more pronounced if we restrict 
q. The overlap between two wave 
peaked at q=q' iJ q is a coUective 

we can write to a good approximation 

6(q_q/), (12.124) 

which says that tcfa(q) are wave packets localized in q-space. 
At the same time. we iI. which violates the uncertainty relation 
and is therefore a approximation. In a quantum mechanical 
theory we should use a of many different shapes Ict>(q». as 
we do, for instance, the GeM method (see Chap. 10). 

12.3.5.2 VaUdity or ApproxJIMdOIl. We are now able to 
give a rough criterion for cases of the adiabatic approximation to be valid 
[BV 78]. We therefore our considerations to one collective variable 
q (which in fact, no q could be the exact solution of the 
ATDHF equations). 

The adiabatic 
component in any 

should have a norm: 

If. 1.8 a 
that is., if we use the 
kinetic energy involved 

-
e 

equivalent to the fact that the time-odd 
wave function 

.. + ixl') ( 12.125) 

1 for aU i. 

(12.83) we neglect the residual interaction
the collective mass-we find for the 

where &€ a typical ph energy. If we furthermore assume that 
admixtures odd components is equally distributed over N occupied 
states. from (12.126) we get the condition for adiabaticity: 

( 12.127) 
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This meam that the adiabatic approximation is good as long u the 
coUective compared to a typjca1 lingle-particle 

energy times the number of Ii.ngle·pa.rticle states involved in the 
collective motion. We should note that it is not the quotient of collective 
energy to single-particle energy which should be small, but that an addj· 

factor N comes into play which measures the collectivity. 
This is the reason why we can also use the adiabatic for 

high-lying collective states in the RP A. As long as there are many particles 
involved~ the coUective energy can be much higher than the single-particle 
excitations. On the other band, we see that the adiabatic assumption does 
not work in situations in which only one particle is involved (N - I). At 
isolated level for instance. the kinetic energy can become of the 
same order of magnitude as At: and the adiabatic approximation breaks 
down. This feature is similar to that already encountered in the momentum 
expansion of the GeM theory. In cases where many level occur, 
one should therefore use these metbods with extreme care [St 77]. 

12.3.6 Applications of the ATDHF Method 

12..3.6.1. Qu.adrupole Vlhntloas fOl' II Q. Q-Force. An early version of the ATDHF 
theory was given in the pairing-plut-quadrupole model (see Sec. 7.4) of Baranger 
and Kumar for the description of transitional nuclei 18K 68, Ku 748]. In this cue, 
the becomes extremely simple because of the separability of the force. Since 
the model include. correlations. 8a.ranger IUld Ku.mar solved the adiabatic 
time-dependent Hattree-Fock-Bogoliubov problem. In thi.s chapter we will restrict 
ourselves to the pure HF case and in the foHowing. tberdore, present a VMIlu'>it'lt 

which neglects pairing. We aJso consider only pure axially symmetric deformations 
( ,2y:zo) and neglect exchange terms as in Section 7.4. 

The matrix element in t.his case is given by 

1.2) kYO)' Y(2). (12.128) 

where Ie is a force constant 
We start according to Section ] 2.3.3 with a family of static densities pr:/...q) that 

are obtained, for instance. from the solution of the CHF problem 

[ho<Po>- qY. Po] -0. (12.129) 

I I will be a set of simultan.eous eigen.vectors of Po and of the pp and hh pam 
of "'0' We furthermore rind that f I of Eq. (12.74) vanishes. 

fl -k· Y·Tr(YPI)-O (12.130) 

because Y is time-even and PI is time-odd and the trace i's real. This produces Ii 

tremendous simplification, becaUK in this case the ma.lri.x B of Eq. (12.82) vanish. 
and A becomes diagonal. 

From Eqs. (12.84), (12.100). and (12.101) we can calculate the time-odd part: 

(12.13 I) 
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The: matrix elemenl.s of 'd/fJq s.re obtained from the perhubation theory of Eq. 
(12.129). which in this case is equivalent to a linear response approach: 

y 
<mla /oql .... ----=---=--

This, together with Eq. (12.103). gives I. formula for the mall: 

( 12.132) 

M(q)-~ ~ 1(,"la/~q1/)12 -2Jr'l~ I(lftl Y'l)f . (J2.!JJ) 
i.J t.. ft IP4i (t. - fy) 

From the collective Hamiltonian, therefore, we obtain: 

(12.134) 

where 

V(q) -Tr(~Po(q»- tk Tr( YAAq»)·Tr( YpJq». (12.135) 

Barl!l.nger and Kumar [BK 68] obtained the 8.Ilme collective Hamiltonian with 
minor differences. They took the pairing-plus-quadrupole model Hamiltonian and 
in this way derived a collective Hamiltonian depending on lhe five quadrupole 
deformation parameters a~ and the pairing gap A. Since they are not interested in 
pairing vibNltions, they rtrItricted IJ. to be the solution of I..be static BeS equations 
for each value of the five other coordinates. 

After a transformation to intrinsic coordinates (as in Sec. 1.5) they 
ended up with a classical Bohr Hamiltonian (1.47) 

'JC - ~ (~!twl + BABIP + BIJy,B'i' + Bn ..,2) + V. (12.136) 

where the seven functions ~I' g;2, g,. B/II" Bfiy. Byy. and V depend on the variables f3 
and 'Y. They are calculated microscopically. The inertial parameters correspond to 
the Belyaev formula (3.93). This Hamiltonian has been requantize.d IU discussed in 
Sec. 1.5. Energy levels and wave functions were then CB..lculated numericaUy [BK 
61b,68]. 

In this method the coupling between rotations and vibrations and the mixing 
between different phonon states is fully taken into account. In this way Baranger 
and Kumar investipted the region around the osmium and the samar
ium isotopes (KB 68, Ku 74&] and found good agro::ment wilh experimental data. 
In particular, they obtained strong deviations from the rotational picture at the 
low-A end of the W-0s·Pt-trans1tion region and large deviatiolll from the phonon 
model at the upper end. Their collective wave functions are often smeared out over 
all shapes. 

So far, onJy quadrupole shapes have been used. From Eqs. (12.120) (12.132) 
we see lbat. the con'tnnnt UIOd in the next step of the procedW'e. as d.i.scuJJed in 
Section 12.3.4. would be 

( 12.131) 

Only in cues where the pit energies are almost degenerate.. this corresponds to the 
oriJinal constraining operator Y. 

ll.J..6.l. F1IIIrt.ber ApplkadoIa. The ATDHF tbeofy has also beeD applied to ~xactly 

soluble models such as the Lipkin model of Sec. 6.2 [KG 74] and a three-level 



Ft.aune 11.6. Potential energy and mass parameter of the mono-
in liQ within ATDHF [Go 17].) 

Upkin model [MV 78]. which was in [YKD 70}. In for cases of 
particle is. collective situations-the agreement with the exact 
is very good.. 

More rNlIslic calculations carried out with the Sk.yrme (EBG 75, 
Va 00 17]. In this case, it is convenient to formulate the theory in 

space. Since time symmetry is broken in the time.-dependent 
in addition to the derllities p, T and J of Eq5. (S.84f.) we 
and currents. In this form the theory has been applied to i.soscalu 

mOnOtlOle vibrations in 160 and using the mus rms radius R as collective 
Figure 12.6 shows collective mass M(R). 

'OrJ..R)- V(R). the eHF v(R). 
subtracting tbe zero-point corrections eo of ([0.136). The 
lC<lKI"IJ.ZI.Ull.U;ao ue indicated. 

Giannoni el al [GMQ 76. 801 calculated mass the 
quadrupole modes in t nuclei. They find that tna" 

110) is very close to the cranking ma.ss [see Eq. (12 .. 146)) for Skyrme 
with an effective mass m -/ m ~ 1. 1 n fact. it c-an be shown that the term r I in 

(1 produces between the ATDHF m.u:s (ThouJess-
Valatin MUS), and the cranking mass (Inglis rormula) is proportional to 1- m$ / m. 

Adiabatic Perturbation Theory and the 
Formula 

The oldest :method of deriving the inertia parameters for a coUective 
motion microscopically is so-called cranking formula. II was introduced 
by Inglis [In 54. 56) in the case of rotations, and we have discussed it in 

detail in Section 5.4. [Ke 61] bas derived a similar expression 
mass parameters of more general collective motions. We have seen 
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in Section 12.3.2 that we 
time..ood part r I of the 
......... 'l"'.:vu (12.81). 

been used very often in 
here the usual derivation the ...... 1,. .... ',.. .. 

theory (see, for instancct [Sch 68, Di 7l D. In 
validity of the basic assumption of thi.s approximation. 

we neglect the 
the 

We consider a system of particles a dependent., but time even, 
Hamiltonian H(I). The time dependence is by one (or several) 
COltec1lve shape parameter(l} q(l). example would be a single-particle 

~_f'V4l Hamiltonian (eventually with a two-body interaction) 
depending on a deformation parameter q, turn is a given function 
of I. In principle, we should determine both the of 
the potential and the dynamical behavior of the the 
function q(I). This is not done, however. we will not need the explicit 
form of this time dependence for the of a coHeetive 
niut. We will only assume that the motion 

At each time I, that is, for each deformation q, we assume the eigenstates 
Ik) of the Hamiltonian, the so-called adiabatic (No 

H - (12.138) 

The Ik), as weU as the "'1"1"'1"1:,",,114:0 on parameter q 
and therefore on the time I. 

exact solution 1'1'0» of the 

H(/)li'(/»- (J 139) 

now expanded in this basis: 

lit( - ~ak(l)e""(')lk(t». ( 140) 
k 

convenience we use time-dependent pbase 

4pk(/)- - ! j'Ek(/')dl' (12.141) 

whicb care of the trivial osciUaling 
the adiabatic Inserting the (I 140) in the 

Schrodinger equation (12.139) and multiplying with the vectors 1 we 
obtain a coupled set of differential equations for the coefficients Qt. 

0,= - L (II :, 
If 

a 
= - q ~ aq I<ft.ta'c> {I 2.1 42) 

with fPkl- CPIc - CP" 
equation still exact. It is now adiabatic limit, 
for small velocities q. We assume the ""-,,,,,r ... 1F1f'> for t == 0 in the 

10) (for instance a Slater determinant., where all below the 
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fermi surface ate filled) is: 

(12.143) 

Since the time derivative of ak is proportional to q~ we expect for aU times 
0,,(/) to be small for k+O and ao to be close to unity, that is, the system 
always stays close to the adiabatic ground state. There are only virtual 
excitations to higher states, which are proportional to the velocity and 
produce an 

In approximation, for 1+0 we obtain 

a = _Q"(/I1.. 
I oq ( l2.144) 

Under the additional assumption that q and the matrix element <lIo/aqlO) 
have only a relatively small time dependence compared to the oscillation 
phases CPo/. we can integrate (12.144) and for obtain 

(12.145) 

We have thus calculated the velocity-dependent terms in the wave function 
(12.140) in rirst-order perturbation theory and are now able to ex.press the 
total energy as a function of the "collective coordinate" q and the corre
sponding velocity q 

E(q.q)-<i'(/)1 I+(t»-Eo+ L (Ek -Eo)lak I2 

Ie ","0 

(12.146) 

with the potential energy 

V(q)- Eo(q)- HIO), 

and the inertia parameter, the weU known cranking formula, 

(12.147) 

Using the fact that the many-body functions Ik) are eigenfunctions of the 
Hamiltonian H(q), we can write this formula in a slightly different way: 

12 l(kl€JH /aqlo>12 

_2h2 2: J 
k.,.O (Elc - Eo) 

(12.148) 

F or a simple Nilsson Hamil tonian H = H 0 - q. Q we thus 0 blain 

(12.149) 



of 
RLM 76, Ba 78, Po 78]. 

In the derivation 
matrix elements 
not true in the reElon 
Fig. 2.22. In ~100D 
characteristic .... "",,_,..t'II 
CX(:B8.lIl&e takes place a 

CICIl1ICDUJ (kiB /BqIO) 
may no ......... ". .... .1. 

In fact, it can happen system does not 
ground state when it moves over such a ere_ug. 
investigated at an tso/Qleti crO!JSillg of two (1 and (2 with an 

matrix element VIZ of clOlCSt approach the 
1eVil!Il!lt is then 2V1J. In this Eq. (12.142) reduces to a system of two 
coupled differential For a COlUtant velocity q and a linear 
GeI)eD0e11ce of the 1 on qJ this can be solved analytically. For 
probability P == I that the system jumps at the pseudo-crossing into 
the upper level, we obtain the LAndau-Zener formula [La 34 Ze 32J1 

( 
2Wvrl ) 

= exp - Illqjj( dl dq)( (, _. (12.150) 

This probability large for increasing velocities. but also for an 
increasing difference slope of the two levels, because in such cases 
tbe interaction region the properties of the two levels are exchanged 
is rather short. In the formula (I I SO), which is an exact formula (or this 
model. we that the function P shows a nonanalytic behavior for 
small velocities q 77a]. A solution of Eq. (12.142) by an expansion 
iJ. which the formula (12.147) in lowest order, therefore 
probably an asymptotic expansion. 

Up to now it as to in which the 
adiabatic calculatioDS for a fIXed path 
starting at process have <Ith ..... 'I:llI'IA 

large part of the wave function excited due to pseudo--Jevel cf(llUl:ngJ 

75a + b, LPP 75, n t SW 78~ It could be. however. 
sell-coJllistent as in Section 12.3.4 this 'ftW'1hl_ 

changed very conclusion will certainly depend on the """"",.IWIlUUI 

energy of the ""'OJ""""""" 
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Semiclassical Methods in Nuclear Physics 

1 Introduction 

a.nd u ...... ; .. ~u .•. O used to deal wi tb the m.any~ 

problem are, as we have seen. powerful. and allow us to an 
enormous number of experimental racts. In calculations. 
where we want to treat realistic situations, the implementation of forma-

RP A. or time-dependent lead 
to an enormous amount or work. It is therefore quaHta-

but quick of such quantities as the ground 
density, and giant resonance frequencies. 

LLI.'-'IIoU'\J""" which is able to provide sucb weU known 
physics, where the theory 

11"1"\,,"I'lnI'l, .. lv good [Go 48]. For a long time nuclear physics. 
nOI1ll!U;-.I"'enm theory [SB 63, Be 71, MS 69] was not exploited much 

because, as we will it not very wen suited to handle many-body 
.IVII·1mI18 with very two body forces fonn. 

recently there have been some of the 
theory [Ki 67, BR llb, 72. 

77, 71, DBS 78] which make 
it known as 

I t turns out that the corresponding 
different quantities on the average, that is, 

out There exists, thererOfe, a analogy LO 
smoothing. It is well known that if one applies a 
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to modem Haruee-Fock """"J"'UAIA"J'''''''';;J 

spooding liquid drop part agrees very 
b]. the corre

empirical Betbe-
mass formula. It is the intention 

this chapter to set up a sell-O:>DI~18t~em Dr()COtlW 
averaged quantities (density. etc.). which .UOWI us 
drop part contained in Hartree-Fock 
the full quantwn solution. 

Once a semiclauical method is 
natural to generalize it to the dynamic 

.... UlloF_ therein]. In the limit 1t-+O, the 
VVl.J.UUYUJi_ Boltzmann equation. 

for the dynamic cue of the expansion of 
kinetic energy density. we arrive at a fluid dynamic 
resonances which equivalent to the sum rule 
;:)e'~U(lfD. 8.7. In it win be important 
resonances can be descnbed by a fluid 
-..n.............. rather than by that of ordinary .:R.n ... ""' .... 

the fluid dynamic description 
at still the subject of .o.U"_IAaI 

many features of this chapler are 
of the nucleus (Cbap. I). 

1 Thomas-Fermi Theory 

drop 

Thomas-Fermi theory [Th 27, Fe 28], together with extensions. is 
the semiclassical treatment of nuclear in its partic1e or 
Hartree-Fock approximation. We must therefore consider a single-particle 
Hamiltonian 

1fl 
H---4+V 2m ' 

in which the potential Y is, in principle. the 

(l 1) 

o01tenUal (5.34). In what follo~ however, we sban oUen usu.me for the 
of demonstration that the particles are moving indepen-

a given potential well. like, for example. 

Before we go abead. it is useful to give the of 
... .u' ..... """" ..,.....L ..... ""IY.>:J.,J~'" development we want to study: 

(i) singlo-particle propagotor 

(13.2) 
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the solution of the time.-dependent Schrooinger equation, 

fdlrIY[iI.:,8(r-rN)- rH)] (r",r')=O (13.3) 

initial condition 

(13.4) 

With (13.1) the propaptor can written in the form, • 

CP(r, 1") - (r)q>: (r)e -.8c.., (13.5) 

for convenience we set p- il/1I,t 
(ll) traoe of the propagator (partilion funcliont; the factor of two 

here and henceforth care the spin): 

P)= -2 J d)r Cll(r, r). (13.6) 

(ill) The speclral density matrix 

- H)lr')- ~CPIII(r)cp:(r')8(f-EJ9)f (13.7) 
1'1 

terms of which the DrcJ'DaJit8.t4or (13.2) is given by 
transform 

Laplace 

ell(r, 1") =: Iocr. th e .&g4(r, 1")= f€-i>,6( glt(r, 1")], (I 

where we have assumed that energy origin is at the bottom of 
the well. The spectral density matrix is therefore given as the 

Laplace transform propagator (for properties of 
_,,,,56''''''' transforms, see [PB 65D= 

g·(r~ 1") - r') ] 

- f C'+ itl') dfJ e tl1C'(r, r') 
t: - teo 

(iv) density of s,aleJ 

g(e:)- 6(t-H)-fi:".Z(P). 

(v) The density molrix 

eo 

p(r, r; A) - 2: cpl'I(r)cp: (r)9(A - Ew) =2' 
111 ... 1 

(c 0). (J3.9) 

(13.10) 

(I II) 

prillldplle., we aDo should 
..... ,,"' ....... """ n·flMu(d. Sec. 5.6.2) 

Ul(Ij(:d.J, $'. For rimplicity, we trOll here only IJrin 
into 1.CC0uut the Ipin only by It factor 

of two. 
of fJ ~ oue of Ul invene bmlDft"I;tu.re, 

where k. it comta.nt T the temllJlR!lUtC., 
Ifn .... '_ 0( ltl.tilticaJ ~. HOW'lI!!Ver. 

a at T .... G. 
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where e is the unit step function, A 
have used a simple property 
Chap. 29)). The density simply the part of 
matrix (we will see in the that one of the 
of the approximation will 
physical quantities by fUDctionals of 

p{r)= 

(vi) The kinetic ener(J1 density (5.85) 

(vii) The particle munber 

1")] . 
r"-f 

N = fo\x g(.) - e,;.!.[ --
(viii) The ground state energy 

(13.12) 

(13.13) 

(1 14) 

E- ± (1'I1C r\k£g«()-pN- CA. (Ilk' g(f:') 
;w ... 1 Jo Jo Jo 

-AN-e;~[ Z~) l 
In Eq. (13.15) we have again assumed that 
given potential; in the case the 
modified somewhat, as Eq. (5.40). 

The Thomas-Fermi theory (seet [Th 61bD can 
quite different points of view. Here we 
usual way, that is the particles at point 
it were locally equal to a constant We will see that is 
(or a high-temperature; cr. footnote page 529) argument 

( 13.15) 

are in a 
i!I"n",,,,a'IJ has to be 

explained from 
the 

POt;entJAI as if 

to actually derive the Thomas-Fenni approximation we shaD 
place our consideration in a somewhat broader context. 
later to go beyond the Thomas-Fenni approximation in a naturaJ 

To this purpose we develop the potential V(r) entering (I J) around an 
arbitrary point '0 in a Taylor series: 

J av 
V(r)- V(ro) + 2; a (X;-XOi) 

i-I XI ..... ,. 

If this development is convergent, the solution of (13.3) with (I I) and 
(13.16) will give the exact propagator independent of If we the 
development (13.16) off at the nth step the corresponding propagator 
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depend on the point ro around which we develop the potential, and the 
corresponding solution 

wiD only be good for va.lues of r, I" close to ro' The best choice will 
therefore be to take the limit r, r'--»ro- Since the point fO is arbitrary we will 
get a propagator Cf~")(rO' rJ which is valid everywhere, that is. we can now 
identify fo with our original variable f. This procedure only gives us the 
local part of the propagator; if we want to keep the nonlocal structure of 
the propagator, the best we can do is not to let rand r' individually go to ro 
but to suppose that we developed the potential locally around the centei of 
IDa» of r and 1"; that is, we define the appropriate solution of OJ.J) with 
(13.16) to be lOBS 78] 

C(II)(r, r') - lim Cf~lf)(r, r'). 
fo-+4(r+") 

(13.17) 

For n--»oo, (13.11) will eventually converge to the exact result if (13.16) is 
convergent. For n finite) we get a hierarchy of approxir.nations: 

C(O), CO) J C(2) J'" J 

which are given in terms of the potential and its n first derivatives. 
As we said at the begjnning of this seetio~ the Thomas-Fermi approxi

mation consists in COIlSidering the potential JocaUy as a comtaat. This 
obviously corresponds to a break-off in the expansion (13.16) at the lowest 
order: 

(13.18) 

It can be cuily verified that the solution of (13.18) is given by 

(13.19) 

which has the right boundary condition (13.4). With (13.19) and (13.11) we 
obtain the Thomas-Fenni approximation for the density matrix [AS 65, 
Chap. 29]: 

(13.20) 

with 

q~ f(r+r'), s=r-r', (13.21) 

and}, a spherical Bessel function. The local limit of the TF density matrix 
is given by 

pTF(r)_ ~k:(r)e(i\- V(r»), 
3'JT 

(13.22) 



and the local momentum a defined by: 

[
2 ]1/2 

k,(r) - ,,": (1\ - V(r» . (13.23) 

It bas to be emphasized that the Fermi energy i\ is fixed by the cocdttion 

N- Jd 3r pTf'(r) (13.24) 

and that the approximate density matrix (13.20) has lost some features 
inherent to the exact one like p2 - p: 

J dlrlP w(r, rl)p Tf"(r., r')=FP TF(r, r) (13.25) 

and as a consequence (ID) being a SLater determinant and using Wick's 
theorem but not p2_p): 

(D IHID)~ - (D JN 21D >TP- (Tr(p Tl)2 -T~ (p TF)} +0. (13.26) 

Thus whenever we make a variational calculation with semicJ..usK:;al densi
ties (see below) we have to fix the number of particles, as in BCS theory 
(Chap. 6), by adding condition (13.24) with a Lagrange multiplier. 

In order to compare the Thom.a.s-Fenni density with an exact m 
Fig. 13.1 we show a graphical representation of both densities for a 
Woods-Saxon potential We see that in the interior of the nucleus the 
demity is well represented on tbe"average" but in the surface region it 
drops off too rapidly, going to zero with zero slope at the ··classical turning 

rUm} 

10 

Flpre 13.1. Thamu-Fermi approximation (dotted line) to the exact detllity (full 
line) in a Woods-Saxon potential fOf A -2N-I84 particles. The panunet.en of the 
weU are: 110 - -44 MeV, a-O.67 fm.. and Ro-127 fm A 1/3. The broken line 
repreaenls the local harmonic approximation of Section 13.2.3. (From lOBS 78].) 
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point" given by 

(13.27) 

speaking, however, the exact singJe-particle density is surpris
inaly well by such a simple formula like (13.22). This is even 
more drutiWly ckmonstrated if we calculate the ground state energy in 

ilOIlIlU,-rertmi a.pproxi.mation using (13JS) with (13.19) and (13.6). Tak
same parameters as those of Fig. 13.]. we obtain from a numerical 

Eo· i" - 3785.8 MeV; E~u.cl_ -3-b~ . .l MeV. 

The total energy calculated in Tbomas-Femti approximation is only of 
by ~3% for heavy nuclei. This means that gJoba11y, that is., over the who1e 
space integrated quantities, the Thomas-Fermi approximation is even 
better than could have been guessed by simply looking at Fig. 13.1. 

A comparison of Eqs. (13.11) and (13.9) yields the relation 

a 
g'(r, t) = ~p(r~ r; (), (13.28, 

and consequently we obtain for the density of states in Thomas-Fermi 
approximation: 

(13.29) 

For the harmonic oscillator potential v- !mw2r2~ which we win use quite 
often for demonstration in the following. the inregrai (13.29) can be 
evaluated analytically, and we obtain: 

:2 n' ( 
gila (()- (lU.Ji' . (13.30) 

In Fig. 13.2 we compare the integral of this expression, which ........... -. .. n 

the number of particles with the exact N(J..). 
We see that again the Thomas-fermi functions represent roughly the 

exact ones on the average"; below we will give a more precise discussion 
on how the average of quantities such as g( () shall be defined. 

In ord.er to calculat.e the kinetic energy density (13.13) in Thomas-Fermi 
approximation we use (13.19) and (13.11) to obtain: 

Ejimination of A - V in (13.31) and (13.22) gives the following relation 

.. From the observation that g Tf'(E} repreaenlJl the euc:t delliloity or .tates in Lbe mean, Wt 

can immediately get the ul1.l.&.l WKB quantization rule [Ar 65J wiihO'l.lt usinl the rathe 
complicated "matching condition&," We do Dot want lO go into more detail of how WKB ano 
TF theory II.f'e connected rv 0 TIl. 
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N L\) 
fi'tw .. 5 MeV 

10 

f 
.I 

I 
I 

J 
J 

I 
J 
I 

20 A 

FIrpIn partlcles as a function of the 
Fermi for t.be hAr-
monic. ~IIU.\Ul 

between the the density. [The corresponding 
relation (5.92) takes into account the isospin.l 

TF)5/1 P . (B.32) 

The pure is of tittle use for the self· 
consistency problem in nuclear physics because of the short-range two--
nucleon interaction. as we the introduction. This CAn be seen 
from the fact that part of the Skyrme mean field potential 
V[p] - ap + bp2 {see to which the nonlocal parts give only 
minor changes (a of range of the two-body force). 
the solution for p of Eq. (I no spatial dependence of p whatso-
ever. For that to we will to extend the pure Thomas-Fermi 
theory, as will be following subsections. 

13.2.2 n Expansion 

'0I1DI1I_a. We now want to show how the 
I tum out to be the 10west-order contribution to 

!>QU: __ • the single-particle propagator (I a 
systematic expansion in powers of It For this purpose it is convenient to go 
over to the trorufarm. The Wigner transform of a ~ .. .u. ...... ",~ 

by (Ar 65J 

.If Iq- (13.33) 

with q and I (1 1). 'The reason why the Wigner representation IS 
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convenient is due to the fact that, for example, the Hamiltonian (13.1) is 
equal to its counterpart in this representation: 

pl 
H(q, p) = 2m + V(q). (13.34) 

order to find the completely classical part of the propagator (13.2) we 
fUll delvelop its Wigner transform in powers of fJ: 

CP(q,P)-( ~ ~( fJH)II) . (13.35) 
..,-0" w 

'This means that we have to find the Wigner transform of products of 
single-particle operators. In Appendix 0 we derive the following formula: -

(AB)w"'" A (q, p)e(ill/2) A B(q,p) (13.36) 

with (the arrows shall indicate in which direction the gradients act): 
..... 4=.0:::+ ...... 

A-VqVp-VpVq. (13.37) 

The very useful Eq. (13.36) allows us to easily verify, for example. the 
well-known result. that the classical counterpart of a commutator is propor
tional to the bracket [Go 59]. With (13.36) we can also 
calculate successively the terms appearing in the development (13.35). To 
second order we have, for example: 

(13.38) 

The ,l correction in (13.38) comes from the fact that tbe momentum 
operator does not commute with the potential. 1t is this" dependence of 
the single-particle propagator (13.2) which comes from the nOD

commutativity of the kinetic and potential energy parts of the Hamiltonian 
in which we are interested and which we intend to expand into a power 
series in Ii; thus we do not have to worry about the hidden It - I dependence 
in fJ (or some other II dependences which may arise in passing from the 
Wigner to some other representation). It is clear from what we have said 
that the It expansion we are talking about is perfectly manageable with the 
expansion (13.35) and the product rule (13.36); the powers of It will always 
be even and equal t.o the sum of all derivatives in a specific term. The It 
expansion is therefore simultaneously a gl'atlient expansion. The expression 
to lowest order in" is easily calculated from (13.35). (13.36), and (13.38) to 
give 

( 13.39) 

Calculating the inverse Wigner transform. that is, taking the Fourier 
transform with respect to p of (13.39), we find that it is the same as the 
Thom.as-Fermi approximation of the propagator (13.19). It is in this sense 
that we say that the Thomas-Fermi results of Section 13.2.1 are the 
expression to lowest order in Ft. At this point it is perhaps useful to 
reinterpret p as an inverse temperature (see footnote page 529) and (13.39) 
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as the classical statistical operator. Since (13.35) is a simultaneous expan
sion in 112 and {3 it is natural that we find for hjgh temperaturea-tbat ill 
small fJ-the classica.l result It must be emphasized again that 
context fJ will never play the role of an inverse temperature; on 
contrary, we are dealing with a Fermi system at T- O. On the other haDd, 
it is important to note that the Thomas-Fenni approximation as well u 
extensions, which we will derive in this seclio~ respect the Pauli J)nJrlCII~1e.. 
This can most easily be seen in calculating the density (13.22) from iii 
Wiper transform using (13.39) and (13.11): 

Tf'()_ 2 fd 3 fTP(. )=2f e(A- p2 - V(dIIII\) (1340\ 
P q (27Th)] l' q, P (21'A)l 2m "II • • J 

frF(q, p) - (p TP)w ' (13.41) 

which is nothing but the sum over aU quantum numbers (efrective mo
menta) p :i(2m(,\ - V»1/2 from zero up to the Fermi level. each level being 
occupied twice (spin up, spin down). 

The powers of f3 in (13.35) do not go along with the powers of It and in 
order to be correct up to 1?- we have to develop (13.35) up to fJ3. The result 
is [Wi 32. 34; Ki 33; Ki 57, J8 75]: 

{ 
/i2p2 [ j3 

C.B(q,p)-exp(-p(p2j2m+V(q))) 1+ 8m -V 2V+ 3 (VV)2 

f1 V1 <4 } + 3m (p.) + O(n )+ ... . (13.42) 

Expression (13.42) allows us to get semiclassical corrections to all the 
quantities we considered in Section 13.2. L With (13.Il), we obtain, for 
example, for the Wigner transform f of the semiclassical density matrix 
(fvr a generalization to include a spin orbit term, see [JBB 75]): 

2m - V) } + 0("'). (13.43) 

where I\c is determined by (13.14) or (D.24). In (13.43) we ignored the fa.ct 
that the Laplace inversion of positive powers of fJ does not exist in the 
strict sense. In formally creating the d.ifferent powers of fJ in (13.42) by 
diHerentiation of (13.11) with respect to A. we obtain the derivatives of the 
6 function in (13.43). Expression (13.43) can dearly only be used in the 
sense of a distribution~ but we have to study in greater detail in which way 
the semiclassical expansion (13.42) of the propagator can be usefuL From 
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(13.43) we obtain for the density integrating over p: 

{ 
1 ( )3/2 

PK(r) - 3'112 It" (Aec - V(r»l/l 

(V V)2 .:1 V 1 } 
-4(-~-_-V-)-3/-2 + (AIC- V)I/l + .. '8{AK - V). 1 (2m) --- -

24v1 1il 

(13.44) 

The density does Dot contain any 8 functions, but diverges at 
the daaical turning point, and we again have the problem of the meaning 
of such an expansion. 

lJ.l.l..l A~ aDd ~ 0( tbt h Expuasloo. In order to study the 
validity of the expa.nhOIl (J3.42) and (13.43) it is very u.seful to investigate some 
... _I.UI<.,. ..... for which the propagator is known analytically: 

(i) For a one-dimeMional lirseo.r polenJl.ol V 1- ax it can be chocked that the 
following form of the propagator 

C(I)(X x/)_(~)l/l 1 -( .... /~)rae-pvl<")+(~/Mm),8"1viI2 
, l'lll'~ fJ 

.. c {O)(x. x')e( r.l/'24IM).B'Y"? (13.45) 

fulfills the SchrOdinger equation (D.3), where Vi m.eans the derivative of VI and 
CCO)(x, X} is the one-dimensional IUlalogue to the Thomas-Fermi approximation 
(13.39) of the single-particle propagator. The Wigner trallJJorm of (13.45) alrect& 
only C (0) (x. x') and the expantion of the remaining factor hu to agree 
with lhe express:ion within brackets of (13.42); this can readily be verilicd. It is also 
clear that the exparulion (13.42}-for this example-is completely valid and it 
converges in the whole fJ and It plane. For the calculation of quantities 
[soc Eqs. (13.7-13.15)), however, we have to take the inverse Laplace tnltJIform of 
expansions J..i:ke (13.42) and the probk::ro which was discus.sed in connection with 
(13.43) ui~. Tbis can be studied in more detail for our ex.ample (13.45). Using 
(1J.40) and the folding theorem [or Laplace tra..rudorm.! [PB 55, AS 6:5J in the cue 
or the linear potential we obtain for the density: 

wHh 

IfJ a-(2m) -~"!'::" 
[A 

IUld the integral representation of the Airy function [AS 65]: 

Ai( - z)- _1-. e:+ 100 dfJ eilr + (l/3)JJ'. 
21'1" Jc -/00 

(13.47) 
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Changing the in (13.41) to y- 22/3afJ we see Lhat aAi is propor1ioDallO 
"(E) for h~O and We flWVCf, together with (13.46), the rim ten:u or (13.43). 
higher terms are ohliined in expandi.n;g (13.45) up 10 Al. can be 
performed again 1Wns the ... a.ria.hle yin (13.41). From t..h«e we can see that aD the 
troubles oome from fact that (13.46) is nol'Wl.l..lytic in " therefOR IU'.I. " 

expa,nsion is not really possible {this is analogous 10 the cue that I Pourier 
t.ransform of e -4J.iJ is nonanalytic in a, but we can still tel a foraud power series in 
a by using 6-functioru and derivatives of 8-functions by a term-by.term transfor
mation of the Ta.ylor expansion of e - UJ (see also Sec. IO.S on thia poiut)]. 

(li) As a second definite example we win treat the isotropic 

harmonic osciIJaJor potential V1- tmw~l. It can be checked that the corresponding 
SchrOdinger equation (13..3) fulfilled by the following for the propaga
tor (the derivation can be found in [Kr 64D= 

JIl[ "'" ]3/2 
CO)( ... s) - ( 2:ft2 ) Mb( fJ""') 

)( exp { - [ ~' tanh( Ii ~ ) + ~COth( Ii ~ )j} . ( 13.-48) 

In Eq. (13.l5) we need the trace of this propagator, which CM be euily 
calculated to be: 

(13.49) 

In order to calculate E - AN we have 10 evaJUIlte the inverse Laplace of 
fJ -2Z (If). Th.iB may be done for Z{l) of (13.49) by a contour integration and 
closing the contour to the left (A> 0). We thus get contributions from each pole of 
the partition function Z (:.I) along the imaginary fJ axii. We have,. thereIore. E -"AN 
given by the sum of the residues of the function exp( fJ 'A)Z ('2)( fJ)fJ -2. The pole at 
fJ - 0 is of fifth order, the other poles are of only third order. In order to 
evaluate the residue at the we have to know the Laurent expansion of 
Z (2)( (1)P -2 up to the term a:. fJ I, which is given by: 

Z (2)( fJ) _ 1 [ I 
,4'.,,_oD) + fJ (~fJ .. v-..,.... ~-···l (13.50) 

( ~ ).. I j ( IIw )l 1 . 2VM) 
+6 T ",..,4 +4A. T nlwJ sm . (13.51) 

From Eq. (13.:51) we see that the contribution of the pole at the origin pToduces~ 
u a function of 'A. a monotonica.lJy increasing part, whereas the other pola 
produce oscill.a.ting contributions. These oscillations come from the JX'."1a of (13.48) 
IJld (13.49) off the real fJ axis. They are apparently due to the abeU slroctu.re of the 
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fOf the cue of the ........... ""'" ........ (13.45), iuch 

J.l&laa.!'_ "'-'_G~_ potntial is certainly I. special case, we ue 
.lIteraliZe Ihe to any potential in the sense that the contribution 

of the of ~Jllt.Z(fl)/ fJ'J at the ori,lin ,lives tbe smooth contribution to the 
J;tOUDd state energy. the contribution of other singularities gives the 
OIdDltilDl pat. 

In of fact that we know very little about the analyticaJ structw-e of 
Z(P) for 1m arbitrary potaltial, these considerations can be 5ubttantjated some
wbAt if we investipte the connection of the Strotinslci smoothed energy studied in 
Sec. 2.9 with one g,iven just above. For this we the ImooIMti 

dMJtty of states (2.109): 

( 13.52) 

With the definitions (13.6) and (13.8) and the folding theorem for Laplace 
trWlsfonIlll [PB 55, AS 6S} we obtain for the partition function corresponding to 
(13.52) 

(1).53) 

where IN (fJy) is the Laplace tra..nsform of t.he curvalure corrected smoothlng factor 
[(2.111). (2.115)]: 

(1354) 

with 

( 13.55) 

We sbould recogniz.e thal polynomial in. (13.54) repres.entsjut the first M temu 
of the development of 1/14'( fJy). In Section 2.9 we showed that the width y of the 
Strutinski smoot.hing must be of the order of &J or Ilrger. cau.ses /u(llY) in 
(13.54) to be down by five orders of magnitude at the first singularity of (13.49). In 
other words, StrutinsJri smoothing simply means cutting out a piece of the partition 
function (or the propagator) between the fint singularities on the positive and 
negative imaginary IJ u.i.s., which stays eqWll to the exact partition function as long 
as possible and around the poles to z.ero with a width y. Again we generaliu: 
and a..uwne that it is true that for any potential with a sequence of bound states to 

give rise in Z( /3) to singularities at roughly the mean shell spacing apart. We 
therefore see that the Strutinski smoothing procedure is essentially equivaJent to 
our dermition above of the smooth energy, namely to be that contribution which in 
(13.15) comes from the singularity of Z( /3) at the origin, Chat is, of the behavior of 
Z( fJ) for small fJ [Je 73, 76); Ihls is aoo confinned by the numerical examples 
given below. 

The usefulness of the semiclassical expansions such as given by Eq. (13.42) 
now Lies in the fact tha.l they provide simultaneously a Laurent series in Ii 
and fJ of the partition function Z(It. 11); this is a.ctuaUy all we used to 



calculate the contribution to the 
singularity of Z( /3) at /3 - O. As a L.L ........ ""~ 

the harmonic oscillator potential V(r)- i 
sion (13.50) using (J 3.42) with -
33) and (13.6)]." 

Of course, for an arbitrary the no ...... , ..... 

origin of Z( /1) may be very high. forcing us 
development to high order. Ther~ nn\lllil"'IIj!'>,f' 

expansion in Ii 
convergent. 1."hls is clearly 1"I"",."lu· .. n 

convergence of the 
Saxon potential. We also 
the remarkable fact that 
value which agrees very wen with the 
exact energies, the contribution from the ..,..ll,'"' ............. 
exhausl.$ an enormous amount of the exact total 

(13. 

aD 

VCl) rapidly 
1ULIn,.,,. .. we show the 

... n,..'lI"av for a Woods-

lying in the parts-per-thousand region. This small amount however, 
at all negligible, since it contains all the information about the 
structure or quantum oscillations of such quantities as density 
or the totalbmding energy [see Eq. (13.5)). For it is well known 
that the smooth part of the total or for a 
continuously deformed nucleus (e.g .. quadrupole 7.6) 
gives the Liquid drop potential curve (Fig. 1). whereas 
oscillations afe responsible for details as double barriers, etc., 
governing the nuclear fission pr(l~ce!~. 

We now have' a quick. clear interpretation of our or 
extended Thomas-Fermi method. It allows us to the contribution 
to the binding energy, which in (13.15) comes from the singularity of 
at the origin. If we believe in the generali.zation of 

,. It should be nOkd that thoc po~ of Z( /1) 
apualoD (13.SO) oul of iu I...aunl.ot 
lions.. dUD abo IOmtI of the oaciJJatio, (X)D'lriblltiolDI 

aspect. very much [OS TTl. 

&0 the coDtributioD.l of the TP term. 
respectively. The fifth giva 

• while the lul C'Ohlmn givca the 

~ , 

A £(0) 
lie 

E!:I) £(1) 
lIIII EfIC 

164 - 3344.7 88.8 1.0 -3254.9 
260 -5484.8 119.7 I.) -5364.0 
416 -9049.1 162.5 1.1 -88aLS 

(1.2) 
- 5364.4 (0.8) 

8882.8(1.2) 
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contribution to the smooth part of the 
numerical study (at the WoodJ-Saxon potential supports 

then have a m.etbod does need the quantum ....................... _ .• 
for the calcu1ation of the smoothed energy. We should 

completely equivalent to of the semiclassical .......... ''''''u 
fJ) in Eq. (13.15), for the density [(lJ.43) and (13.44)] 

and calculate EIC-Tr(Hp"J. It clear from this that the .... """ ......... , ...... ,... 
Thomas-Fermi method, as it is not suitable to be 
self-consistent theory; that is., given a V[p1 Eqs. (13.43) and (lJ.44) _u .... "', 
be used to calculate PK self-consistently by iteration because of the 
divergences at the classical point. In the foHowing sections we will 
see how this drawback of the method can be circumvented. 

13.1.23 Tbe Functional of the Densily .... One possibility of 
<1lS1posmg of the difficulty that we perform a seU-consistent 
classical calculation is the following: in to calculate the ground state 

we need the kinetic T(r) of Eq. (13.13). If we ... ..,_ .. _ 
this kinetic energy as a functional of the local density, 

T - T[p(r)J, the binding would be a functional of p(r) alone, since, 
example, the Skyrme potential (5.87) is given in terms of p and 

T. A variation of the binding with respect to p would then us 
an equation for p(r) alone. Though exists the theorem by Hobenberg 
and Kohn [HK 64, MT 77] that the binding energy and thus also the 
kinetic energy density of a a unique functional of p(r), it 
seems to be quite difficult to functional in practice. In our 
semiclassical framework, however, we are able to construct such a 
tional which will be valid in sen$e that our semiclassical approach is 
valid, that is, it will ultimately give us the smooth part of (e.g.) the binding 
energy. 

From Eqs. (13.11). (13.13)l and (1 we are able to construct the 
"'IOfU.l.J"".I'~II\AU expansion of T up to seCl:mCl order term, which yields 

1" (r A)= - -1!! -(A- V)S/l 1 (2 )'!I/l{ 3 
K' 31'1'1,,1 5 

_ 1. 11- [SV1V(A- V)I/l 
8 2m 

... "" ... , ... _., ........... for the density (13.44) 
from (13.44) Vp and 

Sec4'DO derivatives of the 

V). 

(13.56) 

a function of V-A - V, V V, and 
neglecting higher 

three equations: p-p(V, 



542 Physics 

~f;;;;;: ~ 
50 100 1SO 

N 

flIure 13.3. The difference 4 Ex -l K - T x. where i Ie is the Suutinsky Imootbed 
kinetic energy and T K is calculated as expllined in the text. The values are for a 
spherical Woods-Saxon potential as a function of neutron number N. (From [Br 
7').) 

v V, A V), V P - V p( ... ), and Ap = .:1p( ... ), which can be solved for V, V V, 
and a V; inserting this into (13.56) yieJds [Ki 67]": 

] 
_ ~(3 1)2/3 51] (V piI(i 

5 ft' Pfl: + 36 + PK; 

::::: 1'TP + ..,.(2) • (13.51) 

rro verify Eq. (13.57) it is to ca1culate the three terms in (13.51) from 
(13.44) and compare the corresponding result with (I3.56).] The first tenn 
on the r.h.!. of (13 .. 57) is! of course, the Thomas-Fermi term, which we 
have already discussed in Section 13.2.1 and is the only one surviving for 
infinite maUer. The following terms take account of the inhomogeneity of 
the system. The second term is called the Wei.z.s.acker term. The last term 

in Eq. (J 3.57) is the divergence of a vector field which vanishes at infinity; 
from Gaua· theorem this term will nOl contribute to the kinetic energy. 
which is the over T(r). The functional (13.57) is consistent with the 
semiclassical expansion of p [Eq. (13.44)] and l' [Eq. (1356)] up to order 1'1. 
The whole scheme has also been carried out up to order /t4 [Je 76. BJ 76b, 
GV 79]. We do not want to give the quite lengthy expressions here. 

According to the dcrlvation, the functional (13.57) is strictly only valid 
for classically allowed values of f, but it is tempting to assume that the 
analytical continuation of (13.51) to the region beyond tbe turning 
point is the correct one for averaged quantities, and in any case we can use 
(13.51) as a variational ansatz.. As a matter of fact, if we put into the 
functional 1" .Jp,J, which is consistent up to order h4, instead of PileI a 
Strutinsky smoothed. deuity of a spberical Woods-Saxon potential, we see 
from Fia. 13.3 that the corresponding kinetic energy TK differs only very 
Hille from the Strutinsky smoothed one, clearly showing that it is sensibJe 
to continue (13.57) to all values of r [BJe 76]. 

13.2.2.4 Variatkn:ull Ca.kWadoos. Havins thus gained some confidence in the 
functional (13.57). we can adopt the following procedure for the seU-consist.ent 
det.erminl!l.tion of a semiclassical density. Using (13.57) we can calculate the smooth 

• Sometimes., irutead 01 1/36. different 'adon are ~ m order 10 c.ot"l'eCtiy reproduce 
surfa.oe energies [BII. 12b]. 
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(13.58) 

where we usure the normalization with a U&f'8.oge multiplier, as 
discus.sed in Section 13.2.1. We the theory for 
HamillowlUlS like the one derived the Skyrme force (5,87) effective mass 
ud .pin orbit term.s. This wiU obviously functional T[Pt which is siven 

[BJe 16, GV 19]. In to it will be 
sufficient to neglect effective mass 
potential (5.99) only local :loP+"h. With (13.51) we therefore 
get the foUowing expression for the smooth part of the binding energy (in the 
foUowing we replace Pac by p): 

E [I'} f d 3r ([pl, 

,;z (Vp)l 
([p] - (w(p) + (13.59) 

E (P)_ 1r7. ~(3w2)113 +l8 'oP2 + I iJP), 
00 2m 5 

where (co is the ene-rgy density for nuclear matter, which at saturation 
(p-Po) has the 'o'alue 

_1 (<<I<Po) - - - 16 MeV 
Po 

(13.60) 

To obtain a relatively we to E.(P) around ill 
saturating value for infinite nuclear matter foUowing way. 

I 

(13.61) 

where K. the nuclear (5.95). 
The variational procedure (13.58). together with (13.59) (13.61), 
following differential equation for p in un.ill [6(Vp)z-2Vp8(Vp) 
integration. E01: 

2 
p 

(13.62) 

_ (.!t. _l )112 
Q 2m 2K . 

Equation (13.62) can be soived analytically in ODe for half·in!inite 
nuclear matter [Br 77]: p(x)- Poll +ex.p(x/ a)]-I. It is easy to get 
solution of (13.62) requiring that I' and derivatives va.n.ish at 
appwxi..m..ation for (QO would acruaUy be necessary for this consideration) . 

.. This ... lrittiOM,l principle. in COIU'lec:tion with III p:lDM'lIU 

col'1"e1pond 10 .. Ilia. va.ria.tkm .u diIeu.aed in Section 5.6.1.2. 
does DOt 



obtain an equation already discussed by Berg and Wileu r8W 56}: 

r~oo: 2~ -( p f _a-1
• 

which gives for the spherical case 

p(r) C( .!e-I'/4. 
,. ..... 00 ,:;. 

(13.63) 

(13.64) 

We s.ee that qualitatively we get the correct behavior for the density, that lI, an 
exponential de£ay; quantitatively. however. the decay is mucb too rapid compared 
to realistic densities, and I. numerical solution of (13.62) shows that the exponen~ 
tially decaying behavior is l.Uumed only quite far out in the tail of the deMty. In 
Fig. 13.4, we &how density profiles as wen as corresponding energy dcnIitiel 
(13.51) that have been calculated by Bob..igas et aI. [BCK 761 incorporating in the 
theory II spin-orbit term and the fact that we have different neutron and proton 
dens:ities. We see that the denlities stilt have a Thoma-fenni-like behavior. that 
is, the decay is too steep compared to the real densitiel. Practically the same raulu 
have been obtained by Holzwarth et aJ. [EH 77). It is not very u10niBhlng tha.t the 
............ ", • ...., in Fig. 13.4 still very much resemble Thom.u-Fermi densities, since the 
function (13.51) has been constructed from the exLended Thomu-Fermi theory, 
which yields densities with too steep a surface. The binding energies calculated 
with the dens.ities of rBCK 76J reproduce the binding energy of the corresponding 
H8J1.ree-Fock calculation only within 0.4-0.5 MeV per nucleon, indicating that 
higher-order terms in the functional 1'[p] have been neglected (in this respect, see 
(CJB 77D. 

.15 

o 2. 4. 

ETF 
ETF., SC 

HF 

dfmJ 

Fipr'e 13.4. Self-conmtent semiclassical and kinetic energy densities 
compared to exact results of a Skyrme Hil1:ree-Fock calculation [BCK 76]. 
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In condudiD..a tb.is section, we can say that the semiclassical functional l"[pL 
topther the Skyrmc the variationaJ principle (13.58), establishes 

I01ltuCl"ICIl theory calculation of the averq,e nudear 
--".1 artd the COl'TCSpOnd.i.n& liquid drop energy. The densities. however. are 'till 
too steep in lhe surface compared to the exact onea, whjch is a drawback if 
we "I'IaDt to cakulate qWUltitiell that are I!i«lsitive to the tail or the density. for 
e:umple, the foem fac·ton for electron scattering or-in the dynamical genera
lization-excitaticm energies of surface oscillations. We will see in the next sectloD 
how this lhortcominl can be remedied. 

It is alIo atisfying that it could be shown (d. Fig . .13.4) [CJB 77, BCK 76) that 
starting fTom these densities (duhed lines) as input to a Hartree-Fock ca1c:u1ation 
only OM iteration that is one quantum mecbanical calcul&tion (dotted lines) wu 
~ to reproduce the HF results. It might be of inLere!t that the procedure 
described in thill section is alto quite frequently applied in other fields of physics 
[IM 73, Sec. 8.11.1]. 

13.2.3 Partial Resummation of the Ii .. Expansion 

In the last section we saw that the extended approximation 
is very capable of giving the smooth part of the binding energy. It became 
clear, however, that the density (13.44) we were implicitly using in this 
concept is not well defined at or beyond the classical turning point., and 
that even the density we got out of the density functional formalism has 
still more or less the Thomas-Fermi-like behavior, that is, compared to the 
exact density. a surface which is too steep. 

In this section, we will show how we can improve on this deficiency. In 
order to do that, we return to the development (13.16). We had seen that 
keeping only the first term yields the Thomas-Fermi approximation [(13. 
19). (l3.20)].1t turns out that the propagators C(I)(r.r'). and Cca)(r.r') can 
still be given analytically keeping the second and third term, respectively, 
in (13.16). 

The solution keeping only first derivatives in (J 3.l6)~ which we will call 
the linearized care, can easily be obtained using (13.45) (for simplicity we 
will only present the soLution for the one-dimensional case. but all the 
results below can straightforwa.rdJy be generaljzed to the three-dimensional 
case). Using (13.17) and (13.21), we obtain for the propagator [Sw 55, Sa 
72b. Gr 72, Bh 77, DBS 78] 

C(1)(q,j')=(~)1/2_1_exp{ _ ~S2- fJV(q) + ~ {JJ( a V)2}. 
21't1t- fJ 1/2 2I?fJ 24m aq 

(13.65) 

It is clear that the approximation (13.65) corresponds to locally replacing 
the potential by a straight line, and we recover the Thomas-Fermi approx
imation with a v / aq .... 0. One can aJso find the density corresponding to 
(13.65), which gives an expression analogous to (13.46). We do not want to 
go into the details of the linearized case, and before we discuss its 



relationship to the semiclassical we want to present the IOJUtion 
of the so-called locally harmonic caJe, where we keep up to second 
derivativec8 of the potential in (13.16). Using the result (13.48) as a guide 
for the harmonic oscillator, we find for the propagator in the one. 
dimensional ca.se [Gr 72, DBS 78]: 

I/l[ hw( q) ]1/2 
C(2)(q,.f)_ (2:~) sinh(.8~q» 

x exp { I1Y( 'I) - m; q) [ ('I( 'I) )'tanh( Aw( 'I) ) + ~ coth ( /''''~ 'I) )]}. 

(13.66) 

with 

( 
V"( q) )1/2 

w(q)- , 
m 

_ V'(q)2 
V(q)- V(q)- 2V"(q) ' 

. V'( q) 
l1{q) - V"'( 'I) J 

where the primes mean derivatives with respect to q. We easily check that 
for a harmonic oscillator potential (13.66) goes over into the corresponding 
correct result (13.48). For VN~, we also see that (13.16) goes over into 
(13.65). 

In the three-dimensional case, the locally harmonic approximation gelS 
somewhat more complicated, because we have to replace the potential 
locally by a second ... order surface. In order to obtain the solution, we have 
to find the nonnal coordinates acoordin.g to those swfaces in which the 
Ham.iJtoruan becomes just a sum of three harmonic oscillators. The corre~ 
sponding propagator is then a product of three propagators of 
the form (13.66) lOBS 78]. 

The connection of the Linearized (13.65) and the locally harmonic case 
(13.66) to the extended Thomas-Fermi theory is quite straightforward. In 
Eq. (13.42) we saw that for the Wigner transform of the propagator. the 
Wigner-Kirkwood expansion is a simultaneous expansion in powers of fa 
and fJ for the nonclassical part. It is easy to find the Wigner transforms of 
(13.65) and (13.66), since they only have a GaWISian dependence in the 
Donlocality s. Developing, apart from the part. the Wigner trans~ 
form of (13.66) in powers of {J, we get back exactly the aame series as 
(13.42), if we put all derivatives higher than the second equal to zero. The 
u.me is obviously true for (13.65). where we have to put aU derivatives 
higher than the first equal to uro. The successive approximation scheme 
[(13.39), (13.65). (13.66)] can therefore also be interpreted in the following 
way. The TF approximation (13.39) consists of re-summing the series 
(13.35) for all t.erm.s containing no de.rivatives of the potential; the linear· 
iud approximation consists of re-summing all terms containing the poten
tial and its first derivatives, and the locally harmonic approximation in 
re--summing all the terms containing the potential. its first and second 
derivatives. It is clear that higher-order derivatives cannot be completely 
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................... / . 

. ~ 13..5. Parabolic approximation of the Linear Woods-Saxon potential at 
three different points. 

re-summed any more because cubic or higher-order potentials cannot be 
solved analyticaUy. It is obvious tbat in terms of powers of h this is only a 
partial resummation-not aU the terms of a given order in PI are taken into 
account. These partial fe-summations obviously have desirable features: 
As dis.cussed above, the expansion (13.42) cannot be Laplace inverted term 
by term, whereas the expressions (13.65) and (13.66) can be Laplace 
inverted even analytically [Bh 77, DBS 78]. The partial summation of 
infinitely many terms can. account for important effects. for instance, 
tunneling into the classicaUy forbidden region, as win be shown below in a 
numerical example. 

Let us study the geometrical inierpretation of the locally harmonic 
approximation and study the .implications it has for the calculation of the 
corresponding density. In Fig. 13.5 we show a one-dimensional Woods
Saxon potential and its locally harmonic approximation at three diffe:rent 
points. The curves are parabolas with different curvatures in the interior of 
the innection point; outside the inflection point the curves are inverted 
parabolas. the outside region, we easily imagine that we have penetra
tion into the local barrier. eventually giving rise to quite a good representa
tion of the exponential decay of the density. In the interior the situation is 
more complicated: The oscillations of the true density (see Fig. 13.1) are 
global effects, that is, they are due to standing waves in the potential and 
tbeir wave length is therefore detennined by the precise position of the 
edges of the potential. Since we are only locally representing the potential 
weU~ the edges are badJy determined and are, as a matter of fact, strongly 
fluctuating, as can be seen from Fig. 13.5a., b. In the interior. we are 
therefore introducing spurious shell nuctuations, and all we can hope for is 
that the density in the interior weD represented on the average, that is, 
we have to average out the spurious shell fluctuations. 

13.2.4 The SaddJe Point Method 

This average can be done effectively if we perform the necessary Laplace 
inversions for the density (13.11) and the total energy (13.15) with the 
help of the saddle point method (SPM) [PB 75. Bh 77). This consists of 



writing 

G(A) = -. dJl efJ'Ap( fJ) - _ .... -. dfJ eS ( /J) i J"+/oo ] 1,+ioo 
211'1 c-/OQ 2tn (;-/00 

and expanding S(P) atOUDd the stationary poiat fJo debnruDIG 

iii So - 0 to second order: S( fJ)Z!1. So + ! SrJ..Il- Pot. 
sufficient, and we have to introduce correctioDJ to thillUD,PIC metllCd 

expandin, S to higher termI in fJ - Po. UsuaDy these bJ,II:J« .rma are DOt 

kept in the exponent but expanded into a Taylor IIrIiJlI!I'1W1!dl. f'UlmD& I~~MI' 

the terms whose order in the derivatives is the same, aDd JDCIUGD1& 
correction, we obtain: 

From this it becomes clear how to construct the second-order correction., 
which is somewhat tedious but straightforward. However. its inclusion is 

ectUIJry in mort cases in order to gain a convergent 
For a demonstration of this method we use the exact propagator of the 

three-dimensional harmonic os.ci.ll.ator (13.48) and calculate with the sta
tionary phase method densities (Fig. 13.6) and total energies. We see that 
the densities are well-defined average densities in the sense that they pass 
in a smooth way through the quantum mechanical oscillations. CaJculating 
in the same way the total energy (B. IS)} we obtain for all deformations the 
Strutinsky averaged value [BP 73] to within a fraction per thousand, that is, 
for ground state energies of several thousand MeV the deviation from the 
Slrutinski value is never greater than 1 MeV. 

x 
[fm 

5 

Flpre 13.6. E.u.ct densities compared to those obtained by the sationa.ry phase 
method for I. strongly defonned harmonic oscillator. (We are grateful to J. Bartel 
for the prepul.tion of this figure.) 
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13.2.5 Application to a Spherical Woods-Saxon Potential 

(13.66) of the propagator together with the 
13.2.4 are the ingredients of the 

I we show a obtained with the locally 
for a spherical Woods-Saxon potential by 

_WIII,UV_IJ IJIIUIIIIIN.< DlLeUllOQ for the Laplace see the 
denlity with the exact one 

the steep surface of the density functional 
to the ETF theory. the locally harmonic 

the classically forbidden region.. the 
DDlrOXlmfiUlOiD U"""''''''' over into the TF result, representing 

average density. The density profile obtained. therefore 
cor'respOllOS exactly to the one which we would imagine for a liquid drop. 

of the validity of the approximation is not only the 
density itself. but also, as we have seen. the reproduction of 

of the sum of sing1e-particle energies. With the locally 
monic the average sum of single-particle energies 

of a Strutinski calculation to within 5-10 MeV. depending on 
of the nucleus. The theory therefore simultaneously yields 
average energies and 

10 MeV are most likely due to the neglect of third 
fourth derivatives of the potential, since they are known to be important in 

the Strutinski value within the Wigner-Kirkwood expansion 
13.2.2.2 and Table 13.1). Higher derivatives can be included 

perturbativelYt but we do not want to go into these details here. 
harmonic case also suitable for a self-consistent 

nation of liquid drop ptUameters since, taking V - V[P] as a.n input to 
we can set up with (l3.1t) and (13.13) an iteration procedure for 

density and kinetic energy density. It has been shown by Brack 
[BQ 75a] that Strutinski smoothed Hartree-Fock calculations 

force perfectly reproduce the liquid drop of 
formula. Since the results of the locally 
are very to the Strutin$ki it quite 

a self-consistent semiclassical using the harmonized 
should give liquid drop parameters without detour 

over a full calculation [80 
shown for a one-dimensional case 

a complete semiclassical treatment of the 
problem we must also be able to treat, for' 

(effe.ctive mass) of the Skyrme potential 
achieved by slightly generali..zing the preJent formalism. 
to this it preferable to work with Wigner from the 
....... e .... JLLUl~ and we obtain for the Schrodinger equation (13.3) with (l3.36)~ 
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where H(q. p) is the Wigner transform of the nonlocal Hami.honian: 

p2 
H(q, p) - 2m + V(q, p). 

The nonlocal Hamiltonian fu.octioD can be locally approximated iD tbe 
phue space 41,' by a second..order surface, ~ 10 the way "'. 
done for the local case. The corresponding propaptor CIJl be fOWld 
analytically t and the corresponding and energiel are of tame 

quality as in the purely local case rDSB 80]. 

13.2.6 Semiclassical Treatment of Pairing Properties 

Having set up a semiclassical treatment of the self-corWatent single-particle 
density, it seems natural to try a generalization that includcs pair correla
tion (see Chaps. 6 and 7). Since this a.spect is far less investigated we will 
content ourselves here with the solution of the BCS equations (6.54) to 
lowest order in II. 

In Chapter 7 we saw that the BCS equation can be written in the form 
E3t]=0 fEq. (7.43)]. To lowest order in Ii, the commutator becomes the 

ciusical Poisson bracket, in the context of Eq. (13.36). 
with the "--.:;0 limit of {Eq. (1.28)1, we obtain a set of two 

aJgebraic equations for the Wigner transforms of the nonna! densjty p(q, p) 
and the &normal density 1IC(q. p) [Eq. (1.22)]~ The solution leads to the very 
natural result [ef. (7.61)] 

I { h(Q,P)} 
p(q, p)= 2 1- E(" p) J 

I &1(., p) 
K(CIt ,) - 2' E(., p) , 

E(q,p)-~h2(.,p)+42("p) J 

with h-r/2m+ V(q)-A; the Wigner trans.form of the pair potential 
4(qJ ,) is related to the &normal density by 

a(q,p)= I !d'Jkv(lp-kl)K(q,k). 
(2'27,,)3 

v(p) is a Fourier transform of the two-body interaction. Thus for the gap 
equation to lowest order in 11 we obta.in.: 

1 I f 3 6('1, k) 
~(q?p)= 2 (2'T1'1I)3 d ko(lp-tl) £(q,p)' (13.67) 

In infinite nuclear maUer, where there is no q-dependence, this is an 
exact equation [FW 11]. By solving Eq. (13.61) independently for each 
value of q we treat the nucleus as if locally it were a piece of nuclear 
maUer. This, of course. is the usual Thomas-Fermi [notice the 
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pUm-') r--------------6.-lq-.P-,' 
2S J--__ --=O;.;;::.2~_____ {/I1C'V} 

10 

os 

flIw'e 13.7. The neutron 
Saxon potential (y
The parameters 

10 

close analogy to the spirit of the local for the 
G-matrix (Sec. 4.3.1)]. For a spherical (13.67) was solved b) 
iteration, taking for the interaction a of Va and range 10 

[BS SO]. In momentum space this v(p) - - VoJ(rJ1,f; i'exp(-
p"r~/4). In Fig. 13.7 we display the solution of 6(q. p) for Vo= - 28 MeV 
and '0-1.6 f~ and in Fig. 13.8 the should 
notice tha-t ~ is peaked around the and that it is exactly 
zero beyond the classical turning point. The abnormal as a fune-
tion of P is very sharply peaked around the local momentum p, 
(13.23). However, the width is largest in the the 
abnormal energy entering the ground state (1.80) is the trace or the 
product of II and "9 the effective values of ~ for the energy are 
those along the loul Fermi momentum p,(q), by the broken line 
in Fig. 13.1. In Fig. 13.9, we a cut of II for two values 
of the force parameters, giving the same pairing MeV. From 
this figure it becomes dear that the pairing phenomenon a 

ldq.p) q .. ;: 
0-50 

q.70 q 

0.25 

o 
FIpre 13.8. The pairing tenlil..,r at dl!ferent ........ ""' .. .,..101 •• q, in 
same p.aramders as in Fig. 13.7. 

for the 
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Figure 13.9. Tbe pairing gap along the local Fermi surface [PF(q) in Fig. ]3.1] for 
two different sets of force parameters. 

lu.nace effect for the force used here, a feature whicb might be important 
for the transfer of pairs of nucleons. 

The interpretation of our results is of course the same as the Thoma.s-
Fermi approach to the normal dellSity~ the different are repte-
sent«i oa the that corrections in teDIe are 
miuing. For the exact solution of the pairing gap in Fig. 13.9 

&how wiales to the curve, very much like 
the case for the normal density Fig. 13.1. With the theory. 
we should be able to reproduce general trends as, for the 
A -dependence of the pairing gap (Fig. 6.6). The fact that the Thomas
Fenni solution of the gap goes to zero at the classical turning point might, 
in thl! be a more severe shortcoming thA.n in the case of the 
density, because of the pronounced surface character of the effect. Gradi
ent terms (higher orders in 11) should therefore be included. However, no 
studies in this direction have been performed so far. 

This concludes the semiclanic.al treatment of the static properties 0 

nuclei. and we will turn next to the question of how we can use semiclassi
cal considerations for the description or dynamic properties of the nucIeu~ 

13.3 The Dynamic Case 

Until now we have treated static propen:Jes of the nucleus, like the nuclear 
density the nuclear binding energy. by methods. It is 
natural to extend these theories to the dynamic case such as RPA and 
time-dependent Hartree-Fock theory. We wilJ therefore have to rind the 
limit of such as Ii goes to zero. Several new features and problems 
arise in the dynamic case that are just at the initial stage of intensive study; 
thus we cannot be at all exhaustive nor can we gjve a rounded picture of 
the theory in this last section. 

One the basic equations in the dynamic case will be the classical limit 
of the time-dependent Hartree-Fock equations (12.9)~ which will lead us to 
nuclear fluid dynamic equations. A slightly different approach will be the 
derivation of such equations by a variational principle. In order to do that, 



however. we need the functiona1 1'[p] [see Eq. (13.57)] in the dynamic cas.< 
We will give an example of this, but tms would a.ppear rather difficWl to 
find Finally, we will discuss connections between the semiclass:i-

rellllIU and those we obtained by sum rule considerations in Chapter 8. 

13.3.1 The Boltzmann Equation 

In order to take the limit of the TDHF equation (12.9). we have to 
take its Wiper transform, which we can do using the product rule (D.SS). 
The is [Or 46, KK 76] 

(13.68) 

with f{~ p, t) being the Wigner transform of p (d .. (13.41)], and H(q, p) the 
Wigner transform of the Hartree-Fock Hamiltonian. For simplicity. we 
will assume that the potentia.l is local, but aU formulae below can easily be 
generalized to nonloca1 potentials, for example. 01 the Skyrme type (5.99), 
using Eq. (13.36). From (13.68) we easily get the cl.uaicallimit: 

[ a p av 1 4) - + -v - -. v J< )(q.p, 1)-0. at m II 3q P 
( 13.69) 

This equation is most commoruy known under the name The Collis;onkss 
Boltzmann Equation [UF 74, Hu 63] and (1 /(2'Uh)i fO)(q, "I) is therefore 
the classical distnbution function. The physical content of (13.69) is 
nothing but the balance of what enters and leaves a space 
cell: the first term is the explicit change in time of the c1.u8ical distribution 
function, the second one gives the change due to the velocity of the 
particles in the cell, and the third one represents the change of their 
momenta due to acceleration by a force. The Bolt:zl:DaulD equation is 
therefore nothing but the fact that the tota] time derivation of the claaical 
distribution function which measures the number of particles in a given 
volume element of the phase lpace moving with time, must be zero: 
d/(O)/ dJ == O. This. of course, is only true if we have a gas of independent 
particles interacting with the walls of the mean field Vip] but having no 
genuine two-body collisions. This is evidently inherent to TDHF theory, 
from which we started. If the particles interact, we hllve to corurider that 
particles can be scattered into and out of the ccll. ICAding to the so-called 
Boltzmann equation with term: dtfJ)/ dl- l(tO», where 1([<0» 
is a nonlinear integral operator in 1(0). This conision term can be obtained 
again in the JIt-+O from an analogous quantum mechanical term. 
which is contained in the two-body correlation function (12.6) we ne
glected in deriving the TDHF equation [ef. Eq. (12.7) and the discussion 
thereafter}. How this is done in detail is explained in the book Quanlum 
Statistical Mechanics by Kadanoff and Bayro [KB 62, Sch 72a]. We will 
not be more explicit here s.ince, as we have already discussed in the context 
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of TDHF theory, we will only be interested in slow-that is, energetically 
wealdy excited-phenomena. Here we should, however, be able to neglect 
the collision term in a first approximation [KK 68},. since as we 
in Chapter 4, the mean free path for nucleons in a pound nucleus 
of the order of the nuclear dimensions. 

Note that for the time-independent case. the dassica1limit of 
TDHF equation consistent with the Thomas-Fermi approximation to the 
distribution function, f(O)(q,p)=9('\-~/2m- V(q» [ef. Eq. (13.40)], 
since f(O) is solution to (13.69) for static V(q). 

It is straightforward to write down the classical analogue to the RPA 
equation starting from (13.69), since we know (see Sec. 8.5) that we get the 
RPA by linearizing the TDHF equation. Taking the simplest ansall. for 
V[p] = ap(q) + bp2(q) [see Eq. (5.99)]~ we get after linearization of Eq. 
(13.69) with 

f(q, p./) = PO)(q, p) + 8f(q, p, I). 

p( q. I) = p (0)( q) + 8p( q, I), 

8p(q, I) = I 3 J d1p 6/(q, p~ t) 
(2,"h) 

following equations. 

(13.70) 

In infinite nuclear maUer the third tenn of (13.71) vanishes and Eq. (13.71) 
has a special solution which can be given analytically [KB 62" No 64a]. 
Although this equation corresponds to the linearized Boltzmann equation~ 
which is, in principle, a classical equation (h- 0), we can still keep the 
quantum mechanics correct with respect to the statistics. Thus in Eq. 
(13.71) for a Fermi (Bose) system, j{O) will be a Fermi distribution 
function, and for a dUllcsl system a factor which completely 
cbanges the cbaracter of this equation~ The ana1ytical solution of (13.71) in 
the infinite matter case yields a 6j(q, p, I). showing that it adds to the 
isotropic static momentum distribution a non-isotropic distribution that is 
roughly egg-shaped and oscillating about its sphericaUy symmetric equilib
rium shape. This kind of vibration is called zero sound, in contrast to 
ordinary sound where the fermi spbere is just an oscilJating lrans]ation and 
OilCillating expansion, bUl shape remains sphericaJ (see, e.g.~ [KB 62. 
Chap.7.4D· 

In general. Eq. (13.71) cannot be solved analytically eve.n for the infinite 
matter case, and for a finite system it is a rather complicated partial 
differential equation in seven variables which has .not yet been solved for 
problems in nuclear physics. 
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13.3.2 Fluid Dynamic Equations .......... , ...... the Boltzmann 
Equation 

In order to reduce the complexity of (13.69) and (13.71), one 
tries to them into coupled equations ror the moments of f(q, p~ t) 
with respect to , in multiplying (13.69) (13.71) by different powers of p 
and integrating over p. yields an infinite of coupled partial 
differential equations in only four variables are equivalent to the 
original equation. The simplification will of an appropriate decou-
pIing of the hierarchy of coupled a which leads 
to the equations of ordinary hydrodynamiCS 74, Hu 63}, we win see 
how in principle we to modify to arrive at fluid 

.......... u_ equations which describe the OfCl'DaJla 

For this purpos~ we integrate (l 
(i -1,2,3) and by p2 and integrate again. 
resulting five equations can be written in the 

op a 
-+-(po)-o. at aq ~ 

Dui ( 014, a uj ) a v mp Emp - u --p 
Dr a, o~ 

p DD (Q) + oa w:;;:: - :3 PIjDjl' 
t p q i. 1 

where we have introduced the following notation: 

";(q. I) = "AI m 

If;(q$ P. t) = pj m - 14; 

the average velocity. 

deviation from 

Q(q. t):= !mp u2 the thermal """''''''1!''D'U 

Py(q, t)- mp U/~ the pressure tensor, 

w,(q. I) = imp ul u2 the heat current _ ..... J. .... 

DIj(q.t)- !(ol4joqj+dUj /aqr) the rate 

where the average for an arbitrary quantity A 
spin): 

(13.72) 

(13.73) 

(13.74) 

velocity, 

the 

JdJp A. (p, q~ t) ·f(p. 'I, t) 
- 1 1 f 3... A (q.I)- - - ] d yA '/. 

f(q, p, I) P (2'3f~) 

Equations (13.72-13.74) express nothing but for 
momentum, and energy. However, these equations as they 

stand, useless. since they are not a closed system of equations. Only if we 
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could, for exampl~ express the tensor and the heat current 
density by the density p and velocity., respectively. would we 
system for unknown functions; this bow we nI!'!II''1V"",, ORlIDlU'Y 

hydrodynamics. Here. however, we want to derive a fluid QYlIUII~1J. 

description of uro sound which is something COIUPleleilY dJl1fer~ 

ent. as we have already briefly (Th 61b, KB 62. 
MaD· 

In order to the differences I.S dearly as we ftnt 
want to inclicate very briefly what the physical argument ii, 80 that we 
arrive at a closed system of equations coming from (13.72-13.74) for the 
case of ordin.ary hydrodynamics, and then. the different procedure 
we ha.ve to adopt to get the fluid dynamic description of zero sound and 
other low~nergy collective nuclear phenomena. 

(1) In ordinary hydrodynamics (UF 74, Hu 63] we Ulurne that we arc in 
a res;ime in the characteristic time of typical collective we 

very Wae compand to the 
paJ!Ucaa.. AB a consequence of these frequent collisio~ 

the ayItem will always be local To undentand the notion of 
local equilibri~ we have to realize that it wu Boltzmann', uhievemmt 
to show that his equation with a term hast for My initial 
distribution, a solution which approaches in the course of time the Max
well-Boltzmann distribution [UF 141 

(13.15) 

This is a function with an isotropic momentum distribution [solution to the 
static part of (13.69)], which characterizes equilibrium. Accordingly, under 
local equilibrium we shall understand that in a given volume clement, the 
velocity distribution of the particles is such as to reproduce the average 
velocity u(q, t) of the element and to be of the Maxwellian form: 

Here aU quantities arc only locally dcfinedt that temperature T(q, t) and 
velocity u(q, I) depend on position and time. With the auumption of local 
equilibrium (13.76), we can now decouple equations (13.72-13.74) in 
noting that 

Pij- P8lj' 

w·-o I , 

(13.77) 

whCIK:e it becomes obvious why we used the name preaure tensor. 
Equations (13.72-13.74) therefore reduce to five coupled equations for five 
unknown functions: these are the ideal or Euler hydrodynarnical equations 



(UF 14,. Hu 63, LL 59, Vol. 6]·: 

ilp at + div(pu) - O. 

D av 
mp-u--p-

DI aq 

gt (pP -~n)-O. 
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d 
aq P, (13.78) 

The assumption of local equilibrium and equations (13.78) constitute the 
first step of a systematic improvem.ent (Chapman Erukog dev.elopment). 
where we consider small deviations from local equilibrium: f- .fe- (l + 11); 
together with the Boltzmann equation with collision term this leads in the 
next step to the Navier-Stokes equations [UF 74]. 

(ii) In low-energy nuclear physics, the situation is quite different: the 
mean free path of the nucleons is of the order of the nucJear dimensions 
[KK 68] and we can therefore ignore the collisions to a first approximation 
(in a certain sense, a clauical a.nalogue would be a Knudsen gas [Kn SOD. 
This is the same assumption which led us to the time-dependent Hartree
Fock equation in the first place, that is) two-body correlations might be 
negligible to a good approximation. As a consequence, we can not use, at 
least for low-energy phenomena, the concept of local equilibrium to close 
the system of Eqs. (13.72-13.14). In principle, we would need the solution 
of (13.69) to be able to calculate the pressure tensor and the energy current 
density. Because of our inability to solve Eq. (13.69), however, we have to 
find some approximative solution. One obvious assumption is to imagine 
the change in time of the potential. that is, the density in (13.69), to be so 
slow that the potenti.a11ocaUy in can be considered a constant. Under 
the condition 

I¥,I 
V(t) <w, (13.19) 

where w is a characteristic single-particle frequency. we can make the 
following ansatz for a solution of (13.69): 

POl( q, p. I}",e (A _ (p ~:U}2 - V (q, I) ). (13.80) 

This, of course, is just the usual Thomas-Fermi result (13.40), where we 
however replaced the static potentia] V(q) by the corresponding 

-1'be introduction of • temperature and a Boltzmann diatribution i.e acluaJly not necesslry 
for the d.eri .... tiOll of EqI. (13.78). It iI s,ulfici=t to uwme aD ~tropic velocity diltributkm. 
lhal is I dependi only on q. (p- mar. and I. We then have, in particular 



dependent one. With the ansatz (13.80), we are "'1!'!Il''''UA able to ciOle the 
system (13.72-13.74). the tensor we 
(including tbe spin) 

p _ I ,,1 (3 l)1/3[ ( 1)]5/'8. _ m :2 
iJ 5m fr pq, iJ 3p\1 (13.81) 

which yields a U.""",,VUII.J'IJlcll~K. 

describe some llLiJIJUI""_ ..... ..,UD 

and (13.73). We therefore want to 

13.3.3 Application of .u.-"hWd"~ to Nuclei 

In Chapter 1 we studied in detail the application of the liquid 
drop model to nuclei. The equations were very much 

by the assumptions of a drop with a sharp surface, 
flow. With (1.19), (1.30). and (1.34), we 

gave formulae for the of mWlipolarity A;> 2. They did 
not agree very well with we will learn wby below. 

Steinwedel and relaxed the usumption of incompressibil-
ity somewha~ supposing that only the total density is incompressible 
whereas proton and neutron individually are not This idea was 
first used to describe the giant dipole (see Fig. 13.10) resonance, but can 
be generali~ed to polarization all multipolarities (T-- 1 polarization 
modes); these modes have contrasted with the ones prescribed by the 
liquid drop model of Bohr, where also the individual densities are incom-
pressible. For the giant resonance this ltads to the model proposed 
by Goldhaber and 48] Fig. 13.10). where the prot.on sphere 
vibrates against the neutron the other multipoiarities these are 
T- 1 surface vibrations, the proton surface deforms out of phase 
from the neutron surface. - 0 surface vibrations, where 
the whole a coherent way around its spherical equiUb-
rium position. obviously only possible incompressibly for 0 

- -
tal Ibl 

Fl&we 13.18. a spherical nucleus. Minus stand 
proton defect. plus for neutron defect. (a) corresponds to the of 
Stemwedel and Jeu.sen. and (b) to the model of Goldhaber and Teller. 
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modes. For the L ""'0. T-O breathing mode we have to give up the 
incompresability (EO 70). 

Prom the above for tbe different possibilities of a liquid 
drop the question.-for instance. for tbe T-] modes-whether the 
Ooldhabcr-Teller model or the Stcinwedel-lensen mode] is physically 
realized. We want to present and contrast both models very briefly for the 
dipo1e cue. 

In the Sfanwedel-Jeruen model we assume that the total density has a 
sharp surface and stays constant in time: 

Po - pp(r; I J T p,.{r, f), (13.82) 

where the proton density P, and neutron density PIt vibrate around their 
equilibrium values (Z/ AWl) and (N / tf)po. We can therefore describe the 
process by the difference of the deviations of both densities: 

pC 1)(r, t) .... 6p,(r, t) - 8Pn(r, t). (13.83) 

In the following, we assume that this is small compared to Po and derive 
equations in linear order of p( I). We can therefore linearize Eqs. (13.78)~ 
which yields for the equation of continuity, 

ap(l) 
at +PoVu-O, (13.84) 

where 0 is the velocity field which corresponds to p( I); for the Ewer 
equation we obtain 

(13.85) 

where we used the fact that p-lm(a/ar)P-(fil /2m)(a/(}r)(8/8p)-r(p],. tak
ing for Ptj expression (13.81) and for T[p] the Thomas-Fermi eXI)re!lll(~n 
(13.32); that is. we have sMUmed an isotropic momentum distribution 
(13.16). Together with the force tenn in (13.78), we can combine this to the 
total energy density e[p] - 'f + v. The energy density can in t.his case be 
obtained from the Bethe-Weiz.sacker formula (1.4); the only term therein 
depending on pO) is the symmetry energy. 

J. (p,.- p,)2 d3 (N - Z)2 oJ f. ( (1})2d 3 o r-o + - p. r, 
'v Po I A Pov 

(13.86) 

where we used fpC!) dlr-O. 
With (13.84), (13.85), and (13.86) we therefore get the following hydro

dynamical wave equation for the dipole state. 

(13.87) 

We have to solve this equation with the proper spherical boundary condi· 
tion, namely that there is no outgoing current at the nuclear surface. We 
therefore decompose p( I) (r, f) into its Fourier components pC I) (r, k) with 



560 Semiclusical Methods in Nuclear PbyaiCl 

respect to time (w" kc). The angular dependence of p( I) is represented by 
spherical harmonics Y.\p' We find that the lowest eigenvalues are real.ized 
for dipole vibrations (A - 1). The corresponding radial equation has spheri-
cal functions as solutions. For the transition density we get 

p(I)(r, k)<xj.(kr) YI~('" ~). (13.88) 

The boundary condition that there is no radial current at the nudear 
surface, 

ap(') a I 
-'.:11- 0::: -a jl(k,.) =0, 

gr '-Ro r , .. ~ 
(13.89) 

can only be satisfied for discrete k values. The lowest solution of this 
equation is 

Yielding the frequency 

2.08c 
Wo- --p;;-' 

With ~- roA -1/3, (1.2). and (1.87), we obtain 

( 
2a )1/2 

"'0. --L A-1/3~70A-1/3[MeV], 
~ m . 

(13.90) 

(13.91) 

that is, the model gjves roughly the right A dependence and almost the 
correct magnitude of "'0 (see below). 

The Goldhaber- Teller model can be best treated within the Tassie rruxJel 
[fa 568] for an inhomogeneous irrotational and incompressible fluid. The 
nucleus is supposed to vibrate around its spherical equilibrium position 
pJ.. r) and from (1.24- 1.26), using the equation of continuity in linearized 
form, we get 

8p = - V(po(r)u(r» 

3po 3po 
---14=--

ar" ar (13.92) 

Taking the Fourier traniform with respect to time, together with the 
expansion (L21)~ we obtain the roHowing expression for the transition 
density of muJtipole order )... 

~ "' .It __ I Y 3po 
uPJ,.Cl:.I\r- .'1.0 ar ' (13.93) 

The term ).. = 0 is excluded because we obviously cannot treat the mono
pole vibration with the assumption of incompressibility. A similar expres
sion (8.175), however, is obtained for the )..·0 case in the Werntz-Uberall 
model [WU 66]. 

For the ).. -1 (dipole) case, the Tassie model corresponds to the 
Goldhaber-Teller model because of the assumption of incompressibility. 
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~ B.n. Tranlition dmmties for the dipok state of ~. The full curve 
stands for the tran!ition density for the most collective dipole state of ~ in the 
RPA. The dotted and dubed curves show of the GoIdhaber-Teller and 

"""'·~·-,,~aull".u model, rapectively. (From [SR 77].) 

Then the only possible dipole motion is that shown in Fig. 13.l0b. The A 
dependence of the excitation energy of the Goldhabcr-Teller model is 
predicted [GT 48] to be .A - 1/6. Experimentally we find that for light nuclei 
the dependence can be fitted by an A 1/' law, whereas for heavy nuclei it 
is a mixture of the Goldhaber-Teller and Steinwedel-lensen types of 
motion. A more detailed inveatigation has been given by Myers et at 
[MSK 77]. From sum ruJe considerations {Sec. 8.7.4h we know that the 
excitation operators for the Bohr-Tassie (Goldhaber-TeUer) models are 
given by FA"" ~r;YAOJ whereas in the Steinwedel-lensen model they are 
given by FA := 'LJ>..(k'i) Y"o [SR 77]. In Fig. 13.11 we compare the transition 
densities of the different models for the clipole state in 40ea with a 
microscopic RPA calculation. (For the relation of quantum mechanical 
densities with the p( I) defined here. compare Sec. 8.3.l.) We see that in this 
relatively light nucleus the vibration is mostly of the GT type. Similar 
c:omparisons in heavy nuclei [MSK 77) show that there the SJ-mode plays 
an increasingly important role. 

From the a.bove considerations, we see that ordinary hydrodynamics 
[isotropic momentum distribution (13.80, 13.81)] seems to work quite well 
for the explanation of the giant dipole resonances. We wiU see, however, in 
Section 13.3.6 that this,. together with the breathing mode, is quite a special 
result, and that hydrodynamics have to be changed considerably in order 
to describe the giant resonances for all the other multipolarities. 

The concept of isotropic momentum distribution has also been adopted 
by Holzwarth [Ho 77] and by Wong et al [WMW 75, Wo 76, MWW 76, 
WWM 77, WM 77. WMW 71] to caJculate the fluid dynamic counterpart 
of the TDHF slab collil:ion discussed in Chapter 12. In Fig. 12.4 we show a 
comparison of both calculations for the final kinetic energy of relative 
motion of the outgoing slabs; zero kinetic energy means fusion. We see 
that below 7.6 MeV per projectile nucleon in the laboratory sys~ 
hydrodynamics always gives fwion. whereas TDHF gives resonant·like 



562 

scattering between 3.6 and 6.8 MeV and between 7.6 and 9 MeV. 1'hae 
"resonances" in the cross section are probably a typical quaotum mechani
cal effect as discussed in Chapter 12, and can therefore not be reproduced 
by a semiclassical calculation. On the other hand, the md 
quantum mechanicaJ calculations are quite close to one another QUJtR(Ile 

the resonance regions, as much in the final kinetic energies u in 
density profiles. This, however. is euentiaUy a one-dimensional ~_UJ_ 
which cannot test what seems to be the maiD assumption of the ansatz 
(13.80), namely to give an uotropic momentum distribution. 

We have discussed that the solution of (13.71) in matter cue 
[KB 62, No 64&] gives an anisotropic momentum diatribotion. It seems 
difficult to obtain even approximately an aoalytic solution of (13.71) in the 
rmite matter case, where first· and probably lUgher-order time derivatives 
of the potential are important However, this we would need in order to 
close the system of equations (13.72-13.74). 

Because of these difficulties, ordinary hydrodynamics has also been 
applied to more realistic situations. In any cue, it is an interesting question 
whether for higher instance, in a heavy ion collision-the 
assumption of an isotropic momentum distribution. that is, local equilib
rium, is not again a good approximation. Maruhn [Ma 17c] has performed 
a three-dimensional hydrodynam.ical calculation for the scattering of I~ 
on I~ with 18.8 MeV per nuc1eon in the laboratory system. He has also 
made a study of the Wigner distribution function of a full TDHF calcula
tion for colliding slabs. which showed that at lower energies local equilib
rium is not established. In view of this. and of what we have said about 
anisotropic .momentum distribution above, the interpretation of low-energy 
ordinary hydrodynamics results should be done with great care. 

Before we discuss more about this, let us first give a somewhat different 
derivation of fluid dynamical equations.. which has some interesting as
pects. 

13.3.4 Variational Derivation of Fluid Dynamics 

As we discussed in Chapter 12, quantum mechanics can be derived from a 
ti.me-<iependent variation principle [KK 76], 

fJI -0, 
where J is the action integral over the following time dependent lagran
gian. 

We will now make a special variational ansatz for 1'+), which will lead u.s 
to fluid dynamic equations. The exact wave function can always be decom
posed into real and imaginary parts in the following way (¢to, S real). 

'1'(I ... A,I)- 4>0.(1 .. . A,I)e(imj A)S(I...A, f). (13.94) 
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Let US suppose that the phase is of the single-particle form 
A 

S(:r., ... , r A' I)" L s(r" t) = J s(r. t)p dIr, 
i-I 

with (D.l~ 
A 

p- L 6(ri -r), 
i-I 

(13.95) 

which means, for instance, that if Ii') is a Slater determinant, the pbases of 
an _&1e-partic1e states are the same: 

p(r, r', I) - eJ(m/A)J(r, l) po(r, r'. t)e -1(_/1)6(1".1), 

A 

Po(r, 1", I) = L l'Pi(r, 1)llfP/(r'. 1)1_ 
i-I 

(13.96) 

Comparing (13.96) with Eq. (12.63), we see that the assumption (13.95) is 
equivalent to (Stringari [St 79] also treated nonJoc.al fields) 

(rlxl")- ms(r. t}5(r-r'), (13.97) 

that is, (13.96) is justified if we achieve a decomposition of the density 
matrix (12.82) in such a way that X is approximately local [we recall in th.is 
context that the decomposition (12.63) is not unique). 

With (13.95) we obtain for the action integral: 

/ .... i'2dt { (<1>01- mjl~o) + ih(~oIC»o) - ('I'IH I'l') } 

" 
( 13.98) 

where because of (13.97) only the Jocal Po enters. The term (~ol4to) in 
(13.98) vanishes because le»o> corresponding to Po is time even. With 
(13.95), the expectation value of the Hamiltonian assumes the form: 

X=: (i'IHIi') - ; J d 3r po(r, 1)112(1", I) + Eintp (13.99) 

with 

(13.100) 

In. (13.99) we assumed. the potential energy of H to be velocity independent 
(expression (13.99), however, is also correct for the Skyrme force in spite of 
its velocity dependence; see [GVV 76D. Integrating the first term of (13.98) 
by parts, we obtain 

1= il'adt {m J d 3rspo-J d 3r(; p~+ e[poJ)} + C. (13.101) 

where J has taken on the form of a classical action integrallGo 59], with Po 
playing the ro]e of the coordinate conjugate to the momentum. In (13.101) 



we supposed that ElJltr exists as a functional of the local density pJ.r) [HK 
64, MT 77]. 

Hamilton's equations, according to (13.101), are then 

(13. 

(13.102b) 

The first equation gives the equation of continuity (8(Vsi-2Vs8Vs; 
partial integration): 

i>o= - V (Po V s)- - V{poU), (13.103) 

and the gradient of the second equation yields a Euler-like equation (13.78) 

au + (uV)u- .L V &[Po] . (13.104) 
at m 6po 

Since II is a gradient of the potentials, the flow associated with (13.96) and 
03.97) is irrotatiOn,a,4 a direct consequence of our assumption (13.95). We 
consequently should only accept solutions of (13.104) with Vxu-O. The 
relation between variational formulation of fluid dynamics [GVV 76] and 
the one obtained from the BoltzmaDn equation is nol obvious though 
certainly In any case, there the problem of how to close 
the of is, in (13.73)-1.0 find an appropriate fO) to 
calcula te the pressure tensor I and in (13.1 (4) to construct the functional 
elPol for the dynamic case (we will see that knowing «°)(/) also enables us 
to find the functional, so both problems are closely related). 

13.3.5 Momentum Distribution of the Density Po 

In the preceding sections we conjectured several times that the a.uwnption 
of a spherically symmetric momentum distribution for the fluid dynamic 
description of coUective motion may not be valid for all cases. In Section 
13.3.4 we saw that this concerns the ca.1culation of the intrinJic energy 
(13.100) of the system, whicb enters as the potential energy in the fluid 
dynamic Hamiltonian of Eq. 03.99) very much in the same way as the 
conJ!ltraineci ground state enters as a potential of the Hamiltonian of the 
ATDHF theory (12.80). We consider, therefore, the density Po with which 
we have to calculate EiDb' from the time--even part of the dynamic density 
p(t). As in the ATDHF case. therefore, we should be able to caJculate Po 
from a static tirne-eve"f/I single-particle potential, and for the momen~ in 
order to fix our ideas, we wish to think of a quadrupole constraint. 

.. By lUcie we mtIIUl that the time enten 0Illy in a tnYial wily in I.I:m __ that the 
c.ol'llltnl.iD.t is diftera:lt In diffen:at but It each ~t we cu wive a aatMruI;Cpe:w:leDt 
(static) Scb:rOdmpr equatiou for the of Po (it Deed not neceua.ri1y COf'I'eIpood to 
the grotJ.:Dd rtate density m thiI potatiaJ (d. Chap. 12)~ 



Suppose we the ground of A a spherical 
potential long as the 

(see the I) that there 
CreJlS.UI'1R'S and all particles remain in original orbits. 

the wave functions are squeezed the 
nucleons in this direction will be along the 

the deformation. Therefore, if we stay in same levels for all 
deformations calculate the corresponding distribution we 
will find that it depends strongly on the deform.ation. However, if we want 
the system to in its ground state, at each level we must 
redistribute the particles in such a way that only the lowest levels are 
occupied. reason the levels come down in the deformed potential is 
the fact that corresponding wave functions are adapted to the 
actual wave functionB, 
after are less squeezed, 
consequently agluD. 
Since the level crossings are quite frequent, we understand that the 
momentum distribution stays quite isotropic over the Whole range of 
deformations if the system stays in the ground of the deformed 
potential. 

This can be analytically checked using the harmonic oscillator or 
semiclassicaily by using the three-dimensional locally harmonic form of 
the propagator (13.66) in Wigner space, for for a deformed 
Woods-Saxon potential~ and calculating the corresponding momentum 
distribution (13. II) and the saddle point method (13.2.4). We will 
find that, even for quite large deformations., the momentum distribution 
stays spherical" and that in any case it a small effect 

question now is whether in a (adiabatic) dynamic ........ ""''''"IIC 

always stay in the ground state of the Hamiltonian h(po,) to at 
a This much related 

to the adiabaticity of the process) and 12.3.1) we 
have seen that in the large amplitude case (h(Po,). poJa:: is, if we 
start at I - 0 with the system in its ground pJ I - O}-the system will 
the course time stay almost in the ground if X (the momentum) is 
small. We therefore aJso say that the deviation from sphericity of 
.......... ' ..... n ........ ""· ...... distribution is a measure of non-adiabaticity of the DrcICeS~. 
Whether adiabaticity is fulfilled for even the slowest imaginable Drc~;S. 
spontaneous fission, is presently an open question. On the other hand, it is 
clear that the faster the process, the more particles will stay in the up-going 
(nonadapted) levels, as a quick at the Landau-Zener formuJa 
(12.149) Therefore, the faster the the greater the deforma-
tion of the momentum distribution.t In this sense we say that a deformed 

are 
t 

becomes mudl mW.Ier the nUCIeat di.DlilDllloai" 
to the frequent two-body COUJiIiOllL 

mean free path of the nuc:ieou 
momcmtwD distribution 
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distribution corresponding to Po is a dynamic effect: For which 
processes is an important effect subject of intensive 
study. 

There however, one kind of collective motion where the deformation 
of the sphere is known [SH 78. 78] to play an ~,,"u.AI 
role: resonances, because their a.re so IDlI.ll 
there no level Since a 
yields a higher kinetic energy than a effect will influence 
the constant of these harmonic vibrations (Chap. 8). In the acforma
tion of the momentum sphere all partides are participating, therefore this 
is a volume effect leading to the characteristic A - J/l-d,ependenee of, for 

the giant quadrupole resonance, is in contrut to the 
original estimate of the liquid drop model 1.4). 

A spbere can~ of also be simulated 
Thomu-Fenni expression 

q in the nuc::Jeu.s-
momentum distribution: 

e: e( A(q)- 2~ (ap;+ bp; cp;»); 
How an expression can be derived mathematically will be shown 
the following. 

time-even part Po of the density (lee above and Chap. 12) 
can be expressed by the equilibrium density matrix p in the 
following form (12.66). 

( 13. lOS) 

is a Hermitian and time-odd operator. As an explicit example, we 
can a Po corresponding to a Slater determinant; then 
(I 105) a theorem (E.26). The 

transform tp- tp(q, p, I) is real (d. D.4) odd p. If we 
8U ppol!e , as we did i.n the case of X (I that the nonlocality of cp 
weak, we can expand in powers of p stop after the first term: 

ff(q. p~ t):::Q(q, I)p (13.106) 

With approximation, we get for equation of con.liAuity: 

(13.107) 

where we expression Wigner transform of a 
commutator. with (I 103) CI"U''''''JIJ'CI that with (13.106) we 
to lowest order, the following relation Q and s. 

(l (08) 
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The Wigner transform of (13.105) is given by the product rule (13.36) as: 

Jo(q, p. t) "'" [ (e - itt/.Il)weiAAlh J(q, p) fIlAI"( eiooJ'/h)w' (13.109) 

evaluation of t.h.is expreuion with (13.106) is somewhat facilitated if 
we go over to the r representation: 

PrJ...'" 1", t) == exp[ - t(V ,Q(r) + Q(r)V,. + V"Q(r') + Q(r') V ,,) ]p{r, 1"). 

( 13.110) 

where V, acts on every function to its right. From (13.110) we see that the 
approximation (13.106), means for a position independent Q nothing but a 
seating of the coordinates of the static density with a timc-dependent 
velocity field Q: r-i>r(t)-r-Q(l). The form (13.110) for Po is exactly what 
hAS been proposed by Holzwarth and Eckart [HE 78, 79}. Transforming 
(13.1 10) to reLative and center of mass coordinates (s, q), we obtain for the 
operator in the exponent up to second order in s: 

t(VQ + QV)q+(I/l) + t(VQ+QV)"_(I/2)- V "QI(q}+ Sk~k(q)V Jj 

+! (q)sjJk , (13.111) 

where we adopted the notation that we have to sum over indices, figuring 
twice (i - 1, 2, 3), and 

(13.112) 

Using the expression (13.11 J) up to first order in s only~ the density 
(13.110) can be brought into the general form (see footnote page 412): 

Po( q + ; ,q - ;) =po('q, s) =exp(V 9rQi )exp(skAik V,)P(q. s), (13.1 13) 

where the matrix A is given by: 

AlA: "'" Qik(q. t) - !QJQlkJ+ .... (13.114) 

The Wigner transform (13.33) of the density 

/0('1, p, t) = J d 3s Po<'I, .)e -Jpe/A 

can now be calculated from (i3.113) by partial integration to yield for 
(13.109): 

10('1, p, I) = exp(V 91 Qi )exp( - Ail) f d 3
,J p(q, s)el,rAtIi; v.!Ire -ipII/"e -.I'jt;A .. V.it. 1 

= exp(V q,Qi )exp( - Au) J dls p{q, S)eXP[ ~ peJa~v.r,se JaAaV.s,]. 1 

- exp(V 9(Qi )exp( Au) J tJ3S p(q, S)eXP[ - ~ Pt( e -A ) ot, s, ] 

= exp(V q. Qr)exp( - Ai') J(q, ji) (13.115) 

where j(q, p) is the Wigner translonn of the density matrix p with the 
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momentum p .... .., ... , ............. by 

Pt - p,,( e ~A )ki' (I 116) 

From (13.HS) and (13.116) we see that, to lowest in the momlD* 
tum expansion (13.106), the Wigner of the time-even 
density Po can essentially be generally a deformation of the 
originaUy momentum sphere of is exactly what we 
discussed at the of this section. The treatment presented here is 
only valid for very amplitude vibrations~ otherwise a scaling 
of the coordinates or the first..order (I 1(6) is not valid. We 

theory which should us to correctly 
calculate the giant resonances. wiU be shown in the 
next ~",'uv;u. 

In order we first have to close the of hydrodynamica1 
(I U5) the 

= e(x _ ;2 _ 6v[po] ) 
~ 2m 6po • 

(13.117) 

we can calculate the tensor (13.73). and U.1K;IIi'Ul'IIi" with (13.IOS) we 
obtain a closed For the case of the fluid dynamic 
equations (1 l04}t we have to calculate the e[pJ. for instance. 
the "'1Po]. tee that using ext)iJ'eSlRoD 

(13.IIS) it will be different from the (13.S7), whicb 
wu derived assumption of a (almost) momentum 
distribution. 

13.3.6 Imposed Fluid Dynamic Motion 

The velocity field II should, of course. be given by solution of the 
fluid dynamic 79, EHS 80]; in order to get an idea of is 
going on, several 74, 75, BS 76, 7S. 80, JL SO] 
studied the much complicated problem of fluid motion,. where one 
assumes types of Q fields; that is, the is on the 
system [HE S.7 we have discussed that fie1ds of the dipole or 
quadrupole come quite close to reality anyway because of 
lOme rule arguments. order to keep things as as possible, we 
additionally usume Q(r, t) approximately factoriz:.e:s in the ease of 
small amplitude motion: 

Q(r, t) = a (1)1'(r). (13.118) 

The velocity field l' can now be chosen to be of the monopole, dipole, 
quadrupole, etc. (the fact that the dimensioM are not th.e ones of a 

-Afwtber -..u;gpJIIII:I or & velocity field iI lhe ao-aDed twilt mode (d. 
Chap. 8) wi • ..... V', -.u. It tu:mI oat that the rLa)"l 8'l'Ch1 ap,t. 
end only lhe momcutum .. ,---' ...... ,!- bCIoomes c:liItorted (twisted). 
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velocity is only for convenience): 

L .. 1 : 'f I == (0, 0, 1) .... V l ; (13.1 19) 

L-2: 'f1=(-x, -y,2z)=!V(2z2- x 2_y 2). 

As in (13.108) we see that the velocity fields can be expressed as the 
gradient of a potential and the motion will therefore be irrotational 

With (13.118) (13.119) it is euy to c.akul.ate the diltorted momenta (13.1 Hi) 
for the constrained motion: 

(13.120) 

Thus we see that the momentum spbere stays spherical in the monopole C8.IIe 

beca1..l.8e of symmetry IJ"guments; it also stays spheric:al in the dipole cue because 
., 1 does not depend on r; in the quadrupole case, however, we get a highly 
non-isotropic momentum diruibution. From (13.117) we obtain: 

/1. '" 2m(A- V)=pj( .. t). (13.121) 

Introducing polar coord..inates for the momentum in the quadrupole cue yields 

pl(.,l. sin'f, + e -4a ~,) <: p} 

,2 <. "'Iin'f, ::_ .. coo'6, -ii( t +a(I)~I';' Y,.,(I,) f (13.122) 

that m, we obtain to lowest orda- in a(l) a time-depeDdent quadnlpok dd01"ml.tiotl 
of the Fermi sphere. We sh"ould note, however, thai this quadrupole deformation of 
the local momentum sphere is, to lowest order, characteristic for aU kinds (apart 
from L-O, I) of surface oscillations.. and not just for the quadrupole vibration 
alone. This can be seen from the geneTal expression (13.116) [HE 78] and under
stood by the general a.rgu.m.ent that Po must be even in p, that is, the momentum 
distribution must be symmetric wilh respect to an inflection of , at the origin; the 
dBtribution is thus mainJy of ellipsoidal shape. It snouJd also be noted that the 
ellipse of the momenta is perpendicular to the one of the densi ly for the L - 2 case 
(~(13.135». In a meR heuriltic way thiI ea.n immedi..l.te1y be undentood from the 
~ty priDQp1e. 

The ansatz (tl.l18) and (13.119)] impoee:a the form of the velocity field but 
ieaVeI the time dependena aCt) open. We can UM the fluid dynamic cquationl 
(13.102) for ita deten.ni.n.ation. For thlJ purpose we have to det.ermine the fuDctional 
'f1Po) in the dynamic cue; we present it here for the ~ cue 01 the impoIed 
fields (13.119), but the derivation can be euily ~ to arbitrary velocity 
fields. The kil1.d.k eDeiI'IY density is liven by (D.58): 
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With the volume elernen momentum space 

d~ III d'1 det (apt/ap.) - d3p eA., (13.1 

and using (13.11S) with (13.116) and (13.119), we obtaiD 

1'0. III :2 1 tmz.<~'f'J d'1 p2 T(q. ')e A •. (13.1:24) 

In order to eaku1.ate the integra] (13.124) we have to expreu by ,2, 
can be IIlchieved inverting the relation. (13.120): 

pi .. , ((3JlS) 

.. + +('''-e-'')ttl~f1 Y,.('i) l 
approllllDl.8.'bOn (13.111) for (13. -1UD11::UI; eDergy denSIty expraaed in t.erms of the kinetic ....... 'Fav V __ ~.J " 

P (13.105) 

(13.1:26) 

with 

(l3.J27) 

IntegratinJ (13. over r and integrating by part&. we obtain: 

J d 1,,1'o.,,- WL(a) f d 3"i(r). ( 128) 

In the (13.126) (13.128), aU the deformation dependence hu 
separated out and ; we can oow 1.I.lI.e the functional derived UDder 

of III momentum di.nribution (13.57). (Actually, we "" .. "l"'iIV"""" 

(1l.126) only the pure Tboma..s-Ferm.i cue, but if we Deglect the 
of potential we can show that (l3.l:26) also holds the cue 

of the extended theory (HE 78D. 

(1 1(8) (B.llS) we have 

Vs-ti'L (13.129) 

and the (13.99) is therefore velocities «. 
Expanding (I3.100) up to «2 (small amplitude motion») (13.99) 
takes the of a harmonic oscillator, and we can the frequency 
[1 with which the nucleus vibrates if the motion (J imposed: 

with 

01 _ ~ • (13.130) 

B- m J d]r p(r)Vl(r). 

C-£E-
~ .... l taO' 
u.... a-O 

(13.131) 

(13.132) 

the coefficient B COJTesOOllClS to the one we 
(1.30). for irrotational flow. restoring force 
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C has two contributions: one which comes from the kinetic energy (Elall' 
- JT+ Jv) and one from the potential energy, C- C,.+ Cv. The part C.,. 
which comes from the kinetic energy can be calculated from (13.121) and 
(13.128): 

4f d 3ri L-O. 

,," a
l f 1;.2 

C --- d
3
, =- 0 L=L (13.133) 

" 2m oa" ... 0 2m 
8 f d 3

,; L-2. 

In the case of the quadrupole vibration we obtain B - mf dJ,. p(r)il(2-
y~ = 2mA and therefore, for the collective frequency. 

2 4(r) Cc 

UL ... 1 - mA(?) + mA(,-l) . (13.134) 

The first term agrees with the sum rule resuh (8.166) and gives the correct 
A dependence, IlSlL_l~60A -1/3 [MeV] (8.161); to the second term are 
contributing only surface term..s. This can be shown in the following 
manner. With (13.115) and 03.J 23) we have 

po(q, t);;;; 2 3 J d~ /0('1, p,t) - exp(V qIQ,) 2 3 J d 3p j(q, p) 
. (2wIJ) (211"A) 

.... e:ltp(V .Q, )p(q). (13.133) 

For incompressible flUIds (Vv - 0) we obtain for arbitrary exponents a 

p' ~r, t) - (e 12v'p(r)) (I _ pG (r + IlV) == etrV'pCl(r), (13.136) 

and therefore: 

(13.131) 

because from the exponential in (13.136) only the first term of its Taylor 
series contributes, the others being divergences of a vector field. Th.e 
volume terms are thus a independent and do not contribute to the 
frequency. For the Skyrme force, only the te:rm.s of v[p] containing deriva~ 
tives of p-that is, surface terms- a.re different from zero in Co; these 
yield a small A -1/1 contribution to the collective energy, which is therefore 
negligible in first approximation compared to the kinetic energy terms of 
(13.134). 

We now have the gratifying result that for the quadrupole mode, taking 
into account the deformation of the momentum sphere, yields the same 
result as that from the energy weighted sum, where we also impose the 
motion (8.166) to be of the quadrupole form. Imposing the form of the 
mode in both cases means that this stale is an eigenstate of the system, and 
consequently the sum rule is automatically exhausted by this slate because 
all others are orthogonal to it. 

The reason we do not get the correct excitation energy in the pure liquiri 
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from the kinetic energy to the dipole 
fact that it bas 8. A -Ill dependence 

_~"""'I·-d ................... model (Sec. 13.3.3) is only d~ to the fact 
comers from the symmetry energy (13.86). On 

mind that the dipole reSOnAIlCC mostly of the 
question of whether ordinary bv(lJOiQVlUlDUCS 

,..,...., ... '1" for breathing mode can be decided by explicitly VV" ...... ViU 

the result we get with functional T[p) (13.51) to the one we 
(13.128). With (l3.13S)t we obtain for this functional: 

- ( 138) 

Integrating over r and integrating by parts gives the relation (1 128) for 
the fust in ( 138). so ordinary hydrodynamics can be used in the 
monopole cue. We can conclude that L-O, 1 modes can 
the but for all Li:2 modes important """' .... -"OJ! 

....... _._.."..... due to the fact that a is a ... ."......,.· 
rather an fluid. 

In a further one should not, of velocity field on 
lIIiVlI'Iillli:lUI. but rather this should come of the fluid 

clOied of such equati.ons can obtained by 
DnllIUfe teuor with (13.1 IS) or tliabtly seneraliz .. 

functional1'[p] as it is given 13.2.6, but 
IDOClIJ ansatz 03.118) for the velocity field Q 78]. It 

will be very to see how close these solutions will come to the 
one we imposed on the system by (13.119) [HE 79]. 

Other questions in this context are or not the 
approximation of irrotational flow is jwtifi~ whether the theory devel
oped so far can be apptied. not only to small vibrations but also, 
for example, to heavy ion collisions. In this context it important to 
establish the of this fluid dynamic description with A TDHF 
because of the points in common. 
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validity of the that the 
dynamics, it is very instructive t.o the 
eumple. Suppose we have an nuclear 

aea.lty WDICIl COITe.OOJtl48 to the ground state of A nucleons of a defonlJlld 
let start to move I- 0 in the 
rmc.mc oecilla:tor which is given by the condition 

wg -w,xWy"-',. wave functions of the deformed of 
course, eigenfunctions of the spherical one, the solution of 
ing will be tiroe-dependent wave 
solutions are by (10.89). Since the initial density as 
time-depeudent one will always be centered at the origin, 
dence only a time-dependent scaling of the coordinates, that 

of the width of the individual wave Using 
(10.89) we can write for the time dependent [BS 

p(r, I) - eCl11I)x{r. t) pof..r, 1", l}e -(i/A)x(r'.,). (13.139) 
with 

x(r. t)- (13.140) 

and 
(j-x,y,z), 

where a and "'I' are in (10.89c). The density Po of course the 
of Po can be written as (~ are Ul,.;;.cI.l)Ul unita of 

we can express Po in the following way. 
1 - • 

PaCr, r', t)- 1)'f,"''f,Qlp ... l(r, r')el[Q'f"",".AJJ. (13.142) 

where the anoWI on the three-dimensional gradient operators mOlca'te 

direction wb.K:h th.ey are acting and PI/U,t is the density 
ground state of the A in the spherical harmonic oscillator. As we 
see from the relation exp(axa/iix)J(x)-J(el.1x), the velocity this 
example is given by 

- aj(t)· ",.(r). (j = x. y, z). 

a/I)- -ln~(t). Y(r)-r. 

From t.hi..s example we see that the main assumptions for the 

(I 143) 

(1 144) 

fluid that the operators X (i 2.63) Wld cp (12.66) 



are only sligh tty nonlocal. are eucUy 1D 

alter aU, a harmonic oscillator not such a bad 
PPI'OXJlDlI~tlOn. we should expect that alJo for more 

tors X and " can be found which are almost local. We the 
point, however, that the X as it is given in (J3.l40) is not equivalent to th.e 
definition of XRV of &ranger and Veneroni [BV 78}. On the contrary~ XiV 

is rather nonJocal, eveD in this model. To give an we calculate the 
Wigner of XIV to lowest order in A which should •• UOti~ 
the right of magnitude for the nonlocality 
X's and (D.24) of we obtain 

BV Ttl -
X (41, p)- TP(q, p)AP(.~ -p). (13.145) 

of the nonlocality XRV of same order as 
usually quite large fm]. We that 

by Baranger and Veneroni is not ............. JU ........ 

but it is an open question as to how to 
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Angular Momentum Algebra in the 
Laboratory and the Body-Fixed System 

Throughout the book we use the conventions and phases of Edmonds for 
angular momentum coupling (Ed 57]. The oruy pJace where we have to 
enter a little into details is the case of the transformation of angular 
momenta into the body-fixed system. We shall carry out this transforma
tion in the sense of Edmonds [Ed 57, Chap. IV]. 

To study the t:ransformation properties of wave functions in Hilbert 
space under a rotation of the coordinate system, we shall first investigate a 
simple one-dimensional example. 

... 
)( 

x 

Let f(ep) be a f-unction1 whlch oruy depends on the azimuth angle with 
respect to the z-axis of the system. For a rotation of system through 
the angle a the azimuth of a fixed point P in space transforms into 
fj)- qJ - a. Since the value of the function! at the fixed point P is Dot 
changed by 8. transformation of the coordinate syste~ the function! in the 
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old system transforms into a new 
property 

new system with the 

... 
/ (ip) - f( rp) (AI) 

or, if we change the nomenclatw"e and use rp fi, 

(A2) 

the we t.lIe the &1M 
angles 0- /J. y) u in [Ed 57, a rotation of the 
coordinate frame around the angles 0 the wave function I+') is trans
formed to 

lir)- R(O)I+') 

with the unitary rotaliONJI operator 

R (D) .. e w'e ifJJYe 

where J;rctJ)'tJ, act on the coordinates XI" •• ,xA • As ~r:W!I:sed 
we can also include spin coordinates. J the sum of 
momentum and spin. 

Corresponding to the transformation (A.3) of veCllOnt 

spslce. we get a transformation for operators T: 

RTR+, 

definition, for a spherical temor operator (Ed 57, 

TAl' - R(D)T ""R + (0) = D;,.(O) T 'AI'" 
",' 

where Wigner .ftmctiom n;,.(n) are given by 

Dp\(n) .. <~/IR(D)IAp.)· 

(A.3) 

(A.4) 

the Hilbert 

(A.5) 

we find 

(A6) 

(A1) 

We DOW wish to investigate a rotation n from the laboratory system 
y, z) to a body-fIXed system (axis l, 2, 3) at some fixed time t. 

A,.. ..... "'VUJ~<A in mind that the angular momentum operators Jx.J)"J, are 
generaton for the infinitemruu rotations around the axi..s x, y, we can 
represent these operators as differential operators in the Euler angJes 
(l, p, y. Por instance, we can achieve a rotation around the z-axis by an 
amount &p by the Ewer angJe a by &p without changing the 
'body.fixed axis, that is, .. 

(A.S) 
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In the same way, from the definition of the Euler angles [Ed S7] we get: 

_1~ rtl&:J =e1al.J e-t"'·-cosa J +sina J (A9) 
i afJ Y Y }'.I: 

-! 1- ~J • _ eWI(!,fU;J e-I/U'e- MJ6 

4 3-y J • 

""'cos {J J.-sin fJ(cosa Jx-sin« Jy ). (A. 10) 

The inversion of (A.8)-(A.IO) gives 

I ] ( tJ a . a cos a a ) .. J 
~ :,. i-cos 0: ctg p oa sm a a p + sin fJ a y = x ~ 

I. := !(siDactgfJl-cosa~- Sinal...).:. (A.H) 
....,. i cO! afJ sin. fJ oy 

Ll := ~ ( - 000:) ':'J, " 

These are components or the angular momentum J with respect to the axis 
x, y, z in the laboratory system.. In the same way we can calculate the 
components of J with respect to the body-fixed axis l~ 2,3. To do th.i.s we 
use the fact that the spherical components L,., defined by 

(L.)=( L_ 1• 1.0. L+ ,) := (5 - iL,,). L" 51 (L. + i1.,»). (A. 12) 

form a spherical tensor of rank one. The spherical components of the 
angular momentum with respect to the body-fixed axis are therefore 

lp. - L Dp.\~ (D)~. == L L,..DfI-~" (D). (A.l3) 
~' ~. 

With the explicit form of D"I.,,(U) [Ed 57, Eq. 4.1.15], after transforming 
back to cartesian components we gain 

1 - -: - -:-- + sin y- + cos y ctgfJ- , l( cosy a 0) 
I , smp 'afJ oy 

J( Y ° a. a) 1"}.-""'":' ---.---cosy-+smyctgp- . 
t smfJ 00: ofJ oy (A~J4) 

I _1(_.!.) :) ; oy' 
The components of J in the body-fixed system have the following proper
tics. 

(1) They commute with the components Lf;; in the laboratory system 

[/,.L,J-O fori-I.2,3, k-x.y~z. (A. 15) 

This means that the components J,-J 'ei (where e j are unit vectors 
along the body~fixed axis) are sca.la.rs with respect to rotations in the 
laboratory frame. 
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(ii) They obey the commutation 

[ Ii' Ik ] - - i-II (i, I) 0, J). (A 1.6) 

They differ from the normal commutation relations for 'LUII.~ 
momenta by a minus sign. 

The commutators of the operators Lie 
R (D) (A.4) are given by 

I, the rotation operator 

[LxtR - ·R, R- ; 

[ Ly, R] - - Jy . R R·J· y' (A. 17) 

[ L R]- -J ·R 
I' .II [ , R] - - R . J •. 

Now we are able to determine the or the Wigner 
functions DkK under rotations around the axis laboratory and the 
body-fixed frame. For the spherical components (A, we get 

[L,., D&K] - L D:;'K(IM'IJ,.lIM) (AlB) 
N' 

and 

[ I,., D&.Ir] - D&K·(/KIJ,J/K'). 
K' 

(A. 19) 

functioDl Dt:x th.erefore behave tcmJlOI"S of rank 1 with 
the magnetic quantum number M under rotatiom 
In particular, we 

[ LIIJD&,,]-MDJ:K 

[ L.w :t iL,., D&K] -

[1" D&K] - KDJ:x 
,--------

[/J:!: ill' D&K]-
'Ihe normaliud wave functiou 

IIMK) - ~2!~ I D&« (0) 

are therefore eiJenfunCtiODS of J 1, L. (!EJI ), and I l , 

JlI/MK)-I·(/+ l)IIMK), 

LzIIMK)- MI/MK), 

1311MK) - KIIMK), 

and form a complete and orthogonal let in the ~va~i.fI!if of 
tho Euler anales [Ed 57, Chap. IV]: 

ur 
(A.20' 

(A21) 

(A.22) 

IUIIICnjrmJl of 



~ IIMX><IMXI-8(n-Q'); 
IMK 

(A.23) 

From Eq. (A.17), for a of ] around the ].a.xis we obtain 

eiw/ID&x(fJ)- IR -( - )/(lMIR(O)II- X)-

or 

e (A.24) 

and similarly. 

(A.2S) 



APPENDIX B 

Electromagnetic Moments and Transitions 

We can learn much about the structure of nuclei by studying their 
behavior in an external electromagnetic field. The interaction of 
nucleus with such a field very well known. and is therefore a very direct 
way of obtaining information about a nucleus. Many authors have 11"'",\1 ........ 

corresponding formulae and we therefore refer the reader 
fOT the details (for [8W 65&., 74D. 

Bel The Genera) Form of the HamUtoniao 

The system of a nucleus moving an external e]ectromagnetic field 
characterized by its four-dimensional potentia] AJl-(~' A) and the corre-
sponding electromagnetic fields E 8 is described by the Hamiltonian 

H- + H iJat " (B.I) 

three parts: HIIIIIICI is the Hamiltonian of the nucleus, or at leut some 
nu.~CII!u- mod.el Hamiltonian. We assume that we mow its ""...,..JU,..m..lfUlLCbltml 

.,(1. .. .04) 

HII~Ii',(l ... )-E1i',(I ... A). 

is given by (Ja 62) 

H Field - 8
1
." J (El(r, I) + 8 l (r, I» d 3

r. 

(B.2) 

(8.3) 



581 

The interaction between the external field and the nuc1eus is 

- c J }~A" d 3r= J (p(r, t)~r, t) - ! j(r, t)· A(r, t)) d:J,.. (B.4) 

p(r, t) is the nuclear charge density: 

A 

p(r,/)- L eU- /1i)·8(r-rA:t». (B.5) 
i-I 

Here we have considered the nucleons as point particles. ActuaUy, they 
have a finite extension which is given by a form factor. This could easily 
be introduced here [8M 69, App. 3C], but (or reasons of simplicity we will 
disregard it in the following. 

The cu.rrenl density j(r, t) in the nucleus is connected to the density ,,(r, I) 
of the magnetic moment [Ja 62, Eq. 5.81] by 

j(r, I) - cV X ,,(r, I). (B.6) 

It has two parts: 

(i) An orbit pari, which comes from the moving charges of the protons 

A 1 
JO(r, 1)= 2: eO -/~I)) 2 (v/8(r-rt(/)}+h.c.). (B.1) 

i-I 

V i is given by 

(B.8) 

For velocity independent potentjals, we get VI ""'O/m)pj' In the 
following we will only consider this case. Again, (8.7) is an approxi
mation that does not take into acoollnt tbe exchange current of 
pions; for a discussion of this point, see [SF 74]. 

(ii) A spin part, which has its origins in the spin distribution of the 
nucleus and is given by (B.6) and 

A 

,,'(r, t) - i~l 6(r- rAO) 2~ {(! - t~l))g, + (! + t~l))g" }Sil (B.9) 

where ~ and g,. are the g-factors for free protons and neutrons 
(.¥ - 5.586 and &. - - 3.826). Corrections for the exchange currents 
of pions are sometimes taken into account by using effective g
values. In the following, we use the nuclear m.agneton IAN - e'll/2mc. 

B.l Stade Muldpole Moments 

The interaction with a static electromagnetic field causes a change of the 
nuclear energy in a state i p which is given in fint-order perturbation theory 
by 

(B.10) 
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We introduce the density of magnetic flux B== V x A we get 
from (B.4) and (B.6) 

=: J p(r)4t(r) J p.(r)· B(r) (B.l I) 

sources of the ... _ ..... - far from the ...... " .. I""'u 

quantities ~r) and B(r) fulfill the nOlOOleneOl 
nuclear 

with 

L\~(r) -0, 

V xB(r)==O, 

V . B(r):=II O. 

means tha.t B can be written as a gradient, 

B(r) - V.!(r}, 

~(r)-O. 

Maxwell 

(B.12) 

(B. 13) 

(8.14) 

In spherical coordinates. the most general solution of the Laplace 
equation 12) and (8.14) which not singular at the origin is given by 

4t(r)- Q~';'Y"",(9,tp). (B.15) 
~ 

E(r)- ~b~r~Y",,(IJJtp}, (B.16) 
Api. 

where Y"", are sphericaJ harmonjcs 
We find 

with the 

H iDL == L Q~ Q>.,a + b"" M)..p. 
¥ 

and magnetic multipole operators 

Q~ - J p(r)rAy"", (e, cp) d3r~ 

M~ - f p.(r)· V(l'Y"",{9,tp»d3r. 

tile ext.resmOltul (B.6) and (B,9) for the density 
/10 

we ba ve to the M ~ 8. li ule. 
use the relation 

(8.17) 

(B.18) 

(B.19) 

the 

and obtain, alter integrating (8.19) by parts [the surface terms vanish 
because ,,(r) in the nucleus]: 

M~-I\!l f(rx{VXp(r)]).[V,;.y",,]d 3
r I) 

- C(A~ 1) f (rxj(r»' ( d
3
r. (B~22) 
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We now i:DIert (D.S) into (D.J8), (B.1} into (8.22), and (B.9) into (B.19), 
and find with 1,- (1/ iXr, X V i)l 

A 

QAJA .... e L 0 - Iii») I,' y ¥ (81, fJ',), (B.23) 
1-11 

A 

M~ - 11,.. ,2: {g}t)SI + A! 1 . gl''Ii } . (V r
A
Y>.,t(8, 4J') ), .. rl 

, ... 1 
(B.24) 

with 

for protons, for neutrons. 

In (8.24), the operator Ii a.cts only on the coordinate r, in the wave 
function. It commutes with v,Ay >.,. because 

I· (V ,"Y>.,. ) 0:: (r X V)· Vr>'y A,. = r' (V X V)?'Y ~ -0. (B.25) 

The expectation values of these operatofl in a nuclear state Ii') are the 
electric and the magnetic moments of this state: .. 

Q~:& (if I QAp[i'). 

M~= M~Ii'). 

(B.26) 

(B.21) 

We discuss nrst the selection rule.s for Q>.,. and M),p.' because they do not 
depend on the special form of 1'1'). Since the strong and electromagnetic 
interactions conserve parity, it is to 1+) as an eigenstate of 
the parity operator. On the other side, the multipole operators Q~ and M>.,. 
have parity (- i and (- )>.+ I, respectively. This means that 

Q~ =0 for A-I, 3t 5t •••• 

M~ -0 for A-D. 2,4, .... (8.28) 

Using the fact that the operators Q~ and M~ are spberical tensor 
operators in the sense of [Ed 57, Eq. (5.2.1.)]! we can apply the Wigner
Eckart theorem [Ed 57, Eq. (5.4.1)] for eigenstatet of anplar momentum 
I/,M). 

Q"JII _(_)l-U( _~ A It )</11 (B.29) 
P-

_(_/ M(_~ A I ) A MAp 
P-

M </IIM¥II/), 

and get 

Q",. } .. 0 
M>.,. 

only fOT 11-0 andO<X<2/. (B.30) 

Since the dependence of QA..i& and M)"JII on the magnetic quantum number is 
trivial [(8.29), (B.30)]~ we usually only give the values for M == I. 
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The magnetic dipole moment is defined by 

(4;;~ 
p.= VT (1lIMloJJl) (B.31) 

and the qatadrupote moment by 

Q ·l~1r (III Q",IIl). (B.32) 

These are defined in the laboratory and are measurable by 
experiment. the internal quadrupole momen~ see Eq. (1.70). 

B.3 Multlpole Expansion of the Radlatioa Field 

it convenient to work the 
or 1I.,..01WO:DlO ,..,.,~"'" ......... 11. 6.5] with the conditions 

., .. 0; 

.......... AMc .... of the [ree field is 

V ·A-O. (B.13) 

The given by 

8~f( l.i2 +(VXA)1)dJr. (8.34) 

which yields the wave equation 

(8.35) 

the most general vector A~ which obeys (B.33) and 
for a complete orthogonal that fulfills lhis 

IV"" ......... one usually makes a transformation in and 
time keeps only the components perpendkular to the wave vector kin 
order to fuUill (D.33). Beca.use of the spherical symmetry. we apply 
the transformation in time, we usume for our 
tions a time-dependence exp{ - iket), obtain the Helmholtz 

(B.36) 

to the spherical symmetry of our problem, we look for solutions 
that are eigenfunctions of the orbital angular momentum nn"'1"A 

L,. A set of solutions that fulIill this condition and are at 
the by jL(kr) , q:»p wherejL(kr) are spherical D8!:!Ii1l~1 

[AS 65D and Y LM are lhe spherical [Ed 
orbital angular the photon has a S 

S - 1 according to the vector of the potential A. 
tions and S, are the vectors e Ma (M:s - + J, 0, - J) [Ed 
The angular momentum of photon is given by 1- + the 
rules of angular momentum coupling, we find as eigenfunctions of Ll, S2 



Mu1tipole Expansion of the Radiation 

(5.9.10)J the vector sph~rical harmonics: 

YUIt - 2; Cf:tl.ks!. Y LNJe, tp)eMs' 
M,Mi. 

They form a complete orthogonal set 

( d cos 8 dcpYiLm(fJ, tp). Y 1'1..,,,..(8, tp),. 811'6u ·8I'N/11" 
),.", 

(B.31) 

For fixed I, the orbital angular momentum can be 1- I, I, J I. That 
means are independent solutions of· (B.36) for each k, It m. 

fulfill the tr&nsversality cenditiea{B33). 
14)1 

(8,tp)- 1 LY/".(eJ'P) 
Jl(J + t) 

wcsee for jl(kr) YIJ".(8, tp). 
to UU""&.I combinations of Y 11+ 1M 

one such _ .. ,. .... 10._ that has the property (B.33) (see 
(S.9.1S)ff] and [AS (lO.I.21)ffD: 

h+ ,(kr)Yu+ 'M - ~{I:\ j,_,(kr)Y//_'M' 

(B.39) 

We therefore have each J and m two independent solutions of wave 
equation (B.36) which fulfill the transvenality condition We 
acterize them by A and call them elec:lric (A .... E) 
(A-M) 

and 
I . 

(r)- k (V xAMU",(r» 

- ! { v( Y/,,, (8, tp) ;r (':il(kr») 
~1(J+I) 

(BA.o) 

(8.41) 

Equation (BAt) is obtained from (B.40) by evaluating V X(V X r)it Y1m and 
using the that iJ Y1m satisfies Eq. (B.36). 9t a constant. 
The quantum number k is discretiz.ed by requiring the boundary 
conditions at a perfectly conducting sphere with sphere is 



introduced only to define boundary ........... &v.a._.... c.md, R 
approaches large values compared to the ~. ~ to 
the laws of classical electrodynamiat, at 

are [Ja 62] -0 and B J. -0. are fulfilled only by 
a discrete number k-values. kif' In the are given as 
the zeros of the spherical Bessel function, 

jJ (k",R) = O. (8.42) 

In the electric case, we find the condition 

aa (rh(k,.r»\ -0. 
r ,. ... .R 

(8.43) 

In the roHowing we use k as a discrete which runJ over tM! solutiODI 
Ie. of Eq. (B.42) or (B.4J)~ respectively. 

normaJization constant ~ is chosen in such a way that the follow .. 
ing orthogonality rdation holds [AS 65 Eq. (11.4.5)]. 

LIt,Jdr L .. dooa'dJpAtvAtT.-(r)'Aw.(r)- k 

In of IMp R~valuesJ '!l, tumI out to be [AS 651 

(B.4S) 

A-vaJues. 
properties of magnetic and electric 

transfonnation n can be seen from (B.38). 
the parity 

II"'W''''_V_ the parity and 
curl operation changes parity, we find that 

IIA£kJM - (- )1+ I, AEA:lIIIII; IIAMA:lBII - (- )/, AMid".' (8.46) 

generat solution of our problem is therefore by 

(B.47) 

The coefficients QUI. are independent variables for the description of the 
eJectromapetic field A. The form (B.41) of A(r, t) that (B.33) 

(8.36) are fulfilJed for each choice of aU/III' 

Eq. (8.44).. we CIJl express the Hamiltonian free field 
by 

the Hamiltonian of harmonic oscillators -Itwa-Q, 
or canonical quantization can be applied: The 

'l;;UIAI.,.Ji;;u. by creation and annihilation operators Ii,:+ 
vv .. """,,.1& commutation relations 

[aUf.' d"'KI'W( ] - 0, 

[ 8WIII ,lJ.}.-t: Ie' 1'111' ] === 6).)..8 U('611 .6111V1'1" 

(B.48) 

the ruJes 

(8.49) 



operator a~ creates a photon of type A (mapetic or eJectric 
radiation) -«JY A·c;k and the aq:uJar mome.otum quantum 
llumblri I, m. Applying the rules of second quantization (Appendix C1 we 
find for the Ha,mihOGia.n 

(B.SO) 

The eigenstates can be represented in the occupation number representa
tion I ... nUl"" ... ), and the potential A (B.47) goes over into the operator 

A(r,,)- L {AM/m(r)e-i(laa~/m+A~m(r)ei,*ra>..H"'}' (8.51) 
'A.klm 

B.4 MwtJpoIe Transhioos 

Together with the 1+/) of the nuclear Hamiltonian H (uad' we 
now have a complete KYmleHl of eigenstates of the unperturbed Hamilto
ruan 

Ho- Haud + H rlCw ' 

The time-dependent interaction (B.4) 

(B.S2) 

HiDI - - ! ~m { a~J'" f J . AMI"" d
3
r e -~ + h.c. } (8.53) 

does not commute with the photon number. It causes transitions between 
nuclear states 1'1'/) and Ii',,) and the corresponding absorption and emis
sion of photons 

absorption 
--+) 1i',)I .. ·n;a.- ".0 -If), I i) -Ii' 1)1 ... n" ... ) . 
~ 1i",)I ... n,,+L .. )-lf)· 

We calculate the transition probability in first-oroer Dirac perturbation 
theory [Me 61): 

(B. 54) 

where g(E,) is the number of final states per energy unit. We have to 
calculate Tfi at the energy chk -= E,- E, of the absorbed or emitted photon. 

The relations (C.l2) 

(B.SS) 

and 

(B.56) 

show that the probability of an absorption of a photon is proportional to 
nA' and the probability of emission of a photon is proportional to nA + 1. 
Even for a vanishing field (11). -0) we therefore have a probability for the 
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emission of a photon (spontaneous emisaion). In the following. we will only 
consider this case. I t is iden.tical to the absorption of a photon in a field 
with n). -1. 

The density of states g(k) can be calculated from the condition (B.42) in 
the magnetic case (the condition (8.43) in the electric cue will give the 
same result). In the limit of large R-values, we find 

0-j/(kIlR)~ k lR sm( kliR II) (B57) 
If 

that is, 
w 

k R==n·v+-·I 
1'1 2 ' ,,-O.:t I, :t2p .. , (B.58) 

and 

I R (B.59) g(k)- ~E(k) - 1Ic Ak -1zc '»' • 

Using (B.S4)~ (B.4O), and (B.4S), we get for the probability of the emission 
of Il single photon with the quantum numbers (A. k, I, m). 

'

2, 
, (B.60) 

(B.61) 

which can be written as 

8'17'(1+1) E., 21+1 ' ... 

T" (A. kIm) - (-) 1</lG'm IAlclm) I . (B.62) 
J' II . 1«21 + 1)!!)2 he J",,\ 

where the general multipole transition operator 
case is given by (B.60) and (8.41) 

kIm} in the electric 

... i (2 I + I)!! J 
GJl.{E. kIm) - J. V X (V X r)(jr(kr) Y1m (8, q:l» d 3r. 

. ck l + 1(1 + I) (B.63) 

Evaluating the V X (V Xr) operator as in (B.41), we get two terms. In the 
finn part, we can use the continuity equation after integration by parts, 

Vj- - :tP-ikCP, (B.64) 

which results from (B.8). FinA.llYt we obtain: 

A (2 1+ I)!! J {a k } 
~ E, kIm) - P Y/m -;:-11 (kr) + i - J. r Y1wJI (kr) dJ,.. 

kl(I+ 1) Qr· c 
(8.65) 

In the magnetic case, we have 

.. - (21 + I)!! 
6Jl(M,klm)- r jJ'(rXV)·(j/(kr).Y1m)d'Jr. (8.66) 

ck (I + 1) 



In nuclear physics we usualJy work in the limit of long wavelmgths, that 
is, the wavelength of the radiation is la.rge compared to the nuclear radius 
(k' RoC: I), or 

(B.67) 

In this case we can use the small-argument Limit for the spherical Bessel 
function. 

. (kr)l ( ) (kr)2 ) 
h(kr)~ (21+1)!! 1- 2 21+3 + ... (B.68) 

and get to first order in kr 

~E,klm)-J pr1Y1md'Jr+ l~ 1 J(rx,...)Vr1Yrmd'Jr. (B.69) 

The first part does not depend on k and corresponds to the static electric 
mullipole operators Or", (B.18). The second term, of first order in kRo• is 
usually neglected. 

For the magnetic operators in thiI limit, we obtain exactly the operator 
(B.19) and (B.22) 

(B.70) 

Usually we do not distinguish between the different orientations of the 
angular momenta (the exception being polarization measurements). We 
therefore assume a statis-ticru distribution in the initial state and calculate 
the arithmetical average of the initial m-values. All the final m-values have 
to be summed up and we finally get the total probability for Ii certain 
multipole transition, 

1 
Tfi(A, I) - 21 1 2; Tft (A, kIm). (8.11) , + '"t. '"f' m 

Using the Wiper-Eckart theorem (B.29) and the orthogonality relations 
of the 3j-symbols [Ed 57, Eq. (3.7.8)1 we can carry out the sum over n1;, m, 
and get for the trans-ition probability (D.7l) 

8ft (I + I) Ey 21+ I 

Tft 01 I) - (-) B(AI, 11-+ I,). (B.72) 
"/«21 + 1)!!)l he 

The B(A) values are called reduced tralUilion probabilities and are given by 
the reduced matrix elements 

B(EI,/I-+ 1,)- 21,1+ 1 i>11t (B.73) 

I A. 2 
B(MJ,/f~/f)= 2/.+ 11<fIl Mrlf l >1 ' , 

(B.74) 

I'- A 

where the multipole operators Qlm and M'm are defined in Eqs. (B.23) and 
(B.24). The B(EI) and B(M/) values contain the information about the 
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Table B.l Transition probabibtiee T 
IUld S(M/) (,,~(fm)u
(e2(fm)1l) and (p.~(fmf'-

T(E I) - I.S81· lOIS. 

T(E2}-J . tot· 
T(E3)-5.698·lOZ· 
T(E4)- 1.694.10-4 • 

T(E5)- I· 

T(M 1)- 1.719.1013 • :t. B{M l) 

T(M2)-1.311·10"· 'B(M2) 
T(M3)-6.387·100· • B(M3) 
T(M4)- 1.899· . B(M4) 
T(MS)-3.868· 10-1), II, B(MS) 

6.0146·10-3.· 
B.p(El)- IO-l'A4/3 

B.£ID)-S.940· 
B.,(E4)-6.28S·IQ-1·A'/1 

B..,(ES)-6.928·IO- l ·A 

B.<M 1)-1.790 
B..,(Ml)- 1.650· A 2/J 

BSP(M3)-1.650·A 4/3 
Bap(M4)- L746·A 2 

B.cMS)- L924'A'/3 

nuclear wave fUllCtiODL They are often measured in Weiukopt 
(B.8S)]. The rest are Table (B. I) gives 

tion probabilities and the Weisskopf units for" the B{h) values 
mOlt important cues. 

From the structure of the 
A A 

(/,M,IQ/JIIIII/,M,) and (/,M,IM1MII/M,) (8.75) 

we find the following selection rules for a transition from an initial state 
I -I/,M,> to a rinal state If>-I/,M,>: 

II, -- If I <: I <;; Ii + If' 

M, Mi=m. 

-1. 

(8.76) 

(8.77) 

(8.78) 

The parity of the multipOle radiation (AI) 'ftMm is given by the parity of the 
interaction ex: A", . j. Since j under the parity transfonnation, 
we get from (D.46) 

(B.79) 

From (B.72) and Table D.l we find that the radiation with higber I-values 
is strongly suppressed. As long as rules or special effects the 
nuclear slructlJ!e part [8{;\rvalues] do not forbid a transitionct we usually 
have to take into account only the lowest possible I-value. Magnetic 
radiation is weaker than. the radiation. Therefore, we often have a 
competition between M 1 and radiation. 

From (B.72) it that the transition probability T 
increases rapidly with the This is the reason why 
tions with small energy differences are sometimes harder to observe. Other 
processes Oike internal conversion) important in such cases. 
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In microIc.optc calculations of electromagnetic moments and tran.sition 
probabilities, we need the matrix elements of the muhipole operators. We 
restrict ourselves to a spherical basis, that is, the single-particle states are 
given by the quantum numbers \jm) -Iruljm). Since oS -~. it is usualJy 
omitted, but the order in slj is important. 

Using the phases of Edmonds [Ed 511 we obtain for the reduced 
single-particle matrix elements of the electric mu/tipole operators (8.23) 
[RBS 73] 

<!ltal M i) - <!1I er 'Yr (I, cp)1I ') (B.SO) 

(I +(-i,+'f+ / ) (21+ 1)(2),+ t)(2i,+ 1) 
- e 2 <11,'li) 4'D' 

x (_ )-'1- t( if J J!"i). 
-i 0 

(B.S) 

In the magnetic case we have the spin part and the orbital part: 

<filM! - PW(&I+ I!] v)-(Vr1Y,)lli) 

+ 1)(2),+ 1 + I) 

x (-)'1- t( i, 
_1 

2 

[ 

o lit )(1- k>[ h, - g,(l + k/(l+ I» 1 
(8.82) 

with 

I 1 . ..l 
k - (jl +!)( -) /+11'+ 3 + (jj+ i)( - >"+11+ l. 

The radiaJ integrals are derined as 

(B.83) 

and the g-factors are given in (B.24). 
Weisskopf has used a rough estimate for the corresponding B~)-va]ues 

[We 51]. In the radial integration (B.83), he repLa.ces the wave function 
R,== R, in the nuclear interior (r < ~ by a constant and gets 

< I) 3 1 
r :::::= 1+3 Ro· (B.84) 

Furthermore, he uses h - l+! and i; - !. From Eqs. (B.81) and (B.73). in 
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the electric case we 

_(_3_)2 21_ (1.2) 2/(_3_)2 
4'17' I 3 Ro 4'11 I 3 A 

In the magnetic case, Weisskopf estimates that the magnet B(MI)-va.lue 
[We 51] 

B(M/) ....... 10 (_3_)2 R 21-2 2 
- '11 1+3 "'0 JAw 

= ~ ( L2l '-2
( I! 3 fA (U-Z)/3[ • (fm):U-l]. (8.86) 

and (B.86) give a very rough for the single .. 
........... ..., .... "". They are often used as units (Weisskopf or single

for the actual B(El)- and 

8.6 TraDslattonaJ Iovarlance and Electromagoetic TraosltJoas 

Until now we have that we have the wave functions of the 
nuclear Such wave functions are eigenfunctions of the linear 
momentum, and in aU the electromagnetic the linear momen
tum is For instance. the absorption of J -radiation, which is 
given by the operator (8.23) 

(B.87) 

In the center of mass the tota1linea.r momeD-
in that system the neutrons win have the opposite 

effective elongation of only r j - ~ 

the cen ler of mass. Instead 

Z A 

1-:eD""'eL(r/-R)- e 
f- I i- I 

NZ 
-R)-eA(R,-~), 

(8.88) 

where R, and RJII are the centers of mass for protons and neutrons, 
respectively. 

As long as we have wave functions 1+/) Ii',), which are eigenstate! 
of the lineu momentum) the replacement r - r i - R has no influence on the 

<+ ~£ 11+1>' since (+,IRI+,> vanishes in this case. In most 
applications. however, we use wave functions which violate translational 

case spurious contributions and we have 
operator D this spurious contnoution is 

.......... " ........ on the average. It is use the E l-operator with an 
charge of (N I A)e for protons -(ZI A)e for 

effective charges have calculated for transitions with 
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multipolarity [SF 74L and it was found that they 
of 1/ A to the normal transition 

neg.lected for heavy nuclei [see, for instance, Eq. (1l.49)]. 

Radiation 593 

contribu tions 
which can be 

B .. 7 The Section for the Absorption of Dipole Radiation 

we calculated the probability for the ......... "''''' 
numbers (Aklm). We arc now interested in 

of a photon 
absorption 

......... Ir" ..... · .. for electric dipole radiation. We usume that i.ncomiog 
...... -..... "" in the z-direction. We use the ............ ' ... ..,4 .... u"'.n number 
of electromagnetic field in plane waves 74): 

2 e 
A(r)- lie 2: J dlq 'Ii [4!'i·O,1l' h.c.]. 

,.. ... 1 
(B.89) 

are 
function 

polariza.tion vectors of the photon. 
form 

initial wave 

(8.90) 

Using we obtain the excitation probability the excited state 
with energy Ef' Since there is now only one such final density 
of fi.ruU p/E) is a c5~function c5(£ - E,+ Ec). The cross IS 

defined as the quotient of this excitation probability ciivided current 
density of pbotons with this energy. 

The photon 0 .. Ii , 0;11' obey the commutation relations 

°411 ,0;,:] - 8('1 - qJ8pp" (8.91) 

that corTeS'OO[lQUUl plane waves arc normalized as (I 
is. to a box of (2'2TY. The cu.rrent density of " ...... ·...,""'L." 
therefore c /(2ffY. the cross of an excitation of 
we get 

",(E)= T c 1<11-! JJ-Ad'r 1;>r6(E- E,+ Eo) 

(2'I'T)4 ( It )2 1 I f 12 - 1'Ie 2'13' "U\ <~~ J'C\zerbd1rli'O> ·8( -£,+£0)' (8.92) 

In the long wavelength Limit we can replace *\ze ikr by V(elu ' re~ and use 
the continuity which gives, in analogy to (B.64)l 

2 

per) ]zel'tr d'r l~o>I·c5(E- EJ Eo) 



AI in Section B.~ we to replace r, by ',-R 
where only the fint term in aD of CJq)(lt(r,-R» iI 

41'r1e1 l 
O',(E)- ~c (E,-Eo)I<i'~D.I"'O>' '(E-E,+E.). (».94) 

To let li1nilar cross sections for hi&her multipoWity, we bave CO iI1U:DU;q;m 

the representation (B.89) of the electromagnetic potentia1 the repraen .. 
laban (B.St). lb.is is shown in great detail in [SF 74}. 



APPENDIX C 

Second Quantization 

C .. l Creation and Annibllation Operators 

The name useoond quantization¥> is mJsleading. 
inS to do with the further quantizing of qllantum 

formalism has noth-

alternative of the usual qUllDlum mecDJlLftlcs, 'fIIrlUCll 

out to be very for bandling the many*body Df(,DMaD. 

for we will give a 
important IOI"IIDUJUle. 

We start with a complete orthogonal of mnl!p~PaJ states I"), 
where" stands for a set of quantum numbeRt for eUUDI)le. 

, 

(i) IIJ1U;e C()Of(Junare 
(u) Inljm). 

Orthogonality and COJltlpu=tellleu are p.'lrf".rH'~ as 

=1. (C.i) 

(For continuow. quantum numbers such as r, the /J .... ' will mean 8(r- r') 
the sum I' is to be replaced by J d J

,.) 

The coordinate representation of the state given by 

~.(l)-<p,(rpJ'I)- ,sll 

Starting with thiJ set o.f singJe-partic1e states., we can construct a ........ 4 •• "" ... 

orthogonal set of totally symmetric N-body wave functions 
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where the sum runs over all pennutations (PI" .J'H) of the numbers (1 ... N) 
and a normalization constant 

Any arbitrary, totally symmetric N-body wave function can be repre-
sen ted in basis: 

+(I, ...• N)- L cPI"~'Nct", ... J')t(l, .... N). (C.4) 
.. I··· .. '" 

We can also give to each of the single-particle a (" - I, 2, ... ) 
(in the case of continuous quantum numbers, we must fint introouc.e a 
finite box) and characterize the wave function ~"I'"'''''' by the uoccupation 
numbers'"' {n,.}, which teU how often a particular number p is contained in 
the N numbers ('1"'" JON)' Obvious]Yr we have 

and 

(C.S) 

~{n..)( 1, ... , N) -~"I""""( I •... , N) 

J 
-- LP{rp'I(I)."CPPII(N)}. (C.6) 

IN! {n. !n'lL.. P 

Such ill state describes a boson system. In complete analogy. we can 
construct totally antisymmetric-basis wave functions 

~{~}( I •... • N) - J;! ~ sign(P)P {fPp,(l) ... «1>,,.. (N)}. (C.7) 

They are called Slater determinants and describe fermion systems. In this 
case the numbers nil' only take the values 0 or 1, otherwise (C.7) would 
vanish identically. 

We can now construct a Hilbert space which contains a vacuum (no 
particle) 1-), all the one-particle stales, aU the symmet.riz.ed (or antisym
metrized) two-particle states, and so on ... 

x- {Xo, Xl> ~, ... }. (C.S) 

The wave functions ~(n,.) correspond to basis states Int. 122",,) in this 
Hilbert space, wIDch are characterized by the occupation numbers (oceu· 
pabon numb« representatiou). such that 

~{ ... }(l, ... ,N)-<l .... ,Nlnp "2 ... ). (C.9) 

These states are orthonormaHzed 

<n~, ni,··· n; .. ·1"" n'l .. . n .. ... ) - 8".w1 . 8J111t'J" .I)~ •. '. (C. (0) 

fint we shall study boson systems and define an "annihilation opermor" 
B .. by 

(C.ll) 

The operator Bp lowers the occupation number in the state with the 
number p by one. An N-body state goes over into an (N - I)-body state. 
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The matrix elements of B .. are 

(ni, ~, ... , ";,. ··1 B .. ln., nz, .. . , n." . . . :z: ..r,:;: 6/f,III ..• 6",;1\. -I" . (C.12) 

or 

Th:is is valid for all basis states (n" "1" .1. We therefore find 

(C. 14) 

B,+ "'creates·· a particle in the state with the num.ber .,. Therefore, it is 
called a "creation operator in the state ",'" It is the Hermitian conjugate 
operator to B".. 

From this definition we gajn the fact that 

(B"B/ - B/ B" )In,. n2 •••• ,n.". .... ,1'1" .•. > 

(~n.., + I 

-
for J.'=p., (C.IS) 

and hence get the commutation relations. 

[ B", B,,+ ] = Bf>1B .. + - B,,+ B,. = 6".,." (CJ6) 

In the same way, we may show that 

[ BJI' B .. ] = B/ ~ B/ ] = O. (C.11) 

The state with the occupation numbers 10,0,0 ... ) = 1- is the vacuum. We 
thus have 

for all II (C.18) 

and 

(C.19) 

The relation (C. II ) folloW!! from (C.l6) to (C.19), which was our definition 
of the operators B". We can therefore also go in the opposite direction and 
start with a set of operalOrS B" B .. + which obey boson commutation 
relations and construct the many-body Hilbert spau from (C.l1) and 
(C. IS). 

The operator BIP + B .. is called the particle-number operator for the state J': 

(C.20) 

We now addre1SS ourselves to a fermion system. We shall use smaU Latin 
letters a .. + , ~ for the creation and annihilation operators of fermions. Since 
n.. can only have the values 0 and I ~ we define the action of the 
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operators as 

a.1 n I ' ... , nil' - J.. .. == n I •... , nil' - 0, ... ). Q,.I"I.···,n,..O •... )-O. 

from which we get 

12,,+1"1 •... ,,\--0, ... -Inl, ...• n,.= 1 .... ), 

and 

[ 0fll' a..+ ] + : - {Op.. a,,+} : = ap' a/ + a,,'" all == 6,.,., 

[121£,12 .. )+ -[ap,+ .12,.+ ... -0. 

The vacuum is again given by 1- -10, 0, ... > and we have 

a"l- -0 for all v, 

henc.e 

1""'1\., ... - TI(a,t)"PI- ==a,,~ ···~:I->· 
II 

C.2 Field Operators in the CoonUoate Space· 

(C.2I) 

(C.22) 

(C.23) 

(C.24) 

(C.2S) 

Using the single-particle wave functions cp,,(r, s) in Eq. (C.2) we can define 
creation and operators a'" (r, s), a(r, s), which depend on the 
coordinates r and sf: 

a (r, s) - L c:p,,{r, $)a,,; a'" (r, s) - L q;: (r. s)o,:+- . (C.26) 
" II' 

With Eq. (C. I) we can invert this relation, 

a,,:III: ~ J d 3
, c:p: (r. $)a(r. $). 0,: - ~ f d 3

, c:p,(r, s)a'" (r, $). (C.27) 

and gain the ........ aLUJ" ... 

[a(r, $). 0'" (r'. s') J ... - L c:p,(r, S)Cf:(r', 9' )[ a,. a .. ; ] + - 8n ·8(r- r) (C.28) 
v,,' 

and 

[o(r. $). o(r'. s') ] + - [a'" (r, s). 12+ (r'. s')] + = O. (C.29) 

We can express the many-body wave fUDCtion (C.1) by 

1 
tt{J\.,(i}" .. ,N)- -< -la(N) ... a(I)lnl.nl~· .. n ..... ) (C.30) 

IN! 

"In the fol.lowlq we only the cue of fermiou. apply 
for bolo ... 

'ThiJ definition agrees with the ooaventioo 4f.(r)- (rip). ~ 10 t.be defiait.i.oo 
(5.18) for a oJtAr)' b'1uIdonnatioll or the operaton 0.+ • ~.(r) c::arrapondJ 10 D!. 



Representation of Operators 

and 

I n I ~ nl' ... n" . .. - J d 1. .. ~ .z"",,)(l, ... ,N)a+(I) ... a+(N)I-). 
vN : 

(UI) 

eel RepreseDtation of Operators 

Starting from a vacuum 1- we have expressed all states in the many-
body Hilbert by _"' ........... and annihilation operators a",+ , a", The 
same will be done in the following. We have to distin.guisb 
between one- and two-body rio ........... 

A one-body operator for example; the kinetic energy or the 
momentum of an system, is given as the sum of N /, 
which always coordinate of the particle i: 

N 

ft- Jr. 
Its matrix elements the I are 

that 1s., 

i",.(i) = 2: [,..,.rp,.{i). ,.. 
of j the operators a: ,Q" is given by 

To show we 

i 

On the l.b.8J from 
gam 

j 

-
i " •.. ' 

2; h,.~a,.+ il," 
1"1" 

to prove 

l .... ,N)- (I. ... ,NI ~ fll"J'·a,.+Q,."I~). 
"11'" 

(C.lO), (C26) and (C.34) up to a 

'" h~(N) .. . <p"(;) ..• q>"'I( 1)( 

L (N) ... cp"(i) ... cp,,.(J -I 
I "11', . "'" 

This is identical to me r.h.s.: 

(C.ll) 

(C.l4) 

(C.36) 

1 we 

... a",I~)· 
I 

- !""IP..,.. (N) ... "11'1(1)( -la"N'" ... 0,.14»· 
"I "'''H 
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We give next a 
kinetic energy 

t- " t. -I 

single-parlicle dm.sity 
N 

p(r)- B(r-1i)' 
/ ... 1 'i the coordinate operator of the itb particle; r is a number. 

(C.37) 

(C.38) 

(C.39) 

per) = ~ ~ J d 3r' CP: (r', s)6(r-r)cp .... (r', s)a.,+a ... = ~ a+(r, s)a(r. s). 

(C.40) 

The particle number 

N= 2:a .. +o,.= 2: LJd3r 
Jl' " .f3' 

cp .. (r. s)f.P: (I". sF)a + (r, s)a(r', s') 

-J p(r)d 3r. ) 
A 

the most general case~ J will be an integral operator (8 
operator): 

J <p(r,s)- J d 3r' f:u.(r,r)tp(r',s'). (CA2) 

A two-particle operator as. for example. a two·body interaction, is 
a sum of operators vI} which act on coordinates of the particles i and}. 

/II 

v- (C.43) 

general case, 0y will an integral operator two 
with elements 

-= J dl d2d3d4tp;(I)f.P:(2)v(I.2,3,4)f.PI'.(3)'P;(4). 

(C.44) 

complete analogy to Eq. (C.35)t we can show that V can be written as 

tI .. -IIJI'IA ,. oj 

V = i L v~'r'aji -i 
,..,.,,' '" 

with antisymmetriz.ed matrix ..... I'I.;.,I.U .... JLI\ 

< (C.46) 



Very often we use local two-body interactions of the form (we U""JII ... _ 

v(r,t rJ). 

In we can (C,4S) immediately with 

t ~ IV ___ '.-"+ a,+ a",Q~,;::;; - ! f d J, d1r' a + (r)a + (r')o(r~ r')a(r)a(r') 
~'fY' 
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spin) 

(C.47) 

== t(J dJr dly o(r, r')p(r)p(r') - f d 3r v(r, r)p(r») 

_1( -2 

N 

v(r" r,)) == . 1:'(r" r), 
I «)-1 

(C,4S) 

C.4 Wick's Theorem 

III practical applications of second quantization, Wick's has 
turned out to be useful. It is a rule which allows a simple 
reordering of a set of N -operators Q or a'" J which have the property 
the commutator (in the case bosons) or the aoticommutator case 
of fermiom) of two of this set is a 

We fint define the ordered product) of a product of 
a(/:z),a(/J),a+U.) ... to be the one where the field 

been reordered in such a the time arguments are 
right to Jeft (an odd permutation a minus sign): 

T{a(tl)a+(t3)a(ll)a+(t4)}- a(tl)a(t2)a+(t)a+(/ .. ) I, I" (~ ' 4, 

(C.49) 

In a normal ordered produc~ 
that aU creation operators are 
(again, an odd permutation 

operators are ordered such a way 
left of all annihilation operators· 

sign): 

N { a"a"apallt } -: a,a"apao+ : - - ar.: a"a",all , -contraction UY of two V defined as -
(C.SO) 

UV- T {UV} N {UV}. (C.Sl) 

With these definitions, Wick's [Wi 50] can be stated u: -T {UVW ... XYZ} - N {UVW ... X } + N {UVW ... XYZ} - -+ ... +N {UVW... } +N (UVW ... XYZ} 

+ ... + N { } + . . . . (C.S2) 

The ordered product of field "'...,..,. ... 1:'0 is therefore equal to their 
normal ordered product plus the ordered products with one con-
traction (in all possible ordered product with two 

Im:lq,d of N ( ... ) we 



contraction, and so on. to taken in the of I. 

contraction out of a normal ordered product. as this can give I. minUllign: - - -.. N {UYXy} .. UYN {X }; N { y} .. - UXN{ VY}. (C.Sl) 

(For the proof of Wick's theorem Thomess fIb 61 b]~) 
Wick:s theorem is the calculation of ground state 

expectation values of time ordered products of field operators (e.~ the 
expectation value of particle operators with to the quasi~particle 
vacuum ill Chap. 6)~ The result equal of (C.S2), where aU 
operators have been contracted in all V""'''-''''''''''' 

If there are time-independent fie1d n ........ 'II'Dl 

order is to be defined as time ordered. 
independent operators is especially for 

;;;a...+ ... all.a,,+ - {a,.a,.+ } ... 8"". 

given 
time-

(C.S4) 
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Density Matrices 

D.I Normal Densities 

For the description of the dynamics of a we often use 
density maJrice.s. We distinguish density mAtrices., 
two-body density matrices, and so on. In book we use mostly one-
particle densities. For rugher densities the ........ n .... is referred to the work of 
[Th 61b]. We shall also restrict ourselves to the _ •• A .... case. 

First we define a single-particle operator p(r) an N -body Hilbert 
space: 

'" p(r) 8(r 'i)' 
I-I 

wbere ti is the space operator of particle i 
expressed in the framework of second 

d = pq - s 

p(r) = Lo+(r,s)a(r.,f) . .. 

p(r) 
Appendix 

fJ'; (r, ,f)q;q(r, s), 

(0.1) 

be 

(D.2) 

(D.3) 

(D.4) 

The expectation value of this operator an N-boay stale 1+) (see 
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Appendix 

(i'Ip(r)Ii') (D.5) 

w.hich expresses the fact that the expectation 
average p(r) at the point r 
over the gives the particle number N of the system. 

Equation (O.6) can also be interpreted as the of an 
operator the coordinate space representation, which is called the 
den..fily matrix. In general, it is defined as 

(r, 

we 

where 

::;::: p(u; r J'/)-

- 2:(r, 

p "'" Pi 

pq 

+ (r't s')a(r. 3)1'1')· (D.7) 

s'), (D.S) 

(D.9) 

is the matrix element of the density operator 1>.., in an arbitrary basis and 
p+ has the 

p+- L Ip)PPi(ql· (D.lO) 
pq 

single-particle operator. p can be diagonaliud 
of the single-particle 

(D + pD )11' - p,8,1' • ",+ "'" D c+ '" /' , (0.11) 

(0.12) 

is the probability that the level I occupied in the wave function '+'. 
we wrote p down in occupation number (see Appendix q in 
the where p is diagonal. For the particle number we get 

N- ~PJ-Trp- L J p(r, r, $) -J p(r)d1r (0.13) 
I II 

and any other single particle operator of form (C.32) we get 

(+1£1'1')- L -Tr(f'p), (D. 14) 
II' 

are two important OI densities, we 
will in some detail. 
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D.l Densities of Slater" Detennlnants 

In the case of product wave functions we have the foUo-wing IMOI'em. 

A 'Wave junction i'(l . .. N) is a Slater determ;oont if and only if the 
corngponding flm.sity matrix p+ (D.IO) is a projector in the single-particle 
Hilbert spa~, that is, 

(D.tS) 

There is a one-to-one cQrrespondence between p.." and 1+) in thi3 case (of 
course, only up to a phase factor in f'l'». 

To prove this theorem we start with a Slater determinant 

-at ... a;1 > (O.J6) 

in some single-particle basis characterized by the operators at ,al . From 
(O.9) we see that p is diagonal in this basis, with 

{ 
0 for I> N (emPt.y levels. particles), 

p .... 
I 1 for 1< N (occupied levels, holes). 

(D.l1) 

Pi' (0.10) has the form 

(D.18) 

This is a projector onto the space of occupied states with the property 
(D.15). 

On the other hand, we can start with a density matrix p with the 
property (O.15). It can be diagonaJi.ze.d [see Eq. (D. 1 ])] and the eigenvalues 
PI have the property 

(D.19) 

that is, they are either 0 or I. Constructing a SLater determinant from the 
single.pa.rtic1e wave functions with PI" 1 gives us the corresponding wave 
function i'. These single-particle wave functions .-p, are not unique1y 
determined by the diagonalization of p. Any unitary transformation among 
the occupied levels leaves p invariant. As we see from (D.16), however, 
such a unitary transformation multiplies the wave function Ii') only by the 
determiDAnt of this transformation, which is a phase. 

This shows that there is a one-to-one correspondence between p and 1+) 
in the cue of Slater determinants. In particular, we can use Wick's 
theorem (C.S2) and express the expectation value (i'101i') of an arbitrary 
operator 0 by the single-particle density p. . 

We next prove a theorem due 10 Baranger and Veneroni [BV 78. RS 7Th], 
which states that any single-particle density matrix p that belongs to a 
Slater determinant (p2 - p) can be decomposed in the foHowing way. 

p _ eiX(Jot -Ix, (D.20) 
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X a.nd Po are 
decomposition 

(i) X has 
diagonal: 

ma trices that are even under 
unique if we 

ph and hp matrix Inetncn.u the 

POXPo - "oXtJo - 0 

(00 -1 Po projects onto particle states); 

(iJ) that the eigenvalues ~ of the X have the property 
fI 'IT 

-4<](.. 4' 

reversal. 

(D.21) 

(0.22) 

prove this and establish the uniqueness of the decomposition 
(D .20) we use the opera tor 

with 

The product, with 
th.,II'1III>I',n ..... of the 

=1. (D.23) 

and is 

T'TT =; e4lx, (0.24) 

where the Hermitian operator X is uniquely defined by condition 
(0.22). By inversion, reversal, and conjugation, 

"'" e - 4i:x == e -4tXT at e (D.25) 

we see that X is invariant and Hermitian. 
I be a set of of 'M'T with eigenvalue IL- then TIl') 

is eigenvector with tbe same eigenvalue p. and 111l) an eIgenvec-
tor with eigenvalue Il·. This implies 

(xr+ -(- + -0, (D.26) 

and 

xr+ TX=O. (0.27) 

This in particular. that for an arbitrary real number Q. 

(D.28) 

and 

TO :- e -1'e1i"-1'e-:UXrrT - -1'~-Ux. 

1'0 is therefore time even. same holds for 

Po : - t('To+ 1). (0.29) 

Eq. (D.28) again 

XPo+PoX=X, (D.lO) 

which equivalent to (D.21). 

In the foIIowing. we Jome rules for calculating with sing]e-partic1e 
densities P of Slater detenniJlADts (pl. P. (] - 1 pl. An arbitrary matrix A 
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has the followingpp, ph. Itp. hh 8. in which p is diagonal: 

API' :- 0..40'; 

The three statements 

AJI"I-aAp; A¥=pAo. (Dr3!) 

A-Ap+pA. ~ A -aA+Aa # A"=AM;;;;O (0.32) 

are equivalent. two A and B obey the relation B - [A. pl it 
follows: 

(0.32) 

If, in addition, 

we can write 

For Hermitian A I with vanishing pp and M matrix we 
often define vectors 

(~. )-(~!:). (D.34) 

and find the 

(A.A)(!.)= ~A!;Bmi+AmiB;i=Tr(A 'B) 
In( 

(A'A)( _!.)-Tr(A'[B,p]). 

Next we some properties or a fa.mily of Slater 
I-z,(q» depending on some parameter q (e.g. the deformation) with the 
densities P(q). one wave function in this I~qo». we 
can represent wave functions by a ,.. 
operator p. only ph and hp matrix elements 
1~(qO», as (E.40)]. 

14>(q 

= po+ 2: P mJa;ai+ P!tai+am • 

IfIi 

(0.36) 

(0.31) 

• A 

The constant eventually detennmes a phase. The operator P generally 
depends on q and qo' only the limit q-+O it indepen
dent of q and we then gain 

... . a 
P!cI>{q» - i1: aq I-z,(q»· (D.38) 

For the density we have 

p( qo + q) - e -(IIA),/' p( qo)e (iITt) f/' (0.39) 
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and 

a - i [ ] aqp(q)= T P, p . (D.40) 

From the representation (0.18) we have 

a Pi' - a ~ li)<;I· 
q q i 

(0041) 

The ph-elements of P therefore take the form 

PmJ-i1t(ml oOq li)-i" J drfP!(r,q) adqfPl(r,q). (DA2) 

Very often the I~q» are determined II HF solutions (see Sec. 7.6) of a 
Hamiltonian H(q), which depends on a parameter q. From the variational 
principle (5.5) we get the Feynman theorem [Fe 39]: 

d oH 
dq <cIJ(q)IH(q)I~(q»-<~(q)laqlcl»(q». (DA3) 

In cases in which oH /aq is a single-particle operator, we can calculate the 
matrix elements P m.i in linear response theory (see Sec. 8.5.3). If we neglect 
the residual interactiOll, a simple perturbation theory gives (see~ for in
stance, S~. 3.4.2) 

------~- (0.44) 

where f"., ~ are the single-particle energies oorresponding to the operator 
H(q). 

D..3 Densities of DeS and HFB States 

In the case of generalized product wave functions I~> (see Sec. 7.2.3). we 
had defined the generali.zed density matrix 

( 
+ c/l«-) (~lcrc/I«-») (PlI' PC/I") 

- - (DA~ <~lcf:*"ctl4» <~Ici'ctl~) -1<;. I-p~,' 

Besides the normal density p (O.9), it contains the anomalous density I< 

(which is also called the pairing tensor). Under a unitary transformation D 
of the basis [for instance, Eq. (OJ I)], the matrices P and IC transform in the 
follOwing way. 

p-+D +pD. (0.46) 

We can therefore represent IC in coordinate space [see Eq. (C.26)]: 

1«1', s; T. s') - «(I)la(r'~ s')a(r. - ~ qip(r. s)*',.,qi,(r'. s'). (0.47) 
pq 

In the canonical basis Ik) (see Sec. 7.2.1) or in the pure BCS case, ICptI hru 



canonical form (7.25) and we get 

K(r,s; r',s')-

Working with the genera.li.z.ed density we can show that all the resuJrs we 
obtained for Slater determinants also apply to this case. 

D.4 The Wiper 

The Wigner transformation of the density matrix is defined. by·: 

1_,('1. p)-J d 3.s,.-U/A)"lIlp_,(Q+ ; ,q- ;). (D.49) 

Since p is a Hermitian operator, (0.49) must stay the same if we rep]ace p 
by p +. II, in addition, we take the complex conjugate. we see that 1 • .{q.. p) 
is a Hermitian matrix in the spin indices. The diagonal elements 1" ... III are 
therefore real functions of q and p. If we neg]ect the spin orbit force, the 
Hamiltonian is invariant with respect to spin revenal, therefore le, - 1 _,,' 
Under this condition the timo-reversal properties of 10 ( .. , p. t) are very 
simple: };, is even (odd) in p according to whether h is time even (odd). 

The inverse transformation to (D.49) is given by 

p..,,(r. r') - (2~1I )' J d'p eO/A)'" -'Y .... ( r ~ r' • P ). (D. 50) 

Often~ we wish to know the Wigner transform of products of operators like 
pw-(exp(ix)poexp( - ix)w. For this purpose we write the Wigner tra.n.s
form of the product or two general single-particle operators A and .B in the 
following form. 

(AB)w. J d 3rd 3r' d 3r" e- U/ II),cr-r')5(Q r~r )(rIA1r")(r"IBIr'). 

(0.51) 

The inverse Wigner transform (D.50) can also be written as 

(rIAIr')- 1 Jd3pd3qA(q,p)e(I/,I\)J'(r-r'}5(Q- r+r'). (0.52) 
(2,.,1\)1 2 

Inserting (D.52) into (0.51) and performing the r. r. and r'" integrations 
gtves: 

(AB) - _1_Jd3p' d~" d 3q' d 3q" e2i(p·,'-,'llo/A 

W (wit)' 

x A (q+ q', p+ p')B(q +q". p+ p'"'). (0.53) 

"In the fo1l.owing we UK Pw(~+I1/2, q-II/2)"'p(r, D; r,l7,) with Ihe spm in.diccI D. 0' and 
the center of m.&JiS coordinates q-(r+r')/2.I-r-r. 



ReplacingA(Cl+q',P+P, and B(q+q',p p') (D.53) by 

(~)(q +q', p+ p') _ "8/"1 A )<q, ,) 
allows us 10 perform the p'" and fiN lD14DlrllUC.na.. 

u.s to do the BY and .' 
derivatives act on which 
77b]: 

with 

H 

>W- A (q, p)e(iA/2)AB(q, p) 

...... ~...... .....-+ 

(D.S5) 

A-V,V,- VpV,t 

where the direction of the arrows 1..UY.l_ .. 'liii:t 

left or to the right. 

(D. 56) 

gradient acLl to the 

As a small example, let us calculate the 
energy density matrix (1J.l3): 

of the kinetic 

- ... 
T(q,P)-( :rP(rT') a~)w 

= _ ~ pe(lIII/l);Y(q, p)e(IA(l)A , 

I a1 

- ,,2 1(q, p)+ 4 -/(q, pl· 

Integration over p gives the local part of 

- (2~A)' J d'p 2m f(q. p) 
IPr 
4 2,;; 4p( q). 

In an actual calculation of the kinetic iIII:ft,. ... O'V 

does not contribute because it is a divergence of a VifI"r"rnr 

formula (0.55) it is also very easy to calcu1ate the 
commutator: 

(D.51) 

(D.50)J: 

(D.SS) 

a 

(D. 59) 

To lowest order in It. the commutator just gives the clusical Poisson 
bracket.. 



APPENDIX E 

Theorems Concerning Product Wave 
Functions 

In this appendix we shaIJ derive some theorems and formulae used in 
connection with the general single-particle model (Chap. 7) and in more 
extended theories that are based on it (Chap. 10). 

E.l The Bloeb-Mess1ah Theorem [8M 62] 

The _ ..... ~ ..... , ..... _.~ theorem states tha.t: 

A uniUJry matrix 6[If of tM follOWing special form can be decomposed into 
three matrices: 

'ftf-(~ ;;)-(~ ~.)(~ ~)(~ ~.), (F.I) 

where lhe real matrices U t.md V are diagon.al and of "'quasi" canonical'" jonn, 
as given in Eq. (1.9). 

The proof is based on the property that an Hermitian matrix p can be 
diagonaliud by a unitary transformation D such that 

p - D ... pD is diagonal with real eigenvalues Pk' (E.2) 

and that a skew symmetric matrix Ie can be brought into canonical form. by 
(generally different) unitary matrix D: 

i. - D +I{D" decomposes into (2 X 2) boxes of the form (_ ~ \) (E.l) 
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with rea] numbers "I;:' along the diagonal line [Zu 62]. In the next step, we 
show that if we have the re1ation 

pK - rep" (E.4) 

we can one matrix D which ............. & .. J4.-...._ p brings I( in to c:&UlOIIIQU 

form. For this purpose we fint ........... l";v .......... ~ (E.4) VUWIIII.&iJ. 

basis 

(E.S) 

This means "tt vanishes in this basis for aU values i and Ie with P,,'*Pk' that 
is, we can restrict ourse]ves to subspaces degenerate eigenvalues Pi' 
I( does not them. In these sub spaces p is a multiple of the unity. We 
can bring I( into canonical form in each subspace without 
changing diagonal character of p. 

We now apply these general """' ... ..,. ...... ...,'" to the transformation (E. t). 
Fint we that U is Hermitian poBi live semi -definite, 
this can achieved by a ........ _...,. for instance, 

(E.6) 

From we see that the matrices 

and 

(E.S) 

fulfill condition (E.4). Therefore. we can fi.nd a basis (given by the 
transformation D) in which K is in form and P as as U are 
diagonal with real eigenvalues ule ;> O. From (E.1) we get the 

'14;+ -I. (E.9) 

We now have to eigenspaces of U with 
Uk ,*0 those with eigenvalue O. the fint case we can divide "lie by Uk 

and find from Eq. (E.8) that Y canonical form with elements vk • In 
the second case we see from Eq. (E.7) that V is unitary in subspaces 
and we can shirt it either to the D or to the matrix rest is a 

In we see from derivation that the numbers Uk and are 
real. Any complex pbases can to the transformations D. 
As as we restrict ourselves to coefficients D, however. it may be 
interesting to use relative phases Uk and Vk' The corresponding 
BCS wave functions will then depend on them. 
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E..l Operators in the O._ .... ibIltlCle Space 

Using the inverse transformation to (7.1) we can transform all operators 
expressed by c + ~ c the space. We now give a few exam-

a Hermitian one-particle nn,_m·'I'nr 

fwct Cl' + t ( 
ii' 

we get 

with 

~-Tr(fp)-

11_( U+fU Y+j1)l+ U 

+ +h.c.) 

- V 

(E.IO) 

(E.ll) 

(E.l2) 

(RIl) 

(E.14) 

In the case of time-reversal invariance + - with l' - :!: I this means 
in the canonical basis (see Sec. I) 

F I! 
kk'''''' 

Fk.'f.- - + 
where ~:t and 1):t are defined Eq. (8.202). 

An exampJe of a Hermitian is the 

We get 

With the defmitions 

h-f.+f, 

rIm - c'lfI"'IIPP1'i : - (up), 
Pi 

(E.JS) 

(E. 16) 

(Rt7) 

(E.18) 

(E.19a) 

19b) 

(E.l9c) 
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we can write: 

HO-Tr(Ep+ trp- t~,,·) 

-Tr(Ep)+ lTr)Trl(piJp)+ ~TrlTr2("'" 

HlI_ U+hU - V+hTV + U+!lV - V+!l"'U, 

H 2O • U+hV*- V +-h TU*+ U+!lU· V+ 

"""","""""·1'\_.'-IVj..,.,, of these matrix clements in the 
(8.201) and (9.133). 

the case of vanishing pairing 
or holes: 

P., .... - a; for ~ > Ep; 13, + - af for (, (; 

representation, the Hamiltonian 18) has the form: 

0_ 2: (~i + t L: 
i J 

mit 
ij 

~ V"W )Pm+ Pi + + h.c., 
J 

+ P, + p" + Pj + + h.c., 

H 31 -1 L: f3m+ 13,'" ( CmttiR fJ" +/3,,- - ~ V""yP.J +-P.J.) h.c., 
m.i I'U,' }I' 

+ 

(E.20) 

(E.2I) 

(E..12) 

(E.23a) 

are gIVen 

arc 

(E.24b) 

(E.2~) 

(E.25b) 

(E.2Sc) 
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E.3 TbouJess' 

_wnlproduct wave I~o) which is the ~wn 10 

quast·fXUticle P. any other fHiPl"I.Pl"fll product wave .funcUOII 
which i3 not ortlwgonalto 

(E.26) 

when ~ - (4tol4t.) is a normalization I'IU'lt'IUn.nl a skew symmetric 
matrix. Thouless has this theonm for Slaler delerm.inants 4-0 • ~I. 

Two-quasi-particle states in this case are stales: 

To prove this theorem we start with two 
(j, P + and y, y + belonging to the runction I~o) 

fJt = L UOil + 
J 

"ft+ • L Uwcct + Vllkcn 
I 

and the operators y+ together with (1.6) by the "''1'\0IIII>'"'' 

with 

v- UO+U1 + Vo+Vp 

V- V,J VI + U,JVt • 

As we shall see in Section E.4, the overlap 1<~ll~o)l:Z by 
Nonortbogonality of !¢l,) and I~o) therefore means that we can 
and define the operators 

with the skew symmetric matrix (7.5)]: 

T . 

(E.27) 

operators 

(&28) 

P. p +: 

(E.29) 

(E.30) 

1) 

(E.32) Z :- (VU-1)iII. - U+ 

Since (E.31) is only a transformation 
I~ is also vacuum to the operators 
to a normalization constant We 
an.nihilates the r.b.s. of Eq. (E.26); 

y+) 

elermmes 14' i) up 
show that Yk 

(E.33) 
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with 

(E. 34) 

Using 

(&35) 

we see that the r.h.1. of Eq. (E.33) vanishes. This completes the proof of 
Thou 1 es.s' theorem and shows that Z is uniquely defined by 14>1)' In 
particular, it does not depend on a C-transformation among the quasi
particles y'" . 

We might ask whether we can represent wave functions 1cf)1) which are 
orthogonal to l4to) in a similar way. The answer is a generalization of 
Tlwul.e3J' theorem, which that a wave function IiI> which orthogo
nal to IcI»o> can be represented 1.1 a multi-quasi-particle state on 8. function 
t.l) which is not orthogonal to I~o)' 

IcP l> - .8b7 ... p~ I •• )t (E.36) 

with quasi-particle operators .8b. that annihilate 1.0)' 
To prove t.hi.s generalization and to give an explicit form for the function 

'''1)' we use the fact that the trans.formation (E.29) from (fJ, fJ "')~(Y. y"') 
is a general Bogoliubov transformation. We can therefore apply the Btocb
Messiah theorem again and find that it ca.n be decomposed into a transfor
mation among the operators fJ ... : 

(E.J7) 
k' 

a Bogoliubov transformation [(7.12) and (7.13)] to "quasi-particJe" 
operators y, y'" which have the vacuum 1.\) and a C-transformation 
i+ y+. 

In analogy to Eq. (1.18), IiI) can therefore be written as 
1'1 

li l>- II Pt· II (Up +1.ipP/.a'/)Icz,o>, 
i-I p>O 

(E.38) 

where b l ... bill are the blocked levels and U, > 0 does not vanish by 
definition. We therefore get for lett ,). 

I~I)- II (u, + v,P,+#/ )Icllo>- ( IT up)exp ( ~ v, p/p/ 
p>O p>o 1'>0 u, 

(E.39) 

which finish~ the proof .of (E.J6). 
The transformation eZI~o.> is not unitary, because it changes the norm 

of the state. We might ask whether there is also a unitary transformation 
[RS 77bl 

-e (E.40) 



with a Hermitian ~cle operator t which accomplishes the same. 
The answer is yelL can even be accomplished for ca.ses where I~I> is 
orthogonal to I~o>. 

To rind one possible choice. we again start with the transformation 
(E.21) and decompose the matrices U and V according to the Bloch
l,.. ... _LU theorem [Eq. (7.8)]. Since leIl l ) does not depend on the special 
choice of the matrix C, we use C- D + and get 

U-DUD+, (E.41) 

U is diagonal with the diagonal elements u.' and V can be written as the 
product of a diagonal matrix V with the elements VA: and a S, which 
has only diagonal elements 0 and I and 2 X 2 blocks of the fonn (_? lJ 
along the diagonal line [see (7.9)] 

v-v·s. (E.42) 

If we now define a diagonal matrix R with the elements 0 <; 'Ir, < 'IT /2 and 
Uk=COSfk , vt .... sinrk , we get 

V-cos R, V- S·sin R-(sin R)-· S, (E.43) 

with 

R-DRD+- and (E.44) 

where S is unitary and R and F are Hermitian. 
We can now define a Hermitian operator i, 

"~ + + T- ~ Tkk: 13k 131( + h.c., (E.45) 
k<k' 

which has only a two-quasi-particle part and where the matrix T is given 
by its "'polar decomposition" [Ga 72] as 

T= iRe iF 
- ie 'F • R*. (E.46) 

With the formula eABe- A 
""" B+[.4, B]+0/2!)[A; [A. Bll+ ... ~ it is easy to 

show that the transfonnation of the quasi-particles 

rTQ + - it "'" U Il +- + V R e Pi: e -.t:... k'k,P/c' k'kl-'/(' (E.47) 
Ie' 

has the matrices U and V in Eq. (E.43). Equation (2.32) gives a connection 
to the matrix Z of Thouless' theorem 

z - - (tg R ) . e iF, (E.48) 

which shows that Z diverges if R has eigenvalues 'Ir. = 1T /2, that is, Uk - O. 
The advantage of the transformation e i is that it is uniquely defined by 
the wave functions and I~O>. The matrix T is only unique if we 
restrict ourselves to eigenvalues rk of R in tbe interval 0 <: 'Ic < 'fT /2. 

Those considerations are a special case of a general formula given by 
BaLian and Brezin [BB 69, Hl 79), which holds for any Hermitian single-
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particle operator S bilinear in the operators Pkt 13/ 

s= LS~',l3tfJk'+ L (S::PtPJc7"+~c.). 
kk' Ie <k' 

The unitary operator elS can be written as 

els _ <e IS ). eZ ei'Y eX, 

with PI)=O and 

i - 2: X kif' Pk , 13k.r - 2: .Y kk' fJt fJk" i - L ZItJc' 13t 131c~ , 
k <. k' kk' k <. k' 

The matrices X, Y, and Z can be derived from the matrices U and V 
obtained from the unitary transformation of the operators fJt [in analogy 
to Eq. (E.47)]: 

namely: 

The matrices U and V can be expressed by the matrices S II and S10 in the 
following way. 

V· )-exp{i( Sll 
U· - S2O" 

E.4 The Onisbl Formula 

In the con text of many problems (for instance, in the GeM method), we 
need the overlap integrals (c)llfbo) of the norm and of other operators 
(~,161~o) for general product wave functions I~o) and I~l)' In tbe case 
of pure Slater determinants such formulas have been given by Lawdin [La 
55]. They have been generalized for HFB wave functions by Onishi and 
Yoshida lOY 66]. A very elegant derivation, which can also be applied to 
the boson case I has been given by Balian and Brerin [BB 69]. 

These formulas ca.n only be used if the overlap «()I!()O) does not vanish. 
In cases where it vanishes we can use tbe representation (E.36) for I~I)' 

With the ddinitions (E.30). (E.32), and (£.43) the overlap integral for the 
norm is given by'" 

R). (E.49) 

Before we give tbe proof of this formula. we rewrite it in different ways. In 
the basis where U is diagonal. it is easy to show that 

det( U ) - exp(Tr In U). (E.50) 

• Since the wave functions 1.0) and ,et l ) from the defmition (1.1 S) are only Jiven to a 
phue, there is also a phue opeD in the forlowiDg formulu. We a.uume U to be Hermilia.n 
and positive definite (lee Eq. E.6). 



The Onishi Formula 619 

the transformations (E.28), we the wave functions 1.z.1> 
operators c,+ and the vacuum 1- > (which is only 

(ttl I > +0). and get from (BA9) Zl-( U,-I). 

(-leiteZoI->- {iTr(ln(l-ZrZo»}. (E.51) 

Next we give the formula for the overlap: 

(4)lIH . {Tr( (p I~ + i Tr,Tr.(plOvp I~ + i Tr1Tr2( "OlV"I,)). 

(E.52) 

Where notation of F..q. (E.19) is used, transition densities P 10, ,,10 

and ,,0. are defined by 

(E.53a) 

(E.53b) 

(E.5lc) 

can be expressed by the densities Po, "'0' the HFB coeffi-
cients Uo• VOt which belong to It)o>' by tbe Thowess matrix (Eq. 
(E.32)], or after some calculations with orthogonality relations for 
Uo, VOl U. P V. in a more symmetric way by and I [see Eq. (E.51»): 

v.'" z· u + - - Z (I - Z· o 0 0 1 (E54a) 

1\:10_ - v.!Z· V+ = o 0 Z (1 - Z· '0 I 
_ V*UT"'U T o I , 

(I-zr -1 

We see that for l4>l>~I4>o>' these over into the usual _~,_._, __ 
p, ", ,,'" . the same way we can calculate the overlap integral for arbitrary 
operators expressed by c/ and C/O We must fLnt derive the expectation 
value with respect to a HFB wave function. According to Wick"s theorem 
(C.4), we can express such expectation by the contractions p-c"+'c, " 

c .... To get the overlap integral, we only have to repJace p by 
p 10, " by ,,10, and "Jil by "OJ", and multiply by (<lJ1IclPo). Obviously, these 

are also valid if we replace the bare vacuum by an arbitrary 
HFB function 14» and the operators c+, c the corresponding quasi .. 

of the fonnuJae (£.49) and 
(E.54): 

(4)II~'O> we present I~l> the canonical basis of the transforma-
tion This is done in Eq. (E.l8). (4J1IclPo> does not vanish. 
are no blocked levels and we get <~llt)o> as a product of all the real 
positive numbers lip' These are the two-fold degenerate eigenvalues of the 
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matrix U [Eq. (E.41»): 

. 1/2 

II~o)- n (u,,)-( IT u,) -(detU)lfl. 
1">0 p ~o 

(E.55) 

Next we derive the overlap integral for an arbitrary operator by 
the basis operators c. c .... From Thouleu·s theorem, with (E.34), we get 

1~1>-,il.oX.olc)I>' e '''0)-'''0>, (E.56) 

<.1Ic,7 "'c;CI:
1

' •• c~I.O)-<~ll~oX~old,1 ... d~dk, ... dk,'.O>' (aS1) 

where we have introduced the operaton 

(E.58) 

These operators obey Fermi commutation relations. We can therefore 
apply Wick's theorem (C.4) to evaluate the matrix element (E.53)~ which 

.. - r-- ..0.. 

shows that we need only the contractions dd, dd, and tid. They are given by 
p 10, f( 10, and ",01·, respectively, in Eqs. (E.S3) and can be calculated. by 
expreuing the operators d, il in terms of the operators f.J, p + : 

dr = L U6lJc f.Jt + L(Vo+ U3Z*)ufik' 
Ie Ie 

(E.59) 

E.S BogoUubov Tra.formatloDs for Bosons 

AI in the case of fermions., starting from a basis set of boson operators 
B

II
, B/ with the "bare" vacuum 1-), we can make a Bogoliubov transfor

mation to other bosons 0,.,0,.+ as 

(E.60) 

in which the matrix ex is unitary with respect to tbe metric 

- (E.6J) 

Corresponding to the Bloch-Messiah theorem (E.J), we can show that 
each matrix '!X, of this kind can be decomposed in the following way. 

(E.62) 

where D and C are unitary and X and Y are diagonal with real nonnega
tive diagonal elements x/I:' Ylc with the relation x;-y;- I (Bloch-Messiah 
theorem for bosons). 



ft- 2: /,.,8/8r +! (gp8/ B.,+ + h.c.) 
JU' 

may be PY'I"I"_1IlAt'I by the new bosons 0 + in the foHowing way . 

with 

.. tTr(F"- f}+ LF;"IO,.+O" ! L (F;O,,+O .. + +h.c.~ 
JU f'" 

n_x+jX + Y+rY + +gY 

X+fY*+ Y+rX· X 

The vacuum I.) belonging to the bosons 0 

+ Y+g·Y*. 

uniquely defined by 

O"If)-O 

(E..M) 

(E.65) 

(£.66) 

If we have 
and if we 

vacua If)J and I~I) with the operators 0(<<» and 0(1), 

X- Xo+ Xi - YO"'Y1; Y-Xly.- YlX IJ (E.68) 

we can n",n'l.I",. a Thouless' for bosON": 

If)l)=(~ol~l)·exp( f ~ z"."O:O) (0)+ )1f)J (E.69) 

with 

(E.70) 

This is always possible, because vacua that are connected 
by a finite Bogoliubov transformation are never orthogonal. In omtrut to 
the fermion it is impossible to a multi-baton state 
OJ+ ... 01\l+I4liO> as II new vacuum for new In analogy to (£.40), we 
can also write 

(£,11) 

where 

1 ~ T 0(0)·0(0)+ + 
:z'::::'" JIII"" ,. (E. 72) 

/P' 

and the matrix can be found in analogy 

T -iDRD T
, (E.73) 

where the matrix is a diagonal mAtrix with sinh and D and Yk are 
given by the decomposition (E.62) of the transformation (E.68). With 
R - DRD +, S - D* D ... - e -IF we obtain 

z-tgh(R (E.74) 

ope:ratiom are Iho poIIjble. a term in the 
not to complicate the formulae, we treat ....ter [Eq. (E.77)}. 



For overlap integral (".'.0> we in _uvlIU' 

formulu (E.49fr.). 

(~.I.O>-(detX)-1/1-(det(X()+Xl- yo·y.»-I/l_exp(-

(E.15) 

Overlap integrals of GlIIIfn~ 
theorem and the 

10 (·.1 ... I 
p~.IIIIIIIII-----_(Po+J6Z·Xo )~. -Z.,(I-ZrZo)- Zr, 

-ZO<I-

(1-- , 

where 

Po= YcTYJ'; "0. Y~Xl; 20 - ytiX6-1; ZI- ytXT I. 

In the boson case there still a further type of linear transformation 
to a new set of boson namely tral'UlatioflS or shift "''''''' ......... 

o· -B++c· ". ,.,. II 

with complex the form 
of a COMrent stale 

and the overlap ....... T'.u ...... 1"l two OU~iOD vacua IS 

(E.79) 

In such cases there 
bosons: 

non.vanishing expectation values of single 

(E.80) 



APPENDIX F 

Many-Body Green's Functions 

In appendix we want to give a brief ouiline of the 
body Green's functions (Gf). These techniques are 
very much to nuclear theory, whereas they are 

areas of work. The advantages of the 
very flexible constructing many-body 

a direct physical interpretation, 
or in the many-body medium. 

interactions can be systematically investigated in this 
of the brevity of this outline we urge the reader to conswt the current 
literature and text books for standard fonnulations [Mi 67, AGD 65, No 
641., Ma 67b, FW 71] and we will thus only go into the details where we 
feel that our deviates from the usual one. 

F.t Siagle--Partkle Green's Function and Dysoa's Equation 

We want to the so-called equation for the 
which is defined by: 

G(l, l')-(- T { a ( J )a -+ ( I') } 

- - ;9(,.- al(tl)a~ 

+ i8(t1y 'l)<Olai~·(tr)aI('I)IO). 1) 

and henceforth we use the convention that numbers brackets 
quantum numbers {p} to characterize the single-particle state. 
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SUCh as momentum, spin, plus time, that (1. ..Q.(PI/I; Plti). 
Repeated arguments shall summed or integrated (time) over .......... '_ 
otherwise stated. A number as an index comprises everything the 

In (F. I), 10) stands for the exact ground state of the A particle Iystem 
and is the time ordering operator (C.49). The single-particle .... """"' ..... 

develop time along with the two-body 

(F.3) H= :~>:latal+ ! 
I 

The usefulness of the single-particle GF of (F.I) comes the fact that it 
concisely contains many directly measurable quantitics, such as: 

The single panicle demity 

1'= 

wbere • .(w) the of G(l, 1'): 

+00 
GII,(w)- d(t.- tl.)e'IioP{II-lrl(;(l, I'). (F.S) 

ClIO 

(it) The excitation P~'If'O<J." of the A:t J fNl"tick .Jyltem: This can be made 
explicit in using a of states in (F.1): 

GlI..(,.- 11,)- - i ~ 9(/1 '1·>(OIa1!p)(,.laflO),.-O/A)(.I:.,A+I-BI)(l j -',,) 

I"{A + 1) 

or 

+i 
I) 

(F.6a) 

'" ; 10) ~ <OIa~ 1,,>(,laIIO) 
LJ --------+ Ii LJ ' 

IO{A+I) hw- +1_£;)+"., r(A I) ~_(£:_E"A-I )-hJ 

(Ui) The ground state UFU"Y'O'U 

Eo-(OIH 
i 

I11III;--

2 Ii 

of the Hamiltonian (F.3): 

1 =EA%llp A 1 ,. , 

(F.6b) 

(F.7) 



where we have used the equation of motion for the operators a, a +: 

ih~a(l) - E1a(I)+ j(I), (F.Ss) 
vII 

with 

(F.9) 

We now proceed to derive Dyson's equation. With the belp of Eqs. (F.B) 
we can establish the equation of motion for the OF: 

GOO-I (I, 2)G(2, 1') - 8(., 1') + GU( I), 1') (F.lO) 

with 

6(1, 1/)-8\1'6(tl-/I')~' 

Goo-I(I, 1 ')=[ 0°0 I] 11'( II' t d = 6(1, 1')( iff a~I' - 41: 1'). (F.l I) 

and 

G(j(I), 1') - - i(Oi T (j(l)a+(l') }to). (F. 12) 

Applying the equation of motion again, We obtain 

GUO), 2)G OO -
1

(2, 1')- VI 114'<Ofata410)h8(t l - '.')+ GUO), j(l'», 

(F.13) 

where we used the form equivalent to (F.ll) 

G"-'(I, 1 ') - ( - ill a~, -', )6( I, I') (F. 14) 

and GU( 1). j( I j) is given by 

G(j( 1). j(1 '» - - i(OI T {j(I)j+ (I ')} 10). (F. J 5) 

The inverse of G( I, 1,) is defined by 

G- 1(1.2)·G(2,1')-8(1, )') (F.16) 

and we can therefore write 

G OO-
1
( 1, 2)G(2. 1') - G - I( 1,2)· G(2, 3)G oo-

1
(3. 4)G{4, J '), (F. 17) 

which yields. together with the adjoint of Eq. (F.IO), 

G(1,2)Goo-'(~ 1')-8(1, 1')+ G(l,j(l'», (F.lB) 

the rela lion 

GO O
-

1
(l,2)G{2, 1')-8{1, 1')+O-I(I,2)G(2,j(3»G(3.1'). (F.19a) 
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In same manner we can derive 

G( 1, 00-
1

(2, 1)- 6(1, (/)+ G( I, 2)G(j(2), 3)G -1(3, I'). (F.J9b) 

Multiplying (F.13) from the right with a single-particle and using 
(P.J9a), we obtain: 

G(j(l),I')- 2J .. <OIa:ta .. IO)G:w(t l ,II·)+RU(I).j(2»G(2, I') (F.20) 

with 69]: 

RU( 1), j(I'» - G(j(l), j( 1'» G(j(]), 2)G -1(2. 

Inserting 

or 

with 

(F .20) into (F. 1 O} yields, after Fourier trauforming, 

(~ (J)Gu{w)= 811, M11(w)G:W{w) (F.22a) 

Mu'(w)- Mr,,+ M:,{",), 
M o -~ _til U' .... 111'..,... .. ;/1 

(F.23) 

(F.24) 

(F.2S) 

Equation (F.21) the weD-known Dyson equation and MOt J') the 
ma.u ~rator, which has a (frequency-

MO and a dynamic (frequency..(lependent) part M'. The 
n""'~4L_JI'1 somewhat unusu.aUy, and we shaU come to its significa-

the approximation of M (1, I') which determine the 
G(I, I'}. Let us first make the most "" .......... _ approxun8-

tion and drop M' completely; this yields 

("w- E1)gll{w)- 8J1'+ r l1 I'(w), 

r u ·= &12 .... 1 ~: g41(W)' 

(F.26) 

(F.21) 

a closed set of nonlinear equations are equivalent to 
the -Fock equation of Chapter 5. This can seen most easily by 

W· I' of (F.26) into (F.1) and observing that the resulting 
the ground state energy is exactly of Hartree-Fock form 

(5.40). Also, in moving towards one of the poles of g II' in (F .26) we recover 
exactly the Hartree-Fock equation (S.44). In analogy to (F.6a~, b). the 
formal or is then given by 

gll'(w) - h( Iko>~ -: i~ t A( ",:),.: (F.28) 

p operator and h the A.u.u.l.~VLUQU (5.37). 
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Ana1o~~ we have: 

g(l,I,)- 1(9(/1-/1.)(1 p)-8(11.-/.)p)11(e- U/ A
)II('1 11'»21" (F.29) 

In order to beuer understand the significance of the dynamic part of the 
mus operator (F.25) we will first show that the complete mass operator 
oorrespo.nds to the genera] energy..<fependent optical model potential 
for elastic nucleon-nucleus scauering. To show this we work. in the 
momentum representation and write for the elastic scattering S-matrix in 
the usual way 69]: 

(F.30) 

with 

,. 00 ~-/{;Ill'IJ)II"a,+ (/)10) 

- lim e-I.f.Ep-H)·!"a+IO); 
I~~ , 

(F.31) 

p'l 
Ep .... 2m +E:. 

We can therefore express the S-matrix in terms of the single-particle OF of 
(F.I): 

(F.32) 

We now rewrite Eq. (F.12) in the following form. 

G(l, 1')_Go0(l, 1')+Goo(I,2)T(2,2')Goo(2', I')l 

T(l, I')-M(l. J')+M(J,2)GoO(2,21T(2', 1'), (F.33) 

where GOo is the inverse of (F.ll), viz: 

Gp~~I(/1 - t..) 

- illp,;.CXP! -! ;!(I,-I")]'(8(I,-I,.).e(PU2m ->.) 

(F.34) 

and h is the Fermi energy, that is. 0 00 is the single-particle GF for a 
completely free many-body system. The equivalence of (F.33) and (F.22) 
can be established by simple iteration. Using (F.34) and (F.33) in perform
ing the time Iimir we find for (F . .32): 

SPI,'I = 8'IP,- 2"';T'IP~(w~ pt /2m)8((pr- p;2)/2m). (F.35) 

We see, therefore, that the matrix TO. J') defined by Eq. (F.33) corre
sponds to the scattering T-matrix of elastic nucleon-nucleus scattering. 
The second of Eqs. (F.33) then also (ells us that M(1, 1') corresponds to the 



model potential, which is generally, of course, 
and nonlocal. Usually the optical potential is derived 
Feshbach·s projection operator formalism (cr. Sec. 4.3.2) 
plete set of shell model Ips 2p-lh, 3p -2h,.,. 
2p-lh,3p-2h,. .. CODloo:nenll 

that of an ··al'9_'''II'I.I'''' 

aU COtlpttllP 
""It __ t~v ... DOltenUaJlS. we can 

and instead write a 
larger space (examples be given later). The mall"""""'''''' 
complex and non-Hermitian quantity and, as usual, special 
be observed for the calculation of eilenvecton and 

dependent 
the help of 

the com-

operators. We do not want to go into these detailt., and refer the reader to 
the literature [BD 71. Appendix C]. 

AI we have the one-particle OF on the 
knowledge of the mall ................. In order to be able to obtain some 
approximation for it we have to learn how to construct a perturbation 
series for M. 

F .. 2 PerturbadoD Theory 

Before we go into perturbation theoryt we wouJd 
give a very brief outline of how to represent graphically the 
expressions we are going to with the GF theory. These 
representations are useful for grasping at a glance the physical 
content of an eventually rather complicated equation. We wilh to 
the point, however, that we are going to avoid as far as 
relations using purely graphical arguments. Instead, we shall try to derive 
fonnulae analytically, in the case of perturbation theory. 

The single-particle 1) a function of two times t I' t I' of 
two parts, one with II> 'I' the other with '. < '.'. We will represent this 
function on a horizontal by a straight line going from I" to I.: 

G(I, I') ~ .. Of" (F.36) 
t l , t. t, t., 

The arrow gives the a going from t I' to I" Defining the 
as increasing left to we can then say that .. the particle nrnnlll_ 

gates from I., to It' if II uthe hole propagates from 'I to t/' if 
'I' > 'I' In this context we should recognize that the first part of 1) just 
represents the overlap of wave functions with a particle added to the 
ground state at time I., and I. '1" In the second part, a hole has 
created at time '\ and'l' t., In the pure HF approximation (F.28), only 
the first part survives if it a particle (above the Fermi level) and only the 

• The cqwvalenc:e of the UULI ........ poteDtial defined by (be Fahbach projor;:tion operllOr 
W&J.IIIQ.J ud ODe given in .. pcrturbative batmenl II I. somewhat tricky 

which we will not ttelt ben:. 
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second one if it is a hole (below the Fermi level). In general. however, both 
parts contribute to the perturbation series (see below) of a given order. 

The antisymmetrized matrix elements of the two-body interaction wiIJ be 
represented by a dot: 

(F.31) 

'&n1.,,"1"1111' the dot must always be joined by four lines (one particle GFs) two 
them going into the point at 12 and two leaving it at 34. 
More particle OF!» (see below) will always be represented by as many 

1,1 there are particles (or holes) connected by a bubble. 
The Dyson equation (F.22) can now be represented in the following way 

.. = --II' - - + -.. Q + -+-~ (F38) 

with 

® - ~ (F.39) 

where R stands for the special combi.na tion of G F's figuring in (F .25, 2). 
The broken line in (F .38) represents the completely free OF GOo of Eq. 
(F.34). 

In order to derive perturbation theory analytically (which has the virtue 
that factors and signs of specific can be obtained straightforwardly), 
we start out from the defi.nition of the so-called multi-time n-body OF: 

G(1,2, .... n; [',2', ... n') 

= ( .)"(01 T {a(l)a(2) ... a( n)a'" (n') ... a + (2')a+( I')} 10) 

-(-i)1I L (-)l'p(9(/ 1-12)·9(t2-t3)"· 
.U_li"fI'IIm-

. (Ola( 1 )0(2)'" o(n)a +(n') ... a + (I')IO)}. 

(FAO) 

The definition (F.40) implies that the operators are always ordered in such 
a way that their time arguments increase from right to left. It can also 
easily be seen that expression (F.40) is completely antisymmetric with 
respect to the interchange of any two of the indices. We want to write 
down the CCluation of motion for the GF. (F.40), which can be easily 
proved for the one- and two-body case; it is, however. tedious to prove it 
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in general and we the interested reader to the standard litera.ture [Mi 
67, AGD 651: 

Goo-
I
(I,I")· (1'''',2 ... 11; 1' ... 11') 

II 

- (- '8(1,/')·G(2 ... n; 1' ... 1'-1,1'+1,. .. ,11') 
"" 

- ~6(1,11' J; 1",11+1)·G(I"",2 ... n,(11+1)+; 1', .• (11'+1)++). 

(F.41) 

A plus sign on an mea.ns that the correspoIldu:ag time argument 
has to be by a positiveinfmitaimal 1""-pp11+O 
and 1 "" + - PI' t I + 0 The matrix element of the interaction is 
giVeD by 

(F.42) 

It the equation of motion (F.41): 
1\1 

6(1. .. n; 1' ... 11') L (-i+ I GO°(l,I')G(2 ... I1; 1' ... 1' 1,1'+1. .. 11') 
r-t 

- ~ GOQ(l.l"')V(l"/~n'+ 1; l"'tn I) 

.G(I· .... 2 ... n,(n+l)+; 1' ... n'1{I1' 1)++). (F.43a) 

adjoint equation bas the form: 

" 

(F.43b) 

We see that the equation of motion relates the n-body with the 
(11 ± I)-body From Eqs. (F.43) we quite the expression 
GOOO ... I1; I' .. . n; of the n-body GF in the where we 
neglect the two-body interaction completely: 

(F.44) 

It then how the first order expreuion of an l1·body GF bas to be 
calculated: we first calculate tbe first-order contribution of the one-body 
OF (F.44) for the two-body OF. The two-body OF couples to the 

three-body GF. The first order of the one-body OF is 
the preceding step, and the three-body CaD calculated 

to by (F.44); this yields the order of the two-body GF. 
on with scheme to calculate order of an n·bod~ 

........................ order we 1 .. .£'''''1'1''''11'' expressions ant 
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we can then set up an anaJogous scheme. This can then be repea ted to any 
order. 

F.3 SkeletoB EXI)8B!1IOII 

For many problems., we are not so much interested in the representation of 
the expansion terms by G00(1, 1 Ts, but we want to have an expansion in 
powers of exact G(l, )')'s (skeleton expansion). That such a partiaJ resum
mation of the perturbation series is possible can be shown by an investiga
tion of the series involving the G00(l, 1')'8 only. We can derive the skeleton 
expansion by multiplying (F.43a) from the left with (F.l9b) and usiDl &po 
(F.9,12): 

III 

G(L .. n; 1' ... n')== L (-)'+IG(1,/,)·G(2 ... n; 1' ... I'-I,I'+I. .. n') 
I-I 

- ~ G (l, 1 iIi)V ( I ill, n' + I; 1 ". n + 1) 

.R(I",2 ... n,(11+1)+; 1' ... 11'.(11'+1)++). (F.45) 

with 

R(J ... n,l1+ 1; 1' ... I1',n'+ 1)= G(I. .. n, n+ J; l' ... n',n'+ 1) 

-G(I,n+ 1; I",n'+ l)G- 1(J",2"')G(2",2 ... n; I' ... n'). (F.46) 

A1; in the case of the expansion in powers of GOo(1. 1'). we see from (FAS) 
that for the skeleton expansion the zeroth order skeleton contribution is 
given by 

G"k~(l. .. n; 1' ... n')=Go(L .. n; l' ... n')-dettG(i,)I, (F.47) 

that is, to lowest-order skeleton the n-body GF is just the antisymmetrized 
product of corresponding one-body GFs. Proceeding now in essentially the 
same way as in the completely free case, we obtain from (FAS. 46,47) the 
successive order of the skeleton expansion. We should note thereby that 
the lowest order of (F.46) is not the antisymmetrized product anymore, but 
the second term on the rhs of (F.46) takes out of the first term just what 
has already been resumed in the lowest order of the first term on the rhs of 
(F.45). The reader is invited to convince himself of this fact in taking a 
definite example. 

The above prescription to derive the skeleton expansion is straightfor
ward, yielding the right signs and prefactofS of a given order term automat· 
ically. Depending on the example and the order. the derivation might be 
quite tedious. Practice is unavoidable to perform these calculations eco
nomically, which is a common featu-re of aU perturbation expansion 
techniques. In order to become more familiarized with the procedwes we 
propose to verify the following fact: Expression (F.25) for the dynamic 
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FlglB'e F.l. Second-order contribution to both tCnrLI of (P.,"). 

part of the mass a generaliz.ed three~body 69]: 

R(l,2,3; 1',2',3/)-G(1,2,3; r,2',3,) 

and these 
What 

-G(I,2; l'''''21G-I(1~~ Im)G(I"'. 11. 

and terms on the rhs of (F.48) {to 
with the structure shown in Fig. I and that they 

One says that the dynamic part of the mass 
that it contains no 

by cutting one fermion line. A closer 
of the second term of (F .48) are 

W-Illt.;C,l1 equal terms contained in the first 

The secom;I-oJ ..... """' ............. expansion of the mass operator can 
(FA8). with (F.47), to give 

M(2)(1.I')= tv(l, 2'; I"'t 2)6(1"', 1")G(2, 3')G(3, 2')13(3', 1"'; 1'), 

(F.49) 

which is graphicaUy in Fig. F.2. In Fig. F.3 we very 
schematically some higher-order terms contained in (F.48). In the drawing 
we do not the exchange graphs. 

Ftpre 
operator. 

+ 

3' 

2' 

+ 

:x: + 
• 

+ ::;: 

Higber-order terms contributing to the contained the mass 

FA Factorization and Briickner-Hartree-Fod. 

of n-body GF's is the fact thaI they approxim.ately 
products of lower can be verified 

study of the corresponding perturbation In Fig. F.3 
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we see, for example) that the five first terms are just the beginning of the 
following factorization. 

R(I,2,3; 1¥~2',3')~G(1.1')·G(2,3;2'.3/) 

+ ([ G(2, 2')' R(l. 3; 1'3')-(3~ 2)] - [3' H> 2']} 

+ {[ G(~ 2')' G(], 1'). G(3. 3') - (3 H 2)] - [3' H 2']}, 

(F.50) 

with 

R(1.3; 1',3')-G(I.3; 1'3')+G(1,3')·G(3,1'). (F.St) 

The function (F.St) is identical with the li.near response rune· 
derined in (8.130)"; the fact that we have to add tbe second tenn in 

1) can be verified in comparing (F.SI) with (8.131). 
A confusing featu.re for the beginner is the fact that the factorization 

(F.50)--that is, aU terms apart from tbe triple products of one-body GF's 
I'WI gi.,e the COf'r«t lowest-order skeleton term of (f.48), that is. it 

does not reproduce expression (F.49). The factorization is only valid for the 
correlated parts? that lsl for the third· I fourth·, fifth-, and aU 
corresponding higher..order diagrams (Fig. F.3) contained in (F.48). In 
order to adjust the correct lowest-order contribution, we have to add to the 
factorization the triple product of G(i, j)'s in {F. 50). On the other hanc:L 
the correlated parts sum up the infinite sub-series contained in the exact 
two-body correlation functions figuring in (F.SO), therefore factorization 
may be a powerful approximation. 

We recoguiu that the first term on the rhs of (F.5O) sums up the 
particle-particle (pp) correlations (see Fig. F.3) ilnd these are the impor
tant ones for the treatment of short-range correlations introduced by the 
hard core of the bare nucleon-nucleon force, as we dilcuued in Section 
4.3. Therefore, if we want to treat only those correlations, we can drop the 
other terms in (F.50) and write for the mass operator: 

M(I.l')- T(I,2; 1',4)G(4,2) (F.52) 

with the T-matrix 

T{l.2; J', 4) - v( 1,2; 1',4) + ~v( 1,2; 3'4')G(3', 4'; 5.6)15(5,6; 1'4). (F. 53) 

There exists a weU*known integral equation for the two-body GF figur
ing in (F.53) (see below) [Mi 61]: 

Gp,2; 1',2') - GO(l, 2; J',2') 

- !G°(1. 2; 3, 4)K"(3, 4; 3', 4')G(3'. 4'; 1',2'), (F.54) 

.. The response function defined in (8.13{)) is in time space for ,) ... Ii and 11 - t; given by 
R(J. 3; 1'3,)- is(,.- t.,)(OI[a*(l'}a(I), 0+(3')0(3)110). Tb.iJI ddinition diHen from (F.51) 
by the !lign of hJ in the 1I«Ood term of (8.IJ.O). by Iln additional 'IlCtor (-l) 'by 1M onI.er 
of the fermjon opera~nI. Since the phYJic:aJ con ten I of bolh cierillitiOllll il the we an 
work wlth oolh functiolU. 
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where K'" is an effective to lowest order is given by 

K"(3, 4; 3', 4/)~ ,4'). (F.SS) 

If we furthermore replace 
expression using (F .28, 29) 
contribution; it can 
density and are therefore supposed 
bution; see, [Ma 61bD, we 
Briickner-Hartree-Fock 
the T-matrix (F.53) 
rise to an energy dependence 

We now have to recog'lize that 
only on one time difference. giving 

trarufonnation. If this energy 
dependence is replaced by we can identify Eqs. 

equations (5.72). (F.52) exactly 

F.s Hartree-Fock-BogoUubov Equadoos 

onJy Bruckner Hartree-Fock theory but 
theory using F techniques. For this 

purpose we again retain only the first term on the rhs of (F.50), because we 
already know that pairing are pp-correlations. The hole-GF 
GO, ] ') in the first term of {F.5O} calculated using only the static part of 
the mass operator. For the two-body OF we need to give the spectral 
representation: 

G12.1'r( t - t') = ( - i)2(OI {ol(t)ol( t)a2~ (t')ai~' (t')) 10) 

- ( - ii { 9(1- tf) (Ojo'lollp +>(p + I02~Q~10>t' -(IIIa)(Er·
l 
.. E.tHI-t') 

" 
+ 9( t' ,) +!p -)(p -laJ~IO>t' -(IIA)(Et -B:-1)(1-f) } 

(F.56) 
or, after Fourier 

(F.57) 

where the E: 2::Z ,E~ are eigenenergies. 
Th.e HFB theory implicitly assumes that in the p-sum of (F.57) only the 

ground states are teJev&.n they are supposed to 1Je so collective 
(which is a constant) the residue of 

almost all the strength. As we explained 
that in the sum or 
the ground state 
Chapter 11, the ..... ..r ............ 
feature of a V'OQ.~ 

Remembering that 
becomes a hole ID 

collectivity of a specific mode is an 
the transition to a superfluid state. 

single-particle GF of the first term in (F.50) 
mass operatort we get [u.sing (F.21), (F.22).. and 
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(F.50)] the following which we have 
isolated the so-called poles [Pi 61] .u .............. part of the mass 
operator'" (for the derivation. one should 
(F.29) and Fourier transfonn at the 

time-space using 

(AU) - f:.)Gu'(w) - I' + 

-
with 

+M 12 . G:u'(w), 

I-p 

(F.SS) 

(F.S9) 

We can forget about the in denominators of (F.SS) 
because we shall only .......... Ju .• ,,'....... state problems. The next approxima-
tion we can for the case of a ... Lt. .... """" transition to a superfluid state is: 

nnr~2(Et+l 

nn~~2( 

Et) 2A(+). 

This approximation implies that the correlation energy of the two 

(F.ro) 

forming the Cooper pair zero. of course, is another assumption we 
can make in treating a phase transition: the specific mode becomes so soft 
that its excitation energy to zero. We finally ma.ke a further (number 
nonconserving) approximation in that for large systems (this 
approximation can [MJ 67, Sec. 1.4.6D: 

or 

+) -) -A. 

Thus we arrive at the so-called Gorkov eql4QJions [Go 58]: 

(AU)' - hr)IJG:u.-A611.-AI2F! •. , 

(law' + h'lII)1'1.F!I' == At!G2I" 

where we have made the identification /lw' = flw - A. h' = h - A, and 

(F.61) 

(F.62) 

..... (~,! h"" ) 12~~,G2T' (F.63) 

.. We should notice thaI for a hole line the direction of the Dy.on equation iI inverted and, 
therefore. of the '1Dpe-plUt.icle potential i.B figurin, in (F .58). It am 
allLO be verified the ,R·fuoction in (F.39). however, becomes irnportul1 
only for Hamiltonia..nl. 
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On the of (F.62) we "''''''''''''''Jlu .. '''''' the familiar HFB matrix of (7.39). 
As we can write down a representation for G(I, 1') (F.6a., b) 
and from (F.63) we see that this also possible for P(l. I'): 

VI/e ut" 
. +.. E . t 

-"1 n"'- A + ill 

uric V"k VIA: ur'k 
£Ic "' + ti", - £k n, 

(F.64) 

From (F.64) we find that at the poles Eqs. (f.62) are identical to the HFB 
equation& (7.42). 

In to close the sYltem of equatiolUl we have to show bow A is 
obtained from the 5OIutiou GU', . For thiI purpose we write for the 
ampUtuoo appearing in (F.59): 

(0Ia,a4IA +2,0) 

. . (01 T {a(3)a(4}a + (2)a + (I) }l0) 
;;;; lim exp(-d~t) . (F.65) 

''''''1"".+0--00 
':t 1Oll ,,,+0-+0 

This relation [WE 70] can be shown to be true in passing 
limit to the Abelian limit~ 

tbe time 

IA + 0)-
o -11J dte7,J,--_e~"",:"""",~~ 

-00 (A + 

-
= 2,0). 

(F.66) 

For the two-body GF appearing in (F.6S). we can make use of the 
equation (F.S4); one of the one-body GF·s in front of 

lowest-order expression and inserting (F .54) wi th 
into we obtain~ with (F.6J) (F.63), the "gap equation'''; 

All .... iV!'l34 -L1dwF34(W). (F.67) 

together with (F.62) we a closed system of 
fact we have replaced one of the one-body GF"s in 
lowest-order expression (F.26) seem a somewhat treat
ment of the two one-body OF's in (F.54); it is, however, cons.istent with 
the approximation (F.SS) of the mass operator, as the derivation of the 
Gorkov equations (F .62) has shown. 

We would like to make a graphical physkal interpretation set 
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= -- .. -- + 

or 

n,me FA (a) Graphical representation of (F.SS), where the broken lines repre
sent the lowest-order approxima.tion (F.26) md =Jir::: stands: for the pairing mode. 
(b)Orlphica1 representation of the gap equation (F.61). 

of coupled equations we have just derived. Equation (F .58) is graphically 
represented in Fig. FAa and Eq. (F.61) in Fig.. F.4b. 

From Fig. F.4 we see that the content of the HFB equatiODJ in the 
language of OF's is that the pairing mode is calculated. with single-particle 
propagators which t.bem.IeIVe5 are renofDIalized by the coupling of a 
particle to the pairing mode and a hole. The solution of these coupled 
equations implicitly sums up an important part of the perturbation series, 
thus allowing the description of a phase transition. 

The fact that for the derivation of Bruckner HF theory and HFB theory 
we initially used the same approximation for the mass operator [first term 
on the rhs of (F.50)] may be perplexing. It be recogniz.ed, however, 
that Bruckner HF theory never isolates the Cooper pole contained in the 
two-body GF of (F.50). The fact that we treat this pole explicitly in the 
HFB theory is therefore not in conflict with BrUckner HF, and we can thus 
also combine both theories within the Bruckner HFB theory. 

Until now we have treated phase transitions from a nonnal to a 
superfluid stal~ and we have shown how the fact that one particular 
pp-mode takes up almost all collectivity. and as a consequence becomes 
very soft, aUows us to derive the HFB equations. From our earlier 
considerations (see Chap. 7). we know that the HFB equations allow for 
sphericaJ (rotational symmetry conserving) and deformed (rotational sym. 
metry breaking) solutions. In our treatment of the pairing phenomenon, 
however, we have nowhere assumed that a breaking of rotational synune
try can take place-we have always supposed that PliO - <OIQi~QIIO> is a 
density corresponding to a ground state having good anguJar momentum 
(i.e., 1-0 for the even-even nuclei to fix ideas). From what was stated in 
Chapters 1 and II about the phase transition from a spherical to a 
deformed nucleus, we know that this JUS! with another soft 
mode-the quadrupole vibration. We will show in more detail how this can 
be described in the GF formalism. 

It is obvious that in order to deal with the transition from a spherical to 
a deformed state we have to isolate the coupling of a particle to the 
quadrupole phonon in the mass operator (F.25). This can be most easi1y 
achieved by retaining from the factorization (F.SO) only those terms in 
which the response functions (F.St) appear. The spectral decomposition 
then yields the excitation energies of the A system (8.130) (see footnote 
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As case of the pairing mode, we now assume the tmIlIrel.l 

excitations in (F.68) practically exhausts aU the strength, and 
excitation energy goes to zero (n:'--i>O). we assume that this usuaUy 
the the quadrupole mode (indeed, its excitation energy t.ecomes 

rotational nuclei). however, it is sometimes possible (208Pb) for 
other to become lowest in excitation. For the Single-particle 
figuring in (F.SO) we take again the lowest-order approximation (p.26). 

equation thus takes the following form. 

- EJ)GII·(w) = ~II' + i5 M (F.69) 

with 

and 

12 1) 

It should be noted that until now we have not made any symmetry
violating approximation, since--as indicatcd-everything cou
plod to good angular momentum (we couple the partic1e 2 or to the 
quadrupole phonon to give the angular momentum j I of the 
partic1e). should also recognize the Q-field of (F.7]) 
to 'Y .. vertices of particle vibration coupling theory in Section 9.3.3 (with 
no page 386). We can write, 
(F.69,70) the form of two coupled by introducing 

n 
( ) 

2+1-
PU '- - --11 11Q2' G2T • 

(F.73) 

the pairing ease, we have to the system of equations. This 
can done analogously here by instead of (F.SO) the Betbe-

for the function (8.131). The result 

(01 [ D3+ D .. ]2· "). 2~i 1dwP.u(w). (F.74) 

.... 1I:!_efu ........ of (F.74) into (F.71) ........ ,,', .. w... together the Ugap 
equationv

, for the "order Q of the deformation 
single-particle fields into Eqs. (F.761 one involving the 

ordinary density PI2- and the other the transition \.11 ....... "" ... ,1' 

). 
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= --. - - + -.-~ 
"'- ..... '" 

or 

FIpre F.5 (a) Gl1lphical representation of Eq. (F.69). The wavy line nf"nll'll"lU-n 

the soft quadrupole phonon. (b) Graphical representation of the "pp equation" 
for the deformation field Q. 

The transition density, of course, projects out the quadrupole part of the ph 
force in (p.71) and the ordinary density projects out the monop<>le part of 
the force in (F.69). We again wish to stress the point that no symmetry
violating approximation has been so far. as we have coupled every
thing to good angular momentum. The symmetry breaking of deformed 
HF theory can be introduced by saying that the 2+ becomes identical with 
the ground state of the internal system. At this moment., having angular 
momentum coupling no longer makes sense and Eqs. (F.73) just reduce to 
the usual deformed HF equations. We explicitly find two potentials Vo and 
r l , introduced in Sec. Il.2, which now constitute an anguJar momentum 
nonconserving single-particle Hamiltonian of the inte.m&I lyJtemJ 

As we have already stated, the "gap equation'" for the deformation field 
(F.71,74) can again be derived from the Bethe-Salpeter equation for the 
response function (8.131). From (F.74) and (F.12) we see, however, that it 
can be represented graphically as shown in Fig. F.5b. Sq. (F.69) is 
represented in Fig. F.5a. Again, the typical nonlinear coupling of single
particle motion and collective vibration becomes evident from Fig. F.5a, b. 

In general, we should, of course, separate the Cooper pole and the 
phonon poles of all multipolarities in the mass operator simultaneously 
and thus generate the general single-partide theory we treated in Chapter 
1. 

From (F.71) and (F.59), we see that the transition densities enter the 
deformation and pair fields. As we have seen that these are peaked at the 
nuclear surface (Chaps. 8 and 13), it may be a good approximation to 
replace the forces entering (F.7.) and (F.59) by separable ones. This leads 
naturally to the pairing-plus-quadrupole model discussed in Chapter 7, and 
thus we a.pin see the meaning of this model within. the context of nuclear 
phase transitions. 

From the OF treatment of this theory, it also becomes dear how a 
possible generalization might work: the essential feature would be to solve 
the RPA modes self cOlUistenliy with the single-particle states, that is, 
where the single states are coupled back to the RPA modes in the way 
shown in Fig. F.Sa, b. Also, the symm.etry-conserving formulation (F.62) of 
HFB should be an interesting variant of the theory; in fact a much more 
elaborate theory of this kind has been proposed by [Ja 79]. 



640 Appendix F: Many-Body Green's Functions 

F.6 The Bethe-SaJpeter EquadoD and Effective FOI'CeS 

In the course of the derivation of the equations we have made 
reference to Bethe-SaJpeter equations (BSE) for two-body OF's on &<IIK.I'_ 

occasions. Since these equations are derived in many textbooks [Mi 
AGO 65~ FW 71}, we shaU brief here. The BSE for the rCltJODlIC 

function (F.Sl) is given 

R(l, = I, 

G(3, S)G(6, 1')Kph(S, 7; 6, 8)R(1. 8; 7,3'). 

Equation (F.7S) is an exact equation, where KJM is called an effective 
it sums up skeleton graphs of the response function, 

which cannot be cut into two parts by only two Jines. The BSE 
(F.7S) is Fig. F.6, together with a typical 
second~order to Kfih. We see that these contributions to K'" 

only by cutting four lines. Equation (F.7S) can 
.. v ....... , ...... perturbation. Repeated indices in (F.1S) 

over quantum numbers and integration over 
times. It should be that (F.7S) is sometimes convenient 
deriving formal relations. Going beyond the RPA treatment (F.7S), how
ever, is extremely c~mplicated, because the kernel generaUy depends on 
three times (alter into account translational invariance with respect 
to time) or three practical purposes we sometimes, therefore" 
use an integral response function with a kernel depending 
only on one energy [Sch 7lc, Sch 76]. In this way, we arrive at a Dyson 
equation fot bosons (RPA) with a boson mass operator which is quite 
analogous to the equation (F.2l) for fennions [SE 73, Sch 76]. This 
treatment of correlation functions is similar in spirit to what now 
become known as [Mo 651 in the field of condensed matter. 
To nuclear been applied by Werner [We 76, 78]. 

Everything we about the BSE for the response function 
bolds good for the of the two-body OF (F.54): 

4)K" (3, 4; ,4')G(3'. ; )'. 

Here KIP __ ••• sums up all 
cannot be cut just lines. In Pig. 
a graphical of (F.54) together with Ii second-order UClcu;m 

:: + 

+ : S2S : + : S3: 
Figure F.6. Bethe-Salpeter equation for the response function (F .50) and 
matte representation of lowest--order contributions to KJIIt. 
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::: + >< + 

+ : s:s: 
FJcme F.7. Bethe-Salpeter equation for the PI' OF of 

of lowest order contribution to K". 

contribution to KIP; the lowest order being, of course, the 
itself. 
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schematic 

interaction 

As we shown above, the gap equations for the field A (F.67) 
and for field Q (F.71) can be the COrrt'i--

sponding (F.54) and (F.7S). In ... '· ... I'RrtfII> Rr",VU"'\IIIC1 that these 
order have to be calculated with the COITe!iPO:n<11 effective pp 

explicitly is some-
so we will only 

ph. Ir"'~(,<_ K" and KJM, respectively. 
what tricky, would be 
sketch the features here. 

We have already shown that in the gap equations &\ and Q we have 
to use KJIII J respectively. It is more difficult how K" and 
Kpit come into pJay in the first of equations (F.62) and (P.7:J). respectively. 
Let us de'note the R-function in the mass (F.2S) by ~; 
then for the mass operator we can write in an obvious shorthand notation 

(F.76) 

We have seen that HFB theory corresponds to approximating R6 by the 
on the rhs of (F50), which we will denote by G04 • In this 

approximation we also have, of course, 

] I. (F.17) 

We now that from (FAS) and (F.46) we 

G(1, 1'.2') - GO( 1.2; 1',2') 

-~ R(I,2.1++; 1", 2', l'+)o(l't 1";3, 1"')-G(I", I'). (F.78) 

Together with (F.54)" we deduce the identity! 

R(I,2, 1+ +; I" ~ 2',3'+ )6(3'. I .... ; 3. 1"')- 6(211 3+"; 2',3'+) 

. (1, 1 .... )K"(3'. I"; 3, 1"'). (F.19) 

Replacing the pans ~ii and vR6 by (F.79) and its adjoint, 
respectively, and using (F.77). we see that in (F.SS) and (F.62) we bave to 
use K" Analogously, we of course, show that we have to 

+ 

Flrure F.8. Hole-pairing mode Dr~cess omitted in (F.11). 



ute K" 
have neglected by the apprc»dm&tioo (p. 77) are 
F .8, where the bole _,"_UII 

This shall conclude our 
of the standard teclmiquea we -.-LU 
in this appendix. 
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