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The following short list of symbols are used throughout the document. The symbols
represent quantities that I tried to use consistently.

p Proton
n Neutron
eV eEectron volts - A measure of energy
MeV Mega electron volts = 106 eV
GeV Giga electron volts = 1000 MeV
c Speed of light
π0 Uncharged pion meson - The lightest, uncharged meson with mass ≈ 135 MeV/c2

ω Omega meson - The uncharged meson with mass ≈ 782 MeV/c2

γ Photon - quantum of electromagnetic radiation
η Eta meson - The uncharged pseudo scalar meson with mass ≈ 548 MeV/c2

q̂ A unit vector in three dimensional space
i Imaginary number =

√
−1

c.m. Center-of-mass frame. The frame of reference where the sum
of momenta of all particles is zero.
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ABSTRACT

The photoproduction of ω mesons and π0ω meson pairs is studied with the intention
of providing data which will be useful in isolating baryon resonances. The data
used for this analysis was recorded using the CBELSA/TAPS experiment in Bonn,
Germany during October-November 2002. This experiment used photons incident
upon free (unbound) protons, which were contained in a liquid hydrogen target. The
differential cross sections for γp → pω reaction are presented for the first time by
analyzing the ω meson in its radiative decay. The differential cross sections for the
γp → pπ0ω are also presented for the first time with enough statistics and resolution
to isolate baryon resonances. The initial photon energies range from threshold for
each reaction to 2.5 GeV. These data show the full kinematic range of the differential
cross sections for both reactions.

In addition to the differential cross sections, the spin-density matrix elements
have been extracted for the γp → pω reaction. The unpolarized spin-density matrix
elements are presented from threshold up to 2.5 GeV in initial photon energy and show
remarkable agreement with previous analyses over a large angular range. Unpolarized
measurements in the very forward direction are, for the first time, presented with
a resolution useful for isolating baryon resonances. Also, the polarized spin-density
matrix elements, ρ100 and ρ111, are reported for the first time. These polarized elements
were reported from threshold up to 1.7 GeV in initial photon energy. These spin-
density matrix elements indicate the relative rate at which ω mesons are produced
with a certain spin projection and will be useful in learning about the spin dynamics
of the intermediate processes and any contributing baryon resonances.
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CHAPTER 1

INTRODUCTION

Since very nearly after the discovery of protons and neutrons, nucleons (protons and
neutrons) have been known to be composite particles. The compositeness of nucleons
along with the knowledge of quantum mechanics suggest these nucleons have a discrete
pattern of excited states. This pattern of excited states depends upon the nature of
the constituent particles and the forces binding them together.

Answering the question of what these constituent particles are and what is the
nature of the force holding them together has been one of the most challenging ques-
tions in physics over the last few decades. The effort put towards the answering of this
question has been enormous with the construction of particle accelerators devoted to
measuring these excited states and the other properties of the nucleons.

The constituent particles responsible for the overall properties of the nucleon are
called quarks and gluons. These quarks and gluons are currently believed to be
fundamental particles (i.e. non-composite particles). Table 1.1 shows some of the
known properties of the quarks. The gluon is the particle responsible for carrying the
strong force which binds the quarks together.

Particles made of quarks are called hadrons. Quarks have only been found to
exist in particles either in a system of 2 bound quarks (mesons) or 3 bound quarks
(baryons). The lowest mass baryons are the nucleons, proton and neutron. The
proton, the ground state baryon, is made of two up quarks and one down quark and
its mass is 938.272 MeV/c2. When the mass of these three quarks are summed and
compared to the overall mass of the proton, more than 98% of the mass is unaccounted
for. This extra mass is a result of the interaction between the quarks, quark kinetic
energy, and a “sea” of quark anti-quark pairs and gluons.

1.1 Properties of Hadrons

Hadrons have quantum numbers which describe their properties. The important
quantities for the discussion of hadrons, for the purposes of this thesis, are intrinsic
spin, parity, isospin, strangeness, charmness, bottomness, topness, and baryon num-
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Table 1.1: Quark Properties. Obtained from [1]. The charge is reported in relation
to the absolute value of the charge of the electron (e).

Name Symbol Charge(e) Mass(MeV/c2)

up u +2/3 1.7-3.1
down d -1/3 4.1-5.7
strange s -1/3 100+30

−20

charm c +2/3 1290+50
−110

bottom b -1/3 4190+180
−60

top t +2/3 172, 900± 600± 800

ber. Each one of these quantities is “quantized” and is not a continuous number but
has a discrete value.

The strangeness, charmness, bottomness, and topness quantum numbers refer to
the quark content of the hadron. Since the hadrons discussed in this thesis have low
masses (below 3 GeV/c2), charmness, bottomness and topness are all zero because
there is not enough energy to generate these flavors of quark.

The strangeness quantum number is a measure of the overall number of strange
quarks inside a hadron (times −1, by convention). For a hadron to have strangeness
of zero, the hadron must either have no strange quarks or have both a strange quark
and an anti-strange quark (anti-matter version of the strange quark). The π0 and ω
mesons have zero strangeness. Therefore any baryon decaying to these mesons and a
proton (zero strangeness) must have zero strangeness. This decay must happen via
the strong interaction, which conserves strangeness.

Baryon number is a quantity which is universally conserved. No interaction can
change the number of baryons. Baryons have baryon number B = 1. Mesons have
baryon number B = 0. For example, the reactions considered in this thesis, γp →
pω and γp → pπ0ω , each have one baryon in the initial state (proton) and one baryon
in the final state (proton).

Isospin is a quantum number which describes the number of up and down quarks
which are in a hadron. The up quark is assigned a total isospin of I = 1/2 and isospin
projection of Iz = 1/2. The down quark is assigned a total isospin I = 1/2 and isospin
projection of Iz = −1/2. The addition of isospin follows the vector addition rules for
spin. The ω meson is a symmetric combination of isospin forming an overall isospin
of I = 0 and therefore its isospin projection is Iz = 0. The π0 meson has a total
isospin I = 1 and projection of Iz = 0. The π0 is part of a triplet of pions π−, π0, and
π+, which all have total isospin I = 1 and projection Iz = −1, 0, 1, respectively. The
proton has isospin I = 1/2 and, by convention, projection Iz = 1/2. The neutron has
isospin I = 1/2 and projection Iz = −1/2. From the total isospin quantum number,
the number of projections (and therefore particles) is 2I + 1. Therefore, the nucleon
collectively has a total isospin I = 1/2 with two projections Iz = 1/2, the proton,
and Iz = −1/2, the neutron.
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The parity of a particle is the quantum number describing the behavior of its
wavefunction when a parity transformation is performed. A parity transformation in
three dimensions occurs when the Cartesian coordinates (x, y, z) are transformed into
(−x,−y,−z). If this operation is applied to the wavefunction of a particle |φ〉, then
the parity quantum number (P ) is defined as

P̂ |φ〉 = P |φ〉 , (1.1)

where P̂ is the quantum mechanical operator which does the parity transformation.
The π0 and ω meson both have negative parity. The proton and neutron have positive
parity.

The intrinsic spin of each particle follows the rules of vector addition. A particle
of total spin S has 2S + 1 spin projections. Therefore, an ω meson with spin S = 1
has three spin projections −1, 0, 1. Mesons have integer spins (S = 0, 1, 2, ...) and are
labeled as bosons. Baryons have half odd integer spins (S = 1/2, 3/2, 5/2, ...) and
are labeled as fermions. A particularly interesting consequence of intrinsic spin is
the statistics rules these particles obey. Fermions obey Fermi-Dirac Statistics, which
follow the Pauli Exclusion Principle. This principle states that identical fermions in
the same system cannot occupy the same quantum state at the same time. However,
bosons do not obey these statistics.

1.1.1 Baryon Nomenclature

Baryons are labeled with their quantum numbers and mass. The name of a baryon
is identified by the quark flavor content, which is specified by the quantum numbers:
isospin, strangeness, charmness, bottomness, and topness. The labels for baryons
which contain only up, down, and strange quarks are given in Table 1.2.

Table 1.2: Light Quark Baryon Labels. The baryons listed are only those with no
charm, bottom, or top quarks.

Label Isospin Strangeness

N 1/2 0
∆ 3/2 0
Λ 0 −1
Σ 1 −1
Ξ 1/2 −2
Ω 0 −3

When a baryon resonance is being identified in this thesis, the nomenclature is

Label(Mass)SpinParity , (1.2)

where Label is one of the labels in Table 1.2, Mass is in MeV/c2, Spin is the intrinsic
spin, and Parity is the parity of the state. For instance, the spin S = 3/2 baryon
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with isospin I = 3/2, zero strangeness, parity P = +1, and mass M = 1232 MeV/c2

is called ∆(1232)3
2

+
.

1.2 Theoretical Situation

1.2.1 Quantum Chromodynamics

The study of the strong nuclear force, which is responsible for binding the quarks
together in hadrons, has produced the very successful theory of Quantum Chromo-
dynamics (QCD). This theory is based on a Lagrangian describing the interaction of
quarks and gluons.

The QCD Lagrangian is not always solvable and approximations and numerical
calculations need to be made to extract solutions. At large interaction energies1, the
strong force becomes weaker and the Lagrangian can be perturbatively solved using
the strong coupling constant. Comparing these large interaction energy solutions to
experimental data have been used to suggest this Lagrangian is correct. As the energy
of the interaction decreases to the energies characteristic of the proton, perturbation
in this manner is no longer useful.

Numerical solutions of the QCD Lagrangian seem to be the most promising way to
get solutions which can be compared to experiment. Currently, attempts to solve the
QCD Lagrangian on a lattice (Lattice QCD) are ongoing. The continuous space-time
of the real world are discretized to a lattice and computational techniques are applied
to extract solutions. Successes have occured in this field such as [2]. However, the
full calculation of the spectrum of excited states has yet to be finished.

1.2.2 Constituent Quark Models

In the absence of direct solutions of the QCD Lagrangian, models are developed
to get an idea of the dynamics of the internal structure of the nucleon. One of the
most successful of these is the constituent quark model.

Constituent Quark Models (CQMs) are based on the nucleon being made of three
“valence” quarks. The quarks are dressed with a mass and a potential is proposed.
In this simplified environment, the mass of the quarks are dressed with a fitted mass
to ensure the mass of the calculated nucleon matches the real world nucleon and an
infinite tower of excited states is calculated.

One example of the predictions for isospin I = 1/2, non-strange baryons from a
Constituent Quark Model is shown in Figure 1.1. This model is a relativistic quark
model. Each double column is labeled with the quantum numbers of the states
marked with horizontal lines. Each quantum number assignment has two columns.
The left column of states are the theoretically predicted states. The right column
of states are the experimentally discovered states with the uncertainty of the mass

1equivalently small distances both compared to nucleon properties
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Figure 1.1: Constituent Quark Model Predictions for Isospin 1/2, Non-strange
Baryons. Published in [3]. This model is a relativistic quark model. Each double
column is labeled with the quantum numbers of the states marked with horizontal
lines. Each quantum number assignment has two columns. The left column of states
are the theoretically predicted states. The right column of states are the experimen-
tally discovered states with the uncertainty of the mass represented with a colored
bar. Each experimentally discovered state is marked with a star assignment from
the PDG [1]. **** is a state for which existence is considered certain. * is a state
having poor evidence for existence. For this plot only, the baryon quantum numbers
are denoted with isospin T , spin J , and L, the relative angular momentum of a πN
system which would create the baryon resonance.

represented with a colored bar. Each experimentally discovered state is marked with
a star assignment from the PDG [1]. A four-star state is a state for which existence
is considered certain and properties are fairly well explored. A three-star state is
a state for which existence ranges from likely to certain but further information is
desired. A two-star state is a state for which evidence of existence is only fair. A
one-star state is a state for which evidence of existence is poor. For this plot only,
the baryon quantum numbers are labeled with isospin T , spin J , and L, the relative
angular momentum of a πN system which would create the baryon resonance.

These predictions are fairly similar to the other Constituent Quark Models in
the agreement with existing experimental data. The agreement is good below about
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1800 MeV/c2 in mass but fails at higher masses. Since some agreement is seen, these
models must describe at least some aspects of the system. However, the possible
reasons for the discrepancies above 1800 MeV/c2 are 1) the model is correct but we
have not experimentally isolated these higher mass states or 2) the model does not
account for some dynamics of the system.

A competing model which predicts fewer states is the diquark model, where the dy-
namics of a pair of quarks are “frozen”. The system is then considered as a two-body
system [4]. This model’s predictions also match the experimental data below 1800
MeV/c2 in baryon mass and predict fewer higher mass baryon resonances. However,
the number of predicted diquark baryon resonances still outnumbers the experimental
states. Unfortunately, there have been no satisfactory modifications to either of these
models to successfully predict the current pattern of experimental states.

Experimentally, the isolating of the full spectrum of excited states is a challenging
endeavor due to many reasons which will be discussed in the Section 1.3. Because
the number of predicted high energy baryons outnumber the experimentally verified
states, this discrepancy is called the “Missing Baryon Problem”. To understand the
nature of the strong interaction in the regime of non-perturbative QCD, the baryon
resonances must be fully isolated and characterized.

1.3 Experimental Situation

The search for and study of the excited states of the nucleon is called baryon
spectroscopy. The motivation for doing baryon spectroscopy is based on the very
successful application of atomic spectroscopy. Atomic spectroscopy led to many dis-
coveries including quantum mechanics and Quantum Electrodynamics (QED) and
allowed a very successful description of the electromagnetic force. The plan used in
atomic spectroscopy is basically :

• Excite the system.

• Measure the energy of the emissions as the system relaxes.

• Identify the characteristic energy of each excited state.

In measuring the decay products from excited atoms, the only necessary particle
to measure is the photon. The photon is a stable particle and the excited states of the
atom are relatively long lived2. Therefore, the discreteness of the measured energy
is, in most cases, only a function of the detector systems, i.e. the natural width of
the state is not large compared to the separation of states. To separate the signal
from two excited states which are close in energy, only the detector resolution must
be improved.

2compared to baryon excited states
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1.3.1 Baryon Spectroscopy

The situation in baryon spectroscopy is much more challenging. The decays from
excited baryons can be a zoo of particles which include mesons, photons, leptons
and other baryons. Many of these particles are very short lived and decay to other
particles which can either be neutral or charged. To detect the different types of
particles, different detectors must be employed. At the energies characteristic of
low-mass baryon resonance decays, the different detectors can affect the operation
of others, if used simultaneously. This forces experiments to focus on subsets of
the particles to detect. For instance, the experimental setup used in this thesis, the
CBELSA/TAPS experiment, can detect the energy and position of photons in the
final state but only the presence of charged particles. All other information, such
as momentum, charge, and mass, on the charged particles in the final state must be
deduced.

Another issue complicating the isolation of excited states of the baryon is that
these excited baryons have extremely short lifetimes (∼ 10−23 s), which according to
the Heisenberg Uncertainty Principle, means the mass of the baryon when measured
has a natural width on the order of 100 MeV/c2. These natural widths, in many
cases, are at least as big as the separation of these states from each other. The
challenging part is to isolate these states which overlap and interfere with each other.
In Figure 1.1 where the excited states are predicted to be close together in mass
(above 1800 MeV/c2), the absence of experimentally discovered states could be due
to this overlapping issue.

The first baryon spectroscopy experiments were performed by exciting the nucle-
ons with pions (low mass mesons). These experiments led to the largest share of the
excited baryon discoveries currently known. However, some studies suggest some of
these missing states do not couple to pions. Work done by Koniuk and Isgur [5] and
later by Capstick and Roberts [6, 7, 8] shows many of the “missing” baryons have
weak Nπ couplings but have strong Nγ, Nω and Nη couplings.

Currently, many experiments are trying to excite nucleons with photons. By
analyzing data coming from photoproduction3 experiments, the baryons missed via
pion excitation could be isolated. Laboratories like Jefferson Lab (JLab), ELSA,
MAMI, GRAAL, and SPring-8 have had experiments exploring these photoproduction
reactions.

1.4 Finding Baryons Contributing to

Experimentally Measured Observables

When searching for evidence for baryon resonances, experimentalists can usually
first start looking for their signatures in unpolarized scattering cross sections. A
cross section is proportional to the probability of a particular reaction happening (see

3producing particles from a photon
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Figure 1.2: Total and Elastic Cross Sections for the Scattering of π+ Mesons off of
Protons. The peak at center-of-mass energy (

√
s = 1.232 GeV) is the ground state

∆ baryon resonance, ∆(1232)3
2

+
. Courtesy of the COMPAS group, IHEP, Protvino.

Section 1.4.1). A baryon resonance when produced directly from the initial particles
will produce, in the absence of any interfering processes, an increase (a peak) in
the cross section. Figure 1.2 shows the total and elastic cross sections from π+

mesons scattering off of protons and shows the cross section peak (largest and lowest

energy peak) corresponding to the ∆++(1232)3
2

+
baryon resonance. However, as the

energy increases past the first peak, fewer and smaller peaks are seen. This gradual
disappearance of peaks suggests the resonance widths are becoming large and the
resonance contributions are overlapping and interfering with each other. In fact, the
smaller peaks in Figure 1.2 could be a result of a combination of several resonances [9].
In order to disentangle these resonance states at higher energies, more information
and more sophisticated techniques are needed.

1.4.1 Observables

Differential Cross Sections. A differential cross section is the probability that
a certain reaction happens when its final state particles scatter into some final state
kinematics. For the purposes of an experimental measurement, this means the number
of reactions (Nscat) which scattered into some final state kinematics divided by the
total number of opportunities for the reaction to happen. The differential cross section
is a function of the reaction’s final particle kinematic variables Xi. When no preferred
polarization is produced, the cross section is called an unpolarized differential cross
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section. As a beam of photons is scattered off of a stationary target of protons, the
total number of opportunities for the reaction to happen is equal to the product of the
total number of photons traversing the target during data taking (Photon Flux F) and
the density of protons in the target per unit area perpendicular to the beam (target
area density ρAt ). Therefore, a differential cross section for photons scattering off
of a target of stationary protons is measured by the formula (independent of any
experiment specific issues)

dσ

dXi

=
Nscat

F ρAt ∆Xi

. (1.3)

Total Cross Sections. A total cross section is the total probability that a
certain reaction happens at some energy. To get to a total cross section from the
differential cross section, the differential cross section is integrated over the final state
kinematic variables.

Polarization Observables. When spin polarizations are measured, polariza-
tion observables are possible and are quantities which quantify how the differential
cross section depends on the spin polarization of the initial or final state particles.
These quantities can be used to separate the contribution from baryon resonances
with different spin and parity.

One example of a polarization observable, which is used in this thesis, is the spin-
density matrix. When analyzing reactions with a decaying particle with spin larger
than zero, the probability that a particle is produced with a certain spin polarization
is detectable in the decay distribution of its decay products. For example, two ω
mesons with different spin polarizations will eject the same decay products in different
directions. By analyzing the angular distribution of the decay photon in the ω →
π0γ decay, the relative probability that each ω spin polarization is produced can be
extracted.

The spin projection of the ω meson is measured in a reference system. The popular
systems to choose are [10]

• Helicity system - z-axis is chosen to be in the same direction as the ω meson in
the overall center-of-mass frame,

• Adair system - z-axis is chosen to be in the same direction as the initial photon
in the overall center-of-mass frame, and

• Gottfried-Jackson system - z-axis is chosen to be in the same direction as the
initial photon in the rest frame of the ω meson.

In each system, the y-axis is defined to be k̂ × q̂, where k̂ is a unit vector in the
direction of the initial photon in the center-of-mass frame, q̂ is a unit vector in the
direction of travel of the ω meson in the center-of-mass frame and × is the vector
cross product. The x-axis is defined by ŷ × ẑ.
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1.4.2 Interpretation

In order to find the contribution of all the baryon resonances contributing to a final
state, the observables must be interpreted by modeling the effect of every possible
contributing process (e.g. baryon resonance production, meson exchange, baryon
exchange). These individual processes can be modeled and combined at varying
strengths to fit to the measured observables.

To model each of these processes, the matrix element (M) is derived by math-
ematically modeling each process and combining them using constants which define
the probability each process occurs. The expression for each process is defined by the
spin polarization of each of the initial and final state particles. The differential cross
section defined in terms of these matrix elements is [1]

dσ =
(2π)4

4
√

(p1 · p2)−m2
1m

2
2

1

Ninitial spins

∑

spins

|M|2δ4(P −
n
∑

i=1

pi)
n
∏

i=1

d3pi
(2π)32Ei

, (1.4)

where the subscripts 1 and 2 are the index of the initial particles and the subscript i
is the index of the n final state particles, pi is the momentum, mi is the mass, P is the
total initial momentum, Ei is the energy, and Ninitial spins is the number of possible
spin polarizations of the initial particles.

Several schemes for defining the matrix elements exist. The most widely used of
these is the partial wave analysis (PWA). The partial wave analysis is a method by
which each matrix element is constructed as a sum over the angular momentum states.
Since the relative strengths of these different angular momentum states are defined
by the angular distribution of the observable values, the full angular distribution of
an observable must be well measured to do a proper partial wave analysis.

The contributions of the baryon resonances are modeled in partial wave analyses
as Breit-Wigner functions. These functions have a dependence on energy resembling
the ∆(1232)3

2

+
peak in Figure 1.2. Since most known baryon resonances have widths

of around 100 MeV, the mass resolution of observable measurements must be of at
least 100 MeV in order to resolve baryon resonances.

Therefore, a differential cross section measurement which would have the best
chance of allowing a proper partial wave analysis solution is one which has full angular
coverage and has enough statistics to provide data points dense enough to resolve
baryon resonances.

The spin-density matrix elements (SDMEs) will also help in fixing the strengths
of processes by fixing the relative contributions of processes which result in different
ω meson spin polarizations. In terms of the matrix element, the SDME (ρij) is

ρij ∼ MiM
∗

j , (1.5)

where the ∗ denotes complex conjugation, and i and j are the index of the spin
polarization of the ω meson. The spin-density matrix elements and other polarization
observables will help define the relative strengths of these matrix elements.

10



1.5 Finding the “Missing” Baryons

The experimental plan for finding these elusive “missing” baryon states involves
a multi-pronged approach. With an eye for what has been done in the past, the plan
entails:

• Photon beams - Use photons as the particle to excite nucleons. The photon
does not interact with the nucleon via the strong force, therefore does not have
the same coupling issues. The resulting excited states should not be restricted.

• Full kinematic variable measurement of observables - To separate processes with
different angular distributions, the full angular range should be measured with
good angular resolution.

• Small energy resolution - Since baryon resonances typically have mass widths
of around 100 MeV, the measured observables should have an energy resolution
of at least this order to separate the contributions from neighboring states.

• Multi-particle final states - Some of these missing baryons could possibly not
couple to photons either. Therefore, these states could show up in an interme-
diate decay when measuring a reaction with 3 or more final state particles. (e.g.
γp → N∗ω → pπ0ω, where the N∗ is a baryon resonance).

• Polarization Observables/ Spin-Density Matrix Elements - Processes couple to
different initial and final state particles with different spin polarizations at differ-
ent strengths. Using polarization observables along with the unpolarized differ-
ential cross sections in an interpretation analysis, more information is available
to separate the different processes and to obtain the correct strength for each
baryon resonance contribution.

1.6 Motivation

A prediction on baryon resonances decaying to one proton and one ω meson pub-
lished in [7] has shown non-negligible couplings for 32 states with masses below 2.3
GeV/c2, the range of sensitivity for the data in this analysis. Currently in The Review
of Particle Physics (RPP) published by the PDG [1], only 14 states are listed in this
same mass range with at least very likely evidence for existence (3- or 4- star status).
By studying the γp → pω and γp → pπ0ω reactions, the existence of more of these
states can be proven and help give vital information on the pattern of excited baryon
resonances.

An additional benefit of studying baryon resonances decaying to ω mesons is any
baryon decaying to an ω meson and a baryon must have the same isospin as the decay
baryon. When a hadron decays to hadrons, the mediating interaction is the strong
force. Since the strong force conserves total isospin, a baryon which decays to an
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isospin scalar (I = 0) ω meson and an isospin I baryon then the baryon itself can
only have isospin I. For this reason in hadron spectroscopy, the final state with one
proton and one isospin scalar mesons, such as the ω meson, is often called an isospin
filter.

1.6.1 γp → pω

The contributions of the “missing” baryon resonances to the γp → pω reaction
could be potentially masked by the π0 exchange process reported in [11] and shown
in Figure 1.3b (with the ? = π0). The difficulty in isolating these baryon resonances
is to obtain enough information to subtract the contributions from the dominant π0

exchange (also called t-channel).

γ

p

*
N

ω

ptime

(a) Resonance

γ

p

?

ω

ptime

(b) Meson Exchange

γ

p

*
N

p

ωtime

(c) Baryon Exchange

Figure 1.3: Diagrams for Single ω Photoproduction. The initial particles, photon
(γ) and proton (p), are on the left side of each diagram. The final state particles (p,
ω) are shown on the right side of each diagram. The N∗ represents any baryon or
baryon resonance. The ? represent mesons which have integer spin (S = 0,1,2,...).

Several different baryon resonance contributions have been used to explain the
behavior of the γp → pω differential cross sections. A coupled-channel effective
Lagrangian analysis performed by the Gießen group was published in 2005 [12]. This
analysis included baryon resonances with spin up to 5/2 and was based on available
data from πN scattering and γN scattering from the final states πN , 2πN , ηN and
ωN . Data with an initial photon energy range from the pion production threshold up
to 2 GeV were analyzed. The results of this analysis indicated that two sub-threshold
resonances, N(1675)5

2

−

and N((1680)5
2

+
, were responsible for a resonance peak close

to threshold, while showing large t-channel contributions as energy increased.
A partial wave analysis based only on the data measured at the CLAS experiment

(Section 2.1.3) was published in [13] and indicated the N(1700)3
2

+
and N(1680)5

2

+

baryon resonances were responsible for the resonance peak near threshold. At ener-
gies above 2 GeV in initial photon energies, the PWA analysis on the CLAS results
required additional resonances, two spin 5/2 resonances and one 7/2 resonance, to
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describe the cross sections. The 7/2 state is the N(2190)7
2

−

which has a 4-star status

in the RPP [1]. The N(1680)5
2

+
and N(2000)5

2

+
, a 4-star and 2-star state, respec-

tively, were the claimed 5/2 states. To uniquely isolate these resonances, the full
angular differential cross sections and polarization observables need to be used in a
coupled-channel analysis.

Unfortunately, as can be seen in Section 2.1, the existing data sets have angular
or bin size limitations which could affect these solutions. The most critical angular
range to use for getting information about the strength of the π0 exchange is the
very forward direction, where the ω meson is close to the exiting beamline. In the
previous measurements at the CLAS [14] and SAPHIR [15] experiments, the ω meson
was detected in its π+π−π0 decay by detecting the charged pions. Unfortunately, the
charged pions have masses and charges which can be very difficult to separate from the
electron positron pair production naturally occurring close to the beamline. However,
the CBELSA/TAPS experiment has the capability to measure the π0γ → γγγ decay
of the ω meson. The photon is both massless and uncharged and is much easier to
separate from electrons and positrons. Using this decay mode, the CBELSA/TAPS
experiment can measure the full angular range while isolating enough of these events
to allow mass resolution on the order of the typical baryon resonance width in this
angular range.

The spin-density matrix elements for the γp → pω reaction are polarization ob-
servables which will allow the separation of processes which produce ω mesons with
different spin polarizations. For instance, baryon resonances with different spin polar-
izations would produce different ω spin polarizations. Also, the π0 (spin = 0, parity
= −1) exchange diagrams (Figure 1.3b) would produce a different ω spin polarization
than the exchange of some other particle with different spin and parity from the same
photon polarization.

1.6.2 γp → pπ0ω

The γp → pπ0ω reaction provides many opportunities to observe baryon reso-
nances. Some of the possible processes are shown in Figure 1.4. All but one of these
diagrams have the possibility to involve baryon resonances. In diagrams a,b,d, and
e, there is an opportunity to observe baryon resonances decaying to pπ0 and pω.
However, the difference in detecting them in γp → pπ0 and γp → pω reactions is
the ability to observe them independent of the γp coupling. Therefore, the different
production could enable us to see the previously “missing” baryon resonances if they
did not couple directly to γp production. In diagram c, the observation of new baryon
resonances decaying to a new set of mesons could happen. The b1(1235) meson, which
is a spin 1 meson with positive parity with 1229 MeV/c2 mass, has a very strong decay
to the π0ω final state. Therefore, this is the first chance to observe baryon resonances
decaying to p b1(1235). Since the previous data on the γp → pπ0ω channel is quite
limited [16] (dicussed further in Section 2.2), the analysis presented in this work will
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provide the first chance to isolate any of the “missing” baryon resonances contributing
to this final state.

The previous analysis of this reaction was of poor statistics but was useful in
determining the most dominant process which contributed to this final state. The
dominant process was determined to be the meson exchange process in Figure 1.4d
with the π0 meson as the exchange particle and ∆(1232)3

2

+
as the baryon resonance.

However, there is likely some resonance production of the ω∆(1232)3
2

+
intermediate

state as well, like in Figure 1.4b with N∗

2 as the ∆(1232)3
2

+
resonance. The N∗

1

resonance in this diagram is restricted to a few possibilities due to the isospin filtering
effect of the ω meson, spin dynamics, and the available energy. Since there is not
much energy available when producing an intermediate state close to threshold, the
orbital angular momentum is restricted to small values, L = 0. If we consider the
combination of a spin 3

2

+
∆(1232)3

2

+
resonance combined with a spin 1− ω meson

at orbital angular momentum L = 0, then the only resonance spin-parities which
can contribute are 5

2

−

, 3
2

−

, and 1
2

−

. Using the isospin property of the ω meson,
the N∗

1 resonance in this diagram must have isospin I = 3/2 and is a ∆ resonance.
Therefore, we are restricted to five resonances which are listed in the RPP [1]. These

are ∆(1620)1
2

−

(3 stars), ∆(1700)3
2

−

(4 stars), ∆(1900)1
2

−

(2 stars), ∆(1930)5
2

−

(2 stars),

and ∆(1940)3
2

−

(2 stars). To disentangle the contributions of these resonances from
the dominant contributions requires a full partial wave analysis with each process
defined over an observable measurement which has the energy binning and kinematic
coverage to isolate the non-dominant contributions. The measurement in this thesis
offers the first measurement capable of increasing the evidence for existence for any
of these states through this channel and could lead to an upgrade of star assignment.

Recently, there has been interest in the reconstruction of exotic mesons, specif-
ically the π1(1600), from the πb1(1235) decay. The π1(1600) meson has measured
quantum numbers which are not represented by constructing mesons from a quark
anti-quark system and therefore called exotic. To study this meson, the meson must
be reconstructed by combining all πb1(1235) combinations of which the exotic me-
son will be only a small fraction. However, another contribution which could be at
the same strength or larger is the contributions of the ∆(1232)3

2

+
b1(1235) decaying to

pπb1(1235). The information gathered from this analysis on the production of b1(1235)

mesons off the proton could be used to help define the strength of ∆(1232)3
2

+
b1(1235).

If the meson is produced via π0 meson exchange, the strength can be well determined.
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Figure 1.4: Diagrams for π0ω Photoproduction. The initial particles, photon (γ)
and proton (p), are on the left side of each diagram. The final state particles (p,
π0, ω) are shown on the right side of each diagram. The ? are mesons which have
integer spin. N∗, N∗

1 and N∗

2 represents any baryon or baryon resonance. This list is
not exhaustive and are the processes featuring only the three-particle vertex. Each
exchange diagram is named by what is being exchanged in the vertical.
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CHAPTER 2

PREVIOUS MEASUREMENTS

The measurements in this section will be presented as a function of cos θωc.m. and initial
photon energy Eγ. cos θ

ω
c.m. is the cosine of the polar angle measured in the center-of-

mass frame with respect to the direction of travel of the initial photon (Figure 2.1).
Eγ is the energy of the initial photon measured in the lab frame.

2.1 γp → pω

The differential cross sections for the reaction γp → pω have been measured three
times with initial photon energies from threshold (≈ 1.11 GeV) up to 2.5 GeV. The
unpolarized spin-density matrix elements have been measured twice. These mea-
surements, however, are without the angular coverage and mass resolution ideal for
isolating baryon resonances from the background. The need for a new measurement
over the full angular range is motivated by the dominance of the π0 meson exchange
and obtaining enough information to separate this effect from the contributing “miss-
ing” baryon resonances.

2.1.1 SAPHIR 2003

The first measurement in this energy range with characteristics useable to dis-
entangle “missing” baryon resonances was published by the SAPHIR collaboration
in 2003 [15]. The SAPHIR experiment used a spectrometer which covered approx-
imately 60% of the full angular range and was fed tagged bremstrahlung photons
produced by colliding ELSA accelerator electrons into a radiator. The ω meson was
measured by detecting the ω → π+π−π0 decay.

Figure 2.2 shows the differential cross sections (N) published in [15]. The SAPHIR
experiment used a tagged photon beam incident on a liquid hydrogen target. The
charged particles were detected in the spectrometers. The π0 meson was reconstructed
using missing mass. The low energy data shows a relatively constant angular distri-
bution indicating baryon resonance production. The high energy data show that the
differential cross sections peak in forward direction, which suggests meson exchange.
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Figure 2.1: Single ω Photoproduction Kinematics Diagram. The initial and final
state particles are shown in the center-of-mass frame. The γ is the photon. The pi is
the inital state proton. The ω is the final state meson. The pf is the final state proton.
The angle θωc.m. is the angle between momentum direction on the initial photon and
the final state ω meson.

The differential cross sections were measured generally between -0.9 and 0.967
in cos θωc.m. and in 23 energy bins between threshold and 2.6 GeV in initial photon
energy. The angular bins in the low energy region are quite large and are not ideal
for an interpretation analysis.

Unpolarized spin-density matrix elements for this experiment were extracted in
the helicity and Gottfried-Jackson frames by fitting the decay angular distrbutions.
Spin-density matrix elements measured in the helicity frame are shown in Figure 2.3.

The spin-density matrix elements have 2 angular bins and 4 energy bins. These
measurements are a good first look at the values but again are not ideal for an
interpretation analysis.

2.1.2 LEPS 2006

The LEPS collaboration published differential cross sections for the photoproduc-
tion of ω mesons in 8 energy bins in initial photon energies from 1.6 to 2.4 GeV [17].
The differential cross sections were measured in one angular bin when the ω meson
travels in an angular range −0.8 < cos θωc.m. < −0.7.

Figure 2.4 shows the differential cross sections reported by the LEPS collaboration.
These data points were extracted using backward-Compton scattering of laser photons
with 8 GeV electrons interacting with a stationary liquid hydrogen target. The proton
was detected in a spectrometer and the ω meson was reconstructed using missing
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Figure 2.2: SAPHIR and CLAS Excitation Functions. Differential cross sec-
tions published by the SAPHIR Collaboration [15] (N) and the CLAS collabora-
tion [14] (�). Each histogram is labeled with its range in cosine of the polar angle of
the ω meson in the center-of-mass frame (cos θωc.m.). The cos θ

ω
c.m. value for each point

is the center of the bin converted from the original data plot.

mass. The angular range of these data is restricted and by themselves the data are
not sufficient for isolating baryon resonances.

2.1.3 CLAS 2009

The CLAS collaboration published differential cross sections at center-of-mass
energies from threshold up to 2.4 GeV. These data were produced by scattering
tagged photons off of stationary liquid hydrogen. The decay products were detected
in a spectrometer which detected the charged pions coming from the ω → π+π−π0

decays. The π0 meson was reconstructed using missing mass.

Figure 2.2 shows the differential cross sections (�) reported by the CLAS collab-
oration in [14]. The data show 109 10-MeV wide bins measured in center-of-mass
energy and 20 angular bins. The energy resolution in this data set is excellent but
the angular coverage is not complete in the forward (cos θc.m.

ω ≈ 1) and backward
(cos θc.m.

ω ≈ −1) regions.
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Figure 2.3: SAPHIR 2003 Spin-density Matrix Elements Measured in the Helicity
Frame. (defined in Section 1.4.1) Published by the SAPHIR Collaboration [15]. Each
histogram is labeled with its range in the mandelstam t variable which is inversely
proportional to cos θωc.m.. The lowest energy data point in the plots on the top row
was measured in the range |t − tmin| > 0.2 GeV2. The lowest energy data point in
the plots on the bottom row was measured in the range |t− tmin| < 0.2 GeV2.

The unpolarized spin-density matrix elements (SDMEs) defined in the Adair
frame (defined in Section 1.4.1) were also published using the CLAS data. The
SDMEs are shown in Figure 2.5. These data have the same binning as the differential
cross section data. These SDMEs were extracted by modeling all s-channel processes
of the form γp → Jp → pω → pπ+π−π0 in a partial wave analysis fit. The J is the
total spin of the amplitude and p is the parity. All s-channel waves with J ≤ 21/2
with both parities were used in the fit. From this fit, the SDMEs were extracted.

Again, these data have excellent mass resolution but do not have full angular
coverage. These observables are only measured down to approximately 23◦ in θωc.m..
As can be seen in the differential cross sections which will be presented in this thesis,
there is a characteristic forward peak which can be seen and used to characterize the
t-channel meson exchange contribution. This forward peak can not be fully measured
with this data.

2.1.4 Differential Cross Section Discrepancies

The SAPHIR collaboration differential cross sections (N) and CLAS differential
cross sections (�) shown in Figure 2.2 show some differences. When comparing the
data in the backward angular region (cos θωc.m. < −0.5), a discrepancy in the value of
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Figure 2.4: LEPS Excitation Function. Differential cross sections published by the
LEPS collaboration [17] in 2009. This data represents 0.7 < cos θωc.m. < 0.8. The
errors are not shown.

the differential cross sections can be seen. Since the angular distribution has a large
impact on the results of an interpretation analysis, the question arises about which
data set is correct and which one has problems. A new measurement in this kinematic
region would help in resolving this issue. The analysis in this thesis will provide this
new measurement.

2.2 γp → pπ0ω

The only previous measurements of the reaction γp → pπ0ω was done by an earlier
iteration of the CBELSA/TAPS experiment called the CB-ELSA experiment in [16].

Figure 2.6 shows the resultant data from the CB-ELSA experiment and were
measured from approximately 2000 reconstructed pπ0ω events. The most noticeable
feature is the rise in cross sections at the forward angles. This type of rise is associ-
ated with a meson exchange process of the type
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Figure 2.5: CLAS 2009 Unpolarized Spin-density Matrix Elements Measured in the
Adair Frame. (defined in Section 1.4.1) Published by the CLAS Collaboration [14].
Each histogram is labeled with its range in cosine of the polar angle of the ω meson
in the center-of-mass frame (cos θc.m.

ω ). ρ000 (•), ρ01−1 (�), and Reρ001 (N) are shown.
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The ∆+ is named because the most likely resonance is the ∆(1232)3
2

+
, a well

established baryon resonance (4-star state). Beyond this dominant process, there
could be “missing” baryon resonance contributions which contribute but can only be
isolated through an interpretation analysis.

While this measurement is useful in revealing the main features of the reaction,
this data is not as useful in finding new baryon resonances. This measurement is not
sufficient for an interpretation analysis due to the sparse nature of the data points.
The data presented in this thesis has an order of magnitude more events while enabling
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a more complete acceptance correction. This new data will enable an interpretation
analysis which will explore the contributions of “missing” baryon resonances.
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Figure 2.6: CB-ELSA γp → pπ0ω Differential Cross Section. Published in [16]. Each
histogram is labeled with its range in initial photon energy. The errors presented are
only statistical errors.
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CHAPTER 3

CBELSA/TAPS EXPERIMENT

The CBELSA/TAPS experiment in its 2002-2003 configuration was located on the
campus of the University of Bonn, in Bonn, Germany. The detector systems are cen-
tered around the Crystal Barrel detector, which was previously used in the CB-ELSA
experiment in the same location and also at CERN at LEAR (Low Energy Antiproton
Ring). The Crystal Barrel is a calorimeter designed to provide excellent photon en-
ergy detection efficiencies while offering good granularization in reconstructing photon
positions.

Using the Crystal Barrel detector, this experiment offers an excellent tool for
studying hadronic reactions which eventually will decay to photons. Since many
neutral mesons decay this way at least some of the time, this means any reaction
which exclusively produces neutral mesons will be available to be studied.

Figure 3.1: CBELSA/TAPS Experimental Setup (2002-2003).

The general setup is shown in Figure 3.1. Accelerated electrons (coming in from
the left in Figure 3.1) from the ELSA accelerator (See Section 3.1) are incident upon
a radiator, which produces photons via bremstrahlung reactions. The bremstrahlung
electron was deflected by the Tagger (See Section 3.3) and the photon continued to
the center of the Crystal Barrel detector and interacted with the liquid hydrogen
target. The resultant particles were detected in the detector systems (See Section
3.5). Any bremstrahlung photons which did not interact with the target continued

23



downstream and were detected in the γ Veto detector. The γ Veto detector was used
to help determine the photon flux used in the cross section determinations. In this
analysis, the Time of Flight wall (TOF) was not used and therefore not discussed
here.

3.1 ELSA Accelerator

The ELectron Stretcher Accelerator (ELSA) used a system of two sychrotrons and
injector LINACs (LINear particle ACcelerators) to accelerate electrons up to 3.5 GeV
in energy. This facility has had an accelerator in place since 1953 and in its current
configuration of two syncrotrons since 1987 [18].

Figure 3.2: ELSA Accelerator Map (2003).

Figure 3.2 is the map of the ELSA facility as of 2003. The accelerator was capa-
ble of supplying a quasi-continuous beam of unpolarized electrons at energies up to
3.5 GeV in energy.

Initial electrons were produced at the beginnings at either of the two LINACs.
The two different LINAC lines were present in order to produce either polarized or
unpolarized electrons.

LINAC 1 was used for the production of unpolarized electrons and used a thermal
electron gun. The unpolarized electrons were accelerated and injected into the booster
synchrotron. Unpolarized electrons were the only ones used for hadronic studies
during the 2002-2003 CBELSA/TAPS experiment.
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Polarized electrons are produced and accelerated via LINAC 2. Polarized electrons
were produced using a 50 keV source which used polarized laser light incident on a
Be-InGaAs/Be-AlGaAs supperlattice crystal.

The booster synchrotron was used to accelerate the electrons up to 1.6 GeV and
injected them into the stretcher ring. The resultant current from the booster syn-
chrotron was pulsed with a duty factor1 of around 5%. In order to deliver the con-
tinuous beam which hadronic experiments need, this beam needed to be ”stretched”
out.

When the output energy of the needed electrons was 1.6 GeV or below, the
stretcher ring was set into stretcher mode. In this mode, the stretcher ring served
as a storage ring which stretched out several pulses into an almost continuous beam.
The beam was then slowly extracted to the experiment.

When the needed output energy of the electrons is above 1.6 GeV, the accelerator
was set into post-accelerator mode. In this mode, an extra step involved increasing
the energy of the electrons. Several pulses from the booster were collected in the
stretcher ring and then accelerated to the desired energy and then stretched out to
form a continuous beam. Then the beam was extracted slowly and continuously. This
mode resulted in a continuous beam with some dead times for refilling the ring and
ramping up the energy. This mode had a macroscopic duty factor up to 95%.

Once the high energy electrons were accelerated to the desired energy and con-
tinuously distributed, the beam could either be slowly extracted using an extraction
magnet or the beam could be stored in the stretcher ring for several hours. The stored
beam could be used to feed experiments using synchrotron radiation.

The electrons for this analysis were extracted over a period of about 10 sec-
onds while maintaining a duty factor of about 80% with a final electron energy of
3.175 GeV.

3.2 Radiator

As the 3.2 GeV electrons came in from the ELSA accelerator, the electrons en-
countered a radiator. This radiator caused some of the electrons to undergo a brem-
strahlung reaction and lose some of their energy by emitting a photon. The radi-
ator used for all differential cross sections and unpolarized spin-density matrix ele-
ment measurements was a copper radiator with a thickness of 3/1000 XR (radiation
lengths). This ensured statistically only one interaction occurs per electron.

For measurements using linearly polarized photons, the goniometer (shown in Fig-
ure 3.3) was used to switch to a diamond radiator. The diamond radiator provided
a regular lattice for the electrons to scatter from. When scattering occurs at certain
angles and momenta, coherent production of photons with polarization vectors par-
allel to the lattice vectors occur. When the crystal lattice is fixed in space and the
energy of the initial electrons is fixed, the preferential production of photons with

1time with beam/total time
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Figure 3.3: Goniometer Schematic. Holds the radiators used to create bremstrahlung
reactions, which coverts the ELSA electron beam to a photon beam.

linear polarization occurs at its maximum just below the coherent edge energy. The
coherent edge is a discontinuity in the cross section of polarized photons versus energy
where above this energy the degree of polarization drops.

A linearly polarized photon beam data run is defined by the position of the co-
herent edge. Generally, the degree of polarization of the beam above this energy is
small.

In this thesis, the data used for the measurement of the differential cross sections
and unpolarized spin-density matrix elements was measured using an unpolarized
photon beam produced via the copper radiator. All plots of experimental data in this
thesis is made using this unpolarized data, unless otherwise noted. Only the polarized
spin-density matrix elements were measured using the diamond radiator. Therefore,
only data plots in Section 9.3.2 use these polarized data.

3.3 Tagger

The result of the bremstrahlung reaction was a photon traveling along the same
direction as the initial electron and an electron of lower energy. Since energy is
conserved, the total energy of the initial electron was equal to the combined energy of
the photon and final electron. Therefore once the energy of one of the final particles
was known, the energies of both final state particles were known. The initial electron’s
energy was already well defined by the ELSA accelerator.

Since measuring the photon’s energy directly would affect its use as an initial
particle in the subsequent hadronic reaction, the bremstrahlung electron was focused
on as the source of information. To find the energy of this electron, the electron was
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subjected to the magnetic field of a dipole magnet. This magnetic field deflected the
electron while not affecting the photon. The energy of the bremstrahlung electron is
directly related to the magnitude of the deflection of the electron. Since most of the
electrons did not interact with the radiator and were unimportant to our analysis,
most of the electrons are directed into a beam dump. The rest of the electrons
traveled into an array of scintillating bars and fibers, which recorded the passage of
charged particles. These scintillators recorded the timing of each electron as it passed
by, which in turn fixed the energy and timing of each photon passing into the liquid
hydrogen target (after the energy calibration).

The dipole magnet and scintillating fibers and bars are collectively called the
Tagging Hodoscope (Tagger) (Figure 3.4). Its function was to “tag” each incoming
photon with energy and timing information. The tagger magnet was a 1.63 T dipole
magnet which deflected the unscattered electrons 7.5◦ into a beam dump. Since a
scattered electron had less energy than an unscattered electron, the scattered electrons
were deflected farther and passed through the electron detection assembly.

Figure 3.4: CBELSA/TAPS Tagging Hodoscope (Tagger).

The setup to detect the scattered electrons were divided into regions. The high
energy region was used to detect electrons which had energies from 80% to 92% of the
initial electron beam energy. This region used a Multi-Wire Proportional Chamber
(MWPC). The lower energy region detected electrons which had 22% to 80% of the
initial electron beam energy. This region used 480 plastic scintillating fibers to detect
electrons. Covering both regions, 14 partially overlapping scintillating bars were used
in coincidence. The Multi-Wire Proportional Chamber was not used in this work due
to the lack of timing information available from this detector.

The scintillating fibers were grouped into bunches of 16 and read out by a pho-
tomultiplier tube. The fibers were arranged in 2 overlapping layers and were used in
coincidence with its neighboring scintillating bar to detect the presence of an electron
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scattered from the beam. Each scintillating bar was read out by two photomultiplier
tubes attached to each end.

3.4 Target

Located at the geometrical center of the Crystal Barrel Detector, the target cell
was a 5.275 cm long, 3 cm diameter cylinder. The target walls were made of 125 µm
thick kapton on the sides and 80 µm thick kapton on the ends. The low density kapton
has a very long radiation length (28.6 cm) which decreased the chance of interaction
with the photons emitted from the hadronic reactions of interest. The kapton on the
sides was also covered by a 1 mm thick aluminum beam pipe for stability.

The target material itself included either liquid hydrogen, liquid deuterium, car-
bon, calcium, niobium, or lead. For this analysis, only liquid hydrogen was used. The
liquid hydrogen provided the unbound, low momentum protons needed to measure
photoproduction cross sections off the free proton.

3.5 Detector System

The detector systems for this experiment were designed to provide excellent pho-
ton energy and position reconstruction, while registering the presence of charged
particles as they passed through the calorimeters. Since the final states for the reac-
tions γp → pω and γp → pπ0ω always included at least one charged particle (proton),
the information for charged particles must be treated differently than for photons.

3.5.1 Crystal Barrel Detector

The Crystal Barrel Detector is shown in Figure 3.5 and was constructed of 1290
CsI(Tl) crystals. Each crystal had the long axis pointed towards the target center and
was read out by a photodiode. This detector covered the whole azimuthal range and
from 30◦ to 168◦ in the polar angle, using the exiting photon beam as the reference
axis. The crystals were arranged in 23 rings around the beam axis. Each individual
crystal covered a solid angle of θ = 6◦ and φ = 6◦. Only the last 3 rings in the
upstream direction had crystals covering a solid angle of θ = 6◦ and φ = 12◦. The
properties for the CsI crystals are listed in Table 3.1.

When a high-energy photon entered the CsI crystal, the photon’s energy was
deposited via electromagnetic showers. The size of a shower depends on the properties
of the crystal. The depth of the shower is important because if a large fraction of
the energy was lost out of the end of the crystal, the reconstruction of the energy of
the original photon became poor. The length of these CsI crystals was approximately
16 radiation lengths and absorbed practically all of the energy of a 2 GeV photon.
The lateral extent of the electromagnetic shower was important in reconstructing
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Figure 3.5: Crystal Barrel Detector Schematic. The target assembly is at the center
of the Crystal Barrel with the beam coming in from the left and exiting to the right.
The two lines surrounding the target are the Inner Detector (See Section 3.5.2).

the point of impact of the photon. The Molière radius2 for CsI (See Table 3.1) was
actually larger than a single crystal and meant a photon will deposit its energy over
several crystals, called a cluster. Using an energy weighted reconstruction, the angular
resolution was optimized to 1◦ − 1.5◦, depending on the energy of the initial photon.
The reconstructed energy resolution of the Crystal Barrel was

∆E

E
=

2.8%
4

√

E[GeV]
.

Figure 3.6: Crystal Barrel Crystal Module Schematic. Crystal Barrel CsI(Tl) Crystal
Module. (1) Titanium Casing, (2) Wavelength Shifter, (3) Photodiode, (4) Pream-
plifier, (5) Optical Fiber, (6) Electronics Casing

2The radius of a cylinder in which a photon deposits 90% of its energy.
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Table 3.1: Detector Crystal Properties. Previously published in [19, 20]. The radia-
tion length is for a 2 GeV photon.

CsI(T1) Crystals BaF2 Crystals

Detector Crystal Barrel TAPS

Density 4.53 g/cm3 4.89 g/cm3

Radiation Length (X0) 1.86 cm 2.05 cm
Crystal Length 25 cm 30 cm
Molière Radius 3.8 cm 3.1 cm
Energy Loss Rate 5.6 MeV/cm 6.6 MeV/cm
Emission Maximum (decay time) 550 nm (0.9 µs, 7 µs) 220 nm (0.9 ns)

300 nm (630 ns)

Figure 3.6 shows a picture of an individual module in the Crystal Barrel detector.
Once the shower has happened in the crystal, the light then went through a wavelength
shifter. The wavelength shifter shifted the light from the crystal to a wavelength which
was optimal for the photodiode to detect. The output of the photodiode was amplified
and transmitted to readout electronics outside the experimental area. An additional
optical fiber was used to feed a known light source directly into the wavelength shifter
to monitor the response of the photodiode.

3.5.2 Inner Detector

Figure 3.7: Inner Detector Schematic. Consists of 513 scintillating fibers arranged
in 3 layers to detect the passage of charged particles.

Figure 3.7 shows the composition and Figure 3.5 shows the position of the Inner
Detector in the experimental setup. The function of this detector was to record the
timing and position of charged particles which could be detected by the Crystal Barrel
crystals. The angular coverage of the detector covers the whole azimuthal range and
from 30◦ to 172◦ in the polar angle.

The Inner Detector was composed of 513 2-mm diameter scintillating fibers ar-
ranged in 3 layers. These three layers were attached to 40 cm long carbon fiber tubes
stabilized by a 1.8 mm thick aluminum pipe surrounding the target. The scintillating
fibers were connected in groups of 16 to a multi-anode photomultiplier tube, which
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provided fast timing signals. As a charged particle passed by a scintillating fiber,
light was sent down the fiber and transmitted by lightguides to the photomultiplier
tube, which was located outside the Crystal Barrel detector.

Each layer of scintillating fibers was arranged in different orientations to the beam
line. The outermost layer of fibers were aligned parallel to the beam line. The
middle layer and inner layers were lying at +25.7◦ and −24.5◦ angles to the beam
line respectively. Each fiber in the middle and inner layers extended the whole length
of the detector and half a revolution around the cylinder. This arrangement allowed a
unique position to be determined when a hit was registered in two of the three layers.
The detection efficiency3 for a hit required in two of three layers was 98.4%, while a
hit required in all three layers had an efficiency of 77.6% [21].

3.5.3 TAPS Detector

Figure 3.8: TAPS Detector Schematic. 528 BaF2 crystals arranged in a hexagon.
The lighter colored area is the 30◦ area left open by the the Crystal Barrel Detector
in the downstream direction.

Figure 3.8 shows the overall design of the TAPS detector. The TAPS was designed
in the mid 1980’s as a portable electromagnetic calorimeter which was excellent at
detecting photon energy and timing information, while also detecting the presence of
charged particles. The TAPS detector was moved from Mainz to Bonn in 2001 to be
used in conjunction with the Crystal Barrel detector for this experiment.

The TAPS detector was a wall of 528 BaF2 crystal modules built into a hexagonal
wall and was placed 1.81 m downstream of the target to cover the forward hole left by
the Crystal Barrel detector. The TAPS detector covered the whole azimuthal angle

3probability for a charged particle to be detected
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Figure 3.9: TAPS Crystal Module Schematic. TAPS BaF2 Crystal Module. (1)
Plastic scintillator (2) BaF2 Crystal (3) Photomultipliers (4) Optical Fiber

and from 30◦ to 5.8◦ in the polar angle. This forward polar angle coverage was critical
since the kinematics of the initial state indicate many of the particles of interest would
travel through this region.

The schematic of an individual crystal module is shown in Figure 3.9. The prop-
erties of the BaF2 crystals are summarized in Table 3.1. The BaF2 crystal faces were
hexagonal in shape and were 59 mm in height and 25 cm in length (≈ 12 radiation
lengths). The crystals tapered down to a 54 mm diameter cylinder which connected to
a photomultiplier tube. The face of each crystal was covered by a 5 mm thick plastic
scintillator producing a signal which was conveyed to another photomultiplier tube
via a lightguide. This plastic scintillator produced a signal when a charged particle
passed into the face of the crystal. The energy resolution for a 45-790 MeV photon
of the TAPS detector was given by [22]

σ(Eγ)

Eγ

=
0.59%
√

Eγ

+ 1.8% .

The combination of relatively fast decay times (compared to CsI) and photo-
multiplier readouts allowed the TAPS detector output to be used efficiently in the
trigger system (See Section 3.6). The output from the photomultiplier tubes were
split 4 times and processed simultaneously for data storage and triggering. Two of
the outputs are linked to the LEDs4 which led to the triggering decisions (Section
3.6.1). The data storage was linked to digitization components for storage on disks.
The final output was fed into a Constant Fraction Discriminator (CFD) used for
timing information and possibly further trigger processing.

3.5.4 γ Veto Detector

The γ Veto Detector is shown in the far right of Figure 3.1 and was important for
determining the photon flux and beam position. The γ Veto Detector was made of 9
PbF2 crystals arranged in a 3 by 3 cube and readout by photomultiplier tubes. As
unreacted beam photons entered the crystals, pair production of particles caused the
emission of Cherenkov light.

4Leading Edge Discriminators
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The γ Veto Detector was mainly used to check the spacial distribution of photons
in the beam. Some of the photons detected in the tagging hodoscope did not actually
pass through the target and should not be counted in the photon flux. If these photons
do not pass through the target then they did not have a chance to produce a hadronic
reaction and can cause an error in the normalization needed to measure a differential
cross section.

3.6 Trigger

When a photon interacts with matter, most interactions do not involve the pro-
duction of hadrons. At photon energies above 10 MeV, the most likely process is the
production of electron-positron pairs. Since the probability of the reactions γp → pω
and γp → pπ0ω happening is many magnitudes less than pair production, it would
be wasteful to store the data from every particle detection.

The solution to this problem was to decide what is a good reaction to record
as it happened. In order to decide “on-the-fly” and collect enough events to have
reasonable statistical error bars on the results, the decision must be done quickly and
accurately. Too much time spent deciding meant time was not used taking data.

The trigger is the name of the decision making component, which for the
CBELSA/TAPS experiment was constructed as a two-level process. Since the TAPS
detector output was very fast and could be read and used in a decision as soon as
it reached the readout electronics, its output was used in the first level trigger. The
first level trigger was entirely electronics based, therefore only very simple trigger
logic could be used. Once the output passed the first level trigger, digitization of
the analog detector signals began and more complex trigger logic was applied using
output from the much slower Crystal Barrel detector output during the second level
trigger, which was also electronics based.

3.6.1 First Level Trigger

The output of each TAPS crystal module was split and connected to two leading
edge discriminators (LEDs). The two LEDs were set to two different threshold values
to enable two different types of discriminator signals called LED high and LED low.
The threshold values were set ring by ring by how close the crystal was to the beamline
and to be above most of the electromagnetic background. The ring of crystals closest
to the beamline had threshold values of approximately 1 GeV. The threshold values
decreased as the crystals got farther away from the beamline and suppressed a large
amount of electromagnetic background and noise which grows in energy and size as
the distance to the beamline gets small.

The LED low and LED high threshold signals were grouped together into 8 seg-
ments and are shown in Figure 3.10. All the individual crystal modules in a segment
were linked together with a logical OR circuit producing one LED signal per segment.
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Figure 3.10: TAPS Trigger LED Map. The TAPS trigger segments for the LED low
(left) and LED high (right) trigger conditions.

This arrangement of LED low segments allowed the suppression of electron-positron
pair triggering by requiring a hit in two different segments.

3.6.2 Second Level Trigger

Once the first level decision was made, enough time had passed to gather infor-
mation from the Crystal Barrel. Simultaneously, the data from the detectors began
to be digitized for storage and used to make a final decision on whether to record the
data to disk.

To determine if the event was to be kept, the trigger system determined quickly
how many photons had been recorded. Since a photon showered its energy over several
crystals, the determination came down to how many clusters5 of hits were recorded.
The FAst Cluster Encoder (FACE) was the component responsible for finding clusters
based on a cellular logic. The cluster finding took from 6-10 µs, depending on the
number of crystals involved. If after counting the clusters, it was determined not
enough photons had been detected, the trigger system interrupted the digitization
process and cleared the buffers to consider another event. Otherwise, the event was
recorded to disk.

The total time needed for digitization was on the order of 1 ms and allowed time
for a complex second level decision.

3.6.3 Trigger Conditions

The conditions for triggering were selected to maximize the number of desired
hadronic events while minimizing the number of background events. For this data
taking period, one of two conditions had to be met before an event was recorded. The
conditions used for the data taken in this analysis are listed in Table 3.2.

For trigger-or data taking runs, a different trigger was used to take data used to
count the total number of photons for purposes of photon flux determination. The

5A contiguous pattern of crystals recording a hit.
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Table 3.2: List of Conditions for Triggering.

Condition A Two LED-low segments registering at least one hit above the
LED-low threshold.

Condition B One LED-high segment registering at least one (two for polarized data)
hit above the LED-high threshold and at least one cluster in FACE.

trigger used in these runs was only a hit in one of the scintillator bars of the tagging
system.

3.6.4 Trigger Simulations

To ensure the Monte Carlo simulations and detector acceptance corrections of the
experiment were correct, the trigger conditions have been properly modeled. The
simulated detector response was analyzed to make sure the signals fulfilled the trig-
gering conditions. For every data event recorded from the experiment and every
Monte Carlo event analyzed for acceptance, a 16-bit word was generated describing
the trigger conditions. This 16-bit word was either analyzed for quality control for
data events or used as a trigger cut for Monte Carlo events.

The proper modeling of the trigger in the Monte Carlo study involved precise in-
formation on the LED thresholds used in making the trigger decision. The calibration
and determination of the LED thresholds are discussed in Section 4.3.

3.7 Readout Electronics

When a suitable event for recording was found, the response of each component
had to be converted to a digital signal for storage on disk. The conversion of energy
signals from the photomultiplier tubes or photodiodes was done via Analog to Digital
Converters (ADC). ADC output was a digital number which was proportional to
the original analog signal. Timing information was recorded using Time to Digital
Converters (TDC). TDCs are devices which express the timing of detector outputs as
a digital signal. The TDC modules recorded the timing of signals continuously but
when recording the TDC output on disk, the signal was reported as relative to the
timing of the trigger signal.

In order for the ADC and TDC output to be useful, the calibration of these signals
was done. In the next chapter, the calibration of these outputs will be discussed.
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CHAPTER 4

SUB-DETECTOR CALIBRATIONS

The output of each individual detector module was converted from an analog signal
to a digital signal by an Analog to Digital Converter (ADC) or a Time to Digital
Converter (TDC). The output of an ADC is a digital value related to the energy
recorded of a signal. The output of a TDC is a digital value related to the timing of
the signal. The ADC and TDC outputs are the values written to disk during data
taking.

After data taking is over, each TDC and ADC output must be calibrated to be
useful in reconstructing events. The calibration of TDC values is discussed as the
time calibration in Section 4.1.

The energy calibration of the calorimeter crystals is the most critical part of the
calibration. The output of each crystal module was converted to a physical unit by
comparing to some known quantity. The quantity used in this case was the nominal
invariant mass of the π0 meson (∼ 135MeV/c2). The π0 meson decays to two photons
approximately 98% of the time. By using the energy and position detected for each
pair of detected photons, the invariant mass for any potential π0 mesons can be
reconstructed. The most prominent peak in this distribution is most likely the π0

meson. By moving the peak position of this peak to the nominal mass of the π0 using
the calibration constants for each crystal, each crystal module was calibrated. This
procedure is discussed further for the TAPS crystal modules in Section 4.2.1 and for
Crystal Barrel crystal modules in Section 4.2.2.

To optimize the triggering process described in Section 3.6, the calibration of both
LED-low and LED-high thresholds is described in Section 4.3.

4.1 Time Calibration

The first step in the time calibration was to obtain the conversion factor relating
the value of the TDC output to physical units. The TDC module output was cal-
ibrated to physical time units by feeding light pulses of known frequencies into the
PMTs. The TDC output could then be monitored to obtain a multiplicative factor
which converted the output to usable values.
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Figure 4.1: TAPS Time Spectrum (Calibrated). The time difference between two
photons decaying from one π0 meson detected in TAPS crystals. Left: Time differ-
ence integrated over all TAPS Crystals. Right: Time difference separated into the
difference for each crystal module in TAPS. The white points correspond to the peak
position determined using a Gaussian fit. Vertical white bars or empty channels are
from crystal modules with defective time signals. An overall time resolution of 0.39 ns
has been achieved.

The second step to the time calibration was to synchronize the signals from each
TDC-module in the TAPS detector. Each TDC-module and PMT had cables and
components with potentially varying lengths which could affect at what time the TDC
signal was recorded and processed. This calibration is discussed in Section 4.1.1.

Finally, the TDC output from the Tagger scintillating fibers were calibrated in
relation to the TAPS detector TDCs. The TAPS detector was used as the standard
due to its excellent timing resolution. This is discussed in Section 4.1.2.

4.1.1 TAPS Detector Time Calibration

Once the TDC output was converted to time units, the timing of each crystal
module in the TAPS detector must be synchronized. An offset of timing signals
could happen because the length of each cable could be different for different crystals
causing the timing of the signals to reach different TDCs at different times. These
differences must be calibrated away in order for the TDC output to be useful in
reconstruction.

The most copiously produced meson decaying to photons is the π0 meson. This
meson decays to photons approximately 98% of the time and when decaying at the
momentums characteristic of this experiment, the photons are detected at small open-
ing angles. This meant a π0 meson decaying into the TAPS detector produced photons
which were detected in crystals fairly close together. By reconstructing π0 mesons
detected in TAPS, the difference between the TDC values for the crystals detecting
each photon should be zero.
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Figure 4.2: Tagger Hodoscope Time Calibration Relative to TAPS. The time dif-
ference between a π0 meson detected in TAPS crystals and an electron detected in
a tagging fiber. The difference has been calibrated to zero. Left: Time difference
integrated over all Tagger fibers. Right: Time difference separated into the difference
for each Tagger fiber. The white points correspond to the peak position determined
using a Gaussian fit. An overall time resolution of 0.69 ns has been achieved.

The actual calibration of the TAPS TDC values took a large amount of data and
many iterations to complete. To do the calibration, data events from the experiment
were used to reconstruct π0 mesons from photons detected in TAPS. The photon
clusters were reconstructed with the central crystal being defined as the crystal with
the largest energy deposit. The time information from each central crystal is filled
into its histogram. After all the potential π0 decays were processed, the histogram
for each crystal was fitted with a Gaussian function to determine the peak position,
or the average time difference from all the other surrounding crystals. An additive
offset value was determined to move the peak position in the histogram to zero, or no
time difference. Since this process was dependent on the rest of the crystals having
the correct timing calibration on average, the process was repeated until all the time
differences “relax” to zero. The calibrated time differences for the TAPS crystals are
shown in Figure 4.1 and suggests the average time difference between each crystal
and its neighbors is approximately zero. An overall time resolution of 0.39 ns has
been estimated [23].

4.1.2 Tagger Hodoscope Time Calibration

Once the TAPS timing calibration was complete and the TDC for each tagger
scintillating fiber was converted to a time, the timing calibration for the tagger was
done. The TAPS reconstructed π0 mesons were used again, however this time the
average time between the two photons in the decay were used as the timing reference.
Since these π0 mesons were the result of an initial state photon passing through
the tagger, a corresponding electron must have been detected in the tagger fiber
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scintillators. Time values from electron hits in the tagger fibers were used to form a
time difference from each reconstructed π0 in TAPS and was filled into a histogram
for each tagger fiber. In the resulting histogram, a peak was seen corresponding to
the time for travel from the tagger to TAPS. In each fiber, the peak of the timing
spectrum was found and a calibration value was defined by moving the peak position
to zero.

Figure 4.2 shows the result of the Tagger time calibration. The time differences
have been calibrated to zero. An overall time resolution for the Tagger timing of
initial state photons has been estimated to be 0.69 ns [23].

4.2 Energy Calibration

The conversion of ADC values to physical units for each crystal module in the
TAPS and Crystal Barrel detector is called the energy calibration. The response of
each crystal module was dependent on a multitude of factors causing each one of the
over 1800 crystals to be treated individually. The calibration of TAPS crystal mod-
ules (Section 4.2.1) and Crystal Barrel crystal modules (Section 4.2.2) were similar
but required slightly different procedures to calibrate, due to the different spacial
orientation of the crystals.

The energy of the initial state photons was detected using the Tagging hodoscope.
The calibration of the Tagger output is described in Section 4.2.3.

The trigger system, described in Section 3.6, relied on the LED thresholds to
make decisions on whether to record an event or not. For the trigger system to work
efficiently, the LED thresholds were optimized (Section 4.3).

4.2.1 TAPS Detector Energy Calibration

The ADC output from the TAPS crystal modules had a linear relationship with
the energy deposited in the crystal [24]. To convert the ADC value to a physical unit,
both a zero-point value (y-intercept) and a gain (slope) must be determined. Two
methods for determining the calibration for the TAPS crystal modules were used in
succession: Cosmic Ray Method and Invariant Mass Method.

Cosmic Ray Calibration Method. The output from the uncalibrated TAPS
crystal modules to the same stimuli can differ greatly. A rough calibration using the
cosmic ray calibration method was done before data taking, in order to monitor the
output during the experimental data run.

To determine the zero-point value, or the ADC value corresponding to zero energy
deposited (Pedestal), a 1 Hz pulser was linked to the Constant Fraction Discrimina-
tor (CFD) and was used during the cosmic ray calibration data taking run.

The gain was determined using naturally occurring cosmic muons. All the TAPS
crystals are arranged in the same orientation with respect to the sky therefore the
cosmic muons deposit the same amount of energy in each crystal. Assuming the
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Figure 4.3: TAPS Spectrum of ADC Values During a Cosmic Ray Calibration.

muon penetrates the BaF2 crystals perpendicularly, the energy deposit is 38.9 MeV1.
Figure 4.3 shows a typical spectrum from a cosmic ray calibration run. The pedestal
(zero-point value) peak indicates at what ADC value zero energy is deposited. The
CFD threshold indicates at what value the constant fraction discriminator attenuates
input. The cosmic peak shows the distribution of deposited energies which are left
from cosmic muons. The gain for each crystal is obtained by histogramming the ADC
values and fitting a Gaussian function to the cosmic peak. The gain was defined as
the conversion factor between the precalibrated value of the cosmic peak position and
the calculated muon deposition energy (38.9 MeV).

Invariant Mass Calibration Method. For data reconstruction and analysis,
a much more precise method of energy calibration was needed. As with the time cali-
bration of the TAPS TDC values, the π0 decay to two photons was used as a reference.
The well known invariant mass of the π0 meson (Mπ0 = 134.9866± 0.0006 MeV) [1]
was used as the value the crystals are calibrated to. Using the energy of each photon
in the decay (E1, E2), the invariant mass of the π0 meson was calculated by

Mπ0 =
√

E1 E2(1− cos θ1,2) ,

where θ1,2 is the angle between the two photons and the center of the target has been
used as the vertex of the angle.

Because two photons decay from each pion, the calculated mass of the pion was
dependent on the calibration of more than one crystal module. However, the central
crystals for each photon cluster are the crystals which have the most effect. The
reconstructed invariant mass for each pair of photons in TAPS was filled into the
histogram for each central crystal. The value of the π0 peak in each crystal’s histogram

1Crystal thickness = 5.9 cm, dE/dx = 6.6 MeV/cm

40



Figure 4.4: TAPS Calibrated Spectrum of Two Photon Invariant Masses. Left: Two
photon invariant mass integrated over all crystals. Vertical line corresponds to the
nominal mass of the π0 meson. Right: Two photon invariant mass as a function of
crystal module number. White points indicate the fitted peak of the π0. The empty
channels are due to the crystals shadowed by the edges of the Crystal Barrel detector.

was directly related to the calibration of that crystal. The contribution of other
crystals, in theory, should be averaged out. Since this was not quite true, the process
has to be done iteratively to “relax” the calibration into the correct values for all
crystals.

Figure 4.4 shows the results of the energy calibration of the TAPS crystal modules.
The invariant mass peak of the π0 meson shows its peak position at the correct value.
The empty channels in Figure 4.4 highlight an issue which arose due to the relative
positions of the TAPS and Crystal Barrel detector. These empty channels were due
to the shadowing of the Crystal Barrel detector of these crystals and therefore had
a lack of π0 photons striking this region (see Figure 3.8). To remedy this situation,
these crystal modules were assigned calibration values which were an average of all
other modules. These crystals were rejected as center crystals in the photon cluster
reconstruction. In this way, the effect of the lack of direct calibration on these crystal
modules was minimized.

As a cross check for this calibration, the invariant mass of the η meson was re-
constructed using the calibration values from the π0 invariant mass calibration. The
invariant mass of the η meson was reconstructed through its two photon decay. Unfor-
tunately, the reconstructed mass of the η was 5-10 MeV too large. This discrepancy
was attributed to the crystals at the edge of a photon cluster not reporting an energy
deposit because the value fell below the threshold for a hit (10 MeV). The deposited
energy of each photon was mostly in the central crystal but a non-negligible fraction
was deposited in the surrounding crystals. If the energy detected in the crystal on
the outer range of the photon cluster fell below the threshold, an energy deposit was
not recorded. This effect is amplified by the orientation of the crystals in the TAPS
detector, which do not have their long axis pointed at the target center. This ori-
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Table 4.1: TAPS π-η Calibration Values. Run numbers are the numbers given to
each individual file in the dataset.

Run Numbers b c
Unpolarized Data (October-November 2002)

21304-24378 1.012 −2.47 · 10−5

24379-24599 1.001 −1.09 · 10−5

24600-24949 1.041 −2.52 · 10−5

24950-26798 1.001 −1.09 · 10−5

Linearly Polarized Data (March 2003)
35252-37610 1.012 2.47 · 10−5

Linearly Polarized Data (May 2003)
45525-47176 1.001 −0.88 · 10−5

entation increases the chance for small energy deposits. This threshold value could
not be tuned lower due to crystal noise and unwanted electromagnetic background.
Since the photon energies from the η decay are typically larger than the photons from
the π0 decay, the effect was smaller in comparison. Since this effect was calibrated
away for π0 decay photons and assumes the same magnitude for the effect for η decay
photons, the η decay photons have been over corrected.

To correct for this effect, a second calibration was added to the energy calibration
procedure. The function used for calibration is

Efinal calibrated = a+ b Eπ0 calibrated + c E2
π0 calibrated ,

where a is set by the pedestal to be zero and Eπ0 calibrated is the energy value after the
π0 invariant mass calibration. The parameters b and c were determined to be

b =
mπ

mγγ
π

− c · Eπ

c =

(

mη

mγγ
η

− mπ

mγγ
π

)

/

(Eη − Eπ) ,

where (mπ,mη) are the PDG invariant masses, (mγγ
η ,mγγ

π ) are the reconstructed in-
variant mass peak positions and (Eη, Eπ) are the mean reconstructed energies. The
determined parameters are shown in Table 4.1.

4.2.2 Crystal Barrel Detector Energy Calibration

The energy calibration for the Crystal Barrel detector was much like the invariant
mass calibration method for the TAPS detector. A histogram was defined for each
crystal module and filled with two photon invariant masses. A histogram was filled
with an invariant mass if its corresponding crystal was the central crystal in one of the
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Figure 4.5: Crystal Barrel Spectrum of Two Photon Invariant Masses for One Crystal
Module. Each layer in the plot shows the effect of the iterated energy calibration of
the crystal modules. The line is the nominal mass of the π0 meson.

two photon clusters. The π0 peak was fitted using a Gaussian peak and a conversion
factor defined which moved the peak position to the PDG mass of the π0 meson.
Since the invariant mass reconstruction always relied on more than one calibration
value for one crystal, the process was done iteratively to “relax” the calibration values
into the correct values.

Figure 4.5 shows the effect each iteration has on the position of the π0 peak. As
each iteration was done, the calibration value of each crystal was shifted closer to the
value which placed the peak position to the nominal mass of the π0 meson.

To check the calibration, the peak position of the η meson two photon invariant
mass was checked. In this case, the peak position is within 1 MeV of the PDG
value for the η meson and therefore no need for a second calibration function. The
reason for this was the relatively low threshold values for recording an energy deposit
(1 MeV) for Crystal Barrel crystal modules and the orientation of the crystals. These
crystals had their long axis pointed at the target and had a lower probability for
smaller energy deposits. The effect was a much smaller fraction of the total photon
energy deposited goes unreported in the outer crystals in the photon clusters.

In order to check the energy calibration at even higher energies, the reconstructed
mass of the ω meson was checked. The position of the invariant mass for the ω
meson is important for this analysis and is shown in Figure 6.7. The position of the
reconstructed ω is within 1 MeV of the nominal mass given in [1] to be 782.65 MeV.
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4.2.3 Tagging Hodoscope Energy Calibration

In the tagging system, bremstrahlung electrons were bent out of the beamline
using a dipole magnet and detected in one of 480 scintillating fibers. The central idea
of the tagger energy calibration is to assign a photon energy to each of the scintillating
fibers.

The calibration of the tagger hodoscope was done through Monte Carlo simulation
after carefully modeling the magnetic field from the dipole magnet and spatial position
of each scintillating fiber. A 5th order polynomial was used as a calibration function
relating fiber number to photon energy and was initially fitted to the Monte Carlo
simulation output. To provide a quality check and corrections to the polynomial, a
very low intensity electron beam from the ELSA accelerator with known energy was
fed directly into the tagging system at four different energies (direct injection). The
direct injection primary electron energies were set to 680, 1300, 1800, and 2050 MeV
with a constant magnetic field of B = 1.413 T and no radiator. The hit patterns
for each run were compared to the polynomial and corrections were made. The final
calibration function used for the data reported in this thesis, at an ELSA electron
energy of 3.175 GeV, is

E3.175 GeV
γ = 2533.81− 190.67 · 10−2x+ 28.86 · 10−4x2

−34.43 · 10−6x3 + 95.59 · 10−9x4 − 12.34 · 10−11x6 ,

where Eγ is the photon energy in MeV and x is the tagger fiber number. Figure 4.6
shows the calibration polynomial along with the direct injection data. For different
ELSA accelerator electron energies, this polynomial can be scaled according to

EE2

γ =
E2

3.175 GeV
E3.175 GeV

γ ,

where E2 is the new beam energy in GeV.

4.3 TAPS LED Trigger Threshold Energy

Calibration and Determination

As discussed in Section 3.6.1, the TAPS crystal module output was used to produce
two Leading Edge Discriminator (LED) signals. The threshold signals, LED-high and
LED-low, were used to determine whether a data event should be recorded (trigger).
These thresholds were set in the hardware and were calibrated to suppress e+e− pair
production which was an overwhelming fraction of the background. The threshold
levels were the same for all crystal modules in the same ring, crystals with roughly
the same distance from the beamline. These thresholds were at a maximum of 1 GeV
in the closest ring to the beamline and decreased down to about 100 MeV as the
ring’s distance from the beamline increased.
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Figure 4.6: Tagger Energy Calibration Polynomial. The vertical axis is the energy
of the bremstrahlung photon. The dashed line is the tagger polynomial. The data
points are the direct injection data points used for corrections.

In order to correctly model the trigger in the Monte Carlo simulations, the thresh-
old for each crystal module was determined and used in the simulation analysis. To
determine the effective values, the same data were analyzed using the three possible
LED signals. Data hits in a crystal had either a LED-low, LED-high or no signal.
The ratio of the number of these data events with different signals as a function of
energy deposited were used to determine the LED thresholds.

Figure 4.7 shows the LED threshold ratios for the different signals and different
particles. These ratios were formed by dividing the number of hits which triggered
a LED signal and all hits. The different behavior for photons and protons was due
to the pulse shape or shower development the particle made in the crystal. The
threshold was defined as the energy value where the ratio fell to 50%. A threshold
was determined for all TAPS crystal modules and both signals.

In the final analysis in this thesis, these thresholds were changed in the software
reconstruction of the data. The triggering on protons in TAPS caused detector ac-
ceptance issues when using the hardware threshold values described above. During
the software reconstruction of these data, the signals were subjected to the same trig-
gering rules as during the data taking but these thresholds were increased. This new
threshold was also used in the Monte Carlo simulation reconstruction [25].
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Figure 4.7: LED Threshold Ratios for a Typical Crystal Module. The ratios of crystal
module hits with a LED-high (Right) or LED-low (Left) signal to all hits. The vertical
line marks the threshold for the crystal.
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CHAPTER 5

SUB-DETECTOR RECONSTRUCTION

The process of reconstructing a particle’s energy and momentum from a recorded set
of detector output is called reconstruction. In this chapter, the method by which
particle information was deduced is discussed.

The energy deposits of charged particles were much smaller than for photons and
left a signal in only one or two crystal modules. These clusters were treated exactly
the same way as the photons, but the scintillating detectors which cover the same
angular range marked the information as a charged particle. Since the proton usually
does not leave all its energy in the crystal, the energy and momentum reconstruction
was poor. However if the charged particle information is ignored and reconstructed
using a missing particle fit, the energy and momentum of the proton can be deduced.

5.1 TAPS Reconstruction

When a photon interacted with the crystals in the CBELSA/TAPS experiment, its
energy deposit was spread over several crystals. The electromagnetic shower caused by
the photon leaked from the central crystal into the surrounding crystals. A contiguous
group of crystals with an energy deposit from one photon is called a cluster. To
find the full extent of the cluster, a cluster finding algorithm was used to find all
the crystal modules with a contiguous energy deposit above the crystal’s Constant
Fraction Discriminator (CFD) threshold.

The hardware CFD thresholds for the TAPS modules in this analysis were all set
to about 10 MeV. Any energy deposit in a crystal module below this threshold was
not recorded. In independent analyses of the data, the experimentally determined
CFD thresholds have been found to be varying over a large range. These varying
thresholds could cause problems with the analysis, therefore the CFD threshold in
the software reconstruction has been set to 30 MeV, which was above all hardware
CFD thresholds. The new thresholds required the experiment to be recalibrated,
since the energy calibration in the previous section corrected for the energy lost due
to the threshold.
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For crystals to be considered in the same TAPS cluster, the energy deposits had
to have happened very close together in time. The crystal modules had to have
recorded an energy deposit within 5 ns of the energy deposit of the central crystal
to be considered within a cluster. If through defects in the crystal modules, no time
was recorded by the central crystal module, the crystal with the next largest energy
deposit was used as the timing reference. Crystal modules without timing information
are assigned a time derived from the surrounding modules. If a module had an energy
deposit spatially belonging to a cluster but has timing information outside the timing
window, its contribution was ignored.

The energy of the photon is simply a sum of the energies in the crystal modules
belonging to its cluster. The higher CFD threshold mentioned earlier also reduced the
contribution of split-offs. Split-offs are energy deposits in a crystal which somehow
got cut off from the main part of the cluster. The split-off resulted from a neighboring
energy deposit leakage but through CFD thresholds or other effects became isolated
from the cluster. These contributions must be suppressed because if the split-off was
allowed to be counted as another particle, the number of particles would be wrong
and the event would never be reconstructed as what originally happened.

The position of the photon was determined by the spatial distribution of the
energies within the cluster. Using a weighting method, the position of the photon
was determined to a finer resolution than the simple granulation of the detector
suggests. To find the precise position of the photon, the weighted averages

X =

∑

i wixi
∑

i wi

and Y =

∑

i wiyi
∑

i wi

(5.1)

were computed, where

wi = max

(

0,W0 + ln
Ei
∑

i Ei

)

, (5.2)

where i is the index of crystals in the cluster. The constant W0 was determined
through Monte Carlo simulations to be W0 = 4. This logarithmic weighting method
has been found to yield a significantly better position description than a linear weight-
ing [26].

Up to this point, the position determination of the photon has ignored the geom-
etry of the TAPS detector. The geometry of a wall of crystals meant the photons
will not enter the crystals perpendicularly and the non-negligible depth of the elec-
tromagnetic shower caused errors in the position reconstruction. Figure 5.1 shows a
visual representation of this issue. To account for this discrepancy, the shower depth
Z was calculated by [1]

Z = X0

(

ln
E

Ec

+ Cγ

)

, (5.3)
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Figure 5.1: TAPS Shower Depth Correction. Due to the depth of the electromagnetic
shower, the polar angle must be corrected.

where Ec is the critical energy1 for BaF2 crystals (Ec = 12.78 MeV) and X0 is the
radiation length of BaF2 (X0 = 2.03 cm). The constant parameter Cγ was reported
in [1] to be Cγ = 0.5. However Monte Carlo simulations for this experiment indicated
this value was too small and was set to Cγ = 2.0. This value returned the most
accurate reconstruction according to Monte Carlo simulations. With the correct
shower depth determined, the correction was approximated by [27]

∆R

R
=
( s

Z
+ 1
)

−1

. (5.4)

Using this method of reconstruction, the polar angle was determined to within 1.3◦ [23].

For a particle to be marked as charged, the plastic scintillator in front of either
the central crystal or a crystal adjacent to the central crystal registered a hit.

1defined as the value of photon energy which is equal to its ionization energy lost per radiation
length
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5.2 Crystal Barrel Reconstruction

A BD

C

E

Figure 5.2: Crystal Barrel Detector PED Reconstruction. Each square represents one
crystal. The crystals A and B are crystals with local maxima (central crystals). The
colored squares immediately surrounding crystals A and B are crystals with energy
deposits. The lightly shaded crystals on the outside of the graphic are crystals with
no energy deposit. The dotted (dashed) line indicates the energy deposits assigned
to the ”nine” energy of central crystal A (B).

The methods for reconstruction of photons in the Crystal Barrel (CB) detector
are very similar to the methods for TAPS. Clusters were found in the same way as
for TAPS clusters but the single crystal threshold energy for an energy deposit to be
recorded was 1 MeV and the total cluster energy threshold for a cluster to be kept in
the analysis was 20 MeV (suppression of split-off contributions). However due to the
decreased granularity compared to the TAPS detector, the cluster finding algorithm
for the CB detector searched for local maxima within clusters to determine if two or
more particles had overlapping electromagnetic showers. If only one maxima existed
within the cluster, all the energy deposits were summed over and assigned to the same
Particle Energy Deposit (PED).

Figure 5.2 illustrates how the cluster finding algorithm separated the energy de-
posits for the two local maxima in a cluster. If two or more local maxima exceeding
13 MeV in energy within the cluster were found, the cluster finder assumed two or
more particles were responsible for the cluster. The cluster finder attempted to sepa-
rate the energy of the cluster into separate PEDs. The first step in cluster separation
was to form the ”nine” energy for each central crystal. The ”nine” energy for a central
crystal (E9) was the sum of the energy deposit in the central crystal and its eight
adjacent crystals. However, if a crystal was adjacent to more than one central crystal
(C,D,E in Figure 5.2) then only a fraction of the energy deposit was added, where the
fraction was defined by the relative magnitudes of the central crystal energy deposits.
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Therefore, the nine energy for a central crystal k was calculated by

E9k = Ek +
∑

i

Ei +
Ek
∑

l El

∑

j

Ej , (5.5)

where i is the index of any crystal adjacent to only central crystal k, j is the index of
a crystal adjacent to two or more central crystals with index l of which k is included
and E is the energy deposit in a crystal. To find the fraction of the total cluster
energy to be assigned to each PED, the nine energy of each central crystal was used
in

Ek
PED =

E9k
∑

l E9l

Etotal
cluster , (5.6)

where k is one central crystal index included in the l central crystal indexes and
Etotal

cluster is the energy of the entire cluster. Like clusters with only one local maximum,
these PED energies must have exceeded 20 MeV to be considered a particle.

Due to aluminum support structure and shower leakage at the edge of the calorime-
ter, an additional correction must be made to the PED energy. These effects have
been found to vary with polar angle and PED energy. Therefore, a correction function
of the form [28]

Ecorr
PED =

(

a(θ) + b(θ) e−c(θ) EPED
)

EPED (5.7)

was applied. Typical values for these parameters are a ≈ 1.05, b ≈ 0.05, and c ≈ 0.007
and were determined by comparing to Monte Carlo simulations.

The position reconstruction was done very similarly for the CB detector as for
the TAPS detector. By using a weighted sum over crystals in the cluster, the PED
angles were reconstructed using

φPED =

∑

i wiφi
∑

i wi

θPED =

∑

i wiθi
∑

i wi

, (5.8)

where i is the index of a crystal in the cluster and wi is defined by Equation 5.2.
For the CB reconstruction, the parameter W0 has been changed to W0 = 4.25, which
optimized reconstruction of CB photons in the Monte Carlo simulations. In the case of
clusters where more than one PED has been reconstructed, only the crystals used for
the central crystal’s nine energy (Equation 5.5) were used for position reconstruction.

This method of position reconstruction had a spatial resolution of 1-1.5◦ in both
φPED and θPED [29]. Since all CB crystals have their long axis pointed at the target
and photons entered the crystals perpendicularly, a shower depth correction was not
needed.

For a PED to be marked as charged, the inner detector had to register a hit in
at least two of three scintillator layers within 30◦ of the reconstructed PED position
relative to the target center. Due to the configuration of the inner detector scin-
tillating fibers, a unique position could be reconstructed using a hit in two layers.
By assuming the charged particle originated in the center of the target, the angular
position of the detected charged particle was estimated. If this angular position was
close enough, then the particle is marked as a charged particle.
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CHAPTER 6

REACTION SELECTION

The selection of recorded data events which resulted from the desired hadronic reac-
tion is called reaction selection. To select for the γp → pω and γp → pπ0ω reactions,
we must consider what particles to look for. The ω and π0 mesons decay very quickly
after being formed, decaying to the modes listed in Table 6.1.

Table 6.1: π0 and ω Meson Branching Fractions. Values from [1]. The fraction of
the time each meson decays to the listed decay mode.

Meson Decay Mode Branching Fraction
π0 γγ (98.823± 0.034)%

e+ e− γ (1.174± 0.035)%
ω π+ π−π0 (89.2± 0.7)%

π0γ (8.28± 0.28)%
π+ π− (1.53+0.11

−0.13)%

For all plots and discussions in this chapter, the units used are those where the
speed of light c is set to c = 1. This means energy, momentum, and mass have the
same units, electron volts (eV).

The π0 and ω meson decay modes detectable using the CBELSA/TAPS experi-
mental setup are

π0 → γγ and ω → π0γ → γγγ , (6.1)

due to the experimental setup’s ability to detect photons. The branching fractions
for the decays being selected are shown in Table 6.1. Therefore, the decay chains
selected in this analysis are

pω → pπ0γ → pγγγ and pπ0ω → pπ0π0γ → pγγγγγ . (6.2)

Since the detection of protons was not essential to the reconstruction of the event,
the number of charged particles reconstructed did not matter as long as there are less
than 2. Therefore for the reaction γp → pω (γp → pπ0ω ), all recorded events in the
dataset with 3(5) uncharged PEDs1 and less than 2 charged PEDs were selected for

1Particle Energy Deposits
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further analysis. The uncharged PEDs were assumed to be photons and the charged
PEDs are assumed to be protons until a more sophisticated method for checking can
be applied (kinematic fitting Section 6.2.3).

The selected events were then reduced further by making kinematic cuts (Section
6.2). To tune these kinematic cuts and to estimate how many events this analysis did
not detect, these final states were simulated in a Monte Carlo Simulation program
(described in the next section). After these kinematic cuts, there are still unwanted
events present in the data which are from other reactions (background events). There
is no way to cut these events out of the analysis without losing too many of the desired
signal events. Therefore, the remaining events were subjected to an analysis technique
which assigns a probability that it is a signal event (Q-factor). This Q-factor is then
used to weight each event when measuring an observable to effectively subtract the
background events (Q-factor method - Section 6.4).

The reaction selection for the γp → pω analysis and γp → pπ0ω analysis were
very similar and are discussed in parallel as much as possible.

6.1 Monte Carlo Simulations

In order to understand the response of the detector systems and the effect of
kinematic cuts to these final states, the experiment was modeled in GEANT3 Monte
Carlo simulations. Events were simulated using the GEANT3 based CBGEANT [30]
simulation package. The simulated events were generated from threshold to 3.175
GeV in initial photon energy. The software begins an event by placing the final state
particle in the target cell. The initial momenta were assigned by random number
generators within the allowed kinematic phase space, while taking into account energy
and momentum conservation. In small steps, the particles were allowed to propagate,
decay, and interact with modeled support structures, scintillators and crystals. In
the case of the neutral mesons (ω and π0), these were allowed to decay according
to the known parameters. The known electromagnetic response of the detectors
and support structures to photons and protons were used to simulate experimental
detector output. Simulated detector output was put into the same format as the
experimental detector output so simulated data can be treated in exactly the same
way as measured experimental data. To ensure the software was simulating the
events correctly, the simulation output was compared to experimental data to check
for corrections and quality checks.

These Monte Carlo simulations were done for two different reasons. These reasons
are: 1) to guide the search for kinematic cuts which will not eliminate many of the
desired signal events, and 2) estimate how many events were not seen by the analysis
(i.e. detector acceptance).

The tuning of kinematic cuts was done by subjecting the simulated events to the
same reconstruction and kinematic cuts as experimental data. In this way, kinematic
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cuts which resulted in too much of the desired signal events being dropped from the
analysis were not used.

Also after these simulated events were subjected to the same analysis as the ex-
perimental events, the number of reconstructed simulated events were compared to
the number of simulated events which were originally generated. This comparison
gives the probability a signal event is actually detected and counted by the analysis.
Or equivalently, an estimate of how often the analysis did not detect a signal event.
This ratio defines the detector acceptance which is used in the measurement of the
differential cross sections.

6.2 Data Reduction Cuts

This section describes the data cuts used in selecting the events with pπ0γ or
pπ0π0γ final states. The reason for selecting the pπ0γ and pπ0π0γ final states instead
of fitting to the ultimate final states pω and pπ0ω is due to the size of the natural
mass width of the ω meson (8.49 MeV/c2 [1]). This mass width is comparable to
the experimental setup’s uncertainty in reconstructing the ω meson invariant mass
(≈ 20 MeV). Kinematic fitting is a method of evaluating how well an event’s measured
values match an ideally measured event of the desired final state. This is done by
defining constraints such as energy and momentum conservation and invariant masses
of the final state particles. If the ω meson invariant mass is used in defining a
constraint, the fitting of a set of measured values to “ideal” values would have no
meaning since the Heisenberg Uncertainty Principle indicates there are no ideal values
for this reaction. To avoid this issue, the π0 meson invariant mass with a mass width of
∼8 eV was used as a constraint and the ω meson contributions were isolated through
the Q-factor method of background subtraction.

The data used in the analysis of both γp → pω and γp → pπ0ω for the purposes
of measuring differential cross sections and unpolarized spin-density matrix elements
were taken during October and November 2002. An ELSA accelerator electron beam
with energy 3.175 GeV was used to create an unpolarized photon beam incident upon
a liquid hydrogen target.

6.2.1 Tagger Time Cut

When a photon encounters a proton, the probability to get the desired hadronic
reaction is quite small. To make the measurements required to isolate the “missing”
baryon resonances, thousands of reactions must be measured. To measure this number
of events in a reasonable amount of time, the current of photons interacting with
the target must be large. The large current causes many photons to be detected
in the tagger which could have been the initial photon. To reduce the number of
initial photon candidates which caused the production of the particles detected in the
calorimeters, a timing cut is used.
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Figure 6.1: Tagger Photon Timing Spectrum. Timing spectrum of initial state
photons with respect to the time calibration (Section 4.1) integrated over all the
data. Only photons which had a time within ±3 ns were taken as initial state photon
candidates.

The timing of each photon is measured with respect to particles detected in the
TAPS detector. The TAPS detector has the best characteristics for providing timing
information. Figure 6.1 shows the timing spectrum of the initial photons with respect
to the timing calibration (Section 4.1). The peak in this figure shows timing infor-
mation for the photons which most likely caused the production of particles detected
in the TAPS detector. However, there exists a large number of photons which fall
outside this peak and also exist underneath the peak (accidental background). These
background photons are beam photons which did not produce the TAPS particles.
The width of the peak shows the timing resolution of the timing measurement.

To help isolate which initial photon caused the reaction, a cut on the initial pho-
tons was made with respect to time. If at least one photon was detected in TAPS,
only photons having a time ±3 ns relative to the time calibration were retained as
initial photon candidates. If only a charged particle were detected in TAPS, then the
timing window for the initial photon was increased to -5 to 15 ns relative to the time
calibration. This wider cut reflects the fact that protons travel much slower than
photons and due to the much smaller energy deposit causes a larger uncertainty in
the timing information. This cut typically reduced the number of photon candidates
from tens of photons to less than 3 for each event. To decide which remaining photon
to use, the kinematic fitting method in Section 6.2.3 was used.

The background distribution in Figure 6.1 suggests the data set contains accidental
background events which will be difficult to cut out and could potentially cause
the measurement to be overestimated. To subtract this background contribution, a
timing background analysis of events lying outside the timing window was done and
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subtracted from the events inside. The timing requirement for the timing background
events is −53 ns < tTB < −50 ns and 50 ns < tTB < 53 ns. The timing background
subtraction is discussed further in Section 6.6.

6.2.2 Coplanarity Cut

For reactions with a charged particle detected within the timing window, an addi-
tional constraint was used to ensure the momentum in the plane perpendicular to the
beamline was conserved. This cut helped to eliminate undesired background events
by reducing the possibility of an undetected particle being involved in the reaction.

To define the cut, the reconstructed momentum of all photons (uncharged PEDs)
were added to define a vector in the plane perpendicular to the beamline and was
compared to the detected position of the proton (charged PED). Theoretically if this
event involved nothing but the detected photons and the detected proton, the angle
between these two vectors should have been 180◦. To cut events which deviate from
this, any event with a detected charged particle that had an angle between these two
vectors not within 180± 30◦ were dropped from the analysis.

6.2.3 Kinematic Fitting Cut

To remove more of the undesired contributions and to isolate the correct initial
state photon for an event, kinematic fitting was used to define a probability each event
left in the analysis was the pπ0γ or pπ0π0γ final state. The reconstructed photon en-
ergies and positions have small errors due to measurement uncertainties. A kinematic
fit varies the measured quantities within the quoted errors of the experimental setup
to match energy-momentum conservation and invariant mass constraints using a χ2

minimization technique. The result of the fit is a χ2 probability or confidence level
value which is an estimate of the event’s likelihood of fulfilling the constraints and
therefore the likelihood of this event being the desired reaction.

For an event with multiple initial state photon candidates, all of the candidates
are used as the initial photon in separate kinematic fits. The candidate which had the
highest probability of fulfilling the energy and momentum conservation constraints
was taken as the initial photon for an event.

Kinematic Fitting. If the n measured energies and angles of the particles are
used in a n-dimensional vector ~y and the theoretically exact energies and angles of
the detected particles are contained in the n-dimensional vector ~η , then they relate
to each other according to

~y = ~η + ~ǫ , (6.3)

where ~ǫ is a n-dimensional vector of the error in the measurement.
The constraints in the form of conservation laws and invariant masses can be used

to deduce r number of unmeasured quantities, as long as the number of constraints
m is larger than or equal to the r number of unmeasured quantities. If ~x is the r-
dimensional vector of unmeasured quantities to be deduced, then the constraints can
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be written as
f(~x, ~η) = f(~x, ~y − ~ǫ) = 0 , (6.4)

where ~ǫ are the errors which are allowed to vary to fulfill the constraints. This set of
constraints are referred to as the fit hypothesis .

The solution for ~ǫ are the values which minimize

M = ~ǫTC−1
y ~ǫ (6.5)

while the constraints are fulfilled exactly, where C−1
y is the covariance matrix which

contains the quoted uncertainties of the measurements in ~y.
The events to be reconstructed for the reaction γp → pω were fitted to the pπ0γ fi-

nal state and the events to be reconstructed for the reaction γp → pπ0ω were fitted to
the pπ0π0γ final state. In each case, the measured values were fitted by disregarding
the charged particle information and fitting to a missing proton. In this way, the
kinematic fitter will evaluate how well the measured event values match the fitted or
ideal event values.

If no systematic errors are present and the event is the final state which defined the
constraints, the difference between the ideal/fitted value (ηi) and the measured value
(yi) when averaged over many events should be zero. This is because the measurement
error should be random and the error ǫi for a measurement has the same likelihood
to be negative as positive. If this distribution is normalized according to

pull(yi) =
ηi − yi

√

σ2(ηi) + σ2(yi)
, (6.6)

it is referred to as a pull . A distribution of pulls should have a Gaussian width of 1
if the errors

√
σ2 are set correctly. If the width is smaller (larger) than one, then the

errors defined in the covariance matrix Cy have been determined too large (small).
These errors are related to the granularity of the crystals and the natural uncertainty
with which the detectors measure.

Figures 6.2 and 6.3 show the distribution of pulls separated for which detector the
photon was detected in. The values used are the square root of the energy of the final
state photons (γ Energy), the polar angle (γ θ) with respect to the beamline, and
the azimuthal angle (γ φ) with respect to the beamline. These pulls are shown for
photons detected in each detector. Since the information on charged particles were
ignored during kinematic fitting, pulls are only generated for photons. Each plot is
labeled with the parameters extracted from a fit of a Gaussian function fit.

The slightly unsymmetric shape and corresponding shift of the mean of the γ
Energy pulls are due to the fact that crystal modules do not record photon energy
values below 30 MeV and correspond to a lack of events of the low energy side of each
pull distribution. The low energy behavior for the TAPS and CB photons cause the
high energy behavior of the initial photons. This effect in the pπ0π0γ pull distributions
is smaller due to the proportion of higher energy photons which are not close to the
30 MeV threshold.
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Figure 6.2: pπ0γ Experimental Data Pull Distributions. The pulls are separated
according to which detector the photon was detected in for the Crystal Barrel (CB,
top row) and TAPS (middle row). Initial photons (bottom row) are for photons that
were tagged in the tagging hodoscope. The mean and sigma parameters are from a
fit of the data to a Gaussian function from -2 to 2.
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Figure 6.3: pπ0π0γ Experimental Data Pull Distributions. The pulls are separated
according to which detector the photon was detected in for the Crystal Barrel (CB,
top row) and TAPS (middle row). Initial photons (bottom row) are for photons which
were tagged in the tagging hodoscope. The mean and sigma parameters are from a
fit of the data to a Gaussian function from -2 to 2.
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Figure 6.4: Confidence Level Distributions.

Overall, the values for mean and width (σ) vary from the ideal values, but are
within the accepted uncertainty for this measurement.

A confidence level value is a number which indicates how well the measured values
of an event match the corresponding values for an ideal event of the desired final state.
The values range from 0 to 1, where 1 indicates the event’s measured values exactly
matched the desired final state. The distribution of confidence level values of a set of
events which match the constraints should be flat. The distribution for signal events
should be dictated completely by the distribution of the errors in measurement with
respect to the quoted errors given in the covariance matrix Cy. If these errors are set
correctly, these signal events are distributed evenly in the confidence level distribution.
However, any background event or incorrectly reconstructed event should have a
confidence level closer to zero due to its inability to match the constraints.

Kinematic fits were done on all experimentally measured and Monte Carlo simu-
lated events which passed the timing cuts. The resultant confidence level distributions
are shown in Figure 6.4. The resulting CL distributions for experimentally measured

60



data events (Figure 6.4 Left) and Monte Carlo simulated events (Figure 6.4 Right)
are sufficiently flat for confidence level values above 0.6 to use for kinematic cuts.
The large rise in the distribution of events for small confidence level (left side of each
plot in Figure 6.4) is due to background events or events which were reconstructed
incorrectly (e.g. wrong initial photon being isolated).

Confidence Level Cut. To correctly model the effect of a confidence level cut
in the detector acceptance analysis, experimental data and Monte Carlo simulated
events must be treated exactly the same way. To ensure a confidence level cut treats
both types of events the same way, the confidence level distributions must behave the
same way for these two types of events. According to the properties of the confidence
level value, the region where these true pπ0γ and pπ0π0γ events dominate the distri-
bution are those close to 1. The confidence level distributions in Figure 6.4 for Monte
Carlo simulated events and experimentally measured data are sufficiently similar for
confidence level levels above about 0.6 to believe true pπ0γ and pπ0π0γ events are
being treated the same way.

The biggest advantage of using kinematic fitting is the reconstruction of the π0

mesons among the detected photons. This identification is very useful later on in
the opening angle cut (Section 6.2.4). However, the confidence level gives us a prime
opportunity to reduce the number of unwanted background events while preserving
as many signal events as possible. The confidence level distributions in Figure 6.4
show a large increase to the left of each plot, which correspond to a large number of
background events. If a data reduction cut is defined using a low value of confidence
level, a large fraction of the background events can be cut out of the analysis while
keeping most the signal events. For an event to be kept in the analysis, the event had
to have

CLpmissingπ0γ > 0.005 (6.7)

for the events to be reconstructed for the γp → pω analysis and

CLpmissingπ0π0γ > 0.005 (6.8)

for the events to be reconstructed for the γp → pπ0ω analysis. The effect of the
remaining background events will be removed using the Q-factor fitting method.

6.2.4 Opening Angle Cut

When the ω meson decays to π0γ, energy is left over after forming the π0. This
energy is realized as momentum. Therefore at the center-of-mass energies typical in
this analysis, a large opening angle is formed between the π0 meson and the photon
in the center-of-mass frame. To illustrate this point, the π0 and the photon were
reconstructed from Monte Carlo simulated events and the opening angle (θπ0,γ) in
the center of mass frame is plotted versus the momentum of the resulting candidate
ω meson (|pωc.m.|). The resulting distribution is plotted in Figure 6.5a. The same
plot for the experimentally measured data events (Figure 6.5b) shows features which
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differ from the simulated data. To determine where the extra contributions at high
momentum and θπ0,γ ∼ 150◦ are coming from, Monte Carlo simulated pπ0 events were
generated and reconstructed using the same reconstruction and reaction selection as
the pω events. The distribution of events for these events are shown in Figure 6.5c.
The distribution in Figure 6.5c has the same structure as the extra contributions in
Figure 6.5b. Therefore, a sizable contribution from pπ0 events which were poorly
reconstructed as pπ0γ exists.

To minimize the pπ0 background events with values in the extra peak in Fig-
ure 6.5b, events which satisfy

|pωc.m.| ≥ (−13.33 θπ0,γ + 2400) MeV/c (6.9)

are dropped from the γp → pω analysis. The threshold for the cut in Equation 6.9 is
shown in Figure 6.5 as a black line. All events with values above this line have been
dropped from the γp → pω analysis.

There are other background contributions which exist in the experimental data,
but are not as easily removed using a similar type of cut. These other background
types are further subtracted using the Q-factor background subtraction technique
(Section 6.4.1).

The opening angle spectrum for the events selected for γp → pπ0ω are shown in
Figure 6.6. The characteristic opening angle again can be seen in the distributions.
But unlike the γp → pω experimental data, there are no extra peak-like structures
which differ from the simulated data. However we do see a different distribution of
events away from the characteristic opening angle, but this is due to some background
events. Rather than define a cut using opening angle values, we rely on the Q-factor
background subtraction to remove the extra contributions. No opening angle cuts
were applied in the γp → pπ0ω analysis.

6.2.5 Trigger Condition Cut

When a proton encounters the crystals of the TAPS detector, it can do one of two
things. The proton can get stuck in the crystal or, if it has enough momentum, it can
pass through the whole crystal. As the proton passes through the crystal, it transfers
some of its kinetic energy to the crystal. If the proton gets stuck in the crystal, all the
kinetic energy is transferred. As the proton interacts with the crystal, many different
processes happen which do not happen when a photon interacts with the crystal. The
protons interact with the nuclei in the crystal atoms to convert the kinetic energy in
ways which are not modeled well in the Monte Carlo GEANT3 software.

The energy deposit of protons in this analysis are typically ignored. The proton’s
energy and momentum were reconstructed by the missing mass kinematic fit. How-
ever, the trigger (i.e. decision to record an event (Section 3.6.3)) also responds to
protons. To correctly estimate the detector acceptance, the probability that a proton
recorded an energy deposit above the LED-low and LED-high thresholds (Section
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Figure 6.5: Opening Angle Spectrum for γp → pω Events. All events in each
plot were subjected to the confidence level cut in Equation 6.7. The π0 meson and
the photon were reconstructed by the kinematic fitter. The opening angle (θπ0,γ) is
measured in the center-of-mass frame. The black line in each plot is the cut threshold
defined by Equation 6.9. All events with values above this line are eliminated from
the analysis.

3.6.1) must be modeled correctly, for all proton momenta. The limitations of the sim-
ulation software causes the detector acceptance correction to have small errors from
not being able to model the response of these trigger thresholds to protons. However
when the energy of the initial photon rises above 1600 MeV, the higher momentum
proton reliably triggers independently of the modeled energy.

This issue only occurs when Condition A is met in the trigger. Condition A
requires at least two LED-low segments with each segment having at least one signal
above the LED-low threshold. If one of these two signals is the proton, the simulation
does not agree with the experiment (if initial photon energy is below 1600 MeV).
Condition B requires at least one LED-high segment with a signal above the LED-
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Figure 6.6: Opening Angle Spectrum for γp → pπ0ω Events. The π0 meson and
the photon were reconstructed by the kinematic fitter. The opening angle (θπ0,γ) is
measured in the center of mass frame.

high threshold. If this one signal is the proton, the proton has shown to trigger
reliably enough to not affect the detector acceptance.

The kinematics of the reactions in this analysis are diverse enough to eliminate this
issue without a loss in angular acceptance. All events with a proton reconstructed in
the TAPS detector, fulfilling trigger condition A, no photons in TAPS above the LED
high threshold (which would fulfill Condition B), and with an initial photon energy
below 1600 MeV are eliminated from the analysis. Both experimentally measured and
simulated events were subject to this cut. This cut was used in both the γp → pω and
γp → pπ0ω analyses.

6.3 Invariant Mass Spectrum After Initial Cuts

Figure 6.7 shows the ω invariant mass peaks occurring in the π0γ invariant mass
distributions in the events remaining after the initial kinematic cuts discussed in
Section 6.2. The experimental data plots (Figures 6.7a and 6.7c) still have a sizable
amount of background underneath each peak. This data consists of other reactions
which by chance have matched the selection for the signal events. For events selected
for the γp → pπ0ω analysis, there also exists a combinatorial background which
comes from the two different ways a π0γ combination can be made from pπ0π0γ . At
most, there can be only one combination which contributes to the peak. The other
combination contributes to the background distribution.

This background could not be eliminated using the data reduction cuts, because
those same cuts also cause signal events to be dropped from the analysis. In order to
have enough signal to make an observable measurement required to isolate “missing”
baryon resonances, a maximum amount of signal must be preserved in the data. The
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Figure 6.7: Invariant Mass Spectrum After Initial Cuts. In the plots for the re-
action γp → pπ0ω , two contributions from each event are represented due the two
combinations of π0γ obtained from the pπ0π0γ final state.

data reduction cuts were chosen such that a large fraction of background events were
dropped from the analysis while keeping as many signal events as possible.

To finally isolate the effect of these signal events, we subtract the effect of the
background events or, in other words, count the number of signal events in each peak
in Figure 6.7 and apply that to the observable. To report a value for an observable
in every kinematic bin, this counting/subtraction must be done in each kinematic
bin. For this analysis, this is done by using the Q-factor method of background
subtraction. A Q-factor is a value which defines the probability an event is a signal
event. When doing the counting to measure an observable in a kinematic bin, the
Q-factor value for each event in the kinematic bin is summed over. The method for
defining this Q-factor is discussed in the next section.

Since Figure 6.7b has no visible background, no background subtraction was
needed for the Monte Carlo simulated γp → pω events. However, all other event
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Table 6.2: Kinematic Variables used in the Q-factor Method. For definitions of
symbols in this table, see Section 7.1.1.

Analysis Kinematic Variables
γp → pω

√
s, cos θc.m.

ω , φc.m.
ω

γp → pπ0ω
√
s, cos θc.m.

ω , φc.m.
ω ,Mpπ0 , cos θ∗π0 , φ∗

π0

types were background subtracted and are discussed in the next section.

6.4 Event-based Background Subtraction

(Q-factor Method)

As a result of the kinematic cuts detailed in Section 6.2, the contributions from
pπ0γ (pπ0π0γ ) final state events which were not pω (pπ0ω ) final state events must
be subtracted. These background contributions were subtracted using an event-based
probabilistic weighting method outlined in [31] (Q-factor Method). The result of
this method is to define a Q-factor for each event in an analysis. The Q-factor is
the probability that an event is a signal event. To subtract the contribution of the
background, the events in the analysis are weighted with this Q-factor.

This method has advantages which include

• preserving the possibility of an event-based interpretation analysis, and

• better systematic error characteristics in low statistics data sets.

An event based interpretation analysis is an analysis, like a partial wave analysis,
where the data for an observable is considered event by event instead of grouping
the data in a kinematic bin and considering them as a set. The improvement in
systematic error characteristics come about because the number of events used in
determining background contributions is not connected to the size of each kinematic
bin in the analysis.

To define an event’s Q-factor, the events were considered in the final state reac-
tion’s kinematic phase space. The kinematic variables defined for the Q-factor method
processing are shown in Table 6.2. To deduce information about the behavior of sig-
nal and background distributions at a particular point in the kinematic phase space,
the events closest to that point in kinematic phase space were used. The distance in
a multi-dimensional space can be calculated between event A and event B by

DA,B =

√

√

√

√

∑

i

(

χA
i − χB

i

σi

)2

, (6.10)

where i is the index of the kinematic variables in the kinematic phase space, χ is
the kinematic variable and σi is the range of the kinematic variable. To illustrate
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this, Figure 6.8 illustrates the nearest neighbor events close to a seed event (the event
which the Q-factor will be defined for).

1x

2x

Figure 6.8: Q-factor Method Cartoon. x1 and x2 represent kinematic variables
which define a kinematic phase space. The dots represent the position of events in
the phase space. The � represents the seed event or the event for which a Q-factor
is being defined for. The circle highlights the events which will be used to define the
background and signal characteristics at the seed event’s point in kinematic phase
space (Nearest Neighbors).

To find the background and signal distributions for an event’s point in phase space,
the nearest neighbors were used to form an invariant mass distribution. Enough
nearest neighbors should be used to ensure a good representation of the data (i.e.
ensure a good fit of the data). In these analyses, the ω meson was used as the
particle to identify in the invariant mass distributions. Figure 6.9 shows how a typical
invariant mass distribution looks. The next step was to define the contributions of the
signal and background events by fitting them to functions which describe their line
shapes. The signal line shape was defined by a Voigt function. The Voigt function
is a convolution of a Gaussian function, used to describe the peak width due to
measurement uncertainties, and a Breit-Wigner function, used to describe the natural
line shape of a resonance. The background function is a function which describes a
smooth non-peaking distribution which lies underneath the peak. For these analyses,
the total function combining the background (B(x)) and signal functions (S(x)) was
defined as

f(x) = N [fsS(x) + (1− fs)B(x)] , (6.11)
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Figure 6.9: Q-factor Illustrated. The data in the plot are from the seed event’s
nearest neighbor events. The is the fit of the total function (signal + background).
The is the background function. s is the signal function value and b is the
background functions value at the value of the seed event’s invariant mass.

where N is a normalization constant and fs is the signal fraction. The signal fraction
is a parameter between 0 and 1 which defines the relative amplitude of the background
and signal functions.

The fit procedure was done using the Roofit package [32] in the CERN root

software package. The fitting of parameters was done by using an unbinned maximum
likelihood fit.

The Q-factor (Q) was defined as

Q =
s(X)

s(X) + b(X)
, (6.12)

where X is the seed event’s invariant mass value, s is defined as

s(X) = fsS(X) , (6.13)

b is defined as
b(X) = (1− fs)B(X) , (6.14)

and illustrated in Figure 6.9.

6.4.1 γp → pω Background Subtraction

In Figure 6.7a, the experimentally measured data selected for pπ0γ have a peak
in the π0γ invariant mass corresponding to the ω meson. To isolate the contribution
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Figure 6.10: Q-factor Fit Examples for the γp → pω Analysis. The data in the
plot are from the seed event’s nearest neighbor events. The is the fit of the
total function (signal + background). The is the signal function. The is the
background function.

from the γp → pω reaction in the data set, the number of ω mesons was estimated
in this peak by subtracting the background contributions. To define the nearest
neighbors to each event, the kinematic variables for γp → pω in Table 6.2 were
used. In each fit, there were 300 nearest neighbors used to define the signal and
background distributions. An important parameter to be chosen for Q-factor fitting
is the number of nearest neighbors to be used in each fit. In this case, the ability
of the fitting functions showed little dependence on the number of nearest neighbors.
Therefore, 300 nearest neighbors were chosen to minimize the fit error while keeping
the software run time to a reasonable amount of time.

The functions used to isolate the signal and background distributions are

• Background Function: Product of an Argus Function and a first order Cheby-
chev function

• Signal Function: Voigt Function.

To get a good description of the background shape, an Argus function [33] is used
to modify the Chebychev function to fit background at the edge of the phase space.
The functional form of the Argus function is

f(x,m0, c) = x

(

1−
(

x

m0

)2
)0.5

∗ exp
(

c

(

1−
(

x

m0

)2
))

, (6.15)

where m0 is the parameter which defines the end of phase space and c is a curvature
parameter and was fixed to c = −1 · 10−7. The m0 parameter was initialized to the
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largest π0γ invariant mass of the data to be fitted and was allowed to be changed
±20 MeV from this value.

The Chebychev function was used to model the smooth shape of the background
distribution away from the edge of phase space and is defined as

C(x) = C0 + C1x , (6.16)

where x is the invariant mass. The zeroth order coefficient (C0) was fixed to 1. The
first order coefficient (C1) was allowed to vary between -10 and 10 during the fit.

The Voigt function was initialized using known ω meson parameters from [1]. The
peak position parameter for the Voigt function was initialized to 782 MeV and allowed
to be changed during the fit ±50 MeV. The σ parameter for the Gaussian width of the
Voigt function is responsible for describing the measurement uncertainties and was
initialized to 10 MeV and allowed to fit values between 7 - 50 MeV. The Breit-Wigner
width parameter for the ω meson was fixed to 8.49 MeV [1] and was not allowed to
be changed during the fit.

Fits for two energies are shown in Figure 6.10. Figure 6.10a shows how the allow-
able phase space at low initial photon energy was restricted. The π0γ invariant mass
phase space stopped close to the value for the peak. To describe the end of phase
space when it was close to the peak, the Argus function was essential. As the initial
photon energy rose, the end of phase space moved away from the peak and resembled
the fit in Figure 6.10b. Here the Argus is not needed and the Chebychev polynomial
dominates.

The goodness of fit statistic (also known as the reduced χ2) is a measure of how
well each fit described the data. Figure 6.11 shows the spectrum of goodness of fit
statistic values for every Q-factor fit in the analysis. The distribution shows a strong
peak close to one in the data. This means the data distributions are on average well
described by the fits.

The result of each Q-factor fit is a Q-factor. To form observables with the Q-
factor, the contribution from each event was weighted with the Q-factor. A good
example of this is to show the separation of background and signal in a π0γ invariant
mass distribution. Figure 6.12 shows the π0γ invariant mass of all events selected
by the cuts in Section 6.2 along with the background determined by using the Q-
factor method of background subtraction. The background contribution was found
by weighting each event with (Q-factor− 1) when filling the histogram. The shaded
area shows a smooth description of the background and returns a believable separation
of the two types of events. The continuity of the background description indicates
the overall background separation worked well.

70



red
2χ

0 2 4 6 8 10

E
ve

nt
s

1

10

210

310

410

510

Figure 6.11: Q-factor Fitting Goodness of Fit Statistic for the γp → pω Analysis.
(experimental data events) χ2

reduced = 1 for a perfectly described distribution. Each
value histogrammed represents one Q-factor fit.
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Figure 6.12: Signal Background Separation (γp → pω ). Invariant Mass of the π0γ
System with Background Separation for γp → pω selected experimentally measured
events. The same events from Figure 6.7a are used in this plot. The shaded area is
the background contribution determined by the Q-factor Method.
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6.4.2 γp → pπ0ω Background Subtraction

The background subtraction for the γp → pπ0ω analysis was done for both the
experimentally measured data (Figure 6.7c) and the Monte Carlo simulated data
(Figure 6.7d). There were 150 nearest neighbors used in each Q-factor fit. The
smaller number of nearest neighbors was used because of the more rapidly changing
background shape. See Appendix B for more information on how the number of
nearest neighbors was determined.

The functions used to isolate the signal and background distributions are

• Background Function: Second order Chebychev Function

• Signal Function: Voigt Function.

To account for the end of the π0γ invariant mass phase space, the fits are cutoff at
the largest invariant mass value in each distribution.

Fits to Experimentally Measured Data. The background function is a
second order Chebychev function with the before-mentioned Voigt function for the
line shape of the ω meson. Due to the slightly different background shape, the Argus
function was not needed. The Chebychev function used for this analysis is

C(x) = 1 + C1x+ C2(2x− 1) . (6.17)

The Chebychev first order parameter (C1) was initialized close to zero and allowed to
be changed during the fit between -5 and 0.5. The Chebychev second order coefficient
(C2) is responsible for the deviation of the background function from linear and was
allowed to take on a positive curvature (0 − 10) for the events below 1600 MeV in
initial photon energy (Eγ). Above 1600 MeV, the curvature was fixed to zero and the
first order coefficient was restricted to values between -0.2 and 0.1. The initialization
and range parameters for the Voigt function are the same as for the γp → pω analysis.
The peak position parameters for the Voigt function were initialized using mean =
782 MeV and allowed to be fit ±50 MeV. The σ parameter for the Voigt function
is responsible for describing the measurement uncertainties and was initialized to 10
MeV and allowed to fit values between 7 - 50 MeV. The Breit-Wigner width parameter
for the ω meson was fixed to 8.49 MeV [1] and was not allowed to be changed during
the fit.

Fits to Monte Carlo Simulated Data. The background distribution for
simulated events consists of only combinatorial background. This combinatorial back-
ground comes from the two ways a π0γ combination can be obtained from an event
with a pπ0π0γ final state. Therefore, the resultant distribution in Figure 6.7d has two
contributions from each event. Since only one combination is the correct π0γ decay
from the ω, the other combination contributes to a combinatorial background which
must be subtracted. The invariant mass value of the combinatorial background is
below the ω peak until the initial photon energy rises above 1550 MeV. Events with
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an initial photon energy below 1550 MeV always have one combination with an in-
variant mass above 700 MeV (assigned a Q-factor of 1) and a combination with an
invariant mass below 700 MeV (assigned a Q-factor of 0). Events with initial photon
energy above 1550 MeV were subjected to a Q-factor fit.

The signal function is the same Voigt function. The background function is the
Chebychev function defined as

C(x) = 1 + C1x . (6.18)

The first order coefficient (C1) is restricted to values between -1 and 1. The signal
function is the Voigt function with the same parameter limits as for the experimentally
measured data.

Figures 6.13 shows typical Q-factor fits used in the γp → pπ0ω analysis. The
background shapes for the experimental data (Figures 6.13a and 6.13b) were linearly
decreasing and made it easier to describe without the help of the Argus function. The
fits were cut off at the edge of phase space (i.e. the largest value in each distribution).
The simulated data fits (Figures 6.13c and 6.13d) show the small contributions of the
combinatorial background which is described by the background function.

The overall quality of the fits to data are shown through the goodness-of-fit statis-
tic which is plotted in Figure 6.14. Both distributions seem to peak close to one
indicating that, on average, the data distribution was well described by the fits. The
experimental data distribution (Figure 6.14a) seems to have a larger spread of values,
but these deviations from one seem to be random. Overall, the fits describe the data
well. The simulated fits shows a peak slightly smaller than one, but this is because
the fits allowed more parameters to be fitted than the fitter needed to describe the
data.

The background contribution (shaded area), calculated by weighting each event
with (Q-factor − 1), is shown in Figure 6.15. The continuous description of the
background seems to separate the signal and background events in a believable way.
The simulated data distribution (Figure 6.15b) shows the relatively small contribu-
tion from the combinatorial background. Most of this type of background exists at
invariant mass values below 600 MeV.
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(a) Experiment Data Fit Eγ ≈ 1741 MeV
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(b) Experiment Data Fit Eγ ≈ 2362 MeV
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(c) Simulated Data Fit Eγ ≈ 1805 MeV
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(d) Simulated Data Fit Eγ ≈ 2362 MeV

Figure 6.13: Q-factor Fit Examples for the γp → pπ0ω Analysis. The data in
the plot are from the event’s nearest neighbor events. The is the fit of the total
function (signal + background). The is the signal function. The is the
background function.
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Figure 6.14: Q-factor Fitting Goodness of Fit Statistic for the γp → pπ0ω Analysis.
(experimental data events) χ2

reduced = 1 for a perfectly described distribution.
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Figure 6.15: Signal Background Separation (γp → pπ0ω ). Invariant mass of the
π0γ system with background separation for γp → pπ0ω selected events. The same
events from Figure 6.7c and 6.7d are used in these plots. The shaded area is the
background contribution determined by the Q-factor Method. The invariant mass of
the π0γ combination is measured in MeV.
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6.5 Background Composition

The background in Figures 6.12 and 6.15 are mainly events from a competing
reaction which was mistaken for a signal event because the measured values of the
event happened to match the values for a signal event. By either not detecting one
of the photons or mistaking some other signal as a photon, reactions with a different
number of final state photons can match the desired final state’s number of detected
particles.

6.5.1 γp → pω Background

The final state which was selected for by the γp → pω analysis is one charged
particle (proton) and 3 uncharged particles (photons). To see the effect of compet-
ing reactions in the γp → pω analysis, the experimental data were plotted using
an invariant mass of all three photons versus the invariant mass of the two-photon
combinations.

Figure 6.16a shows the distribution of experimentally measured events before Q-
factor background subtraction. The vertical area of enhancement around 135 MeV is
the contribution of the two-photon combination primarily decaying from π0 mesons.
A diagonal enhancement starting in the bottom left and continuing to the top right is
the contributions of a pπ0η event when one of the η meson photons is lost (from the
two-photon decay). These enhancements indicate the dominance of pπ0π0, pπ0η and
pπ0 events in the background. These contributions were not cut away using a data
reduction cut because a cut in this distribution cut away too many signal events.

Figure 6.16b shows the same distribution after Q-factor background subtraction.
This distribution shows a peak on the left side of the plot which corresponds to an
ω meson with a π0 in the final state, which is the signature of the desired final state.
The extra horizontal enhancement to the right of the peak is the contribution of the
other two-photon combination which did not come from the π0 meson decay. This
distribution shows a background free sample of pω events.

6.5.2 γp → pπ0ω Background

The final state which was selected for by the γp → pπ0ω analysis is one charged
particle (proton) and 5 uncharged particles (photons). The same Mγγ versus Mγγγ

distribution as the γp → pω analysis was used to see the effect of the competing
reactions which exist in the background contributions in the γp → pπ0ω analysis. In
these distributions, there are 6 contributions from each event in the analysis. The
considered final state configuration is pπ0π0γ and includes 2 π0γ combinations to
obtain an ω meson (represented by γγγ) and 3 different ways to obtain a 2-photon
combination from the 5 photons. Each π0 meson decays to two photons.

Figure 6.17a shows the distribution of experimentally measured events before Q-
factor background subtraction. Again we see the same sort of contributions from
pπ0π0, pπ0η and pπ0 events in the background. The events with a true π0 lie on a
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Figure 6.16: Competing Reaction Contributions to the γp → pω Background. The
vertical axis is the invariant mass of all three detected photons. The horizontal axis
is the invariant mass of each two-photon combination. There are three two-photon
combinations for each event.

horizontal line at around 135 MeV in Mγγ. Any pπ0η with a missing η photon lies on
the diagonal starting at low Mγγ , low Mγγγ and extending to high Mγγ, high Mγγγ .

Figure 6.17b shows the distribution of events after Q-factor background subtrac-
tion. The peak at 780 MeV in Mγγγ and 135 MeV in Mγγ are from the desired
γp → pπ0ω events. There exists a reflection at higher Mγγ which is from the other
contributions which did not correspond to the combination of photons to which the
true ω meson decayed to. However, this contribution does exist close to the invari-
ant mass of the η meson. Any possibility of which a final state with an η meson is
involved is dealt with as a systematic uncertainty in the measurement and discussed
in Section 8.4.

6.6 Reaction Selection Summary

Table 6.3 shows the statistics of the event reconstruction and selection for both
analyses.

There are 4 types of data which are used in this analysis. They are :

• Signal Events - These events are experimentally measured data which pass all
the data reduction cuts and are ultimately isolated using Q-factor background
subtraction.

• Timing Background Events - These events are experimentally measured
data which pass all the data reduction cuts, except for the Tagger Timing cut.
These events are ultimately isolated using Q-factor background subtraction.
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Figure 6.17: Competing Reaction Contributions to the γp → pπ0ω Background. The
horizontal axis is the invariant mass of all three detected photons. The vertical axis
is the invariant mass of each two-photon combination. There are three two-photon
combinations for each event. These axes are opposite from the γp → pω histograms
in Figure 6.16.

Table 6.3: Total Analysis Statistics. The # of events isolated is a sum of the Q-
factors for all events. Reconstructed simulated data are the generated data events
subjected to all reconstruction and reaction selection criteria. The timing background
are events which pass event selection criteria but have initial photon time outside of
the timing window (Section 6.2.1).

Data Type # of Q-factor fits # of events isolated

γp → pω analysis
Experimentally Measured Data

Signal 403,678 128,135
Timing Background 27,659 2,721
Simulated Data

Reconstructed 0 4,036,360
Generated 27,251,000

γp → pπ0ω analysis
Experimentally Measured Data

Signal 64,455 15,805
Timing Background 4582 585
Simulated Data

Reconstructed 2,749,729 2,682,220
Generated 20,376,593

The tagger timing requirements for these events are defined in Section 6.2.1
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and are outside the tagger timing range for signal events.

• Generated Simulated Events - These events were simulated using the Monte
Carlo GEANT3 software.

• Reconstructed Simulated Events - These events are the generated sim-
ulated events which were reconstructed in the modeled experimental setup.
These events passed all the same data reduction cuts as the signal events. In
the γp → pπ0ω analysis, these events were also subjected to Q-factor back-
ground subtraction.

The number of experimentally isolated events, Ndata, is defined as

Ndata = Nsig −NTB , (6.19)

whereNsig is the number of signal events andNTB is the number of timing background
events. The Q-factor background separation for the timing background events is
shown in Figure 6.18.
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Figure 6.18: Timing Background Invariant Mass Distribution. Events were selected
using the same selection criteria as events used in Figure 6.7, but had initial photon
timing information outside the timing window. The background (shaded area) was
determined using the Q-factor method. The invariant mass Mπ0γ is measured in MeV
in both plots.

6.7 Polarized Data Reaction Selection

The data runs used for the extraction of the polarized spin-density matrix elements
were recorded in March 2003 and May 2003 with a linearly polarized photon beam
incident upon a liquid hydrogen target. The run conditions for these data were
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Table 6.4: List of Conditions for Triggering (Polarized Data).

Condition A Two LED-low segments registering at least one hit above the
LED-low threshold.

Condition B One LED-high segment registering at least one hit above the
LED-high threshold and at least two cluster in FACE.

very similar to the unpolarized data already discussed. However, one of the trigger
conditions listed in Section 3.6.3 was different. The trigger conditions for these data
are listed in Table 6.4. Trigger condition B was changed to emphasize reactions with
more photons in the final state.

The reconstruction was almost exactly the same for the polarized γp → pω analysis
as the unpolarized data set. The change in trigger conditions allowed the omission of
the trigger cut described in Section 6.2.5. The background subtraction was done by
the Q-factor method described in Section 6.4.1 in exactly the same way. The resulting
background separation is shown in Figure 6.19. A summary of the data sets used in
the polarized SDME analysis is shown in Table 6.5.

The average degree of polarization for events in each energy bin is shown in Figure
6.20. The coherent edge listed in Table 6.5 defines at what initial photon energy the
discontinuity in the degree of polarization exists in this plot.
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Figure 6.19: Polarized Data Background Separation. Experimentally measured
signal events from polarized data runs. Each plot is labeled with its coherent edge
energy.
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Figure 6.20: Polarized Data Degree of Polarization. The fraction of photon with the
desired linear polarization for the events in each dataset. The March 2003 (1350 MeV
coherent edge) data is represented with a •. The May 2003 (1600 MeV coherent edge)
data is represented with a �.

Table 6.5: Polarized Data Runs. Data events observed is approximately the number
of events isolated after Q-factor fitting.

Dates Coherent Edge Energy Data Events Observed
March 2003 1350 MeV 27,000
May 2003 1600 MeV 33,000
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CHAPTER 7

MEASUREMENT FORMALISM

7.1 Differential Cross Section Measurement

To account for experimental issues, the differential cross section formula in Equa-
tion 1.3 must be modified. The differential cross sections for the γp → pω and
γp → pπ0ω reactions in this analysis are measured by

dσ

dXi

=
Ndata

A F ρAt BR ∆Xi

, (7.1)

where Xi are kinematic variables (Section 7.1.1), Ndata are the number of experimen-
tally measured data events found in the kinematic range ∆Xi (Section 6.6), A is
the acceptance correction (Section 7.1.4), F is the photon flux (Section 7.1.3), ρAt is
the target area density factor (Section 7.1.3), BR is the branching ratio for the final
state’s decay to the particles which were experimentally detected, and ∆Xi is the
width of the kinematic bin the differential cross section is measured in.

The branching ratio used is calculated from the data shown in Table 6.1 from [1].
The branching ratio for the γp → pω reaction is

BRγp→pω = BRπ0
→γγ ·BRω→π0γ = 0.08815± 0.004253 (7.2)

and the branching ratio for the γp → pπ0ω reaction is

BRγp→pπ0ω = BRπ0
→γγ · BRπ0

→γγ ·BRω→π0γ = 0.08711± 0.005132 . (7.3)

7.1.1 Kinematic Variables

The variables the differential cross section is measured in are discussed in this
section. For many reasons, the differential cross section variables have been chosen
to be comparable to previous measurements as much as possible.

7.1.2 γp → pω Kinematic Variables

The variables a differential cross section (at constant energy) can be binned in for
a two body final state (pω ) are limited to one independent variable through energy
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and momentum conservation and the invariance of the final state’s azimuthal angle.
The choices for the variable can be either a function of the polar angle of a final state
particle or the mandelstam-t variable.

The variable chosen for this analysis is the cosine of the polar angle of ω meson
in the center-of-mass frame, i.e. cos θωc.m.. The width of each bin in this variable
was dictated by the shape of the differential cross sections. The 18 bins in the
range (−1 ≤ cos θωc.m. ≤ 0.8) have a bin width of 0.1, while the 6 bins in the range
cos θωc.m. > 0.8 have a width of 0.033.

An alternate variable which was chosen for this analysis is the polar angle of ω
meson in the center-of-mass frame, i.e. θωc.m.. This variable was binned in 20 angular
bins with a bin width of 0.05π radians. This alternate variable emphasizes the forward
and backward angles much more than the cos θωc.m. variable.

The energy variable of these differential cross sections are defined as the energy
of the initial state photon in the lab frame. The differential cross sections are binned
in 50 MeV wide bins from 1100 MeV to 2500 MeV in initial state photon energy. 28
energy bins are reported in all.

γp → pπ0ω Kinematic Variables. The kinematic variables for a differential
cross section in the case of a three body final state (pπ0ω ) are much more complicated
than the two body final state considered in the γp → pω analysis. The number of
independent kinematic variables the data is binned in increases. The number of kine-
matic variables is related to the number of variables needed to describe a momentum
in three-dimensional space. In this case, the number of total kinematic variables (at
constant energy) is 9 ( 3 particles · 3 variables to describe the momentum). However,
not all of these variables are independent. Using the momentum and energy conser-
vation, there are 4 relations which can be defined to relate these kinematic variables.
Therefore, there are 5 independent kinematic variables. However, the reaction can be
defined such that the final state is invariant in the azimuthal angle, defined by the
initial particles. This invariance reduces the total number of independent variables
needed to fully describe this reaction to 4.

There are many possibilities for defining these four variables. However in this
analysis, a quasi two body scheme is adopted and illustrated in Figure 7.1. To describe
this scheme, we define three particles with labels a, b1, and b2. The k and a vectors
define the reaction plane. The decay plane is defined by the momentum vectors of b1
and b2. An ideal kinematic variable to use to study the contribution of intermediate
hadronic resonances is an invariant mass combining two of the particles (Mb1b2). The
variable used to describe particle a is the cosine of the angle between the momentum
of the a particle and the momentum of the incoming photon (k) (e.g. cosac.m.) and is
measured in the center-of-mass frame. The last two variables describe the propagation
directions of particles b1 and b2 in their rest frame. The first angle is defined as the
cosine of the polar angle between the direction opposite the direction of travel of
particle a and the direction of travel of particle b1 (i.e. cos θ∗). The second angle
(φ∗) is the angle between the two planes, reaction plane and decay plane. The four
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Figure 7.1: γp → pπ0ω Kinematic Variables. The particles are p, k, a, b1, and b2.
Particles k and p are the initial state photon and proton, respectively, and are shown
in the reaction’s center-of-mass frame. Particle a is the final state particle dealt with
in the center-of-mass frame of the whole reaction. Final state particles b1 and b2 are
boosted into their own center-of-mass frame. The angular kinematic variables are
θc.m., θ

⋆, and φ⋆. The plane containing a,k, and p is referred to as the reaction plane.
The decay plane and is defined by b1 and b2.

Table 7.1: γp → pπ0ω Kinematic Variable Set Definitions. a, b1, and b2 are defined
in Figure 7.1.

Name a b1 b2 Variable List

ωc.m. ω π0 p cos θωc.m.,Mpπ0 , cos θ∗π0 , φ∗

π0

π0
c.m. π0 p ω cos θπ

0

c.m.,Mpω, cos θ
∗

p, φ
∗

p

pc.m. p ω π0 cos θpc.m.,Mπ0ω, cos θ
∗

ω, φ
∗

ω

kinematic variables used to define the observables for the γp → pπ0ω analysis are
cosac.m., Mb1b2 , cos θ

∗, and φ∗.

Table 7.1 shows the definitions for each of the three kinematic variable sets used to
measure the differential cross sections for γp → pπ0ω . The particles are assigned to
each particle label in a circular manner and will help with studying the uncertainties
involved in binning in each kinematic variable set. Each set is named to provide a
reference when reporting differential cross sections.

The binning in each kinematic variable is the same for all three kinematic variable
sets in Table 7.1 and is shown in Table 7.2. The invariant mass variable Mb1b2 has a
variable width due to the available phase space at each energy. The bin limits are set
according to the kinematically available range. The φ∗ variable has only 1 bin due to
the lack of statistics. The ∆Xi factor in Equation 7.1 is a product of the bin width
factors in Table 7.2.
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Table 7.2: γp → pπ0ω Variable Binning. The same number of bins are used for all
three kinematic variable sets listed in Table 7.1. Eγ refers to the energy of the initial
state photon.

Kinematic Variable # of Bins Bin Width

Eγ 25 50 MeV
cos θc.m. 10 0.2
Mb1b2 10 variable
cos θ⋆ 5 0.4
φ⋆ 1 360◦

The energy binning of the differential cross sections for the γp → pπ0ω analysis is
in 50 MeV wide bins from threshold up to 2.5 GeV in initial photon energy (Table 7.2).

7.1.3 Normalization

The normalization factors in the cross section are the factors accounting for the
total number of initial state interactions having the chance to become the desired
final state during the total data taking time of the experiment. The normalization is
a product of the photon flux and the target area density.

Photon Flux. The photon flux factor F in Equation 7.1 is a count of the
number of photons incident on the target during data taking. To find the correct
number of photons, the formula

F = N fiber
scaler · α · Pγ (7.4)

is used, where N fiber
scaler is the number of free hits in the tagger fibers, α is a factor

accounting for the way photons are reconstructed from the free tagger fiber hits, and
Pγ is the factor accounting for the fraction of photons actually traversing the target.

The N fiber
scaler factor is the total number of hits recorded in the tagger fibers. This

factor was measured by using a minimum bias trigger to accumulate fiber hits (scaler
events) at a rate of 1 Hz during data taking. The minimum bias trigger recorded any
hit in a fiber in the tagging hodoscope. The scaler events were then corrected for the
lifetime of the experiment. This factor is independent of any hadronic triggering.

The α factor accounts for how the fiber hits are used to reconstruct photons in
the tagger. This factor is a ratio of reconstructed photons to tagger fiber hits.

The Pγ factor is a measure of how many photons recorded at the tagger actually
travel through the target. This factor is a ratio of photons passing through the
target to total photons reconstructed in the tagger hodoscope. If the photons do
not travel exactly down the beamline, the photons could miss the target. Special
data taking runs called Tagger-or runs were used to compare hits in the tagger fibers
with the hits in the γ veto detector (Figure 3.1). The γ veto detector was positioned
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Figure 7.2: Photon Flux. The number of photons which were determined to traverse
the target during the whole lifetime of the experiment. These factors were used for
both γp → pω and γp → pπ0ω analyses. The initial photon energy Eγ is measured
in MeV.

downstream of the target. By using coincident hits in the γ veto detector and the
tagger fibers, the fraction of photons traveling through the target was found to be
Pγ = 0.638 ± 0.003stat ± 0.05sys, where stat indicates the statistical error and sys
indicates the systematic error. The stability of this measurement was checked by
analyzing Tagger-or runs at different incoming photon/electron rates.

Figure 7.2 shows the photon flux factors used in both analyses reported in this
thesis. The inverse relationship between photon energy and the photon flux factors
is due to the cross section for bremstrahlung radiation.

Target Area Density. The target area density ρAt is the product of the den-
sity of protons in the liquid hydrogen target cell and the length of the target (lt =
5.275 cm) and is calculated by

ρAt = 2
ρ(H2) NA lt
Mmol(H2)

, (7.5)

where ρ(H2) is the mass density of liquid hydrogen (ρ(H2) = 0.0708 g/cm3), NA is
Avogadro’s number, Mmol(H2) is the molar mass of liquid hydrogen (Mmol(H2) =
2.015588 g/mol ), and the 2 is the number of protons in H2. The final value used in
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the analysis for both γp → pω and γp → pπ0ω analyses is

ρAt = (2.231± 0.042) · 10−7 µb−1 . (7.6)

7.1.4 Acceptance Correction

The detection of particle energies and/or momenta is a complex task which is
never perfect. Even the most perfectly designed detector and analysis cannot detect
every particle during an experiment. Just by having support structures to support
the weight of the detector, the detection of a particle can be obscured. Therefore
when making a measurement, the fraction of particles which were not detected must
be estimated. Using this information, the number of desired signal events which were
detected can be corrected to estimate how many events there actually were. This
fraction is called the detector acceptance, A.

γp → pω and γp → pπ0ω events were simulated using the Monte Carlo simulation
package described in Section 6.1. To find the fraction of events which would have
been reconstructed, the simulated events were subjected to the same reconstruction
and reaction selection as the experimentally measured events. These reconstructed
events were compared to the originally generated events. The ratio of reconstructed
Monte Carlo events Nrec to generated Monte Carlo events Ngen defines the detector
acceptance, i.e.

A =
Nrec

Ngen

(7.7)

and is done in each kinematic bin.

γp → pω Acceptance Correction. The acceptance correction factor for each
kinematic bin is shown in Figure 7.3. The probability of detecting the ω meson
when it goes in the most forward angles (cos θc.m.

ω ≈ 1) is around 30%. This rather
large acceptance in this area is one of the reasons why this analysis for the reaction
γp → pω is an improvement over previous measurements (Section 2.1). The ability
to have enough statistics in this region will be useful in isolating baryon resonance
contributions from meson exchange diagram contributions.

γp → pπ0ω Acceptance Correction. The acceptance correction for the γp →
pπ0ω analysis is much more complicated to show. There are three different acceptance
corrections corresponding to the three different kinematic variable sets the differential
cross section can be defined in. For each kinematic variable set, the factors are binned
in 5 dimensions1.

The distribution of acceptance correction factors are shown in Figure 7.4. Each
value binned in these plots represents the acceptance for an individual kinematic bin.
The average acceptance for this analysis is approximately 15%.

Appendix A shows and discusses the γp → pπ0ω acceptance correction in more
detail.

1kinematic variables and initial photon energy
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Figure 7.3: γp → pω Acceptance. Each plot is labeled with its range in initial
photon energy. The values were estimated by using Equation 7.7.

7.2 Spin-Density Matrix Elements

Additional observables which are available to be measured in the production of ω
mesons are the elements of the spin-density matrix (SDME). These observables can
be used in conjunction with the differential cross sections to obtain information about
the spin dynamics of the reaction. The SDMEs are only measurable from a decaying
particle which has non-zero spin, and cannot be measured for spin zero particles like
the π0 meson. SDMEs are a measure of how often each spin polarization of the ω
is produced and can be used to help separate contributions which produce ω mesons
with different spin polarization.

In this section, the spin-density matrix elements are reviewed. The method of
extracting these observables from the decay distributions are presented.

Following the definitions in [10] and [34], the SDMEs (ρij) are defined as 2

ρij =
1

N
Mi λγ

ρλγλ′

γ
(γ)M∗

j λ′

γ
, (7.8)

where i and j is the spin polarization of the ω meson used to define M, and ρ(γ) is
the spin-density matrix for the initial photon. The normalization N is defined as

N =
1

2

∑

i,λγ

|Mi λγ
|2 . (7.9)

2All other indexes suppressed.
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Figure 7.4: γp → pπ0ω Acceptance Correction Factor Distribution. The values
were calculated by using Equation 7.7. The title for each plot refers to the kinematic
variable set (Table 7.1) used to define the differential cross section. The values in
these distributions are the individual acceptance factors for each kinematic bin.

The photon density matrix is defined as

ρ(γ) =
1

2
(Iγ + σ · ~Pγ) , (7.10)

where Iγ is the identity matrix, σ are the Pauli spin matrices, and ~Pγ is the po-
larization vector of the photon. For a linearly polarized photons, the polarization
vector becomes ~Pγ = Pγ(− cos 2Φpol,− sin 2Φpol, 0), where Φpol is the angle between
the photon polarization vector and the production plane3 and is illustrated in Figure
7.5.

3defined by the final state proton and ω meson
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Since the ω meson is a spin-1 particle, the possible spin polarizations are -1, 0 ,
1. Therefore, the unpolarized spin-density matrix has the form

ρ0 =





ρ0
−1 −1 ρ00 −1 ρ01 −1

ρ0
−1 0 ρ00 0 ρ01 0

ρ0
−1 1 ρ00 1 ρ01 1



 . (7.11)

However, the matrix ρ0 must be hermitian, must respect parity conservation and must
be normalized according to Equation 7.8. Therefore, the matrix reduces to [10]

ρ0 =





1
2
(1− ρ000) Reρ010 + iImρ010 Reρ01 −1

ρ00 0 −Reρ010 + iImρ010
1
2
(1− ρ000)



 , (7.12)

where the bottom left half of the matrix can be obtained by hermitian conjugation.
Therefore, the spin-density matrix can be defined by measuring 4 numbers, ρ000, Reρ010,
iImρ010, and Reρ01 −1.

The angular distribution of the decay products involved in the ω → π0γ decay
with an unpolarized photon beam can be cast in the form [34]

W 0(θd, φd, ρ
0) =

3

8π
(sin2 θdρ

0
00 +

(

1 + cos2 θd
)

ρ011

+sin2 θd cos 2φdρ
0
1−1 +

√
2 sin 2θd cosφdReρ010) , (7.13)

where θd and φd are the angles of the decay photon measured in the reference frame
where the ω is at rest. The ρ011 matrix element is not an independent measurement
and is equal to 1

2
(1 − ρ000) and is related to the normalization used in Equation

7.8. This equation only contains three of the four numbers needed to define the
whole spin-density matrix and means the matrix is not fully measurable with this
method. However, the measured SDMEs will help in constraining the values in an
interpretation analysis.

For measurements with a linearly polarized photon beam, the polarized spin-
density matrices are reduced to [10]

ρ1 =





ρ111 Reρ110 + iImρ110 Reρ11−1

ρ100 −Reρ110 + iImρ110
ρ111



 (7.14)

and

ρ2 =





ρ211 Reρ210 + iImρ210 Reρ21−1

0 Reρ210 − iImρ210
ρ211



 , (7.15)

where the bottom left half of each matrix can be obtained by hermitian conjugation.
The angular distribution of decay products can be cast into the form [10]

WL(cos θd, φd,Φpol, ρ) = W 0(θd, φd, ρ
0)− Pγ cos 2ΦpolW

1(θd, φd, ρ
1) (7.16)

−Pγ sin 2ΦpolW
2(θd, φd, ρ

2) ,
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Figure 7.5: Production Polarization Angle. The beam of initial photons is into the
page at the ⊗ symbol. The ω and pf vectors indicate the direction of propagation of
the final state particles. The ~ǫγ vector is the direction of polarization of the initial
state photon. The unit vector n̂prod is the vector normal to the production plane,
which is defined by the final state particles. The angle Φpol is the angle between the
polarization vector, ~ǫγ , and the normal vector, n̂prod.

where Φpol is the angle between the photon polarization vector and the production
plane, [34]

W 1(θd, φd, ρ
1) =

3

8π
(sin2 θdρ

1
00 +

(

1 + cos2 θd
)

ρ111

+sin2 θd cos 2φdρ
1
1−1 +

√
2 sin 2θd cosφdReρ110) , (7.17)

and

W 2(θd, φd, ρ
2) =

3

8π
(sin2 θd sin 2φdImρ21−1 +

√
2 sin 2θd sinφdImρ210) . (7.18)

Notice many of the matrix elements in Equations 7.14 and 7.15 are not shown in
Equation 7.16 and therefore not measurable with this method.

There are many coordinate systems in which θd and φd can be measured in. The
direction of the z-axis is the defining parameter in each system. The popular systems
to choose are [10]

• Helicity system - z-axis is chosen to be in the same direction as the ω meson in
the overall center-of-mass frame,

• Adair system - z-axis is chosen to be in the same direction as the initial photon
in the overall center-of-mass frame, and
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• Gottfried-Jackson system - z-axis is chosen to be in the same direction as the
initial photon in the rest frame of the ω meson.

In each system, the y-axis is defined to be k̂ × q̂, where k̂ is a unit vector in the
direction of the initial photon in the center-of-mass frame, q̂ is a unit vector in the
direction of travel of the ω meson in the center-of-mass frame and × is the vector
cross product. The x-axis is defined by ŷ × ẑ.

To extract the spin-density matrix elements, the data is filled into angular dis-
tributions which are a function of cos θd, φd. When extracting the linearly polarized
SDMEs, the angular distribution is also a function of the angle Φpol. The angular
distribution bin values are formed by

W =
A

∆Xi

Ndata

Aω→π0γ

, (7.19)

where Ndata is the number of experimentally measured data events defined in Sec-
tion 6.6, Aω→π0γ is the detector acceptance (Section 7.1.4), A is the normalization to
normalize the whole distribution to unity, and ∆Xi is the bin width of the cos θd and
φd variables. Finally, these distributions can be fitted using either Equation 7.13 for
unpolarized data or Equation 7.16 for linearly polarized data.
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CHAPTER 8

MEASUREMENT UNCERTAINTIES

The reporting of any experimentally measured value should always be accompanied
by an estimated uncertainty. Two types of uncertainties accompany each reported
value in this work: statistical1 and systematic. The statistical uncertainty scales
with the number of events used to measure each data point and is a measure of how
precise the measurement is. All other errors are called systematic uncertainties. The
systematic uncertainty is a measure of how accurate the measurement is.

Statistical uncertainties and systematic uncertainties are reported as separate val-
ues for each data point. The individual uncertainties from different sources are com-
bined in quadrature to propagate them to the final values.

This section deals exclusively with the uncertainties in the differential cross sec-
tions. Since the cross section is an absolute measurement, the uncertainties in this
type of measurement must be studied carefully. The uncertainties for the spin-density
matrix elements use the same uncertainties.

8.1 Statistical Uncertainty

The statistical errors for these analyses come purely from the number of events
used and any random errors associated with the target density (ρAt ) and branching
fraction (BR) factors in Equation 7.1. The statistical error from events used in
forming a value is obtained by

σ2 =
∑

i

w2
i , (8.1)

where σ is the uncertainty, i is the index of all the events used in forming the value,
and wi is the weight factor associated with the event i. This treatment stems from
assuming a normal distribution. The weight factor w for any experimentally measured
event or simulated γp → pπ0ω event, which were subjected to Q-factor fitting, is
equal the the Q-factor. For simulated γp → pω events, no Q-factor fitting was done.
Therefore for these events, w = 1.

1also called random error
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Figure 8.1: Target Shift Fractional Change. Each value binned in each plot represents
one kinematic bin in the differential cross section measurement. The number of bins
in the γp → pπ0ω analysis is much larger than in the γp → pω analysis, because of
the increased number of kinematic bins in the γp → pπ0ω analysis.

8.2 Simulation Systematic Uncertainty

Although the Monte Carlo simulation described in Section 6.1 models the
CBELSA/TAPS experiment well, small errors can make a difference in the final re-
ported measurements. This section describes the uncertainties in the simulation of
the experiment.

The uncertainty from the Monte Carlo simulations themselves has been estimated
to be 5.7% and is based on an analysis done in [35] and is in addition to other
uncertainties mentioned in this section.

8.2.1 Target Shift Systematic Uncertainty

The placement of the target within the experimental setup is critical to the re-
construction of angles in the analysis. The uncertainty in the measurement of the
position of the target was estimated to be ±1.5 mm. To see what effect a simple
misplacement of the target by this much would mean in the final differential cross
sections, the target was moved upstream 1.5 mm in the Monte Carlo simulation and
the differential cross section results remeasured.

Figure 8.1 shows the fractional difference between the target shifted differential
cross sections and the corresponding final differential cross sections. For both analy-
ses, the fractional change for each point is taken as the systematic uncertainty due to a
possible target shift. The larger distribution of uncertainties for the γp → pπ0ω anal-
ysis is in part due statistical fluctuations.
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8.2.2 Confidence Level Cut Systematic Uncertainty

The confidence level cuts, described in Section 6.2.3, use the results from kinematic
fitting to cut away events from the analysis which are not signal events, but inevitably
cuts away signal events as well. This cut is done for both the experimentally measured
and simulated events at the same value. The main source of uncertainty in this
parameter comes from the kinematic fit not distributing the signal events the same
way for experimentally measured events and simulated events. The ratio of the signal
events in each event type could change which would change the value of the final data
point. Essentially, this uncertainty is an indicator of how well the kinematic fitter
works and how well the simulation models the experiment.

To decide how much uncertainty is created by choosing the confidence level cut, the
differential cross sections for each analysis were reformed by using several different
choices of confidence level cut. Figures 8.2 and 8.3 show the fractional change in
choosing the different confidence level cuts compared to the CL < 0.005 confidence
level cut.

There are two sources of difference contributing to the value of each fractional
change in Figures 8.2 and 8.3. The first source is the difference due to the confidence
level cut. The second source is a statistical uncertainty due to the different number of
events used to measure each compared data point. The value which is needed to esti-
mate the confidence level uncertainty is only part of the whole difference. Therefore
to separate the two types of uncertainties, the confidence level uncertainty is assumed
to be a constant value over all kinematic bins and the statistical uncertainty follows
a Gaussian distribution. So to extract the confidence level uncertainty, we define the
mean value of the Gaussian distribution to be the confidence level uncertainty.

By comparing the values for each comparison, the overall value for the systematic
uncertainty due to confidence level cut for the γp → pω analysis is assumed to be
less than 1.0%. The systematic uncertainty due to confidence level cut for the γp →
pπ0ω analysis is assumed to be less than 3.0%. These uncertainties were applied to
each kinematic bin.

8.3 Procedural Uncertainties

This section describes the uncertainties which come purely from procedures used
in the analysis. These uncertainties estimate the effect each choice of parameter or
analysis method has on the final data points.

8.3.1 Acceptance Correction Systematic Uncertainty
(γp → pπ0ω only)

The acceptance correction is the factor which corrects the number of signal events
for the fraction of events which were not observed. The binning of the acceptance
correction (Section 7.1.4) can have an effect on the final differential cross section
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Figure 8.2: γp → pω Confidence Level Fractional Changes. Each plot is labeled
with the confidence level cut which was compared to the CL < 0.005 cut. The line
is a Gaussian function with the fitted mean labeled on each plot. In this figure, CL
means the confidence level of the γp → pmissingπ

0γ hypothesis.

measurement. Since this factor occurs in the denominator of Equation 7.1, the act
of integrating over kinematic variables can have an effect on the final answer if the
acceptance correction varies largely from constant.

The binning in the γp → pπ0ω analysis is restricted by the number of experimen-
tally measured events isolated in each kinematic bin. If the kinematic bins are defined
too small, the bin will not have enough experimentally measured events to report a
value with a reasonable systematic error. However if the bin is defined too large, an
acceptance correction with large deviations from constant in the bin can cause the
measured value to deviate from the true value.

To explore the uncertainty created by defining one bin in the φ∗ variable, the
angle between the reaction plane and the decay plane, for all kinematic variable sets
(Table 7.2), the differential cross section is measured again by increasing the binning
in the φ∗ variable from 1 to 4. This, in effect, splits each kinematic bin in the analysis
into 4 separate bins. The differential cross sections were measured in each of these
kinematic bins. To compare these altered cross sections to the original cross sections
using only one bin in φ∗, each of the 4 new bins which represented the kinematic
volume of the original kinematic bin were integrated over. This integration produced
a new differential cross section data point which corresponds to the same binning as
the original differential cross section point but is measured using a finer binning. The
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Figure 8.3: γp → pπ0ω Confidence Level Fractional Changes. Each plot is labeled
with the confidence level cut that was compared to the CL < 0.005 cut. The line
is a Gaussian function with the fitted mean labeled on each plot. In this figure, CL
means the confidence level of the γp → pmissingπ

0π0γ hypothesis.

fractional change is calculated as

∆Fractional =
σaltered − σfinal

σfinal

, (8.2)

where σaltered is the differential cross section with the altered parameters.
The difference between these two differential cross section points measured in

the same kinematic variable values is, in part, due to the kinematic binning change.
However since there is a different number of events used to measure each differential
cross section in the results measured with finer binning, an additional statistical
uncertainty is included in the difference. To separate these two uncertainties, we
assume the fractional acceptance correction change is a constant across all kinematic
bins and fit the distribution of values with a Gaussian function, which models the
statistical uncertainty. The mean of the Gaussian function is the average change due
to the acceptance correction binning.

The distribution of the fractional changes in the differential cross section for each
kinematic bin is shown in Figure 8.4. The kinematic variable sets are treated and
plotted separately. To separate the statistical uncertainty from the acceptance cor-
rection uncertainty, the distributions were fitted to a Gaussian function from −0.2
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Figure 8.4: γp → pπ0ω Acceptance Correction Fractional Change. Each plot is
labeled with the name of a kinematic variable set defined in Table 7.1. The fitted
mean of the Gaussian function fitted to the distribution from -0.2 to 0.2 is labeled
on each plot. Each binned value represents one kinematic bin in the final differential
cross sections.

to 0.2. The mean difference for each kinematic variable set is labeled on each plot
in Figure 8.4. The quoted mean was used as a systematic uncertainty due to accep-
tance correction binning for all kinematic bins defined in that kinematic variable set.
The acceptance correction uncertainty for the ωc.m. and pc.m. kinematic binnings are
smaller than 0.5% and insignificant. However, the π0

c.m. kinematic binning shows a
much larger acceptance correction uncertainty of approximately 2% and is likely due
to a acceptance which differs largely from constant in the φ∗ kinematic variable.
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Figure 8.5: Q-factor Systematic Uncertainty. Each value is the fractional uncertainty
of a reported differential cross section point. The γp → pπ0ω plot has been filled
with ratios from all three kinematic binnings. Each value histogrammed represents
one kinematic bin in the differential cross section.

8.3.2 Q-factor Fitting Systematic Uncertainty

Each fit used in the Q-factor method of background subtraction (Section 6.4)
estimates an uncertainty for each parameter in the fit. When these uncertainties are
propagated to the Q-factor, the resulting uncertainty will provide an estimate of how
well determined the Q-factor itself is. Since the error of each parameter is linked to
how well the fitting function describes the data, the uncertainty of the parameters is
also an estimate of how well the fit does at modeling the invariant mass distribution.
The method of propagating the error of the parameters to the uncertainty of each
point in the differential cross section is taken from [31].

To propagate the error of the fit parameters to the Q-factor error (
√

σ2
Q), the

formula

σ2
Q =

∑

ij

δQ

δαi

(Cα)ij
δQ

δαj

(8.3)

is used, where αi is a fit parameter with index i and Cα is the covariance matrix
which contains the errors of each fit parameter. The covariance matrix is calculated
by and obtained from the RooFit fit package [32] used for fitting.

The propagation of these Q-factor errors to an uncertainty in the differential cross
section point is calculated by

σy =
∑

lk

√

σ2
Ql
ρlk

√

σ2
Qk

, (8.4)
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where
√

σ2
Ql

is the Q-factor error for an event with index l and ρlk is the correlation

factor between events with index l and k. The correlation factor is calculated by

ρlk =
Ncommon

Nnn

, (8.5)

where Nnn is the number of nearest neighbors used in Q-factor fitting and Ncommon is
the number of those nearest neighbors which were used in both events l and k. The
relative systematic uncertainty due to Q-factor fitting is shown in the two plots in
Figure 8.5.

The Q-factor fitting uncertainties for the γp → pω analysis are generally below
25% and are relatively small. However, the uncertainties for the γp → pπ0ω analysis
have a much larger range of values. This is due to the small statistics in some
kinematic bins in this analysis which affects both the ratio in the fraction but also
the quality of the fit. If the fit covers too much phase space in the kinematic variables,
the fit quality becomes poor. These larger values indicate there are a few kinematic
bins in this analysis which are not sensitive to the physics of this reaction. These bins,
however, do serve a purpose in that the error sets an upper bound to the value of the
differential cross section at that point in phase space. Therefore, these data points are
reported as is. A large portion of the kinematic bins do have very good sensitivity and
in addition to the bins with large errors are still useful for an interpretation analysis.

8.3.3 Photon Flux Systematic Uncertainty

The photon flux is the factor which normalizes the differential cross section to the
number of photons which had the chance to become the sought after reaction. The
uncertainty in the number of photons passing through the target during the whole
data taking period is assumed to be dominated by Pγ (Section 7.1.3). Pγ is the factor
which corrects for the photons which were detected in the tagger scintillator fibers but
missed the target. The systematic error for Pγ was reported by the analysis in [25] to
be 7.8% for this dataset, but to ensure all the uncertainty is included, the systematic
error for the photon flux is assumed to be 10% [25].

8.4 Background Contributions

The last uncertainty is to estimate how much of the competing reactions is still
in the signal. Even after all the cuts and background subtraction, these event could
still be contributing.

The background reactions γp → pπ0, γp → pη, γp → pπ0π0, and γp → π0η were
simulated using the Monte Carlo software described in Section 6.1. These events
were subjected to the same reconstruction and reaction selection procedures as the
experimentally measured data events, including Q-factor background subtraction.
The resulting reconstructed events (Nrec) were compared to the generated events
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(Ngen) to obtain a probability for each background reaction to contribute to the final
differential cross section as a function of the analysis’s final state kinematic variables
(PBKG), i.e.

PBKG =
Nrec

Ngen

. (8.6)

To define how many events were generated in each bin, the total number of events gen-
erated in each initial photon energy bin where equally distributed over the kinematic
bins in that energy bin.

The number of background reaction events in a kinematic bin (NBKG) can be
deduced by

NBKG =
σTot

Nbins

PBKG F T BR , (8.7)

where F is the photon flux, T is the target area density, BR is the branching ratio
describing the decay to the considered final state, and σTot

Nbins
is the total cross section

averaged over the kinematic bins. The total cross sections were obtained from [25,
36, 37, 38] respectively.

Due to the averaging, this factor cannot be applied to the final cross section
directly, therefore we define an additional systematic uncertainty. A fractional uncer-
tainty for each point in the differential cross section due to each background reaction
is defined as

√

σ2
BKG =

NBKG

Ndata

, (8.8)

where Ndata is the number of experimentally measured events used to form the re-
ported differential cross section.

Reactions with final states which decay to a number of photons that differ from this
analysis by one are considered. The likelihood for either mistakenly reconstructing
an unphysical photon or failing to reconstruct a real photon are the greatest.

The statistics and reaction topology used in each background reaction simulation
is listed in Table 8.1. The estimated fractional uncertainties for background reaction
contributions are shown in Figure 8.6 for the γp → pω analysis.

The fractional uncertainty for the single meson background reactions are very
small. However, the values for the two double meson reactions are on the order of
2-4%. Since these values are only estimates, the values are not used to modify the
differential cross section values. These uncertainties were propagated point by point
to the systematic uncertainty for the γp → pω analysis.

In Table 8.1, the number of reconstructed events for the background reactions
are smaller than the number of kinematic bins (12,500) in the γp → pπ0ω analysis.
Therefore, estimating a background uncertainty for each kinematic bin is not possible.
Due to the very small reconstruction efficiency of these reactions, the uncertainty
analysis is estimated in each energy bin only. The background fraction in Figure 8.7
was estimated using Equations 8.7 and 8.8. Since this was done for each energy bin
ignoring kinematic bins, all values are a sum over the kinematic bins and Nbins = 1.
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Table 8.1: Background Reaction Uncertainty Analysis Statistics. Events generated
is the number of events generated by the Monte Carlo simulation package. Events
reconstructed is the number of generated events which were isolated as signal events
after data reduction and Q-factor background subtraction.

Background Reaction Decay Photons Generated Reconstructed

γp → pω analysis (Detected Final State: 3 photons)
γp → pπ0 2 3,800,000 3
γp → pη 2 4,000,000 148

γp → pπ0π0 4 5,333,333 7592
γp → pπ0η 4 2,666,666 6884

γp → pπ0ω analysis (Detected Final State: 5 photons)
γp → pη 6 4,000,000 26

γp → pπ0π0 4 5,333,333 648
γp → pπ0η 4 2,666,666 34

These values are the fraction of detected experimentally measured events which could
have been from each background reaction.

The values are smaller than 1% and do not indicate a large contamination from
these reactions. The systematic uncertainty for each energy bin was applied to all
kinematic bins with the same energy binning.

8.5 Summary

Figure 8.8 shows a summary of all uncertainties. The two types of uncertainties
are presented separately and are also reported separately when presenting the data.
Each data point histogrammed represents one kinematic bin in each analysis and has
been calculated by adding all the errors in this section in quadrature.

The statistical uncertainties are essentially a measure of how much statistics goes
into measuring each data point and also how precise the differential cross section
values are. The statistical uncertainties for the γp → pω analysis in Figure 8.8a show
values below 25%. Due to the kinematic coverage and binning, this uncertainty is
small enough to allow an interpretation analysis to isolate baryon resonances. The
statistical uncertainties for the γp → pπ0ω analysis are much larger in comparison
however. These larger errors are due to the relatively small number of experimentally
measured γp → pπ0ω events in each kinematic bin. The kinematic binning was
chosen this way to stretch the statistics as far as possible to allow a proper detector
acceptance analysis. As will be seen in the results section, these uncertainties can
be greatly reduced by integrating over kinematic bins. The statistical uncertainties
are small enough and the kinematic coverage good enough to allow an interpretation
analysis which can be performed on data points over almost the whole kinematic phase
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Figure 8.6: γp → pω Background Reaction Uncertainty. Each plot is the fraction
of the experimentally measured events which could have been from each background
reaction in each kinematic bin.

space. The extra peaks between 0.5 and 1.0 in Figure 8.8c come from kinematic bins
with very low statistics which cause rounding errors in the uncertainty calculation to
occur.

The systematic uncertainties are a measure of how accurate the differential cross
section values are. By estimating the effect of possible errors, the values for the
systematic uncertainty were estimated. The total systematic uncertainty for both
analyses seem to average around 15% and are relatively small.
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Figure 8.7: γp → pπ0ω Background Reaction Uncertainty.
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Figure 8.8: Summary of Uncertainty Values. Each value histogrammed represents
one kinematic bin in the differential cross section. The extra peaks between 0.5 and
1.0 in (c) come from kinematic bins with very low statistics which cause rounding
errors in the uncertainty calculation to occur.
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CHAPTER 9

RESULTS

After a large effort to reconstruct each event and select the correct final state reaction,
the experimentally measured and simulated events were used to measure physical
observables. For the γp → pω analysis, the differential cross sections and spin-
density matrix elements are presented. For the γp → pπ0ω analysis, the differential
cross sections presented as projections of select kinematic variables are shown. These
observables have been subjected to an uncertainty analysis (Chapter 8) and these
estimated uncertainties have been shown in each plot in this chapter.

These observables will be used in interpretation analyses to isolate the contribut-
ing baryon resonances. The differential cross sections for each analysis and the spin-
density matrix elements for the γp → pω reaction have been presented with full
angular coverage and with an energy binning small enough to facilitate an inter-
pretation analysis which will hopefully enable the isolation of the “missing” baryon
resonances. The spin-density matrix elements will be used to separate processes and
baryon resonances which produce an ω meson with different spin polarizations.

For all plots and discussions in this chapter, the units used are those where the
speed of light c is set to c = 1. This means energy, momentum, and mass have the
same units, electron volts (eV).

9.1 γp → pω Cross Sections

Figure 9.1 shows the final differential cross sections for the reaction γp → pω mea-
sured at the CBELSA/TAPS experiment binned in cos θωc.m.. The data are binned
in 50 MeV wide energy bins from 1.15 to 2.5 GeV in initial photon energy. For
−1.0 < cos θωc.m. < 0.8, the angular bin width is 0.1. To show the differential cross
section’s strong forward angle peak, for points in the range 0.8 < cos θωc.m. < 1.0,
the data are binned in 0.033 wide angle bins. The vertical bars on each point is the
statistical uncertainty only. The systematic uncertainty is shown as a grey band at
the bottom of each plot.

The low energy part of the cross sections shows a distribution which is mostly
symmetric around cos θωc.m. = 0 and consistent with baryon resonance production. At
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Figure 9.1: γp → pω Differential Cross Sections versus cos θωc.m.. Measured at the
CBELSA/TAPS experiment. Each plot is labeled with its range in initial photon
energy. The statistical error is shown as vertical bars on each data point and the
systematic error is shown as a grey shaded area at the bottom of each plot.
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Figure 9.2: γp → pω Differential Cross Sections versus θωc.m.. Measured at the
CBELSA/TAPS experiment. Each plot is labeled with its range in initial photon
energy. The statistical error is shown as vertical bars on each data point and the
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Figure 9.3: γp → pω Excitation Functions. Measured at the CBELSA/TAPS
experiment (•). For comparison, the CLAS differential cross sections published in [14]
are represented with a (�). A coupled channel fit on data which included the SAPHIR
differential cross sections [15] by the Gießen group published in [12] is represented
with a ( ).
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higher energies, the differential cross sections show the forward angle rise (right side
of each plot) which suggests a t-channel meson exchange. The backward angle portion
of each plot does not show any significant increase indicating that a u-channel baryon
exchange is not dominant.

Figure 9.2 shows the differential cross sections for the reaction γp → pω measured
by this analysis binned in θωc.m.. These results were derived from a separate analysis
based on the same data. The same uncertainties and Q-factors were used in the two
measurements but these measurements were treated separately otherwise. The data
are binned in 50 MeV wide energy bins from 1.15 to 2.5 GeV in initial photon energy.
The 20 angular bins for each energy had a width of 0.05π radians. The vertical bars
on each point represent the statistical uncertainty only. The systematic uncertainty
is shown as a grey band at the bottom of each plot.

The cross section decrease at the most forward angles are not a feature of the
experiment but of the physics of this reaction. These measurements show the forward
peak which is only visible when the data is binned finely in the forward angles.
This forward peak is a feature of the t-channel meson exchange and can be used to
fully characterize the strength of that process. This shows the advantage of these
measurements have over previous measurements.

To facilitate comparison, the same differential cross section data have been shown
as excitation functions in Figure 9.3 along with the CLAS differential cross sections
published in [14]. The two measurements seem to have the same overall shape but
the difference seems to be energy dependent. The only factor which is constant in
an angular distribution and changes with energy is the photon flux normalization.
Therefore this discrepancy suggests the problem arises from the photon flux normal-
ization. However, there is little evidence to suggest which data set has the correct
photon flux determination.

Figure 9.3 also shows the results from a coupled-channel effective Lagrangian
analysis performed by the Gießen group and was published in 2005 [12]. This analysis
included baryon resonances with spin up to 5/2 and was based on available data from
πN scattering and γN scattering from the final states πN , 2πN , ηN and ωN . Data
with an initial photon energy range from the pion production threshold up to 2 GeV
were analyzed. The only ω photoproduction data used in this fit were the SAPHIR
differential cross sections and spin-density matrix elements. This fit shows how the
backward angle fit underestimates the data from both experiments shown in this
plot. This backward underestimation is from the SAPHIR differential cross section.
By including the new data in this fit, the fit would be improved. This comparison
shows how these types of analyses would be improved by using the newer data.

Since the differential cross sections do not have any acceptance holes, the total
cross section shown in Figure 9.4 is formed by integration. The threshold peak in
the total cross section shows the effect of the resonance production suggested by the
low-energy, mostly symmetric angular distribution in the differential cross section.
The high energy part of the total cross section shows a very broad peak. However,
this peak is too broad to be associated with resonance production and indicates
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Figure 9.4: γp → pω Total Cross Section. Measured at the CBELSA/TAPS ex-
periment. The statistical error is shown as vertical bars on each data point and the
systematic error is shown as a grey shaded area at the bottom of each plot.

that baryon resonance production is not the only process contributing. From the
corresponding forward angle rise in the differential cross sections, this broad peak is
probably an effect from the combination of t-channel meson exchange diagrams and
baryon resonance production.

The low energy baryon resonance peak (Eγ ∼ 1700 MeV) has been described by
two separate interpretation analyses, the Gießen analysis [12] shown in Figure 9.3
and a partial wave analysis done just on the CLAS measurements [13], with the sub-

threshold baryon resonance N(1680)5
2

+
, a well established baryon resonance. How-

ever, each analysis differs on which other baryon resonance contributes. The inclusion
of the differential cross sections in this section will help in pinning down the other
contributions to the resonance peak by adding more data points in the forward scat-
tering angles. These forward angle data points will help distinguish the resonance
contributions from the growing meson exchange which could be ambiguous in the fit.

9.2 γp → pπ0ω Cross Sections

The differential cross sections have been measured for each kinematic binning
defined in Table 7.2 and for the number of bins defined in Table 7.2. However, a
multi-dimensional distribution is difficult to show. To emphasize some of the more
interesting features in the differential cross sections, the plots in this section are
focused on the variables which show the effects of the intermediate processes. These
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variables are the cos θc.m. variable (Section 9.2.1) and theMb1b2 invariant mass variable
(Section 9.2.2).

To produce the plots shown in this section, all other kinematic variables have
been integrated over. The uncertainties from each differential cross section point have
been propagated to the plots. The integration provides a picture of the differential
cross section which emphasizes the major features which can be expressed using each
variable. For example, the cosine theta differential cross sections for a particle are
useful for seeing the type of process in which that particle is produced in most of the
time. An example of this, using an analogy to the γp → pω differential cross sections,
is if the cosine theta differential cross section for the ω meson, cos θωc.m., shows a
forward angle rise, then that particle is involved in meson exchange (Figure 1.4d). The
invariant mass differential cross sections are useful for identifying hadron resonances
which dominantly decay to each pair of particles. For example, the invariant mass
differential cross section binned in the invariant mass of the pπ0 system can show
mass peaks belonging to baryon resonances decaying to pπ0.

9.2.1 Cosine Theta Differential Cross Sections

Figures 9.5, 9.6, and 9.7 show the differential cross section as a function of the
cosine of the polar angle measured in the center-of-mass frame. This variable can be
used to suggest the dominant processes contributing to the final state.

Figure 9.5 shows a forward angle rise in the cos θωc.m. differential cross sections
which suggests meson exchange contributes strongly just as in the γp → pω differ-
ential cross sections. However this meson exchange (Figure 1.4d) produces a baryon
resonance which decays to pπ0. This resonance could be any resonance with isospin
I = 3/2 or 1/2.

Figure 9.6 shows constant differential cross section distributions when shown as
a function of cos θπ

0

c.m.. This symmetric distribution indicate the production of res-
onances. Combined with the shape of the cos θωc.m. differential cross sections, this

again suggests meson exchange processes dominate. Since the ∆(1232)3
2

+
resonance

is usually seen decaying to pπ0, the shape is most likely dominated by this meson
exchange with the π0 meson being exchanged to create the ∆(1232)3

2

+
, which decays

to pπ0.
Figure 9.7 shows the angular distribution of the scattered proton. This distri-

bution is relatively flat in the low energy region (Eγ < 1850 MeV) suggesting the
proton is mostly coming from baryon decays. At energies above Eγ = 1850 MeV,
the distribution develops a backward rise. This backward rise indicates the proton is
involved in a meson exchange (Figure 1.4f).

9.2.2 Invariant Mass Differential Cross Sections

The invariant mass differential cross sections can show peaks which indicate res-
onances which exist in the intermediate decays. However due to interference effects,
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Figure 9.5: γp → pπ0ω cos θωc.m. Differential Cross Sections. Measured at the
CBELSA/TAPS experiment defined in the ωc.m. kinematic variable set. Each plot
is labeled with its range in initial photon energy. The statistical error is shown as
vertical bars on each data point and the systematic error is shown as a grey shaded
area at the bottom of each plot.
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Figure 9.6: γp → pπ0ω cos θπ
0

c.m. Differential Cross Sections. Measured at the
CBELSA/TAPS experiment defined in the π0

c.m. kinematic variable set. Each plot
is labeled with its range in initial photon energy. The statistical error is shown as
vertical bars on each data point and the systematic error is shown as a grey shaded
area at the bottom of each plot.
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Figure 9.7: γp → pπ0ω cos θpc.m. Differential Cross Sections. Measured at the
CBELSA/TAPS experiment defined in the pc.m. kinematic variable set. Each plot
is labeled with its range in initial photon energy. The statistical error is shown as
vertical bars on each data point and the systematic error is shown as a grey shaded
area at the bottom of each plot.
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not all the contributing resonances exhibit a peak structure. The peaks seen in these
plots are the resonances which dominate the reaction at those kinematic variable val-
ues. It is likely more hadron resonances contribute to this reaction than are obvious
in these plots.

Each invariant mass differential cross section shown in this section belongs to the
same kinematic binning as a cosine theta differential cross section in the previous
section. Since we are describing the γp → pπ0ω reaction, the cross sections binned
in Mb1b2 invariant mass and the cos θac.m. angle, where b1, b2, and a are all different
particles, are projections describing the same differential cross section. For example,
the differential cross sections binned in Mpπ0 shown in Figure 9.8 and in the cosine
theta differential cross sections binned in cos θωc.m. shown in Figure 9.5 describe the
same differential cross section binned with the kinematic binning denoted with ωc.m..

Figure 9.8 shows the pπ0 invariant mass differential cross sections with a resonance
peak around 1200 MeV in mass. The size and position of this peak suggests the
∆(1232)3

2

+
resonance is involved relatively often in this final state. When combined

with the strength of the meson exchange process suggested in the cos θωc.m. differen-

tial cross sections (Figure 9.5) and the large pπ0 decay fraction of the ∆(1232)3
2

+

resonance, the process described by Figure 1.4d with the π0 meson as the exchange
particle and the ∆(1232)3

2

+
as the baryon resonance must happen a large fraction of

the time.

The pω invariant mass differential cross sections are shown in Figure 9.9. These
distributions also suggest at least one resonance at around 1700 MeV in mass and
likely correspond to the same baryon resonances seen in the γp → pω cross sections
in the previous section.

Figure 9.10 does not show any dominant peaks in the π0ω invariant mass dif-
ferential cross sections. However at around 1200 MeV in mass, the b1(1235) meson
should be seen and corresponds to a small ripple in these distributions. Around
the same incoming photon energy where the b1(1235) meson begins to be produced,
the differential cross section binned in cos θpc.m. (Figure 9.7) shows a backward rise.
These two occurrences could be due to a meson exchange like in Figure 1.4f. A more
sophisticated analysis must be performed to confirm this hypothesis however.

9.2.3 Total Cross Section

The total cross section for the γp → pπ0ω analysis (�) is measured by integrating
over all the kinematic bins for each energy bin and is shown in Figure 9.11. This
distribution shows a smooth increase and is similar in overall shape to the total cross
section reported by the CB-ELSA collaboration in [16] (•). The new data significantly
improve the energy resolution of the total cross section with much smaller uncertainty.
The data presented are useful for an interpretation analysis to isolate the ”missing”
baryon resonances above 1800 MeV in mass (Eγ ∼ 2060 MeV).
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Figure 9.8: γp → pπ0ω Mpπ0 Differential Cross Sections. Measured at the
CBELSA/TAPS experiment defined in the ωc.m. kinematic variable set. Each plot
is labeled with its range in initial photon energy. The statistical error is shown as
vertical bars on each data point and the systematic error is shown as a grey shaded
area at the bottom of each plot.
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Figure 9.9: γp → pπ0ω Mpω Differential Cross Sections. Measured at the
CBELSA/TAPS experiment defined in the π0

c.m. kinematic variable set. Each plot
is labeled with its range in initial photon energy. The statistical error is shown as
vertical bars on each data point and the systematic error is shown as a grey shaded
area at the bottom of each plot.
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Figure 9.10: γp → pπ0ω Mπ0ω Differential Cross Sections. Measured at the
CBELSA/TAPS experiment defined in the pc.m. kinematic variable set. Each plot
is labeled with its range in initial photon energy. The statistical error is shown as
vertical bars on each data point and the systematic error is shown as a grey shaded
area at the bottom of each plot.
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Figure 9.11: γp → pπ0ω Total Cross Section. Measured at the CBELSA/TAPS
experiment (�). The statistical error is shown as vertical bars on each data point and
the systematic error is shown as a shaded area at the bottom of each plot. The total
cross section measured by the CB-ELSA collaboration in [16] are represented with a
(•) with the statistical uncertainties represented as vertical bars on each point.

9.3 γp → pω Spin-Density Matrix Elements

Additional information about the processes leading to this final state can be ob-
tained by analyzing the decay products of the ω meson. The density of the spin
quantizations of the ω meson in the overall amplitude can be extracted by analyzing
the angular distribution of the decay products. The unpolarized spin-density matrix
elements (SDME) are discussed and shown in Section 9.3.1. The linearly polarized
SDMEs, ρ100 and ρ111, are discussed and shown in Section 9.3.2.

9.3.1 Unpolarized Spin-Density Matrix Elements

The angular decay distributions of the decay products as a function of the unpo-
larized spin density matrix elements (ρ0) is given by Equation 7.13. The coordinate
systems in which these angles are measured in this analysis are the helicity, Gottfried-
Jackson and Adair coodinate systems (defined in Section 7.2).

The events used in this analysis are the same exact events used for the γp →
pω differential cross sections. The events were separated into 100 MeV wide energy
bins measured in initial photon energy from 1200 MeV to 2500 MeV and into two
cos θωc.m. bins. The events in each of these bins were filled into an angular distribution
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Figure 9.12: γp → pω Unpolarized Spin Density Matrix Elements. (a) The SDMEs
for all three frames are shown. (b) The SDMEs for the Adair frame are shown for
comparison. The SDMEs measured from this analysis are shown in the helicity system
(•), Gottfried-Jackson system (�), and Adair system (N). The SDMEs in the Adair
system from CLAS (�) are shown in (b) and are an average over the corresponding
angular range. Each plot shows the spin density matrix element name along with its
range in cosine of the polar angle of the ω in the center-of-mass frame.

which had 6 cos θd bins and 8 φd bins, the decay angles of the final state photon in
the ω → π0γ decay.

The Q-factor values were used when filling the angular distributions with the
experimentally measured events. The bins were filled according to Equation 7.19.
For each bin in these distributions, the Q-factor fit uncertainties (Section 8.3.2) and
Monte Carlo simulation uncertainties (Section 8.2) were propagated to the uncertainty
for each bin.

To extract the spin-density matrix elements (SDMEs), the angular distributions
are fitted using a χ2 minimization fit. The ρ000 was restricted to values between 0 and
1. The rest of the SDMEs were restricted to between −1 and 1.

The spin density matrix elements (SDMEs) extracted from the events selected
for the γp → pω analysis are shown in Figure 9.12a. The uncertainties associated
with each point are shown as vertical bars and are the result of the propagation of
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the uncertainties of each bin in the angular distribution to the parameters by the χ2

minimization fit.

The Gottfried-Jackson system and the Adair system each have its z-axis defined
by the momentum direction of the incoming photon. The difference being which
reference frame that momentum is measured in. The Adair system z-axis is defined
in the center-of-mass frame. The Gottfried-Jackson system z-axis is defined in the rest
frame of the ω meson. If the momentum of the ω meson in the center-of-mass frame
is close to zero, then these two systems are nearly the same. Therefore, the SDMEs
for these two systems should be roughly the same for measurements done close to
the threshold. As the momentum of the ω momentum in the direction perpendicular
to the momentum of the initial photon grows, these measurements could diverge.
The similarity of the Gottfried-Jackson system data and Adair system data at low
incoming photon energies is due to the low momentum of the ω meson in the center-
of-mass frame transverse to the momentum of the initial photon.

For comparison to earlier measurements, Figure 9.12b shows the CLAS spin den-
sity matrix elements published in [14] (�) along with the data from this analysis
extracted in the Adair system (N). Since the CLAS data have much better statistics
than these data, the CLAS data were averaged over the same angular range. The
CLAS data do not extend all the way to the most forward angles. Therefore, the
CLAS data were not presented for comparison in the forward angles. The agreement
with the CLAS data is very good and suggests the discrepancies shown in the dif-
ferential cross sections (Figure 9.3) are not present in this comparison. Since there
is no photon flux normalization involved in the determination of the spin density
matrix elements, the discrepancy in the cross section is likely due to photon flux
normalization.

The areas where the reported data improves the world database is in its angular
coverage and its extraction from the radiative decay. These data have fairly good
energy resolution while also being sensitive to the distribution in the most forward
angular range. The extraction of these data from the radiative decay provides an
independent check of the previously measured data through an alternate channel.

9.3.2 Polarized Spin-Density Matrix Elements

The events from each of the two polarized data sets were treated separately and
separated into the same energy and cos θωc.m. bins as the unpolarized SDMEs. To
extract the polarized SDMEs, the angle between the polarization vector of the initial
photon and the production plane1 (Φpol) must be defined and added to the angular
distribution. If this angle is ignored and treated the same way as the unpolarized data,
the unpolarized SDMEs can be extracted. To ensure the acceptance is the same and
these data are consistent with the unpolarized data, the unpolarized SDMEs were
extracted using exactly the same procedure as in Section 9.3.1.

1defined by the final state proton and the ω meson
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Figure 9.13: Unpolarized Spin-Density Matrix Elements Crosscheck with Polarized
Data. These SDMEs are defined in the helicity system. The unpolarized SDMEs
extracted from the unpolarized data (•), March 2003 polarized data (�), and May
2003 polarized data (N). Each plot shows the spin density matrix element name along
with its range in cosine of the polar angle of the ω in the center-of-mass frame.

The unpolarized SDMEs extracted in the helicity system are plotted in Figure 9.13.
The comparison of SDMEs extracted from the polarized datasets (�,N) and the
unpolarized dataset (•) shows a fair agreement within statistical uncertainties. The
polarized data sets have significantly fewer events than the unpolarized data set. The
smaller statistics resulted in increased statistical fluctuations in the extracted SDMEs
from the polarized data sets. However, in the low energy region (Eγ < 1700 MeV)
the agreement is decent.
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Figure 9.14: Polarized Spin-Density Matrix Elements in the Helicity System. The
low energy data points (1200 - 1400 MeV) were extracted from the March 2003 data.
The higher energy data points were extracted from the May 2003 data. Each plot
shows the spin density matrix element name along with its range in cosine of the
polar angle of the ω in the center-of-mass frame.

To extract the polarized SDMEs, ρ100 and ρ111, the events in each initial photon
energy and cos θωc.m. bin was filled into a three-dimensional angular distribution. The
angular distribution has 5 Φpol, 5 cos θd, and 12 φd bins and was acceptance corrected
and normalized according to Equation 7.19 . These angular distributions were fitted
to Equation 7.16 using a χ2 minimization fit. Before fitting, the φd was integrated over
and the unpolarized SDMEs were fixed to the values from the fits on unpolarized data.
The unpolarized SDMEs were determined with smaller uncertainty in the unpolarized
data and have the same values in the polarized fits as shown in Figure 9.13. Equation
7.16 was modified by integrating over the φd variable before fitting. The values of the
polarized SDMEs were restricted using the restrictions in [10] and are based on the
values of the unpolarized SDMEs.

Figure 9.14 shows the polarized SDMEs extracted from the polarized data. Due
to the magnitude of the degree of polarization, the SDMEs for an energy bin could
only be extracted from the dataset with a significant degree of polarization. In this
analysis, the threshold for a significant degree of polarization is 0.2 (shown in Fig-
ure 6.20) and only fits were done for energy bins with polarizations exceeding this
value.

These measurements mark the first time these SDMEs have been shown. The
values are small and close to zero.
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CHAPTER 10

CONCLUSIONS

The photoproduction of ω mesons and π0ω meson pairs off of protons was studied
using data measured at the CBELSA/TAPS experiment in Bonn, Germany. The
motivation for studying these reactions is to find baryon resonances contributing to
these reactions.

Unpolarized photons were produced through bremstrahlung reactions by scat-
tering 3.175 GeV electrons from the ELSA accelerator off of a copper radiator. The
resulting bremstrahlung electrons were analyzed by the Tagger hodoscope to tag each
initial photon with an energy and time. The unpolarized photons were then incident
upon a stationary target of liquid hydrogen which supplied the unpolarized protons.
Hadronic reactions decaying to mesons were produced and the decay photons from
those mesons were detected in the calorimeter detectors, Crystal Barrel and TAPS.
The crystals in the calorimeter detectors were optimized to measure photon energies
and positions. Any charged particles produced in any reactions were detected by scin-
tillating materials and were combined with the spatially corresponding calorimeter
signals to identify any non-photon calorimeter signals.

Photons were reconstructed from their energy deposits in the calorimeter crystals.
Using those reconstructed photons, π0 mesons and protons were reconstructed by
using a kinematic fitting method. The ω meson was identified using invariant masses
reconstructed from π0γ combinations. The final state contributions were deduced by
using an event-based probabilistic method called the Q-factor method.

The search for baryon resonances was motivated by the discrepancy between the
current number of experimentally verified resonances and theoretically predicted res-
onances from constituent quark models. The relatively large number of “missing”
predicted states caused experimental physicists to resort to using photon beams to
produce baryon resonances, due to studies suggesting these missing states could be
found there. The couplings of some of these “missing” baryon states to the ω meson
in the final state were predicted to be non-negligible in [5, 7, 8].

There have been several measurements of the differential cross sections and spin-
density matrix elements for the γp → pω reaction, but the angular coverage has been
incomplete or the mass resolution has been too poor for these measurements to be
used to maximally separate the non-resonant processes from the effect of the baryon
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resonances. The almost 98% solid angle detector coverage of the CBELSA/TAPS ex-
periment allows this analysis to improve on the existing information on this reaction.

There have also been discrepancies discovered between these previous γp →
pω measurements which will effect the solutions of analyses trying to isolate baryon
resonances. To investigate the causes of these discrepancies, new independent mea-
surements like the measurements in this analysis will help resolve these issues. We
have discovered an energy dependent normalization discrepancy between the differ-
ential cross sections measured in this analysis and those measured by the CLAS
collaboration [14]. This discrepancy is most likely due to each measurement’s deter-
mination of the number of photons which had the opportunity to create a reaction,
photon flux. This hypothesis is gathered by comparing the results for the differen-
tial cross sections, which depend on the photon flux, and the spin-density matrix
elements, which do not rely on photon flux. The comparison of spin-density matrix
elements from this analysis and the CLAS collaboration match very well. Also, the
discrepancy between the differential cross sections seem to have a dependence on in-
coming photon energy only, which matches the signature of a discrepancy in photon
flux.

The γp → pπ0ω reaction at these energies has only been measured once before
with small statistics. This analysis has been able to reconstruct significantly more
events which allows the measurement of differential cross sections with enough quality
to be used in isolating baryon resonances for the first time.

The differential cross sections for the γp → pω and γp → pπ0ω reactions were
measured and presented. The mass resolution and angular coverage are sufficient to
isolate baryon resonances. In the differential cross section distributions, the dominant
processes can be deduced. The low energy γp → pω cross section indicates baryon
resonance production. At higher energies (Eγ > 1.5 GeV), this reaction is dominated
by t-channel meson exchange. The γp → pπ0ω differential cross section suggests
the same sort of meson exchange process, but also indicates there is some baryon
resonance production in the intermediate decays.

The γp → pπ0ω reaction differential cross sections also show a hint of b1(1235)
meson production. When examining the behavior of the cross sections as the reaction
reaches the production threshold for the b1(1235) meson, there is a possibility that
this meson is involved in a meson exchange process.

While these differential cross sections can be useful for seeing the dominant con-
tributions, there are many processes and baryon resonances which contribute and will
require a more sophisticated analysis to isolate. There are several baryon resonances
with little or no evidence for existence which have the chance to be isolated using
these data.

The unpolarized spin-density matrix elements were extracted for the γp → pω re-
action from the same data by fitting angular distributions in the helicity, Gottfried-
Jackson, and Adair systems. For the first time these elements were extracted from
the radiative decay of the ω meson and for all angles with small enough incoming
photon energy bins useful for isolating “missing” baryon resonances. The polarized
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spin-density matrix elements were also extracted for the γp → pω reaction from lin-
early polarized photon beam data. Values are reported for the first time for the ρ100
and ρ111 SDMEs. The addition of these SDMEs in interpretation analyses will help
separate processes and baryon resonances with different quantum numbers.

The combination of the CLAS data and the data presented here also present an
opportunity to study the effect of final state interactions. Since the data presented
in this paper were reconstructed from the ω → π0γ decay and the CLAS data were
reconstructed using the ω → π+π−π0 decay, the re-scattering of the charged pions
can be studied.

The data presented in this thesis will certainly improve the world data set in
regards to ω meson photoproduction. This improvement will make it possible to
isolate the “missing” baryons which contribute with more precision. The existing
analyses which attempt to isolate baryon resonances (interpretation analyses), like the
coupled-channel effective Lagrangian analysis by the Gießen group [12], will improve
when the information in the forward scattering angles from this analysis is added to
the fits. This new data will hopefully spark a new round of interpretation analyses on
ω meson photoproduction in both the γp → pω reaction and the γp → pπ0ω reaction.
These new analyses will shed new light on the baryon resonances which contribute
and hopefully help solve the “missing” baryon problem.
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APPENDIX A

ACCEPTANCE CORRECTION
PROJECTIONS FOR THE

γp → pπ0ω ANALYSIS

The acceptance correction is the factor which accounts for the fraction of the desired
reaction events not seen by the analysis. This is done by generating Monte Carlo simu-
lated events which are modeled in the experimental setup. The acceptance correction
factor is defined as a ratio of the number of reconstructed Monte Carlo events to
the number of generated Monte Carlo events. If the experiment is modeled correctly,
this ratio is a good estimate of what fraction of events were not measured. Since the
simulation has been thoroughly checked, the acceptance correction is beleived to be
correct (to within the quoted uncertainties).

All values in this appendix are calculated as

A =
NMC

rec

NMC
gen

(A.1)

where NMC
rec is the number of events remaining after simulation and analysis, and

NMC
gen is the number of originally generated events in the simulation.
The γp → pπ0ω detector acceptance plotted versus initial photon energy is shown

in Figure A.1. The sudden shift in the acceptance at 1600 MeV is corresponds to
the point at which the proton has enough momentum to break free of the target and
target structure and is able to be detected in the detector systems .

The plots versus cos θ are shown in Figures A.2, A.3, and A.4.
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Figure A.1: γp → pπ0ω Acceptance vs Eγ. Each plot is labeled with it’s kinematic
variable defined in Table 7.1. The horizontal axis of each plot is the energy of the
initial photon measured in MeV.
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Figure A.2: γp → pπ0ω Acceptance vs cos θωc.m.. Each plot is labeled with its range
in initial photon energy.
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Figure A.3: γp → pπ0ω Acceptance vs cos θπ
0

c.m.. Each plot is labeled with its range
in initial photon energy.
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Figure A.4: γp → pπ0ω Acceptance vs cos θpc.m.. Each plot is labeled with its range
in initial photon energy.
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APPENDIX B

TUNING THE FITS IN THE
γp → pπ0ω ANALYSIS

To evaluate how well each Q-factor fit modeled the nearest neighbor invariant mass
distribution, the goodness of fit statistic was used. The goodness of fit statistic, also
called reduced χ2 (χ2

red), is defined as

χ2
red =

1

ν

∑

i

(fi − di)
2

σi

, (B.1)

where ν is the number of degrees of freedom, di is the value of the experimental
data in bin i, fi is the value of the fitted function in bin i, and σi is the value of
the statistical error of the experimental data in bin i. A distribution which is well
described within the error has a χ2

red = 1.
The goodness of fit statistic derived from the Q-factor fits over the experimentally

measured data are averaged over all fits in the data set and plotted in Figures B.1
and B.2. The fit quality in Figure B.1 does not vary much with confidence level cut,
therefore the confidence level cut was chosen to be low to preserve the maximum
number of events in the analysis.

The choice of the number of nearest neighbors has a large effect on the fit quality
in Figure B.2. The larger the number of nearest neighbors means the kinematic phase
space coverage is larger. The larger phase space volume allows a more complicated
background shape and deviates from the assumed background function shape. The
number of nearest neighbors has been chosen to be 150. A smaller number of nearest
neighbors is not used due to the possibility of a small statistics causing fit instability.
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Figure B.1: γp → pπ0ω Confidence Level vs. Goodness of Fit Statistic. All the fits
were done using 150 nearest neighbors.
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All the fits were done using events which had a confidence level of CLγp→pmissingπ0π0γ >
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