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ABSTRACT

At the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson National Laboratory

(JLab), ω vector mesons were photo-produced off a fixed, liquid-hydrogen target, γp→ pω, during

the 2005 and 2008 summer run-periods. With ω → π+π−π0 having the dominant branching ratio

of 89%, the nearly 4π CEBAF Large Acceptance Spectrometer (CLAS) was used to obtain a high

statistics event sample of the reaction γp → pω → pπ+π−{π0} where the undetected neutrals,

{π0}, were kinematically fitted. The energy-tagged photon beam was obtained from the electron

beam through Bremsstrahlung radiation within a photon tagging system. Following reconstruction

and refinement of the selected event data samples, the Experimental Hadronic Nuclear Group at

Florida State University (FSU) has been working to extract the respective differential production

cross sections.

With the data available and the differential cross section expected, I set out in close cooperation

with the Joint Physics Analysis Center (JPAC) at JLab to conduct a Dalitz plot analysis of the

ω → 3π strong decay. In particular, first-time preliminary fits of an isobar based, JPAC decay

amplitude model were made using real event data. The model accounts for both elastic (ππ − ππ)

and inelastic (e.g. KK̄ − ππ) three-body re-scattering effects through the use of analytic and sub-

energy unitarity methods.

The fits were performed using the unbinned, event-based Minimum Extended Log Likelihood

Method (LLM) which is based on the Maximum Likelihood Method (MLM). The automated data

and partial-wave analysis framework I have established utilizes the latest AmpTools partial-wave

fitting package developed at Indiana University. Also, in lieu of the CLAS-g12 differential cross-

section measurements and ω Spin-Density-Matrix-Elements (SDMEs), those obtained from the

CLAS-g11a experiment were used for some integrated fits. Consequently, results were restricted

to the incoming photon energy range available during the CLAS-g11a run-period. SDME results

for the CLAS-g12 and CLAS-g8b data sets are independently compared against those previously

extracted and published by the CLAS-g11a group. Preliminary results are reported for the JPAC

ω → 3π decay parameter which accounts for the unknown inelastic contributions.
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CHAPTER 1

INTRODUCTION

1.1 Summary

At the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson National Labo-

ratory (JLab), ω vector mesons were photo-produced off a fixed, liquid-hydrogen target, γp→ pω,

during the 2005 and 2008 summer run-periods. With ω → π+π−π0 having the dominant branching

ratio of 89%, the nearly 4π CEBAF Large Acceptance Spectrometer (CLAS) was used to obtain a

high statistics event sample of the reaction γp→ pω → pπ+π−{π0} where the undetected neutrals,

{π0}, were kinematically fitted. The energy-tagged photon beam was obtained from the electron

beam through Bremsstrahlung radiation within a photon tagging system.

Track and event reconstruction were made possible by the collective measurements obtained

from the beam timing, photon tagging system, and CLAS responses. Following particle identifica-

tion, event selection, and kinematic fitting, the data sample was further refined through kinematic

cuts, signal-background separation, and detector efficiency simulation. The Experimental Hadronic

Nuclear Group at Florida State University (FSU) extracted the differential cross sections respective

to each data set both of which are being refined at present [1].

In close cooperation with the Joint Physics Analysis Center (JPAC) at JLab, I conducted a

Dalitz plot analysis of the ω → 3π strong decay. Together the Schilling equation [2] and JPAC

ω → 3π decay amplitude [3] account for the decay distribution. The dispersive, isobar based JPAC

model accounts for both elastic (ππ − ππ) and inelastic (e.g. KK̄ − ππ) three-body re-scattering

effects through the use of analytic and sub-energy unitarity methods. Spin density matrix elements

(SDMEs) for the former distribution were extracted. First time fits of the JPAC decay parameter

which accounts for the unknown inelastic contributions were investigated.

The partial-wave analysis framework I established utilizes the AmpTools (v0.9.2) [4] event-based

fitting framework developed at Indiana University. The employed log-likelihood method is based

on the unbinned, event-based, extended maximum likelihood method [5], and the fitter is based

on the TMinuit class of ROOT [6]. This method depends upon the full (production and decay)
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intensity function. In lieu of the CLAS-g12 differential cross-section measurements and ω SDMEs,

those obtained from the CLAS-g11a experiment [7] were used along with the CLAS-g12 and CLAS-

g8b data. A detailed account of the framework, methods, and results are presented herein. The

accessible framework is current and ready for future partial-wave analyses.

1.2 The Standard Model

The experimental and theoretical framework which describes the fundamental constituents of

matter is referred to as the Standard Model of Particle Physics (SM) [8]. As described by the

Standard Model, matter is comprised of fundamental constituents, namely structure particles called

quarks and leptons (and their respective anti-particles) as well as force carrier particles which

mediate the interactions between these structure particles. The interaction mediators are their

own anti-particles save the charged “weak” bosons, W±, which are respectively the anti-particles

of one another. Lastly, mathematical descriptions of the fundamental interactions governing the

SM particles are given in terms of so-called gauge-invariant renormalizable quantum field theories:

Quantum Electrodynamics (QED), Electroweak Theory (EWT), and Quantum Chromodynamics

(QCD). More formally, the mathematical framework of the SM is expressed through the coupling

of EWT with QCD, where EWT is QED inclusive.

The integrity of the SM’s core-features such as the fundamental particle classification schemes

and their theoretical interaction underpinnings remain very much the same today as they did when

originally formulated. Perhaps, the pinnacle establishment period of the SM arrived around the

early-to-mid-1970s. In particular, experimental confirmation [9, 10, 11] of quarks lent credence to

the independently formulated constituent quark models (CQMs) originally proposed by Murray

Gell-Mann [12] and George Zweig [13]. The CQMs then theorized the quarks to be the valence

constituents of protons and neutrons and later more generally of hadrons. Not long thereafter,

Quantum Chromodynamics, the renormalizable quantum field theory which describes the strong

interactions in terms of both the color charged constituent quarks and the color-anticolor charged

gluonic force-mediators, took the place of the CQMs in the SM [14, 15].

While most of us are commonly familiar with the building blocks of atomic nuclei, i.e. protons

and neutrons (nucleons), the advent and advancement of particle colliders over the last half-century

brought forth the discovery of a whole host of hadron-species as well as the observation of many of
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Figure 1.1: The Standard Model of Particle Physics (Image Source: [16])

their higher-energy (excited) or so-called resonant states. Over the last several decades, much work

has gone towards mapping out the “spectrum” of hadronic resonances as well as searching for new

and/or exotic hadronic species, e.g. the heavier quark excited bound states. It has been through the

observation and analysis of the production and decay of these resonances that nuclear and particle

physicists came to assemble and formulate the SM and particularly how today’s “hadronic” nuclear

physicists continue to verify and test it for new physics beyond the Standard Model.

Figure 1.1 shows the current classification scheme of these fundamental particles. There are six

“flavors” of quarks. They are organized into pairs corresponding to closeness in mass. These pairs

span three generations of increasing mass. Each generation contains one quark with +2/3 and

the other with −1/3 fractional electric charge. The quarks (antiquarks) carry one of three color

(anti-color) charges, i.e. red, green, or blue (anti-red, anti-green, or anti-blue). Also, there are six
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flavors of leptons. They are paired up based on the same so-called lepton flavor (e.g. electron and

electron neutrino). The pairs span three generations according to increasing mass. The neutrinos

(anti-neutrinos) are electric charge neutral and the remaining leptons (anti-leptons) have −1 (+1)

electric charge.

The force carrier particles, referred to as gauge bosons, are classified according to the manner

in which they mediate particle interactions. The gauge boson responsible for mediating the electro-

magnetic (EM) interaction is the photon, γ, which is massless. The weak gauge bosons along with

the photon together mediate the electroweak (EW) interaction. These W± and Z0 gauge bosons

have mass, and they mediate the weak-decay of the heavier generation quarks and charged leptons

into the more stable lower mass generations. In particular, the charged W± bosons mediate charged

current (CC) decays, e.g. a beta decay (n→ p+W− → p+e−+ v̄e), whereas the neutral Z0 boson

mediates neutral current (NC) decays, e.g. a Z-boson emission from an electron (e− → e− + Z0).

The gauge bosons which mediate the strong interaction are the gluons which are massless. There

are eight gluons corresponding to the unique color-anticolor charge combinations. These gluons are

responsible for binding the color charged quarks together into states referred to generally as hadrons,

the composite protons and neutrons for example. Since the gluons carry color charge, they may

strongly interact amongst themselves as well. Finally, the Higgs boson is formulated as contributing

the mass to the quarks and leptons through so-called Yukawa couplings, and it is “gauge-group

related” with three other scalar particles which are responsible for giving mass to the weak gauge

bosons [17, 18, 19, 20].

Furthermore, all SM particles are classified in terms of their statistical behavior which corre-

sponds to their intrinsic spin characteristic, as fractional or integer (including zero) spin particles

respectively obey Fermi-Dirac or Bose-Einstein wave-function statistics, i.e. anti-commutation and

commutation relations respectively. Quarks and leptons are spin-1/2 particles and are collectively

referred to as fermions, whereas the force carrier particles are referred to as bosons since they have

integer-1 or 0 intrinsic spin. The theorized graviton is suspected to have spin-2 but its existence has

not been confirmed by experiment and thus has not been subsumed into the SM. This statistical

classification based on intrinsic spin extends to composite particle states as well, namely the hadron

spectra of bound quark states (see Section 1.4).
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Figure 1.2: Hadrons, quark composite baryons and mesons, respectively represented with
colorless color-charge combinations (Image Source: [22])

1.3 Confinement and Quantum Chromodynamics

Single quarks have never been observed in Nature to exist by themselves outside of the bound

states of quark-antiquark pairs or quark-quark-quark triplets (or antiquark-antiquark-antiquark

triplets). These bound states, respectively referred to as mesons and baryons (antibaryons), are

collectively referred to as hadrons. In terms of color charge, hadrons form “color neutral” states,

see Fig. 1.2. The quark-antiquark constituents of a meson must be a color-anticolor state, and the

three-quark constituents of a baryon must be a red-blue-green (“white”) state. Antibaryons must be

of antired-antiblue-antigreen states. This phenomenon is referred to generally as quark confinement.

Understanding confinement and its underlying connection in Quantum Chromodynamics (QCD) is

among the biggest “hot” topics in physics, particularly nuclear and hadronic nuclear physics.

Like Quantum Elecrodynamics (QED) which describes the interactions between electrically

charged particles and photons, Quantum Chromodynamics (QCD) describes the interactions be-

tween color charged particles and gluons. However in QCD, the gluons which mediate the interac-

tions between the quarks contain color charge as well. As a consequence, the mathematical (group)
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algebra which is used to describe electromagnetic charged interactions becomes considerably more

complicated for the case of color charged interactions, so-called Abelian versus Non-Abelian group

algebra, respectively [21].

As with classical fields and their corresponding interaction dynamics, quantum fields and their

corresponding interactions may be written in terms of a governing Lagrangian. The gauge-invariant

QCD Lagrangian (Lagrangian density) is given by

LQCD = q̄i(i /Dij −mδij)qj −
1

4
GaµνG

a,µν , (1.1)

where the antiquark, q̄, and quark, q, are the Dirac spinors of the antifundamental and fundamental

representations, respectively. There is an implicit sum over the quark color indices, i, j. The slash

notation represents a Lorentz index contraction between a partial derivative or a gauge-field with

the so-called Dirac gamma matrices, e.g. /A
a
=Aaµγ

µ. The covariant derivative is given by

/D = /∂ − igs /Aata, (1.2)

where gs is the strong coupling constant, /A
a

are the eight (a = 1, . . . , 8) gauge fields of the adjoint

representation, and ta ≡ λa/2 are the eight generators spanning the color gauge group space. The

λa are the so-called Gell-Mann matrices of the fundamental SU(3) representation. Also, the gluonic

field strength tensors are given by

Gaµν = [Dµ, Dν ]a = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν (1.3)

where there is a sum over the gauge group index a. Lastly, the group generators are related to the

structure constants fabc via the following the commutation relation

[tb, tc] = ifabcta. (1.4)

Note, the commutation relation of the SU(3) color group generators represents the Non-Abelian

nature of QCD. Were the structure constants fabc to be equal to zero, the self-interaction of the

gluons would vanish, i.e. the triple- and quadruple-gluon vertices would be non-existent. In such a

case, QCD would be reduced to the likeness of the Abelian gauge group representation and behavior

of QED.

Furthermore in terms of QCD, two peculiar phenomena occur at two different energy regimes,

namely asymptotic freedom at high energies and confinement at low energies. The two phenomena
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Figure 1.3: The strong coupling constant, αs(Q), as a function of momentum transfer,
Q2, with the scaling parameter, ΛQCD = Mz, chosen as the Z boson mass [24]
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can be investigated in terms of the strength of the strong coupling constant, αs ≡ g2
s/4π, which

depends widely upon the four-momentum transfer, Q2, of the interaction [23]. Following Fig. 1.3,

for high momentum transfer, large Q2 or Q, αs decreases; whereas, for low momentum transfer, low

Q2 or Q, αs increases. The former is referred to as asymptotic freedom, and it allows for the use

of perturbation theory when calculating high-energy (short distance) QCD interactions [25]. On

the other hand, the latter leads to the non-perturbative low energy (large distance) QCD regime,

which make calculations of QCD interactions extraordinarily difficult if not entirely intractable. For

example, here, any number of the coupling proportional terms spanning a perturbative expansion

of the strong interaction wave-function could add sizable contributes, i.e. perturbation theory fails.

Moreover, while confinement has not yet been analytically proved [26], the Non-Abelian nature

of QCD does more or less describe a picture consistent with experiment regarding the screened

behavior of strong interactions in the low energy regime.

For a simple illustration of the interesting and unique issue at hand with QCD and the apparent

quark confinement, consider the meson. If only the electromagnetic (EM) interaction between

the quark and antiquark were at play, the two electrically charged particles could inevitably be

separated. This is because with sufficient application of an external force, the coulomb force between

the two charged particles decreases with increased separation distance. This is not the case in QCD.

Instead, as the separation distance between the colored quark and anti-colored antiquark increases,

the gluonic field energy between the two increases until enough energy is present to produce another

quark-antiquark pair. This effect is referred to as hadronization. At high momentum transfer

regions, high energy collisions, heavy hadronization occurs, often referred to as a quark and gluon

“soup”. The resulting short-distance bound quark states become asymptotically weaker through

increased momentum transfer collisions. This behavior of the strong interaction is referred to as

the asymptotic freedom of QCD. Consequently, the decrease in the strong coupling constant at

high momentum transfer allows for perturbative expansions of the strong interaction amplitudes in

the high energy regime. For the low energy regime, non-perturbative methods are the only means

by which solutions to the strong interactions may be obtained.
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1.4 Symmetries, Groups, and Spectroscopic Notation

The particle groupings illustrated by the SM classification scheme of Fig. 1.1 are predominantly

based on experimentally observed intrinsic properties (observables) of the fundamental particles.

The remaining classifications are based on quantum field theories consistent with the experimen-

tally observed interaction dynamics of the particles. These intrinsic properties as well as the

dynamical properties alike arise from so-called symmetries which in turn correspond to conserved

quantities [27]. In this section, it is the aim to introduce some additional symmetries specific to

quantities conserved by the strong interactions. These observables are common to hadron spec-

troscopy, and some particular to meson spectroscopy. Moreover, these additional quantum numbers

are used both for further particle classification as well as identifying conservation constraints which

limit the number of possible hadron collision or decay transition states. Lastly, symmetries may be

of either the continuous or discrete type. The continuous types tend to be additive. For example,

the total angular momentum of a hadron is the vector sum of the constituent quark spins and their

relative orbital angular momentum. The discrete symmetries discussed here are all multiplicative.

Conserved dynamic quantities such as energy, linear momentum, angular momentum, charge,

and current are associated with so-called continuous symmetries. Symmetries of the continuous

type are represented mathematically by continuous unitary “group” objects called Lie groups. For

example, the conservation of electric charge in electromagnetism is expressed by the “local” field

transformation represented by the U(1) unitary group. Also, the gauge groups of the electroweak,

and strong interactions are represented by particular SU(2)⊗U(1), and SU(3) groups respectively.

The special unitary SU(N) groups of degree N are represented by N ×N unitary matrices. Also,

they have N2 − 1 so-called generators associated with the symmetries of the space. For example,

under the SU(3) color group representations, the colored-quarks and anti-colored antiquarks reside

in the so-called irreducible fundamental, 3, and anti-fundamental, 3̄, representations, respectively.

The gluon fields carry both a color and anti-color assignment. They reside in the equivalent

irreducible adjoint representation of SU(3) color group; as such, there are 32 − 1 = 8 generators of

the SU(3) color group which correspond to the 8 possible gluon field types.

Similar to that of the dynamically conserved quantities such as total angular momentum, J ,

and orbital angular momentum, L, as well as the intrinsically conserved quantity called spin (no

classical analogue but akin to the spin of a top), S, there exists an additional quantity represented
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by the SU(2) symmetry group which is solely conserved through strong interactions of hadrons. Like

spin, this internal symmetry is used to further group hadrons into common wave-state multiplets

(e.g. singlets, doublets, triplets, etc.) corresponding to the shared symmetry. However, unlike

spin, this symmetry is an approximate one. Isospin refers to the invariance of a particle or set of

particles of similar mass and different electric charge with respect to the strong interaction. For

example, the up and down quarks are isospin partners each said to have an isospin Iu,d = 1/2.

They are similar in mass and their electric charge differs but they are affected in the same manner

in terms of the strong interactions. Due to the mass difference of the pair, presumed to be due

to the electromagnetic interaction, this symmetry is said to be an approximate one. Also, since

isospin partners are independent of electric charge, the individual charged member states share the

same isospin quantum number. At the hadronic level, the proton and neutron are isospin partners

(I = 1/2) with similar mass and differing electric charge. The π and ρ mesons respectively span an

isospin space of I = 1. In terms of Cartesian coordinates, the proton and neutron have z-component

isospin states of Iz = +1/2,−1/2, respectively. The π+(ρ+), π0(ρ0), π−(ρ−), particles correspond

with the z-component isospin states Iz = +1, 0,−1, respectively.

For hadron spectroscopy, some additionally useful quantum numbers conserved by the strong

interactions are those associated with so-called discrete symmetries. These discrete symmetries are:

Parity, particle-antiparticle conjugation, and G-Parity where G-Parity is of specific use in meson

spectroscopy only. These finite groups each operate on two respective states sharing the same

eigenbasis which correspond to two eigenvalues, ±1.

Parity is conserved in electromagnetic and strong interactions but violated in weak interactions.

In one dimension, it is an operation which flips the coordinate axes. In three dimensions, this is

an operation which inverts or flips the three spatial axes of a coordinate system. This can also

be done by the flip of one axis followed by a rotation of 180 degrees about the flipped axis. In

terms of an image, parity inversion is what relates an image to its mirror image. In general terms

of basic physical quantities and their respective mathematical forms, parity inverts coordinates

and momentum (vectors) but does not affect time (scalars), angular momentum (axial- or pseudo-

vectors), or spin.

The parity of a wave function is said to be even (odd) when the wave function is symmetric

(antisymmetric) upon a parity transformation. In terms of a single particle state, the eigenvalue of
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its intrinsic parity is either±1. The vacuum state has a parity of +1 by definition; it is its own mirror

image and should not flip upon a parity transformation. The parity of the proton is conventionally

taken as +1. Moreover, conservation of energy dictates that particle and antiparticles be equally

produced from the vacuum state. Thus, considering the production of a proton-antiproton pair,

the relative parity of the antiproton must be −1. This is the general rule for all fermion and

antifermion pairs, with for example electrons and anti-electrons (positrons) having intrinsic relative

parities conventionally taken as +1 and −1, respectively. In addition, the parity of a boson and its

antiboson are taken to be the same. For example, the π+ meson and its antiparticle, π−, each have

a parity of −1. The field of a photon is represented by a vector and therefore its parity eigenvalue

is −1.

Following the convention of the proton (anti-proton), its constituent quarks (antiquarks), have

positive (negative) parity. The general rule is that all quarks (antiquarks) have positive (negative)

parity. In terms of hadrons, the overall intrinsic parity is given multiplicatively (unlike addition

for charge) from the intrinsic parity of the constituent quarks. Furthermore, the parity for a two

particle system is given by the multiplication of the intrinsic parities times an orbital angular

momentum parity dependence, namely

P12 = P1P2(−1)l (two particles) (1.5)

Pm,m = (±1)2(−1)l = (−1)l (equal parity meson pair) (1.6)

Pf,f̄ = (+1)(−1)(−1)l = (−1)l+1 (fermion-antifermion pair). (1.7)

Particle-antiparticle Conjugation (C), also called charge-conjugation and C-Parity, is an op-

eration which changes a particle into its anti-particle. Electromagnetic and strong interactions

conserve this quantity while the weak interaction does not. Only neutral bosons (e.g. photons,

neutral mesons, meson-antimeson pairs, fermion-antifermion pairs) are eigenstates of this operation

with corresponding eigenvalues given below,

Cγ = (−1) (photon) (1.8)

Cγn = (−1)n (n photons) (1.9)

Cπ0 = Cγ2 = (−1)2 = + 1 (neutral pion, π0) (1.10)

Cm,m̄ = (−1)l+s (c.m. meson-antimeson pair) (1.11)

Cf,f̄ = (−1)l+s (c.m. fermion-antifermion pair), (1.12)

11



Table 1.1: Meson Spectroscopic Notation, IGJPC

J Total Angular Momentum - ~J = ~L+ ~S

L - Orbital Angular Momentum, S - Spin

P Parity - coordinate inversion

C Particle-Antiparticle Conjugation - particle-antiparticle swap

I Isospin - charge-multiplet states of “same” (similar mass, same spin) particle

G G-Parity - y-component isospin inversion & particle-antiparticle swap

Table 1.2: Spectroscopic notation values for γ p→ p ω → p 3π

γ 0, 1(1−−)

p 1
2(1

2

+
)

ω(782) 0−(1−−)

π± 1−(0−)

π0 1−(0−+)

where the (−1)s accounts for the spin exchange, e.g. a factor arising from the exchange of spin

among symmetric (even) and antisymmetric (odd) spin wavefunction.

While this symmetry under particle-antiparticle conjugation is rather limited as it only applies

to neutral bosons, its application is extended to apply to the charged (non-strange non-baryonic)

states as well. G-Parity is the application of particle-antiparticle conjugation (C) followed by a

180◦ rotation about the y-component of isospin space, Iy, namely G ≡ exp(iπIy)C. G-Parity

involves isospin which makes it an approximate invariant of strong interactions but which is not

an invariant of the electroweak interaction. The quantum numbers used in the study of hadrons,

particularly mesons (G-Parity inclusive), are listed in Table 1.1, and the values used in my analysis

of the ω → 3π decay (for the overall production and decay products, γp→ pω → pπ+π−{π0}) are

given in Table 1.2.
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1.5 Resonance Decays and Analysis Motivation

Hadron spectroscopy involves the identification of hadronic resonances in terms of their respec-

tive masses, widths, and conserved quantum numbers. These properties are determined for a given

resonance through measurements involving consideration of both initial and final state particle

properties as well as partial wave studies with respect to its modelled production and decay mecha-

nisms. The production and decay mechanisms of a resonance also each provide unique information

about its internal dynamics.

A matter of seminal importance in hadronic physics is to understand the decay mechanism

underlying three-body decays such as those found for the ω, φ, and η resonance decays. Each of

these vector meson resonances have a decay channel to the three-pion final state, e.g. ω → 3π.

Several other meson resonances have been discovered through three-pion production [8]. Dispersive

methods for modelling such relativistic three-body decays have been used in the past [28, 29] and

have regained popularity again [30, 31].

The aforementioned three-body vector meson decays serve as base level testing grounds for these

dispersive treatments. Several dispersive treatments can now be found in particular for the ω → 3π

decay [32, 33, 3]. The ω, φ → 3π decays may each and collectively reveal insights about vector

meson formation and decay characteristics restricted by unitarity and long-range interactions [3].

The η → 3π decay is of interest because it is sensitive to isospin breaking originating due to the mass

difference between the up and down quarks. There is an ongoing decay analysis being performed

by the University of Bonn group for the three-body decay of the D meson, D → Kππ, which uses

a similar formalism to that used in the analysis presented herein [34]. These are the points of

motivation for my analysis, a Dalitz plot analysis of the ω → 3π decay.

1.6 Partial Wave Analysis

In conjunction with my Dalitz plot analysis, I have performed event-based fitting of intensity

functions using the log likelihood method. The intensity functions I fit are proportional to the

squared decay amplitude which may also be referred to as the decay intensity or decay probability

density. Given a kinematic event, this is simply a measure of probability that the decay occurred.

Moreover, the event-based log likelihood method is based on the maximum likelihood method

whereby the product of individual event probabilities is maximized upon convergence of the fit.
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Additionally, within the decay intensity, the angle dependencies of the decay were isolated into

a factor called the angular decay distribution (ADD) [2]. The remaining angle-independent factor

of the decay intensity is proportional to the decay width and may be referred to as the square of the

reduced decay amplitude. The angular decay distribution (ADD) depends upon the decay angles of

the ω resonance in its rest-frame along with so-called Spin-Density-Matrix-Elements (SDMEs) for

the resonance. In turn, these SDMEs depend upon the incoming photon (beam) polarization and

the squared production amplitude. In fact, the measurements of the differential production cross

section which is proportional to the squared production amplitude, were crucial for my unbinned,

event-based fits of the ADD.

Additionally, Fortran code for the (reduced) decay amplitude which was based on an isobar

model and the use of sub-energy unitarity was provided by the Joint Physics Analysis Center

(JPAC) at Jefferson Laboratory (JLab). Note, sub-energy is simply a reference to the energy of

the isobars or any two of the final decay particles subsequent to the decay of the resonance. This

amplitude not only accounts for three-body, re-scattering effects but also for the analytic changes

caused by the opening of inelastic channels [3]. Also of importance is that while this reduced decay

amplitude has been compared with that of similar models, [33, 35], this was the first time it had

been fitted to real data.

1.7 The Dalitz Plot Distribution

Averaging over the spins of the initial state, the partial decay width for a three-body decay is

given by

dΓ =
1

(2π)3

1

8M
|M|2 dE1dE2. (1.13)

By defining pij = pi + pj for the 4-momentum of a particle-pair, its squared invariant mass is

given by

m2
ij = (pi + pj)

2 = (P − pk)2 = M2 +m2
k − 2MEk (1.14)

and the decay width may be expressed as

dΓ =
1

(2π)3

1

32M3
|M|2 dm2

12dm
2
23 (1.15)
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where the phase space has taken the standard form used in the Dalitz plot, see Fig. 1.4.

The boundaries of the phase space are dictated by the conservation of the 4-momenta of the

three final state particles as well as the overall center of momentum for the decay system. One may

obtain (m2
ij)min and (m2

ij)max from Eqn. 1.14 by considering the following:

(m2
ij)min = (pi + pj)

2

= (Ei + Ej)
2 − (~pi + ~pj)

2

~pi=−~pj
=

(√
m2
i + |~pi|2 +

√
m2
j − |~pi|2

)2
≥ (mi +mj)

2 (1.16)

(m2
12)max = M2 +m2

k − 2MEk

pk→0
= M2 +m2

k − 2Mmk = (M −mk)
2 (1.17)

where the relative momenta are considered in the rest frame of the ij-particle-pair for (m2
12)min

and pk = 0 is considered in the reset frame of the decaying resonance for (m2
12)max. For a constant

(non-constant) squared decay amplitude, |M|2, the observed phase space would be flat (non-flat).

Thus, a flat phase space indicates an absence of physics dynamics.

Furthermore, for three-body decays with final state particles of similar masses, another repre-

sentation of the Dalitz plot may be made by plotting the phase space in terms of dimensionless

Lorentz invariant variables, x =
√

3(Tj − Ti)/Q and y = 3Tk/Q − 1 where T and Q respectively

represent the individual and total kinetic energy of the final state particles, see points O and P of

Fig. 1.5. This representation takes advantage of a geometric proof that the altitude length of an

equilateral triangle is equal to the sum of the distances from any interior point to the sides of the

triangle [37], i.e. Q = Ti + Tj + Tk. The radius of a circle inscribed within an equilateral triangle

is equal to 1/3rd the altitude length of the triangle, hence the radius in the figure has a length of

Q/3. The Dalitz plot boundary deviates from the circular shape in the figure due to the physical

constraint of conservation of energy-momentum of the decaying resonance. The Cartesian x and y

variables as well as the polar r and θ variables simply relate the origin, O, to the point of interest,

P , of the Dalitz plot distribution.

Following the non-relativistic Zemach formalism [38] for obtaining the three-body 3π decay

amplitudes in terms of relevant quantum numbers, the Dalitz plot distribution for the ω → π+π−π0

and its distinguishing characteristics, notably the vanishing regions, can be readily understood.
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38. Kinematics 5
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Figure 38.3: Dalitz plot for a three-body final state. In this example, the state
is π+K0p at 3 GeV. Four-momentum conservation restricts events to the shaded
region.

p3, m3

pn+2, mn+2

...

p1, m1

p2, m2

Figure 38.4: Definitions of variables for production of an n-body final state.

38.4.4. Kinematic limits : In a three-body decay the maximum of |p3|, [given by
Eq. (38.20)], is achieved when m12 = m1 + m2, i.e., particles 1 and 2 have the same
vector velocity in the rest frame of the decaying particle. If, in addition, m3 > m1, m2,
then |p

3
|max > |p

1
|max, |p2

|max.

38.4.5. Multibody decays : The above results may be generalized to final states
containing any number of particles by combining some of the particles into “effective
particles” and treating the final states as 2 or 3 “effective particle” states. Thus, if
pijk... = pi + pj + pk + . . ., then

mijk... =
√
p2ijk... , (38.23)

and mijk... may be used in place of e.g., m12 in the relations in Sec. 38.4.3 or 38.4.3.1
above.

July 14, 2006 10:37

Figure 1.4: A Dalitz plot expressed in terms of final
state particle-pair masses and with illustrated kine-
matic boundaries [8]

Figure 1.5: A symmetric representation of the Dalitz
plot expressed either in (dimensionless) x and y or polar
r and θ variables (Image Source: [36])
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Note, while the overall decay amplitude used in my analysis was constructed in the relativistic

covariant tensor formalism, it is argued [63] that the non-relativistic and relativistic amplitudes (at

least for the ω → 3π decay) are equivalent in the rest frame of the decaying ω resonance. Since

the ansatz construction of the overall decay amplitude is quite similar in each case, the adequate

non-relativistic treatment offers a simpler means for introducing and motivating the ideas behind

such construction. One starts off then with the construction of a general decay amplitude for a

vector meson decay to three pseudoscalar pions following the non-relativistic Zemach formalism.

The decay amplitude is in general specified by isospin, total angular momentum, parity, and Bose

statistics. It is constructed in the rest frame of the decaying resonance. The general non-relativistic

decay amplitude is then given by the following sum of products:

M =
∑

M I MJP MF (1.18)

which carry the isospin I dependence, total angular momentum J and parity P dependence, and

the form factor (e.g. Breit-Wigner, Phase Shift) energy-momentum dependence respectively. Ad-

ditionally, the conservation of energy-momentum in the resonance rest frame gives the constraints

E1 + E2 + E3 = MV , ~p1 + ~p2 + ~p3 = 0. (1.19)

For the case of the ω vector meson (Iω = 0) decaying to the three pseudoscalar pions (each

Iπ = 1) (neutral mode π+π0π− only), MI may only be given by coupling an axial vector to a vector,

MI = (~Iπ+ × ~Iπ−) · ~Iπ0 = i, (1.20)

where the pion iso-vectors were conventionally given by

~Iπ+ = − 1√
2

(1, i, 0),

~Iπ− =
1√
2

(1,−i, 0),

~Iπ0 = (0, 0, 1). (1.21)

In general, we may express all three dipion (isobar) combinations with the third pion, i.e.

~I(ω) = ~I(3π) = ~I12(π1π2) ⊗ ~I3(π3), through the totally anti-symmetric Levi-Civita as,

∑

ijk

M I
ijk = εijkIπiIπjIπk (1.22)
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where isospin conservation dictates that I12 = 1 and I3 = 1 to get Itotal = 0.

Also, MJP for J > 0 are to be constructed from combinations of the resonance final state

decay particle momenta. Thus, MJP for ω → 3π (JPω = 1− and JPπ = 0− respectively), is simply

represented in terms of a pseudovector, ~q, constructed from the pion momenta, ~p1, ~p2, ~p3, namely

~q = ~p1 × ~p2 = ~p2 × ~p3 = ~p3 × ~p1. (1.23)

In general, we may again express all three dipion (isobar) combinations with the third pion, i.e.

~J(ω) = ~L(3π) = ~l12(π1π2) ⊗~l3(π3), through the totally anti-symmetric Levi-Civita as,

∑

ijk

MJP
ijk = εijk pπi pπj pπk (1.24)

where spin-parity conservation dictates that JP = 1−. With Mdecay ∝ ~q for I = 0 and JP = 1−,

one may predict as Zemach did the vanishing region of the Dalitz plot. In particular, when two

pions are back-to-back or collinear (see Fig. 1.4), ~q and hence Mdecay vanish. Comparing the

vanishing regions of our CLAS-g12 signal data Dalitz plot, Fig. 1.7, with those predicted by the

non-relativistic Zemach formalism, Fig. 1.6, for the quantum numbers I = 0 and JP = 1−, one

observes good agreement.

In addition, with the system parity relation given by

P = (−1)3(−1)l12(−1)l3 = (−1)l12+l3+1, (1.25)

the sum of dipion orbital angular momentum, l12, and relative third pion orbital angular momentum,

l3, must be even (i.e. l12 + l3 = 0, 2, . . . ). Consequently and important to note, spin-parity

conservation and Bose Symmetry for the ω → 3π decay dictate that a partial wave expansion sum

over total angular momentum J may take on integer values only, i.e. Jω = 1, 3, . . . . Due to Bose

symmetry, l12 = odd; therefore given l12 + l3 = even, l3 = odd as well. Moreover, with ~Jω = ~l12 +~l3,

the quantum number Jω = 1 may be obtained when l12 = l3 = odd. This may be observed by

noting the consequence of this condition for the last two terms in the following series given by the

addition of angular momentum theorem,

Jω = l3π = l1 + l2, l1 + l2 − 1, ..., |l1 − l2|+ 1, |l1 − l2| (1.26)

where J3π = L3π as S3π = 0 for our spinless 3-pion final state. Thus, for example, when l12 = l3 = 1,

vector addition gives us the set Jω = {2, 1, 0}, and we may have Jω = 1. Also, for l12 = l3 = 3, one
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THREE-PION DECAYS OF UNSTABLE PARTICLES 81207

Z« l(3+) =v3pr(111)—r(222) j,
6&'& (3+)=2T(333)—T(111)—T(222) .

(3.5c)

(3.5d)

Spin l= 0 I=i I=2 I=1
(3~0 only)

(except 3~0) m+ 7r +0 other modes
QnCI I—3

Now, AXd =6+E+O. Thus E can be obtained from
(3.4) and (3.5) by multiplying E(3+) by E, 0(3+) by 0,
or A(3+) by Z. The first and third possibilities are in-
cluded in the expression

flT(111)+fsT(222)+ fsr(333), (3.6a)

and the second is represented by

~tsaf.O(3+) (3.6b)

By these techniques, the catalog of energy-momentum
functions for 3+ and higher spins may be derived
stra1.ghtf orwRx'dly.

2. Regions of the Dalitz Plot Where the Density
Must Vanish (Fig. 2)

Vutsishieg af the periphery. The most obvious feature
of the abnormal parity states 1+ 2—3+ ~ ~ ~ ls that each
spin tensor is linear in q. The plot density has a factor
of q' and vanishes RQ along the periphery. A decay
having points on or near the periphery is easily identi6ed
as a normal parity type, e.g., 0, 1,2, ~ ~ ~ .The possi-
bility of a normal parity decay also vanishing along the
entire periphery cannot be logically excluded, but is
rather unlikely.

Vcsssklng Gf, iIht,' c8s$8f. jaccausc sq=s2=$3 at thc
center, we must try to buiM. functions of the required
symmetry types using the M J~ alone, without the help
of form factors. If this cannot be done, the plot density
must vanish at the center. This situation occurs for
sonM low-spin dccRy modes) Rs may bc scen by Ulspcctlng
Table II. But vanishing at the center is sot obligatory
for any decay mode with J~4.

To see this, vre 6rst exhibit sample tensors of types E
and 0 for cases 4—and 4+ which do not vanish at the
center:

E(4—
) =T(1111)+T(2222)+T(3333), (3.7a)

E(4+)=T(111q)+T(222q)+ T(333q), (3.7b)

O(4-) = r(1112)—r(2221)+r(2223)
—T(3332)+T(3331)—T(1113), (3./c)

O(4+) = T(112q)—T(221q)+similar terms. (3.7d)

Therefore, when J=4, the density need not vanish forI=0 ol' I=3, and 8 foffsot'N, lleed. not valllsll fol' I= 1, 2,
vrhcre the symmetry requirements are less stringent.
This result holds for all higher J, because appropriate
E and 0 tensors can be built from (3.7) by putting in as
many extra q's in the arguments of the T's as necessary.

Vawishilsg af the head of the nerlical IIIediaN. At the
headi st=ss Rlld pl=ps= —)ps~ so that ally amplitude
is proportional to a single tensor, of the type T(111 ~ )
or T(111 ~ q). In the normal (abnormal) parity case,
the tensor is even (odd) under 1++2. Then the plot

U
Q

s- U

U U U 00
UUUU
UUUV

FIG. 2. Regions of the 37r Dalits plot where the density must
vanish because of symmetry requirements are shown in black. The
vanishing is of higher order (stronger} where black lines and dots
overlap. In each isospin and parity state, the pattern for a spin of
J+ even integer is identical to the pattern for spin J, provided

2. (Exception: vanishing at the center is not required for
g~4)

density vanishes in each normal parity case for I=0 and
the neutral I=2 mode. For abnormal parity, there is an
especially strong vanishing (i.e., in addition to that
imposed. by the Il factor) for I=i, the charged I=2
modes, and I=3. The sixfold symmetry of I=0, I=3
implies additional vanishings at the other median heads.

Vtllishilg at the base of the eerti cd IIIcdi uN. Here ps =0,
y~

———y2. The results are the same as at the head fox

(I ) but reversed for (I+), because yl now changes sign
under 1+-& 2, as does q.

These results are summarized in Fig. 2.

3. Further Energy Deyendence of the
Dalitz Plot Density

If there is no evidence of distortion of the 3x phase
space by strong 2x interactions, the form factors in M
may, perhaps, be assumed to vary slowly and approxi-
mated by one or two terms of a power series expansion.
Thc variety of forms an amplitude may have is then
greatly reduced. This approach is gencraQy valid for
decays with small Q value. (Stevenson ef al.s have
analyzed I=O decays with spins of 0, 1, and 2 in this
limit. Ke note from Fig. 2 that their predictions of the
lcglons of VRnlshlng density axc still valid fox amplitudes
with arbitrary form factors. )

At the other extreme is the possibility of very strong
2m interactions leading to an intermediate toro-particle
decay, for example, Ir+p. This can be analyzed by
special methods on which vte comment in Sec. V. Kc

s M. Lynn Stevenson L. W. Alvares, 3. C. Maglfc, and A. H.
Rosenfeld, Phys. Rev. 25, 68/ (1962).

Figure 1.6: Predicted Dalitz plot vanishing regions
from the Zemach formalism [38]
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obtains Jω = {6, 5, 4, 3, 2, 1, 0}; and again, the case Jω = 1 may be obtained. On the contrary, for

l12 = 3 and l3 = 1 or vise versa, we get Jω = {4, 3, 2} where Jω = 1 is not possible.

1.8 The Experiment and Data

The two data sets used in this analysis originated from a fixed target experiments at the Con-

tinuous Electron Beam Accelerator Facility (CEBAF) located at JLab, Newport News, Virginia,

using the CEBAF Large Acceptance Spectrometer (CLAS), see Fig. 2.1. CLAS is housed in Hall

B, see Figures 2.2 and 2.5. While this detector was purposefully designed for the search and high-

acceptance detection of baryon resonances, high-acceptance detection of photo-produced meson

resonances were frequent bi-products of the CLAS experiments. During the summer 2005 and

summer 2008 run periods, respectively the CLAS-g8b and CLAS-g12 experiments, light ω vec-

tor mesons were photo-produced off a fixed, unpolarized, liquid-hydrogen target and the charged

final-state particles for the sought reaction γp → pω → pπ+π−{π0} were subsequently detected

and recorded by CLAS. The parentheses around the neutral pion indicate that the neutral pion

was undetected, yet it was reconstructed from kinematic fitting utilizing over-constrained event

kinematics.

Having reconstructed, event selected, kinematically fitted, background subtracted, and accep-

tance corrected the two data sets, the differential cross sections respective to each set were extracted

at FSU and are being refined at this time [1]. The differential production cross sections were in

part determined from the counts of ω events and target-incident photons. Respective to each data

set, events were selected from reconstructed tracks which contained the charged particle final state

pπ+π−. Kinematic fits were obtained for the 4-momenta and vertices of the initial- and final-state

particles, i.e. γp and pπ+π−{π0} respectively. The kinematic fits were performed using the least

squares method. The goodness-of-fit and quality of errors were determined through the use of the

confidence level (CL) and pull distributions, respectively.

The background was reduced from the signal events using various kinematic cuts, see Ch. 4.

The remaining background and signal were separated, see Figs. 1.8 and 1.9, using the quality factor

(Q-value) method which assigns each event a weight corresponding to it likeliness of being a signal

versus background event. Lastly, the efficiency of the detector to account for all ω resonances was

determined through a software called GSIM. This software simulates detector inefficiencies associ-
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CLAS-g12 data for W : [1770− 2840] MeV
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Table 1.3: CLAS-g12 and CLAS-g8b data sample event counts

Data Type CLAS-g12 events CLAS-g8b events
Data ∼ 8, 500, 000 ∼ 900, 000

Generated M.C. ∼ 200, 000, 000 ∼ 600, 000

Detector Accepted M.C. ∼ 20, 000, 000 ∼ 60, 000

ated with the detector geometry (support structure) and software inefficiencies. The determined

efficiency value was used to determine the actual count of ω resonances produced from the target-

incident photons. More information about the data reconstruction, kinematic fitting, background

separation, and detector acceptance is provided in Chapters 3 - 4. The sample event counts for the

CLAS-g12 and CLAS-g8b data sets are presented in Table 1.3.
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CHAPTER 2

THE CLAS-g12 EXPERIMENT

This chapter contains a brief overview of the CLAS-g12 experiment which held its run-period during

the summer of 2008. Herein, details are provided about the primary instruments used to obtain the

ω event data used in my analysis, chiefly: the accelerator, the photon tagging system, and the target

and the final-state detection components of CLAS. In my analysis, in addition to extracting results

from the high statistics CLAS-g12 data, I also extracted results for the purposes of comparison

from on hand CLAS-g8b sample data which was obtained by our group from the earlier CLAS-g8b

experiment. The CLAS-g8b experiment which had a summer 2005 run-period was quite similar

to the CLAS-g12 experiment aside from the following three important differences: photon beam

polarization, beam current, and target placement within relation to the center of CLAS. The run

conditions for both experiments which include these differences are summarized in the last section

of this chapter.

2.1 The Experiment Facilities

The Thomas Jefferson National Accelerator Laboratory (TJNAF or JLab for short), located in

Newport News, Virginia, is home to the Continuous Electron Beam Accelerator Facility (CEBAF)

and four nearby detection sub-facilities, detector “Halls” A, B, C, and D (see Fig. 2.1). The

primary mission statement of JLab is to study the atomic nucleus, its fundamental constituents,

and precise tests of their interactions (paraphrased) [40]. In practice, the scope of the mission

statement encompasses the more general study of the fundamental constituents of baryons and

mesons, collectively hadrons, as precision tests of their interactions provide the broadest supportive

feedback about the atomic nucleus.

During the summer 2005 and summer 2008 experimental run-periods, the detector CEBAF

Large Acceptance Spectrometer (CLAS) which was housed in Hall B had detected the data used

in my analysis. As its name suggests, the accelerator facility CEBAF produces a semi-continuous

beam of electrons. The detector CLAS was built for high acceptance, nearly 4π angular cover-
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Figure 2.1: An aerial view of
CEBAF and its detector halls
(2014) [39]

Figure 2.2: A schematic diagram of CEBAF and its detector
halls post the 12 GeV upgrades [41]

age, detection of decay products which originate from either electron- or photon-induced nuclear

reactions. Furthermore, while CLAS was constructed with the study of baryon resonances of pri-

mary interest, this run-period took advantage of a recently increased beam energy to obtain high

acceptance data on photo-produced, light vector meson resonances.

2.2 The Accelerator

In brief, all experiments start with electrons being emitted from the injector site into the

acceleration path of the accelerator, see Fig. 2.2. Here a system of lasers were used to photo-eject

electrons from a GaAs photocathode [42]. The potential difference between the cathode and anode

give the electrons an initial acceleration of 100 keV towards the accelerator beamline, and they are

further accelerated to 40− 80 MeV along their path to the first linear accelerator (LINAC).

Once along the accelerator beam path, the electrons begin to traverse the roughly 7/8ths mile

long accelerator ring. One path around the accelerator ring consists of entering and being accel-
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Figure 2.3: A 5 cell cryostat cavity [43]

Figure 2.4: A schematic illustration of
the RF controlled induced dipole across
a 5 cell cryostat cavity [44]

erated through the North LINAC, entering and being steered through a 180◦ Recirculating Arc,

entering and being accelerated through the South LINAC, and entering and being steered again

through the opposite 180◦ Recirculating Arc. The recirculating arcs are composed of dipole mag-

nets and each wing contains several arcs each of which correspond to a different kinetic energy sets

(associated with laps around the ring) of the electrons. The electrons may make up to 5 passes

around the ring thereby reaching a facility rated maximum kinetic energy before diversion towards

their selected experimental detector hall.

The original (pre-12 GeV Upgrade) LINACS, shown in red in Fig. 2.2, comprise a row of 168

radio-frequency (RF) cavities which are made of superconducting niobium and maintained at a

temperature of 2◦ Kelvin by a liquid Helium bath. For illustration, a 5 cell cryostat acceleration

cavity along with a schematic representation of the induced electric dipoles across the cavities are

shown in Figs. 2.3 and 2.4, respectively. As consequence to the induced electric dipoles, a sequence

of near resistanceless electromagnetic waves span the adjacent RF cavities. Moreover, these electric

dipoles are RF tuned to provide the electrons a series of increasing acceleration boosts on through

the LINAC, obtaining an approximately 600 MeV energy boost overall. Thus, the electrons gain

about 1.2 GeV in energy in one pass around the track (two LINACS) and up to 6 MeV after five

passes around the track.

These electron bunches may be split into as many as three independent beam currents, allowing

electron bunches separated by 2.004 ns, the so-called RF timing bucket, to be delivered to any one
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of up to three experimental detector Halls at once. During the g12 run period, an electron beam

was deliverable to Hall B of up to 5.7 GeV in energy, 75% in electron beam polarization, and was

selected for a 10− 100 nA beam current.

2.3 Photon Tagging System

For the CLAS-g12 experiment, the nuclear excited states of primary interest were photo- not

electron-induced. The illustration of Hall B in Fig. 2.5 shows the arrangement of the so-called

Bremsstrahlung (Photon) Tagging System (”Photon Tagger”) upstream from the detector CLAS.

It is within the Photon Tagger, Fig. 2.6, that an energy-tagged photon beam from the entering elec-

trons was obtained. As the electron bunches encountered the system, they immediately impinged

upon and penetrated the radiator which was a thin piece of gold foil (the radiator). As the electrons

decelerated through the foil, they radiated photons, i.e. the process known as Bremsstrahlung ra-

diation. The photons continued forth down-stream through a collimator before reaching the target

with the detector CLAS. The bunches of electrons which entered the radiator share a flight-time

coincidence with the corresponding bunch of photons leaving the radiator. The so-called “timing-

bucket” is a reference used to describe a particular timing window spanned by the electron- or

photon-bunches as they travel. Thus, the 2.004 ns timing-bucket spanning a particular bunch

of electrons also corresponds with a timing-bucket for the target-bound bremsstrahlung radiated

photons.

The electrons continued forth as well but instead followed diverted trajectories induced by

dipole-magnets. The unaffected electrons which retained their full beam-energy followed a max-

imum trajectory leading to the beam dump. The decelerated electrons followed deflected and

energy-dependent paths towards two independent planes of energy deposit and time counters (scin-

tillators), so-called E- and T-counters, respectively. The E-counters measured the electron energy

to within 1% resolution, and the T-counters measured the electron timing to within 300 ps resolu-

tion. The RF timing bucket information of the originating incoming electron beam along with the

E- and T-counter information of the decelerated electrons yielded enough information to determine

and “tag” the target-bound real photons with both their energies and timing upon leaving the

radiator. The photon tagger was able to tag photons between 20− 95% of the maximum electron

beam energy which corresponded to Eγ ∈ [1.2− 5.4] GeV given the CEBAF beam energy [47].
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Figure 2.5: A schematic diagram of Hall B with the Photon
Tagging System (upper-left) shown upstream from the target
and center of CLAS [45]

p

Goetz The CLAS detector and g12 Experiment

Figure 1.9: Scale drawing of the photon tagger system. The electron beam enters
from the left and passes through the radiator where a few electrons
emit photons via bremsstrahlung. The electrons that don’t, follow the
dash-dot red line to the tagger beam-dump. The electrons that lose
energy (black dashed lines) get directed by the dipole magnet to the
E-counter and T -counter planes and the photons continue to the target.
The tagging range for the photons is 20% to 95% of the beam energy
incident on the radiator. The rectangle around the E and T -counter
planes outlines the expanded view shown in Fig. 1.10.

Figure 1.10: Scale drawing of the E-counters (upper plane of counters in blue) and
the T -counters (lower plane of counters in green) showing examples of
incident electrons (red lines) entering from the upper left. This view
corresponds to the rectangle in Fig. 1.9. Notice how both sets of coun-
ters overlap, providing fine segmentation and hermetic coverage. The
T -counters each consist of two PMTs (left and right) which are averaged
together to obtain the time of the hit. The resolution produced by this
setup, crucial for missing mass calculations, is determined by the size
and overlap of the E-counters as discussed in Sec. 2.3.2.

30

Figure 2.6: A schematic diagram of CLAS Photon Tagging System [46]
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2.4 The Detector

Beginning with the center of CLAS, Figs. 2.7 and 2.8, and moving outward, its multiple layers

are listed as follows: a scintillator start counter (ST), three drift chamber (DC) regions with a

toroidal magnet surrounding the second DC, a gas Čherenkov counter (CC), a scintillator time-

of-flight (TOF) spectrometer, and finally an electromagnetic calorimeter (EC). The ST and TOF

counters as well as the DCs and toroidal magnet respectively provided the speed and momentum

measurements of the charged particles. By extrapolating the tracks and timing from the ST back to

the target, the event vertex and occurrence time could be estimated. The CC and EC were not used

in the CLAS-g12 experiment. When used in other CLAS experiments, they resolved the energy of

the scattered electrons from electro-induced interactions. Respectively they aided in differentiating

electrons from charged pions as well as recorded energy deposits from electrons (leptons), photon,

and neutron showers.

A total of six identical concave, wall-segments (sectors) housed the DCs, Toroidal Magnet, CC,

and TOF hardware layers. These segments were adjoined azimuthally around the beamline to

provide the nearly 4π center-of-mass angular coverage. The azimuthal coverage was 360◦ minus

roughly 10◦ at each of the 6 structure support locations where two sectors are joined. The longitu-

dinal lab frame coverage was 8◦ ≤ θ ≤ 142◦(45◦) for charged (neutral) particles with a resolution

of 10−3 radians. The momentum detection range for charged particles was 0.1 ≤ p ≤ 4.0 GeV with

resolutions of 0.5% and 1.0% at small and large angles, respectively.

2.4.1 Target

As the Bremsstrahlung-radiated real photons continued forth towards the target, they were col-

limated by a 3.1 mm radius collimator before reaching the target. Upon impact of the photons and

the fixed, unpolarized, liquid-hydrogen target, Fig. 2.9, within the CLAS detector, excited nuclear

resonance states (events) were photo-produced and the subsequent particle decay products were

detected by CLAS. Only charged decay products were recorded during the CLAS-g12 experiment.

The Kapton (a type of polyimide film) target casing was 40 cm long with a radius of 2 cm.

Its center was placed 90 cm upstream from the CLAS center for this CLAS-g12 experiment. The

idea behind the placement upstream was to increase the forward angular coverage (from 8◦ to 6◦)

at the cost of a decrease in rear angular coverage. This provided an increased event acceptance
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Figure 2.7: A schematic diagram of the CLAS detector [39]

Goetz The CLAS detector and g12 Experiment

Figure 1.5: A cross section view of the CLAS detector showing an event with two
tracks emanating from the target. Image source: [23].
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Figure 2.8: A 2D cross section sketch of the CLAS
detector [46]
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Figure 2.9: Schematic diagram of the
CLAS-g12 (g8b, g11a) target [48]

Figure 2.10: Schematic diagram of the
CLAS start counter [49]

for high momentum-transfer (t-channel) scattered interactions, namely high momentum-transfer

meson production.

2.4.2 Start Counter

The start counter (ST), Fig. 2.10, provided the initial timing information of the final state

particles emanating from a photo-induced interaction event within the target. It consisted of 24

scintillators adjoining an hexagonal encasement which surrounded the target. Each of the 6 CLAS

sectors was covered by 4 of the ST scintillators. Signals from the scintillators were transmitted to

photo-multiplier tubes (PMT) which together yielded an overall ST timing resolution of 350 ps.

2.4.3 Drift Chambers

Within each of the six adjoined, concave, wall-segments of CLAS were three DC regions, Figs. 2.7

and 2.8. The DC regions were semi-radially concentric about the CLAS center and provide per

sector a longitudinal and azimuthal angular coverage of 134◦ and 50◦, respectively. The adjoining

wall-segment posts were responsible for a reduction in the azimuthal coverage by about 10◦ per

post, i.e. about 60◦ total. Each DC region was filled with ionizing gas (88% and 12% argon and

carbon dioxide respectively) as well as both so-called field- and sense-wires [50]. In particular,

each DC contains two superlayers of 6 so-called sense-wire sublayers, save Region 1 which has 4

sublayers. Each and every sense-wire was neighbored by 6 of the field-wires, see Fig. 2.11.
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Figure 2.11: A schematic cross section diagram of the field and sense wires within a drift
chamber [46]

When charged particles travel through the DCs, they ionize the gas particles along their trajec-

tories. With the electric potentials established across neighboring sense and field wires, the freed

electrons send current signals to the nearest sense wires. The signals were obtained and monitored

along the paths traced out by the charged particles, thereby allowing for the reconstruction and

recording of the tracks across the DCs. The recording of the tracks were dependent upon so-called

trigger settings established before each run of the experiment.

2.4.4 Toroidal Magnet

The purpose of the toroidal magnet, Fig. 2.12, within the CLAS was to aid with the identification

of the charge and momentum of charged particles based on their deflection and traversed radius,

respectively, as they travel through the Region 2 DC, see again Fig. 2.8. Within each of the 6

CLAS segments was a kidney-shaped superconducting magnet held at a temperature of 4.4◦ Kelvin

using a liquid Helium bath. As current was run through the segments, a toroidal magnetic field

was generated azimuthally about the beam line and was concentrated about the Region 2 DC. At a

maximum current of 3790 A, this concentrated field was rated at a maximum of 3.5 T. The direction
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Figure 2.12: The CLAS toroidal magnet during the assembly of CLAS [51]

of the field was chosen so that positively (negatively) charged particles were deflected away from

(towards) the beam line. For the CLAS-g12 experiment, with negatively charged particles prone

to being deflected out the beam line (end of the detector), the current was reduced and thus the

field strength by about half so as to decrease the trajectory deflection and thereby increase the low

angle acceptance of the these particles.

2.4.5 Time of Flight Counter

Following the Region 3 DC layer (see Fig. 2.8) and subsequent to the Čherenkov counter layer

(not used in the CLAS-g12 experiment), there was a layer of scintillators which measure the timing

of the charged final state particles. These scintillators were referred to as time of flight (TOF)

counters as they measure the time at which the final state particles have reached them. The

difference between the ST and TOF counters then provides the time of flight of the charged particles

to traverse their paths between the two counters. This measurement along with the corresponding

reconstructed track length provides a measure of the velocity of the charged particles. Additionally,

the TOF provides information on the possible tracks originating from the event. The TOF counters
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have a timing resolution between 80−160 ps, respectively corresponding with an increase in counter

length [53]. The TOF was positioned about 5 m from the target.

2.4.6 The ST and TOF

The ST and TOF counters were used along with the DC tracks in order to determine the flight-

time of the charged final-state particles as they traversed through the three layers of DCs. As a

charged particle traverses the gas which fills the DCs, the differential voltage signals caused by the

gas ionization were transmitted to the sense-wires (detection elements) which were finely layered

throughout the DCs segments. These signals allowed for reconstruction of the DC track.

Additionally, the charge of the particle could be determined from the angle of deflection the

particle makes through the second DC layer; it was this DC layer of which the toroidal magnetic field

surrounded and had its strongest influence on the charged particles. The ST and TOF counters as

well as the DCs and toroidal magnet respectively provided the speed and momentum measurements

of the charged particles.

2.4.7 The CC and EC

The CC and EC were not used during the CLAS-g8b and CLAS-g12 photo-production exper-

iments; however, they were essential for experiments using CLAS with an electron beam as they

were used to detect scattered beam electrons. In particular, the CC with a determined detection

efficiency of about 97% allows for e± leptons and pions to be distinguished below ∼ 2.5 GeV,

as leptons and pions have an ionization threshold of 9 MeV and 2.7 GeV, respectively. The EC

consists of 8 inner and 5 outer (13 total) logical-layers which allow for distinction between leptons

and pions based on energy deposits between the two (inner and outer) layers. In addition, the EC

acts as a second TOF counter and energy-loss detection element which could be used for particle

identification. The EC detects high-energy neutral particles such as photons, neutral pions, and

neutrons. Further details about the detection, identification, and kinematics of the final-state par-

ticles, including those from the ω decay events used in my Dalitz plot analysis presented herein,

were provided in Chapters 3 - 4.
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Table 2.1: Run conditions for the CLAS-g12 and CLAS-g8b experiments

Conditions CLAS-g12 CLAS-g8b
e− Energy Beam 5.715 GeV same

e− Current 60− 65 nA 10 nA

Beam Polarization Circular (up to 70%) Linear (up to 90%)

Tagger Range 25− 95% of Ee−, max same

B Field 1
2Bmax (1930 A) same

Target Length 40 cm same

Target Center −90 cm −20 cm

Target Material lH2 same

Target Polarization None same

Radiator Gold Foil Diamond

Radiator Thickness 10−4 radiation lengths 50 µm

Trigger 2− 3 charged particles ≥ 1 charged particle(s)

2.4.8 Run Conditions

A summary of the CLAS-g8b and CLAS-g12 run conditions are provided in Table 2.1. These

experimental runs took place during the summer of 2005 and summer of 2008, respectively. The

main differences between the CLAS-g8b and CLAS-12 experiments were the following: the photon

beam polarization type which was linear and circular, respectively; the beam current which was

roughly 10 nA versus 60 nA, respectively; and the target placement with respect to the center of

CLAS which was 20 cm versus 90 cm upstream, respectively. For each data set, the event samples

of the differing beam polarizations were combined to obtain unpolarized samples for the respective

sets. The two data sets provided two independent sources for result comparisons to be drawn.
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CHAPTER 3

THE CLAS-g12 DATA &

EVENT RECONSTRUCTION

The following chapter provides a brief description of how the CLAS-g12 data were monitored and

recorded to tape by the Data Acquisition System, how event tracks and corresponding event-

vertices were reconstructed, and how the charge, momentum, and particles species of the final state

charge-particles were identified.

3.1 The Data Acquisition System & Triggers

The semi-discriminated signals (signals surpassing pre-set detector element, discriminator, noise-

thresholds) from the photon tagging system and CLAS were transmitted through either analog- or

time-to-digital-converters (ADC or TDC, respectively) which were monitored by the so-called Data

Acquisition System (DAQ). Based on pre-run user-defined “trigger settings”, the DAQ stored the

trigger-selected digital event-information into so-called BOS formatted data banks.

Moreover, these trigger settings were user-defined logic-based hardware and/or software settings

monitored by DAQ. They may be adjusted per-run to require the DAQ to monitored and record

select signal thresholds (e.g. quantity of particle tracks detected and timing coincidence windows)

of interest by the run-group, for example, events which only contain at least three charged-particle

tracks with one track per sector (so-called three-track events).

During the g12 run-period, either of two types of primary trigger conditions were implemented:

One case recorded two-track events with a tagger cut on the incoming photon energy below 3.6 GeV;

and the other case, recorded three-track events with no cut on incoming photon energy. The

resulting incoming photon energy ranges were 3.6−5.4 GeV and 1.15−5.4 GeV, respectively. These

were implemented as coincidences between the ST, TOF, and an OR logic unit (called the master-

OR MOR) between the first 25 of 47 paddles of the tagger. Lastly, all CLAS subsystems (save the

DCs) acquired signals within a few nanoseconds, the interval or gate for a trigger coincidence was

100 ns, and the system recorded events satisfying any of the trigger definitions at a rate of 8 kHz.
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3.2 Track and Event Vertex Reconstruction

With the DAQ stored data (BOS formatted data banks) in hand, reconstruction of the events

began with the aid of the reconstruction program called a1c (see CLAS-g12 Analysis Note for further

details). This program used CLAS geometry parameters and calibration constants along with the

digitized data to reconstruct the beam-based event timing (from the tagging system), charged

particle tracking and momentum measurements, event-vertex fitting, and particle identification.

If and when there was a timing coincidence found between the ST and TOF within a sector

was the so-called track reconstruction trigger condition met. Upon such a coincidence, the charged-

particle drift chamber (DC) paths (tracks) were reconstructed through the use of a series of software

algorithms. For each DC within the triggered segment, the traversing charged particle ionized the

drift chamber gas. The neighboring sense wires which hold a potential difference themselves and

so-called field wires transmitted the current where upon its registered by software. Regions with

multiple neighboring “hits” were identified as clusters which were then sequentially linked to one

another within and across each DC thus establishing a potential track path.

The links were further extrapolated towards the TOF panel where attempts were made to link

the potential track path to a coincident TOF hit and thus also determine an upper time for the track

end. With the TOF in hand, the linked clusters making up the DC tracks were kept or rejected

based on whether or not they proceeded one another in a forward time sequence, starting and

ending with the ST and TOF panels respectively. The process of re-fitting the track was repeated

several times in order to increase the accuracy of the track path and DC flight-time measurements.

Lastly, attempts were made to reconstruct the event vertex by linking (within the target volume)

the pre-estimated final-state charged-particle vertex location and time with those values separately

determined for the initial state photon. First, the paths of two or more time-coincident charged-

particle tracks (each from a different sector) were extrapolated back to the target from the ST

using the distance of closest approach (DOCA) to the photon beam line. The midpoint between

the ST and beam line was defined as the vertex of the particle, and the midpoint between the single

particle vertices defines the event vertex.

Using the individual DC track speeds along with the respective track distances as measured

between the corresponding ST counter location and the DOCA to the target, a track vertex-time was

estimated for each track. The average of these times was obtained and referred to as the averaged ST
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vertex-time. The track speeds were obtained simply from dividing the DC track lengths and track

flight-times as measured between the ST counter and TOF counter distance and time differences,

respectively (i.e. βDC ≈ βST−TOF = (lTOF − lST )/c (tTOF − tST )). The photon vertex-time was

determined from the photon-tagging system T-counters and the RF timing. Finally, reconstruction

of the event vertex was established if a time-coincidence was found between the averaged ST vertex-

time and a photon vertex-time. The coincidence was met if the difference between the two times

fell within the 2 ns of the beam bucket.

3.3 Particle Identification

The identity of the charged final state particles were determined from collectively identifying

their corresponding charge, speed, and momentum. The charge of the particle was determined from

the direction of deflection of the track due to the magnetic field. As a charged particle penetrated the

Region 2 DC within its sector, the toroidal magnetic field induced positively (negatively) charged

particles to be deflected away from (towards) the beam line, see Fig. 2.8. As previously mentioned,

the speed of each particle was determined from the total track length and flight-time measurements

from the ST to TOF counter, i.e. βST−TOF = (lTOF − lST )/c (tTOF − tST ).

The momentum of the charged particles was determined from the radius of curvature of the

tracks and the toroidal magnetic field strength within the respective sectors of the Region 2 DC.

The two quantities were related through the relation p = qBr as well as p ∼ qBl2/(2s) where q is

the assumed charge, e, for the particle, B is the magnetic field strength, r is the radius of trajectory

curvature, l is half the chord length, and s is the sagitta; the second relation is an approximation

for s << r.

With the momentum and the timing measurements, the rough mass of the particle was cal-

culated using m = p/(βγ). With the rough mass, an attempt to infer the particle identity was

made. An algorithm compared the calculated mass to a list of mass-ranges which correspond to

pre-identified DC mass ranges for an assortment of known particles. The events with particles

having calculated masses outside the listed ranges were discarded as poorly reconstructed events.

For the events having masses that fell within the listed ranges, the charged particles were given

an particle identification number (PID) associated with the “book” mass value, i.e. the measured

mass listed by the Particle Data Group.
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CHAPTER 4

EVENT SELECTION, KINEMATIC FITTING,

CUTS, & THE Q-VALUE METHOD

The following chapter discusses many of the final tasks required to prepare the data events, namely

the γ p → p ω → p π+ π− {π0} reaction events, used in my ω decay analysis. These procedures

involve event selection, kinematic fitting, kinematic cuts, and signal-background separation using

the Q-value method. The last section discusses Monte Carlo generation and simulation of detec-

tor accepted events. Together these sets of Monte Carlo events provide a means for acceptance

correcting the data.

4.1 Final-State Event Selection

There are two dominant branching ratios for the ω vector meson decay: one, the decay into

the three-pion final-state ω → π+ π− π0 which happens roughly 89% of the time; and two, the

decay into the one-pion and photon final-state ω → π0γ, which happens roughly 8.6% of the time.

With the desire of having a high-statistics ω event sample for analysis, data events from the former

reaction type were sought from the CLAS-g12 reconstructed BOS data banks.

Moreover, since CLAS does not detect final-state neutral particles (neutrals) as indicated with

the parentheses in the reaction above, reconstructed events with the final-state p π+ π− were

selected as the possible ω resonance candidates. A kinematic fit procedure, as described in the

next section, was used to restore the missing neutral pion, {π0}, to the final-state of each event,

γ p → p π+ π− {π0}. Thus, this was our final state event selection criteria when drawing data

events from the CLAS-g12 reconstructed BOS data banks.

4.2 Kinematic Fitting

In order to improve the event kinematics measurements after reconstruction, a kinematic fitting

procedure was applied to the data. The kinematic fitting program used was developed by Dustin

Keller [54]. It employs the method of Lagrange multipliers to impose supplied physical constraints,
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such as energy-momentum conservation, on the event kinematics, and the method of least squares

is used for the overall fitting. The fitter was supplied with an error correlation (covariance) matrix

which contains the drift chamber (DC) track resolution uncertainties. In addition, unaccounted

for energy, momentum, vertex position inefficiencies incurred in part due to track reconstruction

inefficiencies and uncertainties were included. Energy losses, for example, due to path interference

from various detector materials (e.g. the target and start counter (ST)), and multiple scattering

effects [55] were also accounted for in the covariance matrix parameter space. During DC track

reconstruction, an error covariance (or correlation) matrix is obtained. This matrix was used as an

input in the kinematic fitter. The event kinematics were successively improved as the iterative fit-

ting procedure minimized the correlation parameters spanning energy, momentum, vertex position

inefficiencies. The tracking error correlation matrix was included. It was constructed from resolu-

tion uncertainties and parameters which were used for fitting the correlations between uncertainties

during track reconstruction.

A set of n measured quantities ~η may be expressed generally as a sum of their respective “true”

values, ~η
′
, plus the deviation errors (from the observed measurements), ~ε, such that

~η = ~η
′
+~ε (4.1)

Moreover, a set of r general equations of constraint may be expressed as,

fk(~x, ~η) = 0, for k = 1, 2, . . . , r (4.2)

and where the set of m unknown parameters, ~x, are related to the set of n true values ~η
′

through

the equations of constraint.

For the method of Lagrange multipliers, a general expression (Lagrangian) written in terms of

the covariance matrix is minimized [54]. The method of least squares minimizes the sum of the

squared differences between predicted and measured values. For the case of independent measure-

ments, this reduces to minimizing the familiar χ2 expression,

χ2 =
∑

i

(
εi√
σηi

)2

=
∑

i

(
ηi − η′i√
σηi

)2

(4.3)
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The quality of the fit error was examined by observing so-called pull distributions for each

kinematical quantity fit. The ith pull distribution is given by

zi =
εi
σεi

=
ηi − η′f√
σ2
ηi − σ2

ηf

, (4.4)

where ηi is the. Moreover, as close as possible, the distributions ought to be normally distributed

about zero and have a σ = 1.

The confidence level provides a goodness-of-fit test of the fitted event kinematics. It is expressed

as

CL =

∫ ∞

χ2

f(z, n) dz (4.5)

where f(z, n) is the χ2 probability density function of n degrees of freedom. In particular, it is a

measure of the probability that the χ2 from the theoretical distribution is larger than that deter-

mined from the fit. The CL is flat on the interval (0,1] for events which satisfy the fit hypothesis,

whereas it peaks near 0 for events which do not satisfy the hypothesis. For this reason, many

background events may be eliminated from the signal events (at the cost of losing a much smaller

amount of signal events) by making a low CL cut. Often a CL cut of either 0.01, 0.05, or 0.1 may

be chosen depending upon how many signal events are being cut from the sample. In my analysis,

I used a CL cut of 0.1.

The pull distributions may also be used to asses the quality of the fit as well (not just the quality

of the fitted errors). If there are systematic errors with the measurements, a pull distribution may

be shifted from or broadened (consistent underestimate) or narrowed (consistent overestimate)

around the zero-point of the distribution as a result [56].

4.3 Photon Selection and Kinematic Cuts

This section touches on some additional corrections made to the data in the form of cuts. These

cuts aimed to eliminate both non-physical as well as poorly reconstructed events; consequently, the

cuts resulted in an additional reduction in background events from the data. The following cuts were

employed to the data: photon selection cut, vertex cut, and a ∆β cut. Despite having “cleaned-up”

the data quite a bit and having removed much of the background events from the data sample,

some background will remain among the signal events. A brief description is provided about an
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event-based method which addresses the problem. In short, this method further distinguishes the

remaining data in terms of the likeliness of each and every event having originated from signal as

opposed to background.

Photon selection involved matching-up the final-state particles of an event with the photon that

caused the event. In order to do this, the event vertex-times were compared. A time coincidence was

sought between the photon vertex-time as determined from the tagging system and the averaged

ST vertex-time as determined for the final-state particles. Moreover, since multiple photons were

Bremsstrahlung radiated for a given electron bunch, these photons continued forth to the target

area within the same 2.004 ns time interval or “timing bucket”. Furthermore, cases arise where

more than one photon may satisfy the vertex-time coincidence. As such, there is an ambiguity

surrounding which photon caused the event and which photon ought to be selected. From our

g12-data for the ω resonance, it was estimated that about 17% of our events had at least two

photon candidates which could have caused the event. In these cases, the photons are often chosen

at random or the events are thrown out. As a result, any subsequently determined observables,

such as the cross section, using the data must account for this loss of data through statistical

correction(s).

The event vertex cut eliminates events which originate outside of the target volume and some-

where within the surrounding support structure. The liquid-hydrogen target had a 2 cm radius and

was 40 cm in length. The placement of the target was 90 cm upstream from the CLAS center; this

was done in order to increase the acceptance in the forward direction for high-energy scattering

events during the g12 runs. The tracking resolution was 5 mm and 6 mm in the radial and z

direction respectively. In the end, event vertices were restricted to lie within a radius of 2.5 cm (al-

lowing some room for the track resolution) and between the upstream z-axis coordinates (−110 cm,

−70 cm).

The timing cut or β cut removes potential events with superluminal track speeds, and the ∆β

cut removes potential events where the determined β values, one by TOF and the other through

momentum and identified mass (PID), differ from one another by a chosen threshold. The thresholds

in both cases were chosen with the timing resolution of CLAS in mind. For our data, the cuts applied

were βTOF ≤ 0.04 and ∆β = |βTOF − βPID| ≤ 3σ. Lastly, during the CLAS-g12 run period,

the efficiency of several TOF paddles were either quite poor or called into question. By “knocking
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out” these paddles, we effectively remove any and all events with track hits associated with these

effectively dead paddles.

4.4 The Q-Value Method

Despite having reduced the background from signal events through various corrections and

cuts, there will be background events which have remained inseparable from the signal events.

An effective way to further separate the signal from background events is through the so-called

Q-value method. The Q-value method is an event-based method devised for extracting a signal-

to-background quality factor (Q-value) for each sample event while also preserving the multi-

dimensional kinematic correlations of the sample. These Q-values are ideal for use with unbinned,

event based fits as terms for individual events may be weighted with more or less signal importance.

In particular, the Q-values are weight factors valued between 0 and 1, and they represent whether

an event is more or less likely to be a signal event (closer to 1) as opposed to being a background

event (closer to 0) [57].

The dynamics of the photoproduced ω and its subsequent three-body decay, i.e.

γ p → pω → pπ+π−π0, may be described by 5 degrees of freedom (d.o.f.), namely 2 for the

production and 3 for the decay, as is generally true for three-body decays. Given a data sample

of N such events, we then choose the following kinematic variables for our 5 d.o.f: the invariant

3π mass, m3π
i ; the center-of-mass ω production angle, cos θωcm; the normalized squared decay plane

normal,

λ =
|~pπ+ × ~pπ− |2

λmax
=

|~pπ+ × ~pπ− |2
|~pπ+ |2|~pπ− |2 sin2(120◦)

=
|~pπ+ × ~pπ− |2

1
108(M2

ω − 9m2
πmean)2

, (4.6)

given in terms of the pion momenta in the ω rest frame; and the decay angles, cos(θAdair) and

φAdair, given relative to the decay plane normal as chosen in the Adair frame (see Fig. 4.1).

For the Adair-coordinate system, the orientation of the z-coordinate axis is chosen to lie along

the direction of the photon beam direction in the overall center-of-mass (c.m.) frame. Also, the

y-coordinate axis is chosen to lie normal to the production plane where the cross-product of the

incoming photon beam direction, k̂, is taken with the direction of the outgoing ω meson, q̂, in the

overall c.m. frame, i.e. ŷ = n̂ = k̂ × q̂. The x-coordinate axis is then simply given by x̂ = ŷ × k̂.
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Figure 4.1: Helicity and Adair frame comparison
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Lastly, the decay angles in the Adair-frame (Adair-angles) are determined through the following

relations between these Adair-frame coordinates and the normal-coordinate of the decay plane, π̂,

which is defined in the ω rest-frame as the absolute value of cross product between any two of the

three pion directions, e.g. π̂ ∝ |π̂+ × π̂−|:

cos(θ) = π̂ · ẑ cos(φ) =
ŷ · (ẑ × π̂)

|ẑ × π̂| sin(φ) =
−x̂ · (ẑ × π̂)

|ẑ × π̂|

Using these last three relations, the decay angles may be also be determined in relation to the

Helicity and Gottfried-Jackson frames where the choice of z-coordinate axis serves as the defining

characteristic that distinguishes the three systems from one another, i.e. the direction of the

incoming photon in the c.m.-frame and ω rest-frame, respectively.

The signal distribution, S is defined as

S(m,~x) = Fs(~x) V (m,µ, σ,Γ), (4.7)

where Fs(~x) is an unknown general expression dependent on the kinematic set

~x = (cos θωcm, λ, cos θAdair, φAdair), (4.8)

and V (m,µ, σ,Γ) is a Voigtian function (a convolution of a Gaussian with width σ and a non-

relativistic Breit-Wigner of width Γ) given by

V (m,µ, σ,Γ) =
1√
2πσ

Real

[
w

(
1

2
√
σ

(m− µ) + i
Γ

2
√

2σ

)]
(4.9)

where w(z) is the complex error function. Additionally, the background distribution may be written

generally as B(m,~x) but its functional form is unknown. In terms of the spanned kinematic space

~x, the shortest kinematic distance between any two events is given by

d2
ij =

4∑

k=1

(
ξik − ξ

j
k

rk

)2

, (4.10)

where the metric used is a 4× 4 matrix defined by δij/r
2
i with ~r = (2, 1, 2, 2π) giving the ranges of

~ξ.

From the data event sample, N , for each ith event with mass mi and kinematics ~ξi, Nnn

kinematically nearest neighboring events (“nearest neighbors”), are found using Eqn. 4.10. Since
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the phase space of the nearest neighbors, Nnn, is close to that of the event of interest, i.e. ~ξj ≈ ~ξi,
the signal and background functions of each event may be approximated as follows:

S(mj ,~xj) = Fs(~xi) V (mj , µ, σ,Γ) ≈ A · V (mj , µ, σ,Γ), (4.11)

S(mj ,~xj) = S(mj ,~xj) ≈ amj + b, (4.12)

where the background in the mass distribution is known to have a linear or low degree polynomial

trend.

An event-based, unbinned maximum likelihood method is then used to fit the signal and back-

ground to the nearest neighbors sample, Nnn, and thus obtain the corresponding parameter set

ηi(Ai, ai, bi) for that ith event. The quality factor (Q-value) for each event is then obtained in

terms of the fitted signal and background functions by

Qi =
Si

Si +Bi
, (4.13)

where 0 ≤ Qi ≤ 1. As mentioned, each Q-value represents the likeliness of the corresponding event

being a signal event as opposed to a background event.

4.5 Detector Efficiency Simulation and Data Acceptance
Correction

As with all real detectors, they are not “perfect” detectors, and so the true number of “naturally

occurring” sample events produced in the detector is unknown. The real detector has no way of

assessing the number of events it could have detected but did not detect. These detection ineffi-

ciencies are associated with the support structure of the detector, broken hardware, and software

failures. However, a good estimate of the detection efficiency fortunately can be obtained through

the use of generated Monte Carlo events (MCs) and model simulation of their acceptance by CLAS.

With the detector efficiency estimated, an estimate of the true number of photo-produced ω events

that a “perfect” detector would have detected was obtained. Furthermore, both the differential

cross section used in my analysis as well as the partial-wave analysis itself rely on a high statistical

estimate of the CLAS efficiency.

Two sets of MCs were prepared to determine the detector efficiency, so-called generated or raw

MCs and so-called detector accepted or detector simulated MCs. Several programs available from
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the CLAS repository were used to generate both sets of MCs. With respect to one another, the

second set is simply the first one after having run detector acceptance simulations (and the same

kinematic fitting and cuts as applied to the data) on them. Moreover, the detector efficiency was

then obtained by comparing a ratio of the two sample counts from the same kinematic regions,

e.g. center of mass production energy, Ecm, or ω production angle, cos θωcm. Lastly, while both

sets of events respect their kinematic boundaries by definition of Monte Carlo generation, they

are of course absent much physical content such as the event production and decay dynamics. As

discussed in Chapter 6, some physics may be included and generated into the detector accepted MCs

through weights, namely they may be weighted with the differential production cross section and

Schilling Equation to mimic the production and angular decay distribution dynamics respectively.

Monte Carlo events for the γp → pω → pπ+π−π0 reaction were generated with a flat phase

space, i.e. absent production or decay dynamics natural to the real data. The incoming photons

were generated according to a Bremsstrahlung distribution of energies ranging between 1.5 to

5.4 GeV. Along with the particle masses, the natural decay width [8] for the invariant ω mass

resonance was included. The program used is called genr8. The event output is written in the

so-called gamp file format. From the gamp files, two different paths are taken to obtain the two

sets of MCs mentioned above. Using the program gamp2root, these so-called “raw” generated

Monte Carlo events with a flat (no physics save the ω resonance width) phase space distribution

are readily obtained in ROOT format.

The ROOT format is standard event file format used for storing our data events as well as

Monte Carlo event sets. The ROOT program is an object-oriented platform predominantly used

by the particle physics communities for data analysis. The development of the framework was

born from the desire to upgrade and integrate CERN particle physics libraries originally written in

FORTRAN into modern object-oriented C++ class structures. Thus, the ROOT file format and

program provide a convenient way to store, read, and display event information. The programs

used in calculating the differential cross section and/or performing the partial-wave analysis directly

read the events from this format.

Following the prescription outlined in the CLAS-g12 analysis note (see [cite] for more details),

we continue the development process for obtaining the simulated CLAS-accepted MCs. After event

generation, the raw MCs (gamp files) are fed into the program gamp2part which then smears the
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generated target distribution to mimic a natural (physical) target distribution. The MCs (BOS part

formatted files) are fed through the program GSIM which simulates the digital detection of such

events in terms of ideal CLAS responses. Thus, for example, the events are expressed in terms of

CLAS digitized DC hits similar to signals obtained from real events. The GSIM package is based on

the GEANT3 detector simulation libraries developed by CERN. The output (BOS banks formatted

files) is then passed through the GSIM Post-Processor program, GPP, which removes events which

encountered dead DC wires and dead SC paddles. GPP incorporates simulated tracking resolution

effects which are based on measurements obtained for the real data from the g12-run period. The

events are passed through the a1c program which reconstructs the digitally simulated events in a

similar manner to that performed for CLAS signals of real events. Finally, the detector simulated

events are kinematically fit in the same manner as the real data events, and thus the CLAS accepted

Monte Carlo event set has been obtained. With these two Monte Carlo event sets now obtained,

generated MCs and CLAS accepted MCs, the simulated CLAS efficiency can be determined for

common regions of kinematical phase space.
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CHAPTER 5

PARTIAL WAVE ANALYSIS

In this analysis, a mass independent fit is performed following a variation of the unbinned, event-

based, Maximum Likelihood Method (MLM). The MLM is based on maximizing the Likelihood

function, L, a product of individual probabilities of respective event occurrences,

L ≡
n∏

i

P(~x,Xi), (5.1)

where the product is over n total sample events and the probabilities, P , are general functions of the

parameters (estimators), ~x, and event phase space kinematics, Xi. Maximizing the Likelihood, L, in

turn maximizes the individual event occurrence probabilities. In quantum mechanics, this is equiv-

alent to maximizing individual normalized transition probability densities, e.g. P ∝ I(~x,Xi)

where I is the intensity distribution per event occurrence. Additionally, under the assumption

that the individual event occurrences are uncorrelated and thus the event sample is Poisson dis-

tributed, maximizing the following product is referred to as Extended Maximum Likelihood Method

(EMLM),

L ≡
(
n̄n

n!
e−n̄

) n∏

i

P(~x,Xi), (5.2)

where the factor within parentheses represents the Poisson distribution of obtaining n sample

events from a distribution of n̄ expected events. Lastly, as it is computationally advantageous to

sum instead of multiply a large number of event probabilities, one may minimize the logarithm

of the extended likelihood function, −ln(L), which is referred to as the Log Likelihood Method

(LLM).

In all cases, it is the intensity distribution, I , which serves as the fit function of these unbinned,

event-based, likelihood fits. In the following sections, it is the aim to show how this intensity

function may be constructed in terms of partial wave helicity states following the method of [59],

how spin-parity conservation leads to a special factorization feature for Dalitz plot distributions,

what are the key features of these intensity distribution factors, and most importantly how they

are represented and accounted for in this analysis.
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Rather than extract partial wave states corresponding to the exchange mechanism underlying

the photo-production of the ω resonance, the focus of this analysis was on extracting information

about the ω → 3π decay amplitude. In order to properly account for the acceptance of the detector,

however, the Log Likelihood method requires fitting the overall (production and decay) intensity

function. The measured differential cross section was therefore substituted for the squared decay

amplitude, i.e. dσ/d cos θωc.m. ∝ |T |2, in the overall intensity function.

The squared decay amplitude contribution will be shown to factorize further into decay-angle-

dependent and -independent parts. The former is a product of Wigner D functions referred to as

the so-called angular decay distribution. This factor represents the angular decay distribution of

the vector meson decay products. Also, it is associated with so-called spin density matrix elements

(SDMEs) of the intermediate vector mesons. These SDMEs are in turn correlated through the

production amplitudes with the photon beam spin density states. The squared dynamics amplitude

is angle-independent and is associated with the dynamics of the resonance decay into its decay

products.

The dynamic three-body decay model used in my analysis was developed by the Joint Physics

Analysis Center (JPAC) at JLab and is discussed in the last section of this chapter. Its construction

is of the dispersive and relativistic covariant framework. It is based on isobar decomposition and

sub-energy unitarity and accounts for so-called elastic and inelastic rescattering effects. The latter

contributions are unknown and novelly separated and parameterized from the former in terms of

a power series of a suitably mapped variable. In this analysis, a single decay parameter suffices for

the parameterization. The results of the SDMEs and JPAC ω → 3π decay parameter are presented

in Chapter 6.

5.1 The Intensity Distribution

While ultimately interested in the dynamics of the ω → 3π decay and therefore in fitting the

dynamical contribution of the decay amplitude with the data, the event-based fitting method used

in my analysis requires the consideration of the overall intensity distribution, i.e. the vector meson

photo-production on through to the decay final state. This is a requirement of this method in order

to properly account for the CLAS (detector) acceptance. In terms of amplitudes, the full intensity
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takes the form,

I(~x,X) =
∑

α

∣∣∣∣∣
∑

β

Vαβ(~x,X)Aαβ(~x,X)

∣∣∣∣∣

2

(5.3)

where Vαβ is the production amplitude, Aαβ is the decay amplitude, the sums over the general

indices α and β represent an incoherent and coherent sum over the amplitudes, ~x represents a set

of parameters (estimators), and X represents phase space kinematics for the event.

In this section, following the method of [59], we set out to formulate the overall intensity

distribution in terms of helicity states. We begin with a three particle system of definite total

angular momentum and parity which is built from single particle helicity states in the system rest

frame [60, 61, 62, 63]. From here, general decay and production amplitudes in the helicity basis are

developed. The spin-density distribution of the incoming photon beam is then introduced. Next,

an integration over an Euler angle yields that (for Dalitz plot analyses) the squared reduced decay

amplitude factorizes from angular decay distribution. Lastly, the intensity distribution for this

Dalitz plot analysis is procured.

For general relativistic treatments, the so-called spinor helicity method may be used as an

alternative; however, the treatments of states with three or more particle are quite complicated

and cumbersome, especially when the masses are not neglected [62]. It is argued that the non-

relativistic and relativistic treatments at least for the ω → 3π decay are equivalent in the rest

frame of the decaying ω resonance [63]. Thus, for purposes of motivating the origination and

identification of the overall fit function factors used in my fits, I have stuck to a pedantic introduction

using the non-relativistic (resonance rest frame) formalism. In terms of the final fit function, a

seamless substitution of the generic non-relativistic reduced decay amplitude for the relativistic

JPAC reduced decay amplitude (both chosen in the ω rest frame) is made.

5.1.1 Rest Frame Helicity States

We follow the work of [62] for a straightforward and clear derivation of a non-relativistic one

particle helicity state of definite total angular momentum. Such helicity states are comprised

of simultaneous eigenstates ~J2, Jz, ~S
2, and Λ where the first three operators are the standard

canonical states and the forth operator, a scalar and thus a commuting operator, is the so-called

helicity operator. These helicity states form a convenient basis because they are invariant under
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spatial rotations and forward boosts along momentum direction of the particle. They are convenient

for describing relativistic scattering of both massless and massive particles [60, 61, 62, 63]. The

helicity operator, Λ, is defined by the inner product of total angular momentum and momentum

direction of the particle, namely,

Λ ≡ ~J · p̂

= (~L+ ~S) · p̂

= (~r × ~p+ ~S) · p̂

= ~S · p̂ , (5.4)

where it follows that the helicity operator amounts to the spin-projection along the momentum

direction of the particle. Moreover, in the fixed-body frame of the particle, the momentum is given

by ~p = pẑ such that Λ = ~J · ẑ = Jz = Sz, hence

Jz |pẑ, λ〉 = λ |pẑ, λ〉. (5.5)

We begin with the definition of the free one-particle helicity state of definite total angular

momentum,

|p, jmλ〉 =

√
2j + 1

4π

∫
dΩ D∗(j)mλ (φ, θ,−φ) |~p, λ〉, (5.6)

where the momentum, total angular momentum and its z-component, and rest frame helicity state

of the free particle are respectively given by p, j, m, and λ. The spherical-wave helicity state (LHS)

is represented by a familiar expansion of the plane-wave helicity states (RHS), |~p, λ〉 (which differ

from |pẑ, λ〉 only by a general rotation). The prefactor expression involves an angular integration

over the Wigner D rotation matrix elements,

D(j)
mm′(α, β, γ)δjj′ ≡ 〈jm|U [R(α, β, γ)]|j′m′〉

= 〈jm|e−αJze−βJye−γJz |j′m′〉

= e−iαm〈jm|e−βJy |j′m′〉e−iγm′

= e−iαmdjmm′(β)e−iγm
′
δjj′ , (5.7)

where U [R(α, β, γ)] is the unitary operator representing a general rotation about the three Euler

angles (see Fig. 5.1), djmm′(β) are the usual Wigner d-functions, and the convention R(α, β, γ) →
R(φ, θ,−φ) of [59] has been chosen.
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Figure 5.1: Schematic diagram of the Euler angles (Image Source: [64])

Note, since the final momentum direction, p̂, of a plane-wave particle may be specified by a

rotation using only two angles, namely the polar and azimuthal Euler angles β and α respectively,

with respect to its original body-fixed z-axis orientation, ~p = pẑ, the additional rotation by γ about

the new orientation, p̂, is arbitrary. In this analysis, we stick with the convention of [59] where

the Euler angles are chosen such that R(α, β, γ) → R(φ, θ,−φ); whereby for the sake of sticking

with two angles, the result being the same as a rotation about an axis n̂ = (− sinφ, cosφ, 0) by the

angle θ. Therefore, the angular integration is actually over dΩ ≡ d cosβ dφ and Wigner D matrix

elements of Eqn. 5.6 take the form,

D(j)
mm′(φ, θ,−φ) δjj′ = e−iφ(m−m′)djmm′(θ) δjj′ .

Finally, the expression
√

(2j + 1)/4π simply comes from the proportionality factor between spher-

ical harmonics and Wigner D functions,

Y l
m(θ, φ) =

√
(2l + 1)

4π
D∗(l)mλ (φ, θ, γ), (5.8)
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where use was made of the Wigner D-function orthogonality relation (note the independence from

the γ-angle),

∫
dΩ D(j)

mλ(φ, θ,−φ) D∗(j′)m′λ (φ, θ,−φ) =
4π

2j + 1
δj,j′δm,m′ . (5.9)

Foregoing excessive details about a two-particle plane-wave state, let it suffice to say it may be

conveniently defined by a general rotation of the direct product of two single particle states in the

rest frame where the two momenta are equal in magnitude and back-to-back (opposite helicities)

such that,

|~p, λ1λ2〉 = U [R(φ, θ,−φ)] |pẑ, λ1〉 ⊗ | − pẑ, λ2〉, (5.10)

where the helicity eigenvalue is given by

~J · p̂ |~p, λ1λ2〉 = λ |~p, λ1λ2〉, and λ ≡ λ1 − λ2, (5.11)

and the spherical-wave helicity state expanded in the plane-wave helicity states is given by

|p, jmλ1λ2〉 =

√
2j + 1

4π

∫
dΩ D∗(j)mλ (φ, θ,−φ) |~p, λ1λ2〉. (5.12)

Where the z-axis is a convenient choice for characterizing a general rotation of both a one- and

a two-particle fixed-body helicity state, the decay plane normal in the system rest frame is a most

convenient choice from which to characterize a general rotation of the three-particle fixed-body

helicity state. The decay plane normal is then defined as the unit vector along the axial direction

of any two momenta directions from the system rest frame,

n̂ =
~q1 × ~q2
|~q1 × ~q2|

. (5.13)

Now following the theme as before, a three-particle plane-wave helicity state may be conveniently

defined by a general rotation of the direct product of three single ”body-fixed” particle states,

|φ, θ,−φ;E1, λ1;E2, λ2;E3, λ3〉 ≡ U [R(φ, θ,−φ)] |n̂ = ẑ;E1, λ1;E2, λ2;E3, λ3〉, (5.14)

where it is understood that the applied general rotation is made relative to the decay plane normal

of the 3-particle fixed-body system.
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A three-particle system helicity state with definite total angular momentum and parity (elec-

tromagnetic and strong decays) may be defined as follows:

|jmM ;E1, λ1;E2, λ2;E3, λ3〉 ≡
√

2j + 1

4π

∫
dΩ D∗(j)mM (φ, θ,−φ) |φ, θ,−φ;E1, λ1;E2, λ2;E3, λ3〉

(5.15)

where j is again the total angular momentum of the system and the components m and M are re-

spectively its projections along the fixed-body z-axis and decay plane normal axis, n̂. Furthermore,

the parity of the three particle state is given by,

P |jmM ;E1, λ1;E2, λ2;E3, λ3〉 = (−1)M (−1)s1−λ1+s2−λ2+s3−λ3η1η2η3

|jmM ;E1,−λ1;E2,−λ2;E3,−λ3〉, (5.16)

where si, λi, and ηi are the spin, helicity, and intrinsic parity of the final state particles. For a

three pion final state, si = λi = 0 and η1η2η3 = (−1)3 = −1 such that

P |jmM ;E1, 0;E2, 0;E3, 0〉 = (−1)M+1|jmM ;E1, 0;E2, 0;E3, 0〉. (5.17)

5.1.2 The Decay Amplitude

Next, we move to construct the decay amplitude in terms of the helicity states. For this

subsection, the straight forward explanations given by [63] serve well; however, again we stick with

the convention of [59] with R(α, β, γ) → R(φ, θ,−φ). Additionally, different spin-parity states are

shown to not interfere for Dalitz plot analyses due to both the orthogonality of the Wigner D

functions and the parity conservation symmetry relation.

With the following normalization on the plane-wave helicity states imposed,

〈φ′, θ′,−φ′;E′i , λ
′
i|φ, θ,−φ;Ei, λi〉 = δ(2)(R′ −R) δ(E

′
1 − E1) δ(E

′
2 − E2)

∏

i

δ
λiλ
′
i
, (5.18)

it follows from Eqns. 5.15 and 5.18 that the normalization of the spherical-wave helicity states is

given by

〈j′m′M ′;E′i , λ
′
i|jmM ;Ei, λi〉 = δjj′ δmm′ δMM ′ δ(E

′
1 − E1) δ(E

′
2 − E2)

∏

i

δ
λiλ
′
i
, (5.19)

and the respective completeness relations are given as

∑

λi

∫
dΩ dE1dE2 |φ, θ,−φ;Ei, λi〉 〈φ, θ,−φ;Ei, λi| = I, (5.20)
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and

∑

jmMλi

∫
dE1dE2 |jmM ;Ei, λi〉 〈jmM ;Ei, λi| = I. (5.21)

The decay amplitude representing a resonance of definite total angular momentum and parity,Jη,

decaying into three particles is given as,

Adecay = 〈φ, θ,−φ;Ei, λi|M|jm〉

=
∑

jmMλi

∫
dE1dE2 〈φ, θ,−φ;Ei, λi|jmM ;Ei, λi〉 〈jmM ;Ei, λi|M|jm〉

=
∑

jmMλi

√
2j + 1

4π
D∗(j)mM (φ, θ,−φ) F jM (Ei, λi), (5.22)

where the orientation of the decay plane normal (of the three-particle system) with respect to the

rest frame of the resonance is given by the angles (φ, θ,−φ), and Eqns. 5.15, 5.18, and 5.21 were

used. Furthermore, the reduced decay amplitude,

F jM (Ei, λi) = 〈jmM ;Ei, λi|M|jm〉, (5.23)

is rotationally invariant (as was evident from construction), thus the decay operator M is as well.

Lastly, with parity conservation, the reduced decay amplitude has the following symmetry:

F jM (Ei, λi) = (−1)M (−1)s1−λ1+s2−λ2+s3−λ3 ηη1η2η3 F jM (Ei,−λi). (5.24)

5.1.3 The Production Amplitude

The Lorentz invariant transition amplitude for a two-to-two particle scattering process (a+b→
c+ d) in the center-of-mass frame may be defined in terms of the T-matrix (transition-matrix) and

helicity basis by

(2π)4 δ(4)(pf1 + pf2 − pi1 − pi2) Mfi = 〈pf1 , λf1 ; pf2 , λf2 |T |pi1 , λi1 ; pi2 , λi2〉, (5.25)

such that the two-to-two helicity amplitude may be written in the center-of-mass frame as,

Mfi = (4π)2 Ecm√
|pf ||pi|

〈~pf , λf1λf2 |T (Ecm)|piẑ, λi1 ;−piẑ, λi2〉

= (4π)2 Ecm√
|pf ||pi|

Tλf1λf2λi1λi2 (Ecm, ~pf , pi), (5.26)
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where the initial and final state momenta may be obtained in terms of the Källén triangle function,

λ(a2, b2, c2) = a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

= (a2 − b2 − c2)2 − 4b2c2, (5.27)

namely |pi(f)| =
√
λ(E2

cm,m
2
1(3),m

2
2(4))/2Ecm.

Moreover, upon expanding the T-matrix elements in spherical waves,

Tλf1λf2λi1λi2 =
∑

jm

∑

λf1
λf2

λi1λi2

〈~pf , λf1λf2 |pf , jmλf1λf2〉 〈pf , jmλf1λf2 |T j(Ecm)|pi, jmλi1λi2〉

〈pi, jmλi1λi2 |piẑ, λi1 ;−piẑ, λi2〉

=
∑

j

∑

λf1
λf2

λi1λi2

2j + 1

4π

∑

m

D∗(j)λim
(0, 0, 0)D∗(j)mλf

(φ, θ,−φ) T (j)
λf1λf2λi1λi2

=
∑

j

∑

λf1
λf2

λi1λi2

2j + 1

4π
D∗(j)λiλf

(φ, θ,−φ) T (j)
λf1λf2λi1λi2

, (5.28)

where Eqns. 5.10 and 5.12 were used along with the group property

D∗(j)kk′ (R2R1) =
∑

mD
∗(j)
km (R2)D∗(j)mk′(R1), again λi(f) = λi1(f1) − λi2(f2), and the T-matrix helicity

elements were re-expressed by

T (j)
λf1λf2λi1λi2

(Ecm, pf , pi) = 〈pf , jmλf1λf2 |T j(Ecm)|pi, jmλi1λi2〉. (5.29)

Thus, the production amplitude may be expressed in terms of helicity states as

Aprod = (4π)2 Ecm√
|pf ||pi|

∑

j

2j + 1

4π
D∗(j)λiλf

(φ, θ,−φ) T (j)
λf1λf2λi1λi2

(Ecm, pf , pi). (5.30)

Furthermore, given the general theoretical definition of the differential cross section,

dσ ≡ 1

4
√

(pi1 · pi2)2 −m2
i1
m2
i2

|Mfi|2 dΦn, (5.31)

respectively a product of the so-called flux-factor, the squared transition amplitude, and the n-body

final state phase-space factor, the differential cross-section for the two-to-two scattering process in
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the center-of-mass frame may be obtained as follows:

dσ =
1

4
√

(pi1 · pi2)2 −m2
i1
m2
i2

|Mfi|2 dΦ2

c.m.
=

1

4|pi|Ecm
|Mfi|2

(
1

(4π)2

|pf |
Ecm

dΩcm

)

=
1

(8πEcm)2

|pf |
|pi|
|Mfi|2 dΩcm, (5.32)

or alternatively,

dσ =
1

4
√

(pi1 · pi2)2 −m2
i1
m2
i2

|Mfi|2 dΦ2

=
1

2
√

(2pi1 · pi2 + p2
i1
−m2

i1
+ p2

i2
−m2

i2
)2 − 4m2

i1
m2
i2

|Mfi|2 dΦ2

=
1

2
√

[(pi1 + pi2)2 −m2
i1
−m2

i2
]2 − 4m2

i1
m2
i2

|Mfi|2 dΦ2

c.m.
=

1

2
√
λ(E2

cm,m
2
i1
,m2

i2
)
|Mfi|2

(
1

(4π)2

|pf |
Ecm

dΩcm

)

=
1

2β12E2
cm

1

(4π)2

β34

2
|Mfi|2 dΩcm

=
1

(8πEcm)2

β34

β12
|Mfi|2 dΩcm, (5.33)

where |pi(f)| = Ecmβ12(34)/2 and β12(34) ≡
√
λ12(34)/E

2
cm were used.

5.1.4 The Full Intensity and SDMEs

Additionally, the production and decay amplitudes may be coupled through a sum over the

common helicity states of the intermediate vector meson resonance. Using Eqns. 5.22 and 5.30,

the transition helicity amplitude for a two-to-two resonance production followed by a resonance

three-body decay as in this analysis, is given by

Mfi = (4π)2 Ecm√
|pf ||pi|

∑

m

〈φ, θ,−φ;Ei, λi|M|jm〉 〈~pf , λf1m|T (Ecm)|piẑ, λi1 ;−piẑ, λi2〉

= (4π)2 Ecm√
|pf ||pi|

∑

jmM

∑

λf1
m

λi1λi2

2j + 1

4π
D∗(j)λiλf

(φ, θ,−φ) T (j)
λf1mλi1λi2

(Ecm, ~pf , pi)

∑

λi

√
2j + 1

4π
D∗(j)mM (φ, θ,−φ) F jM (Ei, λi), (5.34)
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where λf2 = m is the resonance helicity from the center-of-mass production plane.

Summing over the spin states, the squared transition helicity amplitude becomes,

∑

spins

|M|2 ∝
∑

mm′

∑

λi

〈φ, θ,−φ;Ei, λi|M|jm〉 ρjmm′ 〈jm′|M†|φ, θ,−φ;Ei, λi〉, (5.35)

where the spin density matrix elements (SDMEs) of the resonance, ρjmm′ , have been introduced (in

the helicity basis) and are assumed independent of the resonance mass [63]. The resonance SDMEs

are in turn given in terms of the production helicity amplitudes and incoming particle SDMEs,

ρjmm′ ∝
∫
dΩ0

∑

λf2
λi1

λi2
λ
f
′
2
λ
i
′
1
λ
i
′
2

〈~pf , λf1m|T (Ecm)|piẑ, λi1 ;−piẑ, λi2〉 ρλi1 ,λ′i1
ρ
λi2 ,λ

′
i2

〈piẑ, λ
′
i1 ;−piẑ, λ

′
i2 |T †(Ecm)|~pf , λ

′
f1m

′〉, (5.36)

where the incoming polarization states of the beam and target are handled within their respec-

tive SDME sums. For example, the familiar 1/2 factors are appropriately accounted for here when

averaging over incoming polarization states for an unpolarized beam and target, respectively. More-

over, it has been made apparent the SDMEs of the resonance are in fact correlated with the spin

states (SDMEs) of the incoming particles through a helicity summed product with the production

amplitude helicity states. For example, as with this analysis, the vector meson SDMEs for photo-

production off an unpolarized fixed target proton where the recoil particle spin is unobserved may

be compactly expressed as ρmm′(V ) = [Tρ(γ)T †]mm′ .

Lastly this subsection follows up with the differential cross section and so-called angular decay

distribution for a two-to-two resonance production followed by a resonance decay to a three-body

final state (a+ b→ c+ d→ c+ 1 + 2 + 3). The differential cross-section is given by

dσ

dRdwdE1dE2
=

2j + 1

8π2

∑

mm′

ρjmm′
∑

MM ′

D∗(j)mM (R(α, β, γ)) D(j)
m′M ′(R(α, β, γ))

×K(w)
∑

λi

F∗(j)M F (j)
M , (5.37)

where again the helicity basis SDMEs of the resonance, ρjmm′ , have been introduced with an explicit

sum over the resonance polarization states. The kinematic factor, K(w), contains the squared

propagator (e.g. Breit-Wigner) pole of the decay resonances as well as the kinematics factors
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arising from the phase space differential [63],

dφ4 =
16

(4π)8

p0

Ecm
dΩ0 {wdw dR dE1 dE2}. (5.38)

The normalized angular decay distribution is given by integrating over all but the decay angles,

dΩ,

dN

dΩ
=

∑

mm′

ρjmm′
∑

M

D∗(j)mM (φ, θ,−φ) D(j)
m′M (φ, θ,−φ) gjM , (5.39)

where the squared, reduced-decay-amplitude factors are given by

gjM =

∫
dwdE1dE2 K(w)

∑

λi

|F jM (Ei, λi)|2. (5.40)

Note, the sum on M runs over 2j+ 1, indicating up to as many couplings. The distribution is nor-

malized when
∫
dΩdN/dΩ = 1 thus requiring

∑
m ρ

j
mm = 1 and

∑
M gjM = 1. It is the normalized

event (vector meson decay) distribution with respect to the orientation of the decay plane normal

relative to the decay angles, dΩ = d cos θdφ. In terms of the overall intensity distribution, the

normalized angular decay distribution is an independent product factor with the non-normalized

squared production amplitudes and squared reduced decay amplitudes, I = |T |2W |F |2.

As it turns out for Dalitz plot distributions, different spin-parity states which could lead to the

same final state do not interfere with one another. First, consider two resonances resonances of

total angular momentum J1 and J2. The amplitude is then given by,

Mfi ∝
∑

m1M1

T1(m1)D∗(j1)
m1M1

(φ, θ,−φ) F j1M1
(Ei, λi) +

∑

m2M2

T2(m2)D∗(j2)
m2M2

(φ, θ,−φ) F j2M2
(Ei, λi),

(5.41)

where for a Dalitz plot distribution,

dσ

dwdE1dE2
∝

∑

m1M1λi

|T1(m1) F j1M1
(Ei, λi)|2 +

∑

m2M2λi

|T2(m2) F j2M2
(Ei, λi)|2, (5.42)

the interference terms vanish upon integration over the decay angles due to the Wigner D function

orthogonality relation (see Eqn. 5.9). Considering now two resonances with the same total angular

momentum but different parities, the interference terms vanish,

dσ

dwdE1dE2
∝

∑

mMλi

|T1(m) F jM (Ei, λi) + T2(m) F jM (Ei,−λi)|2

=
∑

mMλi

|T1(m) F jM (Ei, λi)− T2(m) F jM (Ei, λi)|2 = 0, (5.43)
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where in the second line the parity conservation condition (Eqn. 5.24) was used.

With the rest frame helicity formalism basics presented, e.g. rest frame helicity states and both

the cross-section and angular decay distribution discussed in terms of SDMEs and helicity produc-

tion and decay amplitudes, the following sections proceed with specializations of the normalized

angular decay distribution and decay amplitude for the case of a vector meson decaying into three

pseudoscalar mesons.

5.2 Schilling’s Equation and Spin Density Matrix Elements

In this section, the normalized angular decay distribution and spin-density-matrix-elements

(SDMEs) (see Eqns. 5.36, 5.39, and 5.40) as used in my analysis are presented following the formal-

ism outlined by [2] which is an extension to the work of [59]. In particular, the normalized angular

decay distribution is given in general for a vector meson photoproduced off an unpolarized proton

target which subsequently decays into three pseudoscalar mesons and the recoil proton is unmea-

sured. This distribution which describes the direction of the decay plane normal relative to the

production rest frame is often referred to as the Schilling equation. Moreover, the Schilling equation

is a linear sum of normalized vector meson spin-density-matrix-elements (SDMEs) which depend

upon and are expressed in terms of the summed product of the production helicity amplitudes

and incoming beam SDMEs (polarization states). Finally, the vector meson SDMEs are projected

out into the time- and space-like Pauli-matrices where different linear combinations of the pro-

jected Schilling Equations correspond to different incoming beam polarization types (unpolarized,

circularly polarized, and linear polarized).

Recall that the normalized angular decay distribution is given in terms of a summed product

over the helicities of the decay amplitudes with the resonance SDMEs which are in turn a summed

product over the helicities of the production amplitude with the incoming particle SDMEs. Then

for an unspecified beam polarization, an unpolarized target, and unmeasured recoil proton, the

normalized angular decay distribution is given by,

dN

d cos θdφ
≡ W (θ, φ) = Mρ(V )M † = MTρ(γ)T †M †, (5.44)

ρ(V ) = Tρ(γ)T †, (5.45)

where the sums and normalizations were left implicit here. Also, since the incoming nucleon is

only considered here as unpolarized, the sum over the target SDMEs, represented by ρ(Nt) (see
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Eqn. 5.36), was left out (left implicit) since it accounts for the usual initial state averaged spin sum,

e.g.
∑

sp
|T(sp)|2 = (1/2)

∑
sp
|T(sp)|2 for a proton.

Explicitly, the normalized angular decay distribution above reads,

W(cos θ, φ, ρ(V )) =
3

4π

∑

λV λV ′

ρ(V )λV λV ′ D
∗(1)
λV 0(φ, θ,−φ) D(1)

λV ′0
(φ, θ,−φ), (5.46)

where the normalized vector meson SDMEs are given by

ρ(V )λV λV ′ =
1

N

∑

λN′λγλNλγ′

TλV λN′λγλN ρ(γ)λγλγ′ T ∗λV ′λN′λγ′λN , (5.47)

N =
1

2

∑

λV λN′λγλN

|TλV λN′λγλN |2, (5.48)

the Wigner D functions are

D(1)
10 (φ, θ,−φ) = − 1√

2
sin θ e−iφ,

D(1)
00 (φ, θ,−φ) = cos θ,

D(1)
−10(φ, θ,−φ) =

1√
2

sin θ eiφ, (5.49)

the pure state photon beam polarization density matrices are

ρunpolarized(γ) =
1

2

[
1 0
0 1

]
, (5.50)

ρcircular+(−)(γ) =

[
1 0
0 0

] ([
0 0
0 1

])
, (5.51)

ρlinear(γ) =
1

2

[
1 e−2iΦ

e−2iΦ 1

]
, (5.52)

where Φ is the angle between the xz production plane and the photon polarization vector,

ε = (cos Φ, sin Φ, 0), and the sum over the normalized strong coupling is
∑

M g
(1)
M = 1 (see com-

ments following Eqn. 5.40). In terms of the overall intensity distribution then, the Schilling equation

(normalized angular decay distribution) is an independent product factor with the non-normalized

squared production amplitudes and squared reduced decay amplitudes, Ifull = |T |2WSch|F |2 [2].

As mentioned, the beam polarizations matrices may be represented in standard form in terms

of a sum of the identity matrix, 14×4, and Pauli-matrices,

ρ(γ) =
1

2
I +

1

2
Pγ · σ, (5.53)
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where the polarization vectors, Pγ , for an unpolarized, circularly polarized, and linear polarized

beam type are respectively given by,

Pγ = 0,

Pγ = Pγ(0, 0,±1),

Pγ = Pγ(− cos 2Φ,− sin 2Φ, 0), (5.54)

and Pγ is the measured amount of respective polarization. Consequently, it follows from Eqns. 5.44

and 5.45 that the vector meson density matrix and Schilling Equation may be respectively repre-

sented likewise as,

ρ(V ) = ρ0(V ) +

3∑

α=1

Pαγ ρ
α(V ), (5.55)

W (θ, φ, ρ(V )) = W 0(θ, φ, ρ0(V )) +
3∑

α=1

PαγW
α(θ, φ, ρα(V )). (5.56)

Finally, plugging the polarization vectors (Eqn. 5.54) into the Eqn. 5.56, the Schilling equation

may be separated according to their polarization types,

W unpolarized(θ, φ) = W 0(θ, φ, ρ0(V )) (5.57)

W circular ±(θ, φ) = W 0(θ, φ, ρ0(V )) ± PγW
3(θ, φ, ρ3(V )) (5.58)

W linear(θ, φ) = W 0(θ, φ, ρ0(V ))

− Pγ cos 2Φ W 1(θ, φ, ρ1(V ))− Pγ sin 2Φ W 2(θ, φ, ρ2(V )) (5.59)

and the explicit Wα terms [2] are given by

W 0(θ, φ, ρ0(V )) =
3

4π
(
1

2
(1− ρ0

00) +
1

2
(3ρ0

00 − 1) cos2 θ

−
√

2ρ0
10 sin 2θ cos θ − ρ0

1−1 sin 2θ cos θ),

W 1(θ, φ, ρ1(V )) =
3

4π
(ρ1

11 sin2 θ + ρ1
00 cos2 θ

−
√

2ρ1
10 sin 2θ cos θ − ρ1

1−1 sin2 θ cos 2θ),

W 2(θ, φ, ρ2(V )) =
3

4π
(
√

2Imρ2
10 sin 2θ sin θ + Imρ1

1−1 sin2 θ sin 2θ),

W 3(θ, φ, ρ3(V )) =
3

4π
(
√

2Imρ3
10 sin 2θ sin θ + Imρ3

1−1 sin2 θ sin 2θ), (5.60)
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where the matrix elements of the hermitian vector meson matrices ρ(α) for α = {0, 1, 2, 3} were

reduced by parity conservation,

ραλλ′ = (−1)λ−λ
′
ρα−λ−λ′ for α = 0, 1, (5.61)

ραλλ′ = − (−1)λ−λ
′
ρα−λ−λ′ for α = 2, 3. (5.62)

Thus, specific to my analysis, for the photoproduction of the ω vector meson off and unpolarized

fixed-target proton where the outgoing (recoil) proton polarization is unobserved, the Schilling

equation for an unpolarized incoming photon is given as,

W0(θ, φ, ρ0
λωλ

′
ω
(ω)) ≡ 3

4π
[

1

2
(1− ρ0

00) +
1

2
(3ρ0

00 − 1) cos2 θ

−
√

2 Reρ0
10 sin 2θ cosφ − ρ0

1,−1 sin2 θ cos 2φ ], (5.63)

where the decay angles θadair, φadair (orientation angles of the decay plane normal) were chosen in

the so-called Adair-frame (see Fig. 4.1), and the matrix elements ρ0
00, ρ

0
10, ρ

0
1,−1 are the SDMEs of

the ω vector meson. Again, while the helicity basis subscripts of the ω vector meson SDMEs run

through λω = 0, ± 1, only these three SDMEs remain due to hermiticity and parity conservation.

For further details about the Adair-coordinate system, see Sec. 4.4.

5.3 The Differential Production Cross Section

With the Schilling equation (normalized angular decay distribution) discussed in the previous

section, the additional production and angle-independent decay contributions to the overall inten-

sity distribution, Ifull = |T |2 WSch |F |2, may now be addressed. In this section, a brief discussion

of the differential production cross section measurements are given. In short, these measurements

are proportional to the squared production amplitude, i.e. dσ/dΩprod ∝ |T |2; hence, they aid in

the extraction (fitting) of the ω vector meson SDMEs from the Schilling equation, WSch, as well

as the decay parameter(s) of the reduced (angle-independent) decay distribution, |F |2.

Measurements of the differential cross section for the ω photo-production, γp → pω, were

determined at FSU [1] using the equation,

dσ

dΩ
∼= Nω(Ecm,∆Ω)

∆Ω nγ ρtarget ltarget NA εacc BRω→π+π−π0

, (5.64)
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Figure 5.2: g11, g12 γp→ pω Differential Cross Sections, Eγ ∈ [1.55− 2.55] MeV, Refs. [1, 7]

where Nω is the total number of observed γp→ pω events, ∆Ω is the bin width of the production

solid-angle, nγ is the total number of photons on target, ρ is the density of the target, l is the length

of the target, andNA is Avogadro’s Number, εacc is the detector acceptance, and BRω→π+π−π0 is the

branching ratio for the ω → π+π−π0 decay. In order to reduce the need for additional corrections

to the reconstructed data, only runs which held the same beam current, trigger conditions, and

electron polarization were used. In total, 20 − 30% of the total sample of reconstructed data was

used to determine the ω differential cross section.

Furthermore, upon inspection of the g12 and g11a differential cross sections shown in Fig. 5.2,

it may be noted that the cross section is not constant across the azimuthal center-of-mass (c.m.)

production angle, cos θωcm. For all of the incoming photon energy bins (Eγ in MeV), much of the cross

section along the middle of the cos θωcm range is relatively level and modest in terms of the number
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of produced ω events. This is indicative of s-channel or N∗ production. Production by s-channel is

where the target nucleon absorbs the incoming photon and becomes excited before its subsequent

decay. Furthermore, looking towards the forward c.m. angle, there is a steep increase in the cross

section. This is indicative of a large t-channel or forward scattering production. Production by

t-channel is where the incoming photon scatters off the target nucleon through particle exchange,

for example pseudoscalar (JP = 0−) exchange. In fact, this figure demonstrates that most of the

ω events used in my analysis are produced via the t-channel. Also, since most of the ω resonances

occurred in the forward direction of the detector (near the forward hole), it was quite important

for my analysis to have good simulation of the detector acceptance in this region, see Section 4.5.

While the g12 and g11a differential cross section measurements differ by roughly 5%, the former

was continuing to be refined at the time of my analysis. Thus, I used the reported g11a differential

cross section results [7] to account for the squared production amplitude in my overall fit function.

5.4 The Decay Model

In this section, the ω → 3π decay model developed by the Joint Physics Analysis Center

(JPAC) at JLab is presented. It takes the place of the last factor, the reduced squared decay

amplitude, of the overall intensity distribution, Ifull = |T |2 WSch |F |2 used in my fits to the

data. The model is of the dispersive variety [28, 29, 30, 31] and is based on isobar decomposition,

see Fig. 5.3, and sub-energy unitarity. While the JPAC decay amplitude has been compared with

that of similar models [33, 35], this was the first time this amplitude has been fit to data. The

decay amplitude was developed in the covariant tensor formalism as opposed to the non-relativistic

Zemach approach which I used in the introduction to motivate the core ideas behind the amplitude’s

ansatz construction and Dalitz plot distribution features.

The decay amplitude accounts for both elastic (ππ−ππ) and inelastic (e.g. kk̄−ππ) three-body

rescattering effects, see Fig. 5.4. The effects of the inelastic contributions to the decay amplitude

are largely unknown, they are often constrained with a fit parameter which must be determined

from measured data. The unique and defining characteristic of this decay amplitude lies with the

latter having been novelly separated and parameterized from the former in a power series of a

suitably mapped variable. In my analysis, a single decay parameter, aω→3π
JPAC , was used and sought.

Further details of the JPAC ω → 3π decay model are left to Ref. [3].
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FIG. 1: Isobar decomposition.

FIG. 2: Crossed channel rescattering effects.

ity, the natural starting point for amplitude construction
is the partial wave expansion. At low energies, it is ex-
pected that only low partial waves are significant and
therefore the infinite partial waves series can be trun-
cated to a finite sum. We refer to such an approximation
as the isobar model [38]. The diagrams representing a
truncated partial waves series, a.k.a the isobar decompo-
sition are shown in Fig.1.

Implementation of unitarity on a truncated set of par-
tial waves leads to the so called Khuri-Treiman (KT)
equations [26, 27, 39]. In the the KT framework elas-
tic unitarity in the three crossed channels is used to de-
termine the discontinuity of partial waves which are then
reconstructed using a Cauchy dispersion relation. Conse-
quently additional diagrams contribute to the amplitude,
see Fig. 2. Since, as discussed above, the model truncates
the number of partial waves, it is intrinsically restricted
to low energies. In other words the high-energy behavior
in the KT framework is arbitrary. Mathematically, this
translates into an arbitrariness in choosing the bound-
ary condition for the solution of an integral equation,
which follows from the dispersion relation. It is therefore
more appropriate to consider the KT framework as a set
of constrains on partial wave equations. Furthermore,
above threshold of production of inelastic channels the
KT amplitudes will couple to other open channels. Any
scheme that tries to reduce the sensitivity of the elastic
KT equations to the high-energy contributions in dis-
persion integrals should therefore take into account the
change in the analytical properties of the partial wave
amplitudes above the inelastic open channels. A novel
implementation of this feature within the KT framework
is the main new ingredient of the approach presented in
this paper.

In previous works, in order to suppress sensitivity to
the unconstrained high-energy region, subtracted disper-
sion relations were used [33, 34, 37]. Moreover, KT equa-
tions depend on the elastic 2→ 2 scattering amplitudes.
The ππ → ππ amplitudes needed for analysis of ω/φ
decays have been studied in Ref. [20]. These studies con-
strain the amplitudes only up to certain center of mass

energy (somewhat above K̄K threshold) and this adds
further uncertainty into the KT framework. For exam-
ple, in previous analyses of the vector meson decays the
ππ phase shift was extended beyond the elastic region
with a specific model [37]. In this paper we present an
alternative to the subtraction procedure, which not only
suppresses the high-energy contributions to the disper-
sive integrals, but also takes into account the change in
the analytical properties induced by the opening of in-
elastic channels. Specifically, we split the dispersive in-
tegral into elastic and inelastic parts, and parameterize
the latter in terms of an appropriately chosen conformal
variable.

The paper is organized as follows. In the next section
we summarize the derivation and main features of the KT
framework as applied to the vector meson decays. The
discontinuity relation and the role that inelastic effects
play in choosing a suitable solution of the dispersive re-
lation are discussed in Sections III and IV. The numerical
analysis of ω/φ→ 3π is presented in Section V A. In Sec-
tion V B we consider the electromagnetic (EM) transition
form factors of ω/φ → π0γ∗ as a further application of
our formalism. Summary and outlook are presented in
Section VI.

II. PARTIAL WAVE OR ISOBAR
DECOMPOSITION

The matrix element for the three pion decay of a vector
particle is given in terms of a helicity amplitude Habc

λ ,

〈πa(p1)πb(p2)πc(p3) |T |V (pV , λ)〉 =

= (2π)4 δ(pV − p1 − p2 − p3)Habc
λ . (1)

Here pV and λ are the momentum and helicity of the vec-
tor particle, V = ω/φ in our case, p1, p2, p3 are the mo-
menta of outgoing pions with a, b, c denoting their Carte-
sian isospin indices. The Lorentz-invariant Mandelstam
variables are defined by s = (pV − p3)2, t = (pV − p1)2,
u = (pV − p2)2 and satisfy the relation

s+ t+ u = M2 + 3m2
π . (2)

The helicity amplitude Habc
λ can be expressed in terms

of a single scalar function of the Mandelstam variables,
since Lorentz and parity invariance imply that,

Habc
λ = i εµναβ ε

µ(pV , λ) pν1 p
α
2 p

β
3

P 1
abc√
2
F (s, t, u) , (3)

Figure 5.3: Isobar decomposition [3]
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ity, the natural starting point for amplitude construction
is the partial wave expansion. At low energies, it is ex-
pected that only low partial waves are significant and
therefore the infinite partial waves series can be trun-
cated to a finite sum. We refer to such an approximation
as the isobar model [38]. The diagrams representing a
truncated partial waves series, a.k.a the isobar decompo-
sition are shown in Fig.1.

Implementation of unitarity on a truncated set of par-
tial waves leads to the so called Khuri-Treiman (KT)
equations [26, 27, 39]. In the the KT framework elas-
tic unitarity in the three crossed channels is used to de-
termine the discontinuity of partial waves which are then
reconstructed using a Cauchy dispersion relation. Conse-
quently additional diagrams contribute to the amplitude,
see Fig. 2. Since, as discussed above, the model truncates
the number of partial waves, it is intrinsically restricted
to low energies. In other words the high-energy behavior
in the KT framework is arbitrary. Mathematically, this
translates into an arbitrariness in choosing the bound-
ary condition for the solution of an integral equation,
which follows from the dispersion relation. It is therefore
more appropriate to consider the KT framework as a set
of constrains on partial wave equations. Furthermore,
above threshold of production of inelastic channels the
KT amplitudes will couple to other open channels. Any
scheme that tries to reduce the sensitivity of the elastic
KT equations to the high-energy contributions in dis-
persion integrals should therefore take into account the
change in the analytical properties of the partial wave
amplitudes above the inelastic open channels. A novel
implementation of this feature within the KT framework
is the main new ingredient of the approach presented in
this paper.

In previous works, in order to suppress sensitivity to
the unconstrained high-energy region, subtracted disper-
sion relations were used [33, 34, 37]. Moreover, KT equa-
tions depend on the elastic 2→ 2 scattering amplitudes.
The ππ → ππ amplitudes needed for analysis of ω/φ
decays have been studied in Ref. [20]. These studies con-
strain the amplitudes only up to certain center of mass

energy (somewhat above K̄K threshold) and this adds
further uncertainty into the KT framework. For exam-
ple, in previous analyses of the vector meson decays the
ππ phase shift was extended beyond the elastic region
with a specific model [37]. In this paper we present an
alternative to the subtraction procedure, which not only
suppresses the high-energy contributions to the disper-
sive integrals, but also takes into account the change in
the analytical properties induced by the opening of in-
elastic channels. Specifically, we split the dispersive in-
tegral into elastic and inelastic parts, and parameterize
the latter in terms of an appropriately chosen conformal
variable.

The paper is organized as follows. In the next section
we summarize the derivation and main features of the KT
framework as applied to the vector meson decays. The
discontinuity relation and the role that inelastic effects
play in choosing a suitable solution of the dispersive re-
lation are discussed in Sections III and IV. The numerical
analysis of ω/φ→ 3π is presented in Section V A. In Sec-
tion V B we consider the electromagnetic (EM) transition
form factors of ω/φ → π0γ∗ as a further application of
our formalism. Summary and outlook are presented in
Section VI.

II. PARTIAL WAVE OR ISOBAR
DECOMPOSITION

The matrix element for the three pion decay of a vector
particle is given in terms of a helicity amplitude Habc

λ ,

〈πa(p1)πb(p2)πc(p3) |T |V (pV , λ)〉 =

= (2π)4 δ(pV − p1 − p2 − p3)Habc
λ . (1)

Here pV and λ are the momentum and helicity of the vec-
tor particle, V = ω/φ in our case, p1, p2, p3 are the mo-
menta of outgoing pions with a, b, c denoting their Carte-
sian isospin indices. The Lorentz-invariant Mandelstam
variables are defined by s = (pV − p3)2, t = (pV − p1)2,
u = (pV − p2)2 and satisfy the relation

s+ t+ u = M2 + 3m2
π . (2)

The helicity amplitude Habc
λ can be expressed in terms

of a single scalar function of the Mandelstam variables,
since Lorentz and parity invariance imply that,

Habc
λ = i εµναβ ε

µ(pV , λ) pν1 p
α
2 p

β
3

P 1
abc√
2
F (s, t, u) , (3)

Figure 5.4: Crossed channel rescattering effects [3]

The ω → 3π decay transition matrix elements may be expressed as

〈πa(p1)πb(p2)πc(p3)|T |V (pω, λ)〉 = (2π)4 δ(pω − p1 − p2 − p3) Habc
λ . (5.65)

The helicity decay amplitude expressed in the covariant tensor formalism is then given by

Habc
λ = iεµνρσε

µ(pω, λ) pν1 p
ρ
2 p

σ
3

P 1
abc√
2
F(s, t, u), (5.66)

where a, b, and c, are the isospin indices, P 1
abc is the isospin coupling factor between the ω and

pions. The 4-momenta of the three pions are contracted with the polarization vector for the ω

meson through a totally anti-symmetric 4th rank Levi-Civita tensor leaving the expression Lorentz

invariant. Since the isospin factor and spin-parity factor are each anti-symmetric, the overall

helicity amplitude is symmetric as required to reflect the Bose symmetry of the system. F(s, t, u)

is an analytic scalar function which describes the dynamics of the decay in terms of the final-state

particle-pair Mandalstam invariants,

s = (p3 + p1)2, t = (p1 + p2)2, u = (p2 + p3)2. (5.67)

The scalar function is free from kinematic singularities and respects a crossing symmetry such that

it describes both the ω → 3π as well as the ωπ → 2π transition processes.
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Considering s-channel scattering ω(pω, λ)πc3 → πa1π
b
2 in the center-of-mass frame, the momentum

the incoming pion and outgoing pions may be obtained again through the use of the symmetric

Källèn functions

p(s) =
λ

1
2 (s,M2

ω,m
2
π)

2
√
s

, q(s) =
λ

1
2 (s,m2

π,m
2
π)

2
√
s

. (5.68)

The s-channel scattering angle may be obtained in terms of the Mandalstam variables through

cos θs =
t− u

4p(s)q(s)
=

t− u
k(s)

= zs. (5.69)

The s-channel partial wave decomposition of the decay amplitude may be written in the x-z plane

as

Habc
λ =

P 1
abc√
2

∞∑

j=l=1,3,...

(2j + 1)djλ0(θs) f
j
λ. (5.70)

For the strong decay of a vector meson into three pseudoscalar (spinless) mesons, e.g. ω → 3π, the

Wigner D function orthogonality condition as well as parity conservation lead to noninterference of

Jη states. Consequently, only one (scalar) coupling which is proportional to the decay width (see

Eqns. 5.40, 5.42, 5.43). Furthermore, Bose symmetry and parity conservation lead to odd integer

values of total angular momentum and only one scalar function, f j0 (s) = 0, and f j1 (s) = −f j−1(s) ≡
fj(s).

Relating Habc
λ to F(s, t, u), the kinematic singularities in fj(s) may be identified and factored

leaving only dynamical singularities to contend with in F(s, t, u). The helicity amplitude may be

re-expressed as

Habc
λ = − P 1

abc

√
φ

4

∞∑

j=l=1,3,...

(p(s)q(s))j−1 P
′
j (zs) Fj(s), (5.71)

where the Wigner d-functions have been written in terms of Legendre polynomial derivatives,

P
′
j(cos θs), such that

dj10(θs) = − sin θs√
j(j + 1)

P
′
j (cos θs), (5.72)

Fj(s) is now given by,

Fj(s) =

√
2(2j + 1)fj(s)√

s
√
j(j + 1)(p(s)q(s))j

, (5.73)
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and φ = (2 sin θ
√
sp(s)q(s))2 = stu − m2

π(M2
ω − m2

π)2 is the Lorentz invariant so-called Kibble

boundary function. This boundary function is of the same origin of the previously discussed λ

factor, see Eqns. 1.24 and 4.6. By inspection,

F(s, t, u) =
∞∑

j=l=1,3,...

(p(s)q(s))j−1 P
′
j (zs) Fj(s) (5.74)

where the polynomial (p(s)q(s))j−1P
′
j (zs) is free from kinematic singularities. Thus, only dynamical

singularities must be contended with for the redefined reduced partial waves expression Fj(s).

The infinite sum in the s-channel physical region converges, however, it is truncated with the

expectation that the first few angular momentum states dominate. The other channels are obtained

through an analytical continuation of the s-channel beyond the physical region on into the decay

region, and they are then introduced into the overall amplitude sum. The scalar function F(s, t, u)

is approximated by a linear combination of the truncated partial wave series,

F(s, t, u) =
∞∑

j=l=1,3,...

(p(s)q(s))j−1 P
′
j(zs) Fj(s) + (s→ t) + (s→ u), (5.75)

with the t- and u-channel scattering angles given by

cos θt =
s− u

4p(t)q(t)
=

s− u
k(t)

= zt, cos θu =
t− s

4p(u)q(u)
=

t− s
k(u)

= zu. (5.76)

The lowest angular momentum state of the partial-wave expansion is expected to dominate. Thus,

only the P-wave, J = L = 1 is considered. For real s ≤ (Mw +mπ)2, Fj=l=1(s) = F (s) is given by

F (s) =
1

π

∫ ∞

4m2
π

DiscF
′
(s)

s′ − s− iε ds
′, (5.77)

where

DiscF (s) = ρ(s) t∗(s)(F (s) + F̂ (s)), F̂ (s) = 3

∫ +1

−1

1− z2
s

2
F (t(s, zs))dzs. (5.78)

where ρ(s) is the two-body phase space of the two-body ππ− ππ amplitude (ρ(s) =
√

1− 4m2
π/s),

t∗(s) is the two-to-two-body scattering channel associated with the ρ isobars, F(s) is the direct-

channel ω decay contribution, and F̂(s′) is the rescattered ππ − ππ subamplitude contribution.

For the other channels, this equation must be analytically continued in s to the decay region

4m2
π ≤ s ≤ (Mw +mπ)2.
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Upon implementation of several analytic integration techniques and inclusion of inelastic scat-

tering contributions [3], Eqn. 5.77 becomes

F(s) = Ω(s)

(
1

π

∫ si

sπ

ds′
ρ(s′)t∗(s′)

Ω∗(s′)

F̂(s′)

s− s′ + Σ(s)

)
, (5.79)

where clean separation has been made of the elastic and inelastic scattering contributions, respec-

tively the first and second terms. A conformal mapping technique was used to analytically express

and parameterize the inelastic contributions via the power series expansion,

Σ(s) =

∞∑

i=0

ai ω
i(s), (5.80)

where

ωi(s) =

√
si −

√
si − s√

si +
√
si − s

(5.81)

is a conformal variable accounting for the analytic continuation of the inelastic contributions. Ω(s)

is the so-called Omnès function which contains the direct-channel contribution for the ω decay. The

parameter si is set equal to 1 GeV2 which is the energy where inelastic contributions are likely to

start becoming significant, e.g. 4m2
K ∼ 0.97 GeV2.

The differential decay width is given by

d2Γ

dsdt
=

P (s, t)|F (s, t, u)|2
3(2π)332M3

ω

, (5.82)

where P (s, t) = φ/4 with φ given in Eqn. 5.71, F (s, t, u) is the full JPAC ω → 3π decay amplitude,

and Mω is the mass of the decaying ω resonance. Note, only one decay parameter for the power

series expansion was used in my fits, i.e.

Σ(s, t, u) ∼ N(1 + 2
a1

a0
ω1(s, t, u)) = N(1 + 2aω→3π

JPACω
1(s, t, u)) (5.83)

where all three isobar channels were included, a0 was absorbed into the overall normalization N ,

ω0(s, t, u) ≡ 1, ω1(s, t, u) for the three channels is given by Eqn. 5.81, and a1
a0
≡ aω→3π

JPAC . Fig. 5.5 is

an illustration of “reduced” Dalitz plot distribution comparisons between the CLAS-g12 acceptance

corrected (signal) data and JPAC modelled distributions for various value selections of the JPAC

ω → 3π decay parameter. These Dalitz plots distributions have been “reduced” by dividing out the

kinematic factor φ, see Eqn. 5.71. This was done in order to visualized the sole effects of the squared

JPAC decay amplitude contribution in the distribution. The predicted value to be extracted from

the data was roughly +8, i.e. aω→3π
JPAC ∼ +8.
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Figure 5.5: A reduced Dalitz plot distribution, DP (x, y)/φ, comparison between the
CLAS-g12 acceptance corrected (signal) data versus JPAC modelled distributions for var-
ious chosen JPAC ω → 3π decay parameter values. The decay distribution factor φ, given
in Eqn. 5.71, is divided out for the purpose of visualizing the effects of the JPAC dis-
tribution alone. The JPAC ω → 3π decay parameter was expected to be about +8, i.e.
aω→3π
JPAC ∼ +8 [65]
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CHAPTER 6

FIT PROCEDURE AND RESULTS

Results using the two independent CLAS data sets are presented for spin density matrix elements

(SDMEs) of the Schilling equation. As well, investigatory results for the JPAC decay parameter of

the dynamic JPAC decay amplitude are presented using the two data sets. The latter results are

first-time extractions of the decay parameter using real data. Systematic errors were not yet taken

into account. A brief overview of the framework used to conduct the Dalitz plot analysis for the

ω → 3π decay precedes the results.

The overview includes the fit framework set-up, framework additions, the fit method, fitter

consistency and result quality checks, and the fit functions used. Some detail is provided in regards

to the overall fitting and plotting process which proceeded as follows: data input formatting, data

reading, amplitude fitting, result output, filling “booked” histograms, and histogram comparison-

plotting.

6.1 Fit Framework

For my Dalitz plot analysis of the ω → 3π decay, I built up a framework of data analysis

tools (a multitude of C++, ROOT, and bash scripting programs) centered around a core partial-

wave analysis (PWA) software package called AmpTools, see Fig. 6.1. AmpTools was developed at

Indiana University (IU) [4] and serves as an excellent event-based fitting framework. It employs

the extended Log Likelihood Method (LLM) which is based on the Maximum Likelihood Method

(MLM). Its internal fitting techniques utilize the widely used MINUIT (ROOT TMinuit class)

routines which were originally developed at CERN [6]. This portion of the package was written at

Cornell University.

6.1.1 Setting Up AmpTools

The AmpTools framework consists of a series of C++ based, user-level interfaces which provide

users with an organized and flexible means to utilize its core fitting and plotting software. Out of the
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Figure 6.1: A schema of my partial-wave analysis framework
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box, there are two practice PWA tutorials which allow new users to familiarize themselves with the

main features of the framework as well as the user-scopes of these interfaces. Using a tutorial copy

as a template, one re-tailors the user-scopes of the interfaces to meet their own process dependent

and formatting needs. Depending on how you count them, there are roughly five main interfaces

to edit: a data reader, a data writer, an amplitude calculator, a fit specific run-card, and a results

plotter.

In brief, AmpTools reads and stores to memory the 4-momenta of the data and Monte Carlo

(MC) events from separate ROOT-formatted n-tuple files, i.e. the 4-momenta of the data, raw

MC, and detector simulated MC events must respectively be stored into separate (.root) files.

Following the scheme illustrated in Fig. 6.1, I obtained these ROOT-formatted n-tuple files from

our data text files through a “converter” (e.g. a txt2root) routine. AmpTools handles an events

4-momenta by storing them into a so-called kinematics array, and it has an option for storing and

using event weights as well. My converter routine loads and stores data and MC event weights,

e.g. Q-values and the differential cross section values, into ROOT n-tuples at this stage. For the

purpose conserving run-time memory usage, only the event 4-momenta and weights are utilized

by AmpTools. Therefore, while one may store more event kinematic quantities (event kinematics)

of interest into these ROOT files for use with other routines, they won’t be accessible within

the interfaces. Should any event kinematics be desired for use within one of the interfaces, one

must recalculate the respective kinematics from the event 4-momenta available from the AmpTools

kinematics array.

The formatting of the data reader class is to be tailored to read the event 4-momenta and

weight from the respective n-tuples within the ROOT files. It is within this interface that the

4-momenta and weight for each event are stored into a kinematics array which is accessible by

various routines within the AmpTools framework. For convenience, AmpTools also includes a data

writer interface which may be used in conjunction with a basic phase space generator and “toy”

acceptance generator to write out events for fit testing purposes. One may, however, skip the setup

and use of the data writer altogether as I did if the MCs have already been obtained through other

programs such as genr8 and GSIM which were mentioned in Sec. 4.5.

The amplitude interface is the so-called “CalcAmplitude()” class where an amplitude may be

written out or called for example from an external link to a fortran sub-routine. Here the previ-
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ously loaded event 4-momenta are accessible and desired event kinematics may be calculated. An

amplitude expression may be directly derived and expressed or the event kinematics my be used in

supplement to a subroutine call function. For each supplied event, the routine will then of course

calculate and return the complex (real or imaginary if specified) amplitude values. Moreover, mul-

tiple complex amplitudes may be included (“registered”) at once in this manner. Whether these

multiple amplitudes are needed as an overall product or a type of product sum can be specified

within the run-card for the fit.

The run-card is read by the data reader. In it, foregoing specific details, the user may specify

the links to the three data-type event files, set event cut flags, register the amplitude(s) to be

used, initialize any amplitude parameter(s), designate different amplitude products and sums, set

desired signal “switch(es)” to respective registered amplitudes, and specify the output links. After

submitting a fit and upon fit convergence, the fit parameter values and their corresponding MINUIT

calculated covariant error matrix are printed to a text file. One must write a set of scripts here to

read in and plot these values. I used a combination of C++, ROOT, and bash scripts.

The result plotting interface must be set up. The underlying routine for this interface does not

plot the fit parameter results; rather, it uses them in a manner which attempts to reproduce real

event kinematic distributions from the corresponding fit-function weighted MC distributions. To

set up these kinematic distributions, this interface uses the Histogram Booking method similar to

that used in ROOT. Here one defines, calculates, and fills their output histograms. As of AmpTools

version 0.9.0 and later, its dependence on CERN’s CLHEP libraries was removed. Thus, any and

all calculations developed using ROOT libraries, e.g. for displaying kinematic distributions of the

input data, may now be copied and pasted directly into this interface for immediate use.

Furthermore, the results plotting routine will produce an ROOT output file containing these

kinematic distributions for both the fit-weighted MC event output and original real data event

input. A program needs to be made to overlay the respective input and output distribution types

for visual comparison. These comparisons are referred to as so-called “quality checks” of the

corresponding Log Likelihood fit. Thus, these checks provide a further means for assessing the

quality of the fit results in relation to how well they reproduce the event kinematics of the input

data.
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6.1.2 Framework Additions

In addition to getting the AmpTools framework up and running, I extended and generalized

my overall data (“DataTools”) and PWA analysis framework by developing additional joint C++

and ROOT based program modules, see Fig. 6.1. Each and every routine throughout the analysis

framework is “push-button” and “switch” automated through bash scripting. All routines which can

utilize server job submission, e.g. currently the FSU server, are equipped to do such. Throughout

the overall framework, both single and double-binned fitting with up to 5 primary and secondary

bin-type selections have been enabled. The following routines were added to the framework: input

and output directory creation; “text2root” data conversion with event weight options; three data

modification routines; fit-function selection, fixed and random initialization, and run-card creation;

pseudo-data generation with multiple consistency check options; multi-fit-function array submission

options; “best” fit selection of N submitted and returned fits, and three types of plot comparison

routines.

The primary and secondary bin-type selections may each be chosen from any of the following

five kinematic bin-variables: the overall center-of-mass (c.m.) energy,
√
s = W ; the incoming

photon lab-frame energy, Eγ ; the resonance mass, Mω; the c.m. resonance production angle,

cosθωcm; and the recoil momentum, Mandalstam-t. The data and MC weighting options include

Q-value weighting the data and both differential cross-section and/or Schilling equation weighting

the detector simulated accepted MCs. I created a routine which can be used to obtain additional

or supplementary weights from either histogram input or result output. The routine outputs the

weights into text files which may be readily fed back into the data converter for subsequent fits.

There are three data modification routines. The cutData routine allows one to apply kinematic

cuts to the events from a ROOT file. The divideData routine allows one to obtain events from

an N th “segment” of the ROOT file. For example, if one wanted to divide a ROOT file into 10ths

and investigate only the events in the 9ths partition, this routine will extract those events from

the original ROOT file. Also, the routine provides the option for randomly extracting N events

from a ROOT file. The adjAcceptance routine allows one to adjust the acceptance of a set of MC

files. For example, if one wants to study global event acceptance effects across a set of files binned

in W at 10 MeV intervals, one can simply specify a desired acceptance to apply across the range

of files. Then one can run fits using these files to see how much the fitted parameters or quality
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checks change. Once investigated, a restAcceptance routine can be run which restores (swaps) the

modified MC files back to their originals.

I modified the pseudo-data generator within the PWA framework from the original version

provided with AmpTools. The method used behind this routine is based on the so-called acceptance-

rejection method which is discussed in Sec. 6.2.1. The modifications allow one to use their MCs

directly from the original ROOT files (from the data converter) as opposed to generating basic MCs

from the ROOT class TPhaseSpace. Thus, either set of MCs (raw or detector simulated MCs) may

be used to generate the pseudo-data. The accompanying bash script provides 7 options each of

which pertain to obtaining and/or generating a useful data set (three data types) combination.

These data sets combinations are then used as inputs to the fitter for various respective systematic

checks, e.g. fitter, fit function, acceptance checks. For example, note that the fit method and fitter

require the three input files which typically correspond to the following three data types: data,

raw MCs, and detector simulated MCs (i.e. data, “rawMC” a.k.a. “genMC”, “simMC” a.k.a.

“accMC”). However, a check on the consistency of a fitter with a particular fit function may utilize

the option which creates the data set from genMC events only, i.e. pseudodata-genMC, genMC,

genMC, where the first data-type is pseudo-data generated from genMC and the latter data-types

account assume a perfect detector (no-detector effects). Another but similar option may include the

detector effects which are absent from data set of the previous example, i.e. (pseudo-data-accMC,

genMC, accMC).

Also, I developed three separate plotting routines which collectively rendered pertinent feedback

from various kinematic distribution comparisons of both the input and output events. One program,

compareInputData, compares the input data types and acceptance corrected data. In particular,

various kinematic distributions of the data are respectively presented side-by-side for the three

background-signal separation (Qvalue) weight types: signal and background (no-Qvalue), signal

only (Qvalue), and background only (1-Qvalue). Also, MC comparisons are presented for the

distributions with and without MC-weights. Next, the program, plotLLfits, is simply a routine

which provides side-by-side quality checks of various kinematic distributions between the signal

input data and fit weighted detector simulated MCs. Additionally, the program compareLLFitIO,

compares aspects found in both above comparison programs. Importantly, this program provides
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before-fit and after-fit acceptance comparisons for various kinematic distributions, not merely global

bin count acceptances. This program allows one to assess the acceptance dependence of the fits.

6.2 Fit Method

As mentioned in the prelude of Chapter 5, in this analysis, a mass independent fit is performed

following a variation of the unbinned, event-based, Maximum Likelihood Method (MLM). This

method used within AmpTools is the so-called Minimum Extended Log Likelihood Method (Mini-

mum ELLM) or simply the Log Likelihood Method (LLM) for short. Starting from the Extended

Maximum Likelihood equation,

L ≡
(
n̄n

n!
e−n̄

) n∏

i

P(~x,Xi), (6.1)

P(~x,Xi) is the probability density or normalized intensity distribution, P ∝ I , function represent-

ing the occurrence of an event i with parameter set ~x and kinematic factors Xi,
∏n
i indicates a

product of the probability densities over the range 1, i, . . . , n is made, and the factor within paren-

theses represents the Poisson distribution of obtaining n sample events for an expected n̄ events.

Thus, the Likelihood function is a product of probabilities with a range over all measured sample

events. In order to account for the fact that the total number of sample events measured from

a sample size N is an occurrence of probability itself, the Likelihood function is “extended” by

additionally multiplying it by the Poisson distribution.

By maximizing this likelihood function, one obtains the best estimators x̂ for the parameters.

In practice, a computationally efficient way to maximize this extended likelihood function is to

actually turn the product into a sum by taking its natural log,

− ln L ≡ −
Ndata∑

i=1

ln I(~x,Xi) +
S(s)

Ngen

Nacc∑

j=1

I(~x,Xj) + const., (6.2)

and instead minimize the log of the extended likelihood, the so-called Log Likelihood Method.

Note, the first term on the right-hand-side of Eqn. 6.2 involves a sum of natural logarithms of the

intensity function over the sample of reconstructed data events, n = Ndata. The form of the second

term which was derived from the number of expected events, n̄, is proportional to the Monte Carlo

simulated efficiency (acceptance) of the detector. This term involves a sum of the intensity over

the accepted MC events, Nacc and it is normalized by the total number of generated MC events,
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Ngen. Lastly, the factor S(s) is proportional to the expected event phase space. The two terms

are referred to as the data log sum and Monte Carlo (MC) integral sum, respectively. Since the

logarithm of the likelihood function is a monotonically increasing function, it is guaranteed that by

minimizing the log-likelihood function the likelihood function is maximized. Additionally, instead

of optimizing the log-likelihood function by setting its derivative to zero, the AmpTools framework

fits for the best estimators of the parameter set by floating the parameter values and recalculating

the log-likelihood for each adjustment until convergence to the log likelihood minima is reached.

Furthermore, AmpTools views and treats an intensity in the following way,

I(~x,Xi) =
∑

α

∣∣∣∣∣
∑

β

TαβMαβ(~x,Xi)

∣∣∣∣∣

2

, (6.3)

where the intensity is a function of both the production amplitudes, Tαβ, and the decay amplitudes,

Mαβ(~x,Xi). AmpTools treats the production amplitudes as complex fit parameters and the decay

amplitudes are supplemented fit functions of the decay theory. The sums over the general α and

β indices represent incoherent and coherent sums over the amplitudes, respectively. In terms of

a sum over total angular momentum states (partial-waves), the log likelihood function, Eqn. 6.2,

within AmpTools takes the form

−2 ln L =− 2

Ndata∑

n=1

Qn ln

∣∣∣∣∣
∑

j,j′

TjT ∗j′Mj(~x,Xn)M∗
j′(~x,Xn)

∣∣∣∣∣

+ 2
1

Ngen

∑

j,j′

(
TjT ∗j′

Nacc∑

m=1

∣∣∣∣∣Mj(~x,Xm)M∗
j′(~x,Xm)

∣∣∣∣∣

)
+ const., (6.4)

where the Q-value weights, Qi, of the data events has been made explicit and the phase space

factor S(s) as shown in Eqn. 6.2 was absorbed into the production amplitudes which AmpTools

treats as complex fit parameters. For finely binned fits, the corresponding change to the production

amplitudes within the log term results in a mere constant shift to the overall log likelihood function.

For the same reasons the phase space factor is no longer visually explicit, any MC weight factors

used to weight the detector simulated MC events follow the same treatment path mentioned of the

phase space factor. They are, therefore, not made explicit here either.

In particular, AmpTools starts with the calculation of the first of the two terms in Eqn. 6.4.

The intensity is calculated event-by-event using the 4-momenta from the momentum n-tuple stored

in the data ROOT-file. The intensity is re-calculated for each and all of the data events over and
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over again for each and every adjustment made to the fit parameters by MINUIT. This iterative

process is continued until either convergence of the fit is reached or the fit fails. With only one

iteration needed, the intensity was calculated for each the detector-simulated MCs using the very

same parameter values found from the data converged fit. Finally, the log likelihood is calculated

from the two terms and printed to an output file along with the values of the fit parameters, the

covariant error matrix, the integral populations of each data-type, and the detector acceptance.

While a robust goodness-of-fit criteria has been established for the binned minimum χ2 method,

it has often been the case that only relative goodness-of-fit treatments have been used for the

unbinned, event-based log-likelihood method. For example, in order to reduce the likeliness that a

fit has reached a local-extrema rather than the global-extrema, a relative comparison can be made

by re-running the fitter with different initialization values of the parameter set and comparing

the relative log-likelihood values, taking the smallest value as the relatively best fit. Lastly, a

fairly recent paper, however, may warrant future attention and consideration, as it suggests and

demonstrates some possibly robust methods which various disciplines have picked up and used for

their goodness-of-fit definition for the log-likelihood method [66]. In my analysis for each fit, I use

the former method and take the “best” relative fit results out of 10 pseudo-randomly initialized

parameter fits. The chosen bounds for which the randomly initialized parameter values span are

either already mathematically bounded, for example a SDME may range between [−1, 1] or based

on theoretical guidance.

6.2.1 Fit Quality and Fitter Consistency Checks

The acceptance-rejection method (ARM) is a popular method used for generating random

samples from single- as well as multi-variate distributions. This method is used to obtain “quality”

checks on the event kinematic distributions. Additionally, this method may be used to obtain an

essential and preliminary assessment check on the convergence consistency of the fitter. The two

respective programs using this method are the plotResults program of AmpTools and a re-tailored

version of the pseudoData generator program of AmpTools, see Fig. 6.1.

The idea behind the ARM stems from the desire to obtain a sample distribution of say a

distribution of density f within a domain X ⊂ Rd. If a sample from another distribution of density
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g(x) is generated such that,

f(x) ≤ c g(x) for all x ∈ X, (6.5)

where constant c > 0, then a sample X may be obtained from g(x) with an acceptance of probability

f(X)/[cg(X)] [67]. In practice, one simply compares a calculated weight, wi, for each and every

event of a sample distribution to that of a pseudo-randomly generated event, ui, of a uniform

distribution U(0,1) via the condition

ui ≤ wi =
I(xi)

Imax
, (6.6)

where the constant c is equal or near to 1, Ii is the calculated event variable of interest, Imax is

the variable maximum out of the event sample, and the events xi are accepted (rejected) when the

condition is upheld (not upheld).

Using this method, one can weight various kinematic distributions for the detector simulated

MCs and compare these distributions to those of the input signal (q-weighted) data events. These

comparisons are referred to as quality checks on the fits. Its a measure of how well the fit weighted

kinematic MC distributions reproduce the event kinematics of the data. Furthermore, this method

can be used to select out events from a MC distribution based on the fixed-parameter value selection

used in obtaining the event intensity (fit-function) weights, e.g. Ii(x = 3, Xi)/Imax where x = 3 is

the selected fixed-parameter value and Xi represents the kinematic phase space for the ith event.

Subsequently, when the “selected” MC sample is fed back through the fitter (along with the two

other accompanying data inputs), the freely varying fit parameter ought to converge towards the

same value previously selected. This is referred to as a consistency check on the fitter for a given fit

function and phase space. I modified the pseudo-data generator in my PWA framework to directly

accept the ROOT format MC files which are also used as inputs to the fitter.

6.3 Fit Functions

The overall fit function or rather the intensity for a PWA takes the general form as that found

in Eqn. 6.4, namely I(~x,X) =
∑

j,j′ TjT ∗j′Mj(~x,X)M∗
j′(~x,X). In the case of the ω → 3π decay,

the Bose-statistics of the final-state particles require the sum over total angular momentum in

the partial-wave expansion to only be of integer values, i.e. J = l = 1, 2, 3, · · · . Conservation of
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parity adds the additional restriction that these be odd integers, i.e. J = 1, 3, 5, · · · . For Dalitz

plot analyses of strong decays, different spin-parity states don’t interfere. This was demonstrated

from the orthonormality condition of Wigner D-functions and parity conservation. Lastly, for low

energies, the first terms of a partial-wave expansion are expected to dominate. Lastly, with the

lowest lying states of a partial-wave expansion expected to dominate, only the P-wave (J = L = 1)

was considered in my analysis. The intensity function in my PWA takes the factorized form,

Ifull = |T |2 |M|2, (6.7)

where T andM are the production and decay amplitudes, respectively. The squared decay ampli-

tude, |M|2, is comprised of three factors,

|M|2 = |~pπ+ × ~pπ− |2 W |F |2, (6.8)

where |~pπ+ × ~pπ− |2 is a kinematic boundary factor, W is the angular decay distribution, and |F |2

is the reduced decay distribution. The latter two distributions factorized from one another in part

due to their respective helicity dependent and independence, see Eqns. 5.39 and 5.40.

Thus, the fit function for my analysis takes the factorized form

Ifull = |T |2 |~pπ+ × ~pπ− |2 W0(cos θ, φ, ρ0
10, ρ

0
00, ρ

0
1,−1) |F(s, t, u, aω→3π

JPAC)|2, (6.9)

where W0(cos θ, φ, ρ0
10, ρ

0
00, ρ

0
1,−1) is the Schilling equation (Eqn. 5.60) for an unpolarized beam

and target and unobserved recoil proton spin, θ and φ are the decay angles (chosen in the Adair

frame, see Fig. 4.1) with respect to the decay plane normal, the ρ0’s are the ω meson SDMEs

for the respective Schilling equation, F(s, t, u, aω→3π
JPAC) is the JPAC decay amplitude (Eqn. 5.82),

and aω→3π
JPAC is the JPAC ω → 3π decay parameter. The squared production amplitude, |T |2, was

supplemented with the differential cross section measurements from the CLAS-g11a group [7] for all

of my fits. In practice, I did this by weighting my detector accepted MC events with the differential

cross section measurements for all of my fits.

Note, with the Log Likelihood function, there are two sums, the data log sum and the MC

integral sum (see Eqn. 6.2). The intensity distribution in the former (latter) term is calculated

using data (detector simulated MC) events. The goal of the Log Likelihood method is to minimize

the difference between these two terms. The major differences between the data and detector
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simulated MC (accMC) distributions can be attributed to the lack of real physics modelled in

the latter. By extracting physics weights from the data, one can enhance the physics modelled

in the MC as well as improve the minimization or convergence of the Log Likelihood function.

For example, quite often with partial-wave analyses, in the absence of differential cross section

measurements, the exponential t-slope dependence of the data is extracted and the MC events are

generated with this dependence. This is further improved when performed per energy bin.

When extracting the three SDMEs, ρ0
10, ρ

0
00, ρ

0
1,−1, the fit function I used in my fits was given

by

Ifull = |~pπ+ × ~pπ− |2 W0(cos θ, φ, ρ0
10, ρ

0
00, ρ

0
1,−1), (6.10)

where the differential cross section measurements were used to weight the accMC events, the λ

of Eqn. 4.6 was used for |~pπ+ × ~pπ− |2, and F = 1. When extracting the JPAC ω → 3π decay

parameter, aω→3π
JPAC , the fit function I used was given by

Ifull = |~pπ+ × ~pπ− |2 W0(cos θ, φ, ρ0
10, ρ

0
00, ρ

0
1,−1) |F(s, t, u, aω→3π

JPAC)|2, (6.11)

where the differential cross section measurements along with the Schilling equation were used to

weight the accMC events, and the λ of Eqn. 4.6 was used for |~pπ+ × ~pπ− |2. Also, the φ in terms of

the physical (non-averaged) pion masses was also used. This differs from the φ given in Eqn. 5.71.

For comparison, the two versions are given by

φave = stu−m2
πave(M

2
ω −m2

πave)
2 (6.12)

φphysical = stu+ 2m2
π+m

2
π−m

2
π0 + 2(M2

ω − s)m2
π+m

2
π− −M2

ωm
2
π0

+ 2(M2
ω − t)m2

π−m
2
π0 −M2

ωm
2
π+ + 2(M2

ω − u)m2
π+m

2
π0 −M2

ωm
2
π− , (6.13)

where they have been labelled in order to distinguish their use in the figures and discussion of

the results. For the Schilling equation weights, I used the SDME values from the CLAS-g11a

experiment.

6.4 Results

The results presented in this section for the ω → 3π decay distribution are two-fold. The

distribution factorizes into two contributions, namely a helicity independent part and a helicity
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dependent part, each of which contain parameters to be fitted to data. In order to investigate

the JPAC decay amplitude model [3] (see Eqn. 5.82) which is the dynamic (helicity independent)

contribution of the decay amplitude, I also needed to account for the Schilling equation [2] (see

Eqn. 5.60) which is the angular (helicity dependent) contribution of the decay. Hence, parameter

results are presented for both contributions. A brief recap of the two contributions and their

respective parameterizations is provided below.

The normalized angular decay distribution for a vector meson decaying to three pseudoscalar

particles under the experimental conditions of an unpolarized beam, unpolarized target, and unob-

served spins for the recoil particles, is described by the Schilling equation. This equation describes

the distribution of the decay with respect to the decay angles as well as Spin Density Matrix Ele-

ments (SDMEs) of the decaying resonance. The decay angles are taken with respect to the decay

plane normal, and the SDMEs are spin density states (in the helicity basis) of the decay resonances.

Under the conditions mentioned above and due to hermiticity and parity conservation, the distri-

bution contains three contributing SDMEs. For the ω → 3π decay, these SDMEs are ρω10, ρω00, and

ρω1,−1 where the subscripts define the helicity transition states of the respective matrix elements.

The dynamic contribution of the decay is modelled by the JPAC decay amplitude. The isobar

based, covariant helicity amplitude was constructed in the dispersive framework making use of

analyticity and sub-energy unitarity. It accounts for both elastic and inelastic rescattering effects.

Per isobar channel, the largely unknown inelastic contributions were novelly separated from the

elastic contributions and parameterized by a power series expansion about a conformally mapped

Mandalstam variable of the respective isobar state. Due to the symmetry of each channel and with

the leading contribution of each expansion expected to suffice, only one parameter contributed to

the overall parameterization of all inelastic contributions (see Eqn. 5.83). This parameter is referred

to as the JPAC ω → 3π decay parameter, aω→3π
JPAC .

In this section, I present both SDME and JPAC decay parameter results for the ω → 3π decay

which were each extracted from both CLAS-g12 and CLAS-g8b data. The extracted CLAS-g12

and CLAS-g8b ω meson SDMEs are each independently compared with the results published by

the CLAS-g11a group [7]. The investigatory results for the JPAC ω → 3π decay parameter, aω→3π
JPAC ,

are first time fits to real data. The expected results for this parameter are +8, see Fig.5.5. Each

fitted parameter result presented is the best (lowest likelihood value) out of 10 results wherein the
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parameters for each fit were randomly initialized. For all results, the systematic errors remain to

be studied and taken into account.

Considering the differences in target position for the three data sets, my results for the CLAS-

g12 and CLAS-g8b SDMEs are each in fairly good agreement with those extracted from the g11a

data. The preliminary fits for the JPAC ω → 3π decay parameter show a strong dependence on the

production variables, e.g. center-of-mass energy and momentum transfer, as well as the resonance

mass (i.e. W = Ec.m., t, and Mω, respectively).

6.4.1 CLAS-g12 SDMEs

SDMEs were extracted for the center-of-mass (c.m.) production energy for W : [1770 −
2840] MeV at widths of 10 MeV and the c.m. ω cosine of the production angle for cos(θωc.m.) :

[−1.0− 1.0] at widths of 0.1. My results across W : [1900− 2840] MeV were in fairly good agree-

ment with those extracted from the CLAS-g11a data, see sample Figs. 6.2 through 6.11. The

difference in target position between the two experiments (90 cm upstream and the CLAS center,

respectively) may contribute to the observed differences in both the SDMEs and differential cross

section measurements. The differential cross section measurements obtained from the two exper-

iments differ by roughly 5% [1]. The systematic errors for these CLAS-g12 SDME results remain

to be studied and taken into account.

Scanning across the c.m. production energies, one see that the strongest differences between

the SDMEs of the CLAS-g12 and CLAS-g11a results appear in the forward c.m. production angle,

roughly between cos(θωc.m.) : [0.5 − 1.0]. As well, differences between the ρ1,−1 SDMEs in the

forward production angle region cos(θωc.m.) : [0.2−1.0] on across the energies W : [1900−2410] MeV

tend to be the strongest. These differences tended to be exacerbated for some of the fits across

W : [1800− 1900] (not present in the figures) and require further investigation. Yet there were no

strong or obvious indications that these differences were correlated with any trends in the respective

global bin acceptances or the more subtle quality check acceptances. The trends of the result values

for each of the three SDMEs across the energy and cosine angle are in fairly good agreement between

the two data sets.

84



)
cm

θcos_(
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

00ρ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

00
ρWbin1900-1910, Fit Parameter: 

00
ρ

 fit
00

ρ
 g11

00
ρ

)
cm

θcos_(
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

10ρ

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

10
ρWbin1900-1910, Fit Parameter: 

10
ρ

 fit
10

ρ
 g11

10
ρ

)
cm

θcos_(
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1,
-1

ρ

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1,-1
ρWbin1900-1910, Fit Parameter: 

1,-1
ρ

 fit
1,-1

ρ
 g11

1,-1
ρ

Figure 6.2: g12, g11a SDME comparison for W : [1900 − 1910] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.3: g12, g11a SDME comparison for W : [2000 − 2010] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.4: g12, g11a SDME comparison for W : [2100 − 2110] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.5: g12, g11a SDME comparison for W : [2200 − 2210] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.6: g12, g11a SDME comparison for W : [2300 − 2310] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.7: g12, g11a SDME comparison for W : [2400 − 2410] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.8: g12, g11a SDME comparison for W : [2500 − 2510] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.9: g12, g11a SDME comparison for W : [2620 − 2630] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.10: g12, g11a SDME comparison for W : [2700− 2710] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.11: g12, g11a SDME comparison for W : [2800− 2810] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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6.4.2 CLAS-g8b SDMEs

SDMEs were extracted for the center-of-mass (c.m.) production energy for W : [1800 −
2300] MeV at widths of 50 MeV and the c.m. ω cosine of the production angle for cos(θωc.m.) :

[−1.0− 1.0] at widths of 0.1. My results across W : [1900− 2300] MeV were in fairly good agree-

ment with those extracted from the CLAS-g11a data, see sample Figs. 6.12 through 6.15. The

difference in target position between the two experiments (20 cm upstream and the CLAS center,

respectively) may contribute to the observed differences in both the SDMEs and differential cross

section measurements. The differential cross section measurements obtained from the two exper-

iments differ by roughly 5% [1]. The systematic errors for these CLAS-g8b SDME results remain

to be studied and taken into account.

Scanning across the c.m. production energies, one see that the strongest differences between

the SDMEs of the CLAS-g8b and CLAS-g11a results appear in the forward c.m. production

angle, roughly between cos(θωc.m.) : [0.2 − 1.0]. Across the entire c.m. cosine production angle,

cos(θωc.m.) : [−1.0−1.0], for the energiesW : [1900−2200] MeV, the trends between ρ0,0 SDME values

for the two data set appear reasonably similar yet the g8b results were consistently shifted upwards

from the corresponding g11a results. Correcting for systematic error might resolve this observed

difference. These differences tended to be exacerbated for some of the fits across W : [1800− 1900]

(not present in the figures) and require further investigation. Yet there were no strong or obvious

indications that these differences were correlated with any trends in the respective global bin

acceptances or the more subtle quality check acceptances. The trends of the result values for each

of the three SDMEs across the energy and cosine angle are in fairly good agreement between the

two data sets.

6.4.3 CLAS-g12 JPAC ω → 3π Decay Parameter

The following JPAC ω → 3π decay parameter results were extracted from the JPAC decay

amplitude, F(s, t, u, aω→3π
JPAC), using CLAS-g12 data. The squared production amplitude, |T |2, and

angular decay distribution, W , of the overall fit function, Ifull ∝ |T |2 W |F |2, were taken

into account by weighting the detector simulated MC events with the differential cross section

measurements and Schilling equation. Thus, the fit function fitted to the CLAS-g12 data took the

reduced form Ifull = |~Pπ+ × ~Pπ− |2 |F |2 where the prefactor is the (squared decay plane normal)
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Figure 6.12: g8b, g11a SDME comparison for W : [1900− 1950] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.13: g8b, g11a SDME comparison for W : [2000− 2050] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.14: g8b, g11a SDME comparison for W : [2100− 2150] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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Figure 6.15: g8b, g11a SDME comparison for W : [2200− 2250] MeV and
cos(θωcm) : [−1.0− 1.0] at widths of 0.1
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kinematic boundary factor. For these investigatory results of the JPAC decay parameter, it is

important to note that the CLAS-g11a differential cross section measurements and SDMEs were

used in lieu of those extracted from the CLAS-g12 data. The systematic errors for the CLAS-g12

SDMEs and JPAC decay parameter results remain to be studied and taken into account.

The fit results for the JPAC decay parameter, aω→3π
JPAC , to CLAS-g12 data are ordered with respect

to single and double binned fits as follows: single bins of c.m. production energy, W ; primary bins

of incoming photon energy, Eγ with secondary bins in momentum transfer, t-Mandalstam; single

bins across the ω resonance mass, Mω; and primary bins of c.m. production energy, W , with

secondary bins having symmetric cuts about the omega mass mean, e.g. Mω ± 10 MeV.

For W : [1770 − 2840] MeV at widths of 10 MeV, Fig. 6.16, the JPAC decay parameter using

λ as the boundary factor had an visible c.m. production energy dependence for the parameter

with a spread mostly between aω→3π
JPAC : [−5 − 5]. The sources for the two peaks between W :

[1770 − 2000] MeV and the rise in the higher energy region from W : [2500 − 2840] MeV are

unknown at this time. Focusing on the more stable region W : [2000− 2500] MeV, also Fig. 6.17,

the parameter values have a spread mostly from aω→3π
JPAC : [−3.5− 1.0]. These values were all lower

than the expected aω→3π
JPAC = +8.

These fits were reproduced using φphysical for the boundary parameter, see Figs. 6.18 and 6.19.

The peaks in the lower energy region and the lift in the higher energy region were visibly present as

before. The bow across the energy might be due to experimental effects such as slight differences

in the mean values of the ω mass distribution across the c.m. production energy. This effect is

under investigation. Focusing again on the more stable middle region, W : [2000 − 2500] MeV,

the spread in parameter values appear to be slightly tighter aside from the issue of the obvious

energy dependence. Most notable from the change in boundary factors is the overall decrease for

the parameter values across the entire energy range. The spread across the more stable middle

region has shifted downward from roughly aω→3π
JPAC ≈ −1.5 to aω→3π

JPAC ≈ −4.5 and aω→3π
JPAC ≈ −6.5 in

the low and high energy regions of W : [2000− 2500] MeV, respectively.

For Eγ : [1200 − 3800] MeV at widths of 100 MeV and t : [0.100 − 3.100] GeV2 at widths of

0.100 GeV2, the JPAC decay parameter using λ as the boundary factor had a visible momentum

transfer dependence, see sample Figs. 6.20 through 6.23. The decay parameter values within Eγ :

[1700 − 1800] and t : [0.400 − 1.300] GeV2, Eγ : [2100 − 2200] and t : [0.100 − 0.400] GeV2, and
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Eγ : [2300 − 2400] and t : [0.100 − 0.400] GeV2 are notably positive, aω→3π
JPAC ≈ [1 − 3.8]; however,

the vast majority of decay parameter values are negative.

Coming back to the middle region of W : [2000−2500], the JPAC decay parameter was extracted

using φphysical for the boundary parameter for primary bins in W at widths of 100 MeV and

secondary bins in the omega mass for Mω : [650 − 900] MeV at widths of 10 MeV and 5 MeV.

The results for W : [2000 − 2100] and Mω : [650 − 900] MeV at widths of 10 MeV and 5 MeV

are respectively given in Figs. 6.24 and 6.25. The remaining 4 pairs of results across W are given

between Figs. 6.26 and 6.33. A clear dependence on both the energy and resonance mass were

observed. The lower and higher mass regions tended to have larger positive decay parameter values

than those extracted from the middle mass region of Mω : [775−795] MeV. The latter tend towards

zero or just below zero. The fitted parameter values of the 10 MeV wide mass bins often tend to

be larger than those of the 5 MeV wide bins. Parameter values for the mass ranges below and

above Mω : [745− 820] MeV are not present due to low statistics (predominantly low Monte Carlo

statistics).

Perhaps most interesting are the next sets of fits for the decay parameter with respect to sym-

metric cuts about the ω resonance mass. For W : [2000−2500] at width of 10 MeV and increasingly

tighter symmetric cuts about the mean of the resonance mass, i.e. Mω±40, 30, 20, 15, 10, 5, 2 MeV,

the JPAC decay parameter was extracted using φphysical for the boundary parameter, see Figs. 6.34

through ??. The decay parameter increases across the energy, most notably shifting from negative

to positive values as the symmetric cuts approach the mean value of the ω mass which roughly

corresponds to the precision PDG value. Thus, as the width of the mass approaches zero and the

mass itself approaches that of the PDG value, the JPAC decay parameter shifts from the negative

values of Fig. 6.34 towards the expected positive value region, e.g. more closely aligned with the

expected aω→3π
JPAC = +8.
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Figure 6.16: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data forW : [1770−2840] MeV at widths of 10 MeV. The boundary
factor used was λ, Eqn. 4.6
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Figure 6.17: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data forW : [2000−2500] MeV at widths of 10 MeV. The boundary
factor used was λ, Eqn. 4.6
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Figure 6.18: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data forW : [1770−2840] MeV at widths of 10 MeV. The boundary
factor used was φphysical, Eqn. 6.13
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Figure 6.19: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data forW : [2000−2500] MeV at widths of 10 MeV. The boundary
factor used was φphysical, Eqn. 6.13
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Figure 6.20: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for Eγ : [1700 − 1800] MeV and t : [0.100 − 3.100] GeV2 at
widths of 0.100 GeV2. The boundary factor used was λ, Eqn. 4.6
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Figure 6.21: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for Eγ : [1900 − 2000] MeV and t : [0.100 − 3.100] GeV2 at
widths of 0.100 GeV2. The boundary factor used was λ, Eqn. 4.6
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Figure 6.22: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for Eγ : [2100 − 2200] MeV and t : [0.100 − 3.100] GeV2 at
widths of 0.100 GeV2. The boundary factor used was λ, Eqn. 4.6
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Figure 6.23: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for Eγ : [2300 − 2400] MeV and t : [0.100 − 3.100] GeV2 at
widths of 0.100 GeV2. The boundary factor used was λ, Eqn. 4.6
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Figure 6.24: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000 − 2100] MeV and Mω : [740 − 820] MeV at
widths of 10 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.25: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000 − 2100] MeV and Mω : [740 − 820] MeV at
widths of 5 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.26: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2100 − 2200] MeV and Mω : [740 − 820] MeV at
widths of 10 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.27: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2100 − 2200] MeV and Mω : [740 − 820] MeV at
widths of 5 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.28: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2200 − 2300] MeV and Mω : [740 − 820] MeV at
widths of 10 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.29: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2200 − 2300] MeV and Mω : [740 − 820] MeV at
widths of 5 MeV. The boundary factor used was φphysical, Eqn. 6.13

101



 (GeV)ωM
0.75 0.76 0.77 0.78 0.79 0.8 0.81

JP
A

C
π

 3
→

ω a

0

10

20

30

40

JPAC

π 3→ωWbin2300-2400, Fit Parameter: a

 Decay Parameterπ 3→ω

JPAC
π 3→ωa

Figure 6.30: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2300 − 2400] MeV and Mω : [740 − 820] MeV at
widths of 10 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.31: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2300 − 2400] MeV and Mω : [740 − 820] MeV at
widths of 5 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.32: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2400 − 2500] MeV and Mω : [740 − 820] MeV at
widths of 10 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.33: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2400 − 2500] MeV and Mω : [740 − 820] MeV at
widths of 5 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.34: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000−2500] MeV at widths of 10 MeV with no cuts
about Mω. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.35: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000−2500] MeV at widths of 10 MeV, Mω±40 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.36: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000−2500] MeV at widths of 10 MeV, Mω±30 MeV.
The boundary factor used was φphysical, Eqn. 6.13

W (GeV)
2 2.1 2.2 2.3 2.4 2.5

JP
A

C
π

 3
→

ω a

-8

-6

-4

-2

0

JPAC

π 3→ωWbin2000-2500, Fit Parameter: a

 Decay Parameterπ 3→ω

JPAC
π 3→ωa

Figure 6.37: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000−2500] MeV at widths of 10 MeV, Mω±20 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.38: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000−2500] MeV at widths of 10 MeV, Mω±15 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.39: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000−2500] MeV at widths of 10 MeV, Mω±10 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.40: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000 − 2500] MeV at widths of 10 MeV, Mω ±
5.0 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.41: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g12 data for W : [2000 − 2500] MeV at widths of 10 MeV, Mω ±
2.0 MeV. The boundary factor used was φphysical, Eqn. 6.13
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6.4.4 CLAS-g8b JPAC ω → 3π Decay Parameter

The following JPAC ω → 3π decay parameter results were extracted from the JPAC decay

amplitude, F(s, t, u, aω→3π
JPAC), using CLAS-g8b data. The squared production amplitude, |T |2, and

angular decay distribution, W , of the overall fit function, Ifull ∝ |T |2 W |F |2, were taken

into account by weighting the detector simulated MC events with the differential cross section

measurements and Schilling equation. Thus, the fit function fitted to the CLAS-g8b data took the

reduced form Ifull = |~Pπ+ × ~Pπ− |2 |F |2 where the prefactor is the (squared decay plane normal)

kinematic boundary factor. For these investigatory results of the JPAC decay parameter, it is

important to note that the CLAS-g11a differential cross section measurements and SDMEs were

used in lieu of those extracted from the CLAS-g8b data. The systematic errors for the CLAS-g8b

SDMEs and JPAC decay parameter results remain to be studied and taken into account.

The fit results for the JPAC decay parameter, aω→3π
JPAC , to CLAS-g8b data are ordered with

respect to single and double binned fits as follows: single bins of c.m. production energy, W ; primary

bins of incoming photon energy, Eγ with secondary bins in momentum transfer, t-Mandalstam;

single bins accross the ω resonance mass, Mω; and primary bins of c.m. production energy, W ,

with secondary bins having symmetric cuts about the omega mass mean, e.g. Mω ± 10 MeV.

For W : [1770 − 2340] MeV at widths of 10 MeV, Fig. 6.42, the JPAC decay parameter using

φphysical as the boundary factor had an visible c.m. production energy dependence for the parameter

with a spread mostly between aω→3π
JPAC : [−10−0]. The results trend across the energy is fairly similar

to that for the CLAS-g12 data, Fig. 6.18. There appear to be two peaks again, but this time located

between W : [1770 − 1900] MeV. The decay parameter values were all lower than the expected

aω→3π
JPAC = +8. They decreased from 0 to −10 with increasing energy. The source of these peaks

and the overall downward slope for higher energies are unknown at this time. The latter may be

related to slight variations in the omega mean of the omega mass across the c.m. production energy

which needs further investigation. Focusing on the more stable region W : [1900− 2300] MeV, also

Fig. ??, the parameter values have a spread mostly from aω→3π
JPAC : [−10− (−6.2)].

For Eγ : [1200 − 2400] MeV at widths of 100 MeV and t : [0.100 − 3.100] GeV2 at widths of

0.100 GeV2, the JPAC decay parameter using λ as the boundary factor had a visible momentum

transfer dependence, see sample Figs. 6.44 through 6.47. The decay parameter values with the

exception of Eγ : [1700− 1800] and t : [0.100− 0.400] GeV2 were negative. The trends were similar

108



to those for the CLAS-g12 data but the plateau values in the middle range of t were more (negative)

suppressed.

Coming back to the middle region of W : [1900−2300], the JPAC decay parameter was extracted

using φphysical for the boundary parameter for primary bins in W at widths of 100 MeV and

secondary bins in the omega mass for Mω : [650− 900] MeV at widths of 10 MeV and 5 MeV. The

sample results for W : [2000 − 2100] and Mω : [650 − 900] MeV at widths of 10 MeV and 5 MeV

are respectively given in Figs. 6.48 and 6.49. Two remaining 2 pairs of results across W are given

between Figs. 6.50 and 6.53. A clear dependence on both the energy and resonance mass were

observed. Parameter values for the mass ranges below and above Mω : [750 − 820] MeV are not

present due to low statistics (predominantly low Monte Carlo statistics).

Finally, for W : [1900−2340] at width of 10 MeV and increasingly tighter symmetric cuts about

the mean of the resonance mass, i.e. Mω ± 40, 30, 20, 15, 10, 5 MeV, the JPAC decay parameter

was extracted using φphysical for the boundary parameter, see Figs. 6.54 through 6.60. The decay

parameter increases across the energy, again migrating from from negative values towards positive

values as the symmetric cuts approach the mean value of the ω mass. As the width of the mass

approaches zero and the mass itself approaches its mean value (and roughly the PDG value), the

JPAC decay parameter shifts from the negative values of Fig. 6.54 towards the expected positive

value region. The shift towards positive values is not as pronounced as it was for the CLAS-g12

results; however, the trend is the same.
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Figure 6.42: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [1770−2340] MeV at widths of 10 MeV. The bound-
ary factor used was φphysical, Eqn. 6.13
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Figure 6.43: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [1900−2340] MeV at widths of 10 MeV. The bound-
ary factor used was φphysical, Eqn. 6.13
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Figure 6.44: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for Eγ : [1700 − 1800] MeV and t : [0.100 − 3.100] GeV2 at
widths of 0.100 GeV2. The boundary factor used was λ, Eqn. 4.6
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Figure 6.45: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for Eγ : [1900 − 2000] MeV and t : [0.100 − 3.100] GeV2 at
widths of 0.100 GeV2. The boundary factor used was λ, Eqn. 4.6
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Figure 6.46: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for Eγ : [2100 − 2200] MeV and t : [0.100 − 3.100] GeV2 at
widths of 0.100 GeV2. The boundary factor used was λ, Eqn. 4.6
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Figure 6.47: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for Eγ : [2300 − 2400] MeV and t : [0.100 − 3.100] GeV2 at
widths of 0.100 GeV2. The boundary factor used was λ, Eqn. 4.6
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Figure 6.48: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [2000 − 2100] MeV and Mω : [740 − 820] MeV at
widths of 10 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.49: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [2000 − 2100] MeV and Mω : [740 − 820] MeV at
widths of 5 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.50: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [2100 − 2200] MeV and Mω : [740 − 820] MeV at
widths of 10 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.51: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [2100 − 2200] MeV and Mω : [740 − 820] MeV at
widths of 5 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.52: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [2200 − 2300] MeV and Mω : [740 − 820] MeV at
widths of 10 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.53: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [2200 − 2300] MeV and Mω : [740 − 820] MeV at
widths of 5 MeV. The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.54: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data for W : [1900−2340] MeV at widths of 10 MeV. The bound-
ary factor used was φphysical, Eqn. 6.13
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Figure 6.55: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data forW : [1900−2340] MeV at widths of 10 MeV,Mω±40 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.56: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data forW : [1900−2340] MeV at widths of 10 MeV,Mω±30 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.57: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data forW : [1900−2340] MeV at widths of 10 MeV,Mω±20 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.58: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data forW : [1900−2340] MeV at widths of 10 MeV,Mω±15 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.59: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-

g8b data forW : [1900−2340] MeV at widths of 10 MeV,Mω±10 MeV.
The boundary factor used was φphysical, Eqn. 6.13
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Figure 6.60: JPAC ω → 3π decay parameter, aω→3π
JPAC , fitted to CLAS-g8b data for W :

[1900 − 2340] MeV at widths of 10 MeV, Mω ± 5 MeV. The boundary factor used was
φphysical, Eqn. 6.13
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CHAPTER 7

CONCLUSION

7.1 Conclusion

As part of the Experimental Hadronic Nuclear Group at Florida State University and in close

cooperation with the Joint Physics Analysis Center (JPAC) at Jefferson National Laboratory, I

conducted a Dalitz plot analysis of the ω → 3π decay. Results were presented for the spin density

matrix elements (SDMEs) and JPAC decay parameter which were respectively extracted from

fitting the Schilling equation and JPAC ω → 3π decay amplitude to two independent sets of data.

These were first time fits of the JPAC decay amplitude to real data. The fits were employed using

the unbinned, event based, log likelihood method.

The two data sets used in my analysis originated from the CLAS-g8b and CLAS-g12 photo-

production experiments held during the 2005 and 2008 summer run periods, respectively. In both

cases, ω vector mesons were photoproduced off a fixed, unpolarized, liquid hydrogen target. The

reconstructed events, γp→ pω → pπ+π−{π0}, for both samples were prepared at FSU. While the

photon beam polarization for the CLAS-g8b and CLAS-g12 experiments differed, the polarization

information of the respectively linearly and circularly polarized events was discarded in order to

compare results from the two unpolarized data sets.

The Dalitz distribution was modelled by three factors: a kinematic boundary factor associated

with the spin-parity transition of the decay; a helicity dependent distribution associated with the

decay angles; and a helicity independent distribution associated with the dynamics of the decay.

The latter factors were taken into account by the Schilling equation and an isobar based, covariant

decay amplitude supplemented by JPAC.

The CLAS-g8b and CLAS-g12 SDMEs were each compared to those extracted from the CLAS-

g11a group [7]. The two comparison were found to be in fair agreement with one another. Although

not always the case, deviations in of the CLAS-g8b or CLAS-g12 SDME values with respect to those

of CLAS-g11a tend to appear more frequently towards the forward angle region of the detector. Yet,

the trends are consistent for all three parameter values across the majority of the c.m. production
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energy and the resonance cosine production angle. Further refinement of the CLAS-g8b and CLAS-

g12 SDMEs is necessary. Systematic error were not taken into account and need to be addressed.

Also, there is a known 5% disagreement between the g12 and g11a cross-sections at this time. The

reasons behind this difference, while unknown at the time, may also play a role in the observed

differences between the results.

Further work is to be done in terms of investigating the fit results for the JPAC ω → 3π decay

parameter, aω→3π
JPAC . The observed peaks and lift in the results respectively located at the low and

high end of center of mass energy, W , warrant further experimental investigation; however, upon

exhaustive investigation of the parameter behavior over various binning and cuts to the data, it is

clear that several kinematic dependencies of the decay parameter have been established. Namely,

through independent fits to the CLAS-g12 and CLAS-g8b data, we observed an energy, momentum

transfer, and resonance mass dependence of the parameter. Despite the lower statistics of the

CLAS-g8b data, the results of the two data sets were mostly consistent in terms of trends if not in

value.

Also, our investigation of symmetric cuts about the ω mass has uncovered that the JPAC decay

parameter value increases in value as tighter cuts are imposed about the mean. We suspect that

as our cuts approach the nominal PDG value for the ω mass, the parameter value approaches most

closely towards the theoretically supposed value. This would be consistent with the theory having

been fit to the PDG mass value. This observed behavior is most clear from our fits to the CLAS-g12

data; whereas, the effect is quite a bit more suppressed for the lower statistic g8b data set. Finally,

systematic error analysis for both of these fit results must be investigated further.

In order to perform my analysis, I set up and established a framework of data analysis and

partial-wave analysis tools. The central partial wave fitting framework was the latest AmpTools

(v0.9.2) PWA framework developed at Indiana University. Making use of C++, ROOT, and bash

scripting, I extended the framework to include data modification routines, an input data comparison

routine, a quality checks routine, a fitter consistency routine, a best of N fits routine, input and

output data comparison routine, and double binned fitting options for up to 5 bin types. The

user-friendly framework was current and tested.

Lastly, since the φ → 3π decay is a case similar to that of the ω → 3π decay, the current

framework in place for the ω decay can be readily modified for a partial wave analysis of the
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φ decay. While we do not have g12 data for this reaction, data likely will be obtained for the

reaction in the near future from the GlueX experiment held in Hall D at JLAB. It would be quite

exciting to see how the two analyses of light meson decays would compare.

7.2 Future Prospects

The next steps with the Dalitz plot analysis for the ω → 3π involve searching for the cause(s)

of instabilities within the fit results for the JPAC ω → 3π decay parameter, aω→3π
JPAC . Once the

refinement of the g12 cross-section is complete, code is in place to obtain the parameters of the

Dalitz expansion amplitude. These parameters provide a means for comparison between other data

sets and theorists models. Plus, systematic errors with these fit results will need to be pursued.

In terms of performing another analyses on light vector meson decays, a future research goal

may proceed with a Dalitz plot analysis for the φ → 3π decay. For one, GlueX is expected to

obtain high statistics data of both ω, φ → 3π reactions. Should one reconstruct and observe the

φ resonance for the like decay channel, my current framework is well suited for an immediate

Dalitz plot analysis of the φ → 3π decay. Also, a search for any previous analyses on this decay

channel which may have been performed by the groups involved with its detection (the KLOE I

experiment) and listing in the Particle Data Group (PDG) book [8] would be advisable. In the

end, the two analyses together, i.e. the ω, φ → 3π decays, would be of great comparative interest

in terms of Dalitz plot analyses and JPAC decay amplitude fit results. These results would serve

as additional tests of the JPAC isobar model’s ability to properly account for and render insight

into the dynamics underlying these three-body strong decays.
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