Study of $\pi^+\pi^-$ and ω Photo- production using a circularly polarized beam at Jefferson Lab

ZULKAIDA AKBAR (FSU, TALLAHASSEE, FLORIDA)

XVI International Conference on Hadron Spectroscopy 09/18/2015

Outline

- Motivation
- Previous Measurement
- CLAS-g12 Experiment
- Data Analysis Technique
- Preliminary Result
- Summary and Outlook

MOTIVATION

- Missing Baryon Problem
- The need of Photo-production, Omega Channel and Polarization Observable

Missing Baryon Problem

 A lot of baryon resonances that is predicted by Constituent Quark Model (CQM) and Lattice QCD have not been observed vet.

Lattice calculation by R. G. Edwards et al

J^P	M_{CQM}	M_{PDG}	Rating	J^P	M_{CQM}	M_{PDG}	Rating
$1/2^{-}$	1460	1535	****	$1/2^+$	1540	1440	****
$1/2^{-}$	1535	1650	****	$1/2^+$	1770	1710	***
$1/2^{-}$	1945	2090	*	$1/2^+$	1880		
$1/2^{-}$	2030			$1/2^+$	1975		
$1/2^{-}$	2070			$1/2^+$	2065	2100	*
$1/2^{-}$	2145			$1/2^+$	2210		
$1/2^{-}$	2195						
$3/2^{-}$	1495	1520	****	$3/2^+$	1795	1720	****
$3/2^{-}$	1625	1700	***	$3/2^{+}$	1870		
$3/2^{-}$	1960	2080	**	$3/2^+$	1910		
$3/2^{-}$	2055			$3/2^{+}$	1950		
$3/2^{-}$	2095			$3/2^+$	2030		
$3/2^{-}$	2165						
$3/2^{-}$	2180						
$5/2^{-}$	1630	1675	****	$5/2^+$	1770	1680	****
$5/2^{-}$	2080			$5/2^+$	1980	2000	**
$5/2^{-}$	2095	2200	**	$5/2^+$	1995		
$5/2^{-}$	2180						
$5/2^{-}$	2235						
$5/2^{-}$	2260						
$5/2^{-}$	2295						
$5/2^{-}$	2305						
$7/2^{-}$	2090	2190	****	$7/2^+$	2000	1990	**
$7/2^{-}$	2205			$7/2^+$	2390		
$7/2^{-}$	2255			$7/2^+$	2410		
$7/2^{-}$	2305			$7/2^+$	2455		
$7/2^{-}$	2355						
$9/2^{-}$	2215	2250	****	$9/2^+$	2345	2220	****
$11/2^{-}$	2600	2600	***				
$11/2^{-}$	2670						
$11/2^{-}$	2700						
$11/2^{-}$	2770						
$13/2^{-}$	2715						

Resonance predicted by Capstick & Robert using CQM

• The need of Photo-production, Omega Channel and Polarization Observable

- Why photoproduction? A lot of experiment conducted using Nπ channel. Koniuk and Isgur suggested that missing resonances may not coupled strongly to Nπ system.
- Capstick also predicted that missing N* coupled fairly strong to γp.
- Why omega? A lot of effort has been put to study N* resonances through pseudoscalar meson channel. We need to complete those effort by studying N* through vector meson production channel (pω, pρ, pφ).
- Omega meson is still under explored. And it is Isospin filter, the resonances only comes from N*.

- The choices of $p\pi^+\pi^-$ final states (detected) allow us to study vector meson (ω and ρ).
- Why polarization observable? Polarization observables are very important to isolate resonance duo to the overlapping nature among resonances.

PREVIOUS MEASUREMENT

- Previous Measurement in $\gamma p \rightarrow p \omega$
- Previous Measurement in $\gamma p \rightarrow p\pi^+\pi^-$ from CLAS-g1c

Previous Measurement in $\gamma p \rightarrow p \omega$

Experiment	Energy Range	Decay Channel	Observables
CLAS-g11 (M. Williams <i>et al</i>)	Threshold – 3.8 GeV	ρω -> ρπ⁺π⁻(π ⁰)	• Differential Cross Section • Spin Density Matrix Element (SDME) : ρ_{00}^0 , ρ_{1-1}^0 , ρ_{10}^0
CBELSA/TAPS (A. Wilson <i>et al</i>)	Threshold-2.5 GeV	ρω ->p π ⁰ γ	• Differential Cross Section • SDME : ρ_{00}^0 , ρ_{1-1}^0 , ρ_{10}^0
MAMI (A2 collaboration) (I. I. Strakovsky <i>et al</i>)	Treshold-1.4 GeV	pω ->p π ⁰ γ	Differential Cross Section

NOTES : The ongoing analysis from g12 offer the first measurement of $\gamma p \rightarrow p\omega$ cross section in higher energy (up to 5.4 GeV) and also SDME from circularly polarized beam (ρ^3)

Previous Measurement in $\gamma p \rightarrow p\pi^+\pi^-$ from CLAS-g1c

Beam Helicity Asymmetry (S. Strauch *et al*)

NOTES : In general, the CLAS measurement (Dot) does not agree with model by Mokeev *et al* (Dashed line) and by Fix & Arenhovel (Solid line)

CLAS-g12 Experiment

CLAS-g12 Experiment

CLAS Detector :

g12 Experiment :

Electron Energy	5.7 GeV	
Electron Degree of Polarization	67.2 %	
Tagged Photon Energy	1.1 – 5.45 GeV	
Target Material	Liquid Hydrogen	
Target Polarization	Unpolarized	
Photon Polarization	Circular	

Data Analysis Technique

- Data Analysis for Differential Cross Section of $\gamma p \rightarrow p \omega$
- Data Analysis for Beam Helicity Asymmetry of $\gamma p \rightarrow p\pi^+\pi^-$

Data Analysis for Differential Cross Section of $\gamma p \rightarrow p \omega$

- Final state particle detected : $p\pi^+\pi^-$
- Kinematically fit to missing π^0
- Use CL cut to select $\gamma p \rightarrow p\pi^+\pi^-(\pi^0)$ events
- Apply event based method for signal (omega)background subtraction
- Generate Monte Carlo events to find detector acceptance
- Calculate Differential Cross section :

$d\sigma_{-}$	(A _{targst}	$\sum_{i}^{n} Q_{i}$
$\frac{1}{dcos\theta_{CM}^{\omega}}$	$\langle ho_{target}, l_{target}, N_A, Flux angle$	$\Delta cos \theta^{\omega}_{CM}, \varepsilon_{MC}, BR$

Q-value result for 2100-2200 MeV :

We get the omega signal (Red) by weighted each event with a quality factor (Q) and the background (blue) by weighted each event with 1 -Q

Data Analysis for Beam Helicity Asymmetry of $\gamma p \rightarrow p \pi^+ \pi^-$

- Final state particle detected : $p\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
- Kinematically fit to No missing particle
- Use CL cut to select $\gamma p \rightarrow p\pi^+\pi^-$ events
- Define kinematics for 2 pion Final states :

• The beam Helicity Asymmetry is defined by :

$$\frac{N(\phi^*, \sigma(\rightarrow)) - N(\phi^*, \sigma(\leftarrow))}{N(\phi^*, \sigma(\rightarrow)) + N(\phi^*, \sigma(\leftarrow))} = \bar{\delta}_\odot \mathbf{I}^\odot$$

• Fit with sine series $\sum_{k=1}^{4} a_k \sin k\varphi$ to extract the Fourier coefficient a_k

Preliminary Result

- Differential Cross Section of $\gamma p \rightarrow p \omega$ from 1.55 2.65 GeV
- Differential Cross Section of $\gamma p \rightarrow p \omega$ from 2.65 3.80 GeV
- Differential Cross Section of $\gamma p \rightarrow p \omega$ from 3.80 4.80 GeV
- 2-Dimensional plot of Beam Helicity Asymmetry of $\gamma p \rightarrow p\pi^+\pi^-$
- Fourier Coefficient for 2D plot of Beam Helicity Asymmetry
- Comparison of Beam Helicity Asymmetry with CLAS-g1c

Differential Cross Section of $\gamma p \rightarrow p \omega$ from 1.55 – 2.65 GeV

Differential Cross Section of $\gamma p \rightarrow p \omega$ from 2.65 – 3.80 GeV

Differential Cross Section of $\gamma p \rightarrow p \omega$ from 3.80 – 4.80 GeV

NOTES : Logarithmic Scale

2-Dimensional plot of Beam Helicity Asymmetry of $\gamma p \rightarrow p\pi^+\pi^-$

NOTES : We only use small subset of the data which is ~ 7 Millions event

Fourier Coefficient for 2D plot of Beam Helicity Asymmetry

Comparison of Beam Helicity Asymmetry with CLAS-g1c

Summary & Outlook

- We have been measured γp -> pω cross section from γp -> pπ⁺π⁻(π⁰) final states. Our results are in fair agreement with previous measurement from CLAS-g11. We also provide the extension of the cross section to higher energy.
- The data (in higher energy) provide access to study production mechanism of ω -> Need input from theorist.
- The highest energy of g12 will overlap with the lowest energy of Glue-X -> Provide future comparison with Glue-X.
- We will also determine the SDME.

- We have been measured Beam-Helicity Asymmetry of γp -> pπ⁺π⁻. Our results are in good agreement with measurement from CLAS-g1c. We also provide the higher energy up to W = 2.55 GeV (Beam Helicity Asymmetry for more higher energy is being studied by FIU group).
- We will provide a lot of more statistics.
- The of γp -> pπ⁺π⁻ data recently is being studied by Bonn-Gatcina PWA group using event based analysis.

Thank You