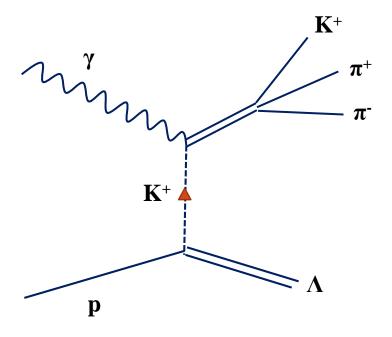


The Photoproduction of Excited Strange Mesons in γ p \rightarrow Λ K⁺ π ⁺ π ⁻ With CLAS at Jefferson Lab

Hussein Al Ghoul

Florida State University


Hadron 2015

Overview

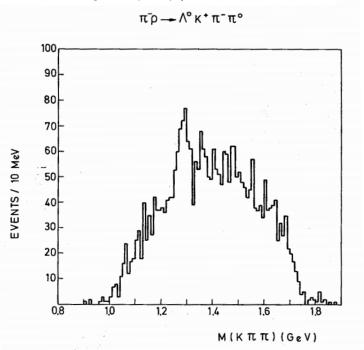
- **➤** Motivation
- ➤ CLAS gl2 Experiment
- ➤ Analysis
- ➤ Summary & Future Plans

Motivation

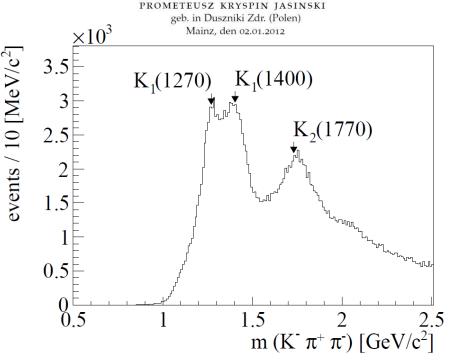
> Most Excited strange states have been hadroproduced, few are photoproduced

$n^{2s+1}\ell_J$	J^{PC}	$ \begin{aligned} I &= 1 \\ u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u}) \end{aligned} $	$I = \frac{1}{2} \ u\overline{s}, d\overline{s}; \overline{ds}, -\overline{u}s$	l = 0 f'	I = 0 f
$1 {}^1S_0$	0-+	π	K	η	$\eta'(958)$
1 3S1	1	$\rho(770)$	$K^*(892)$	$\phi(1020)$	$\omega(782)$
1 ¹ P ₁	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$
1 ³ P ₁	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$
$1 {}^{3}P_{2}$	2++	$a_2(1320)$	$K_2^*(1430)$	$f_2'(1525)$	$f_2(1270)$
$1 \ ^{1}D_{2}$	2-+	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$
1 ³ D ₁	1	$\rho(1700)$	$K^*(1680)$		$\omega(1650)$
1 ³ D ₂	2		$K_2(1820)$		
1 ³ D ₃	3	$\rho_3(1690)$	$K_3^*(1780)$	$\phi_{3}(1850)$	$\omega_{3}(1670)$
$1\ ^{3}F_{4}$	4++	$a_4(2040)$	$K_4^*(2045)$		$f_4(2050)$
$1\ ^{3}G_{5}$	5	$\rho_5(2350)$			
1 ³ H ₆	6++	$a_6(2450)$			$f_6(2510)$
$2 {}^1S_0$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$
2 3S1	1	ho(1450)	$K^*(1410)$	$\phi(1680)$	$\omega(1420)$

The $1^{+\pm}$ and $2^{-\pm}$ isospin $\frac{1}{2}$ states mix. In particular, the K_{1A} and K_{1B} are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$. The physical vector mesons listed under 1^3D_1 and 2^3S_1 may be mixtures of 1^3D_1 and 2^3S_1 , or even have hybrid components.

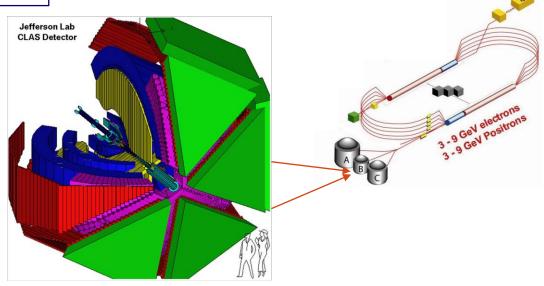

Motivation

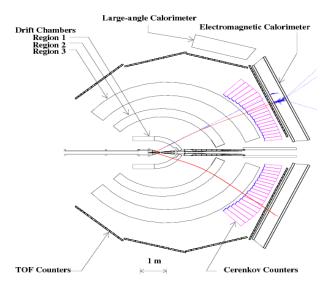
> Most of the available Kππ data is produced with a Kaon beam incident on a proton target (COMPASS, ACCMOR ..)


A PARTIAL WAVE ANALYSIS OF THE (Kmm) SYSTEM IN THE REACTION $\pi^-p + (K^+\pi^-\pi^0)\Lambda \text{ AT 3.95 GeV/c}$

CERN-Collège de France-Madrid-Stockholm Collaboration

C. Fernández, M. Aguilar-Benítez, M. Cerrada, J.A. Garzón, J.A. Rubio and José Salicio Junta de Energia Nuclear, Madrid, Spain*


ANALYSIS OF DIFFRACTIVE DISSOCIATION OF K- INTO K- $\pi^+\pi^-$ ON A LIQUID HYDROGEN TARGET AT THE COMPASS SPECTROMETER



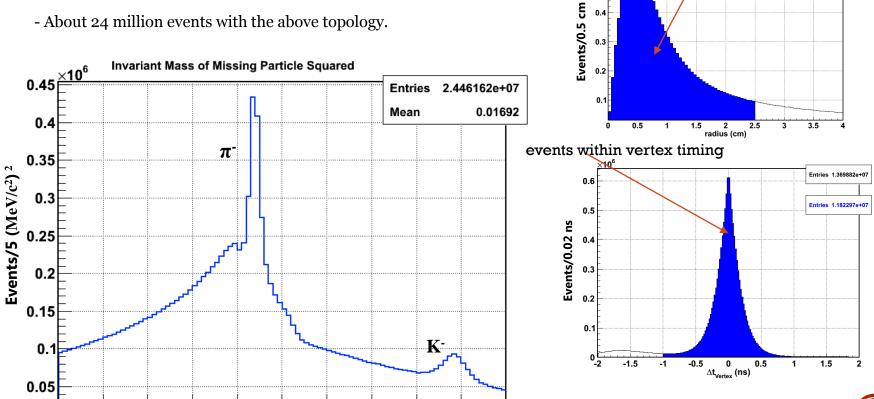
Our dataset is the first photoproduction dataset to study a $(K^+\pi^+\pi^-)$ system produced off a Λ

CLAS g12 Experiment

- CEBAF (Continuous Electron Beam
 Accelerator Facility) hosted at Jefferson Lab,
 delivers up to 5.5 GeV photon beam to 4 halls
 simultaneously.
- CEBAF Large Acceptance Spectrometer
 (CLAS) hosted in hall B.
- g12 experiment primarily approved for the ongoing search for exotic mesons.
- Up to 5.5 GeV photon beam incident on Liquid hydrogen target.
- 26.2 billion triggers (68 Pb-1, 126 TB) of various topologies.

Data Selection

-0.15


-0.1

-0.05

- 4 charged particles are selected : Proton, K^+ , π^+ , π^-
 - Initial topology: $\gamma p \rightarrow p K^+ \pi^+ \pi^-$ [Missing Particle]

$$P_{Miss} = (P_{\gamma} + P_{Target}) - (P_{K^{+}} + P_{P} + P_{\pi^{+}} + P_{\pi^{-}})$$

- About 24 million events with the above topology.

0.15

0.05 Missing Mass² [GeV/c²]² 0.2

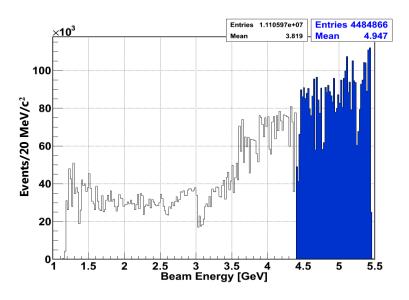
0.25

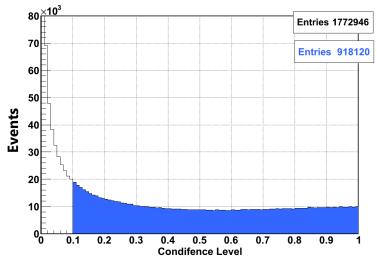
Events/0.5 cm

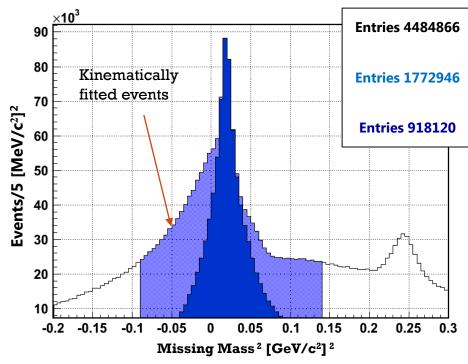
0.05

z (cm)

0.3 Hussein Al Ghoul, Hadron 2015

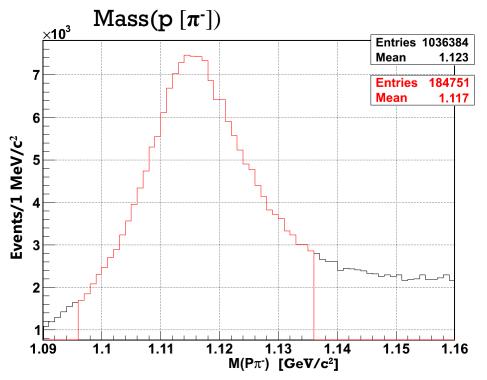


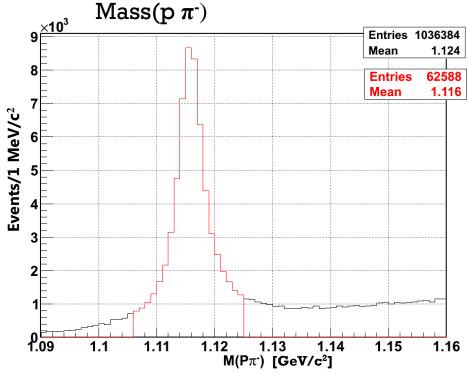

5


events inside target

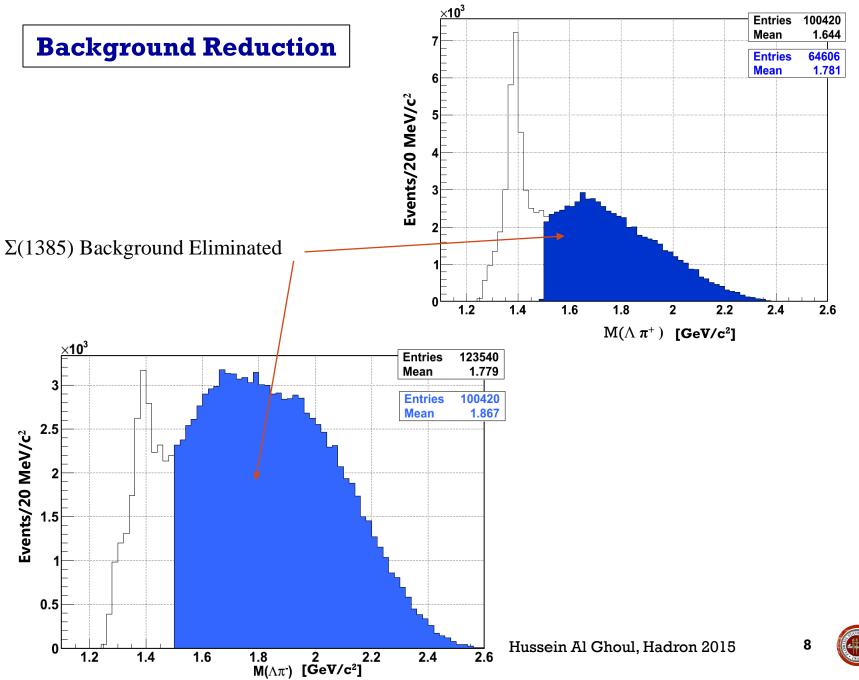
Kinematic Fitting

- Other cuts include particle beta cuts.

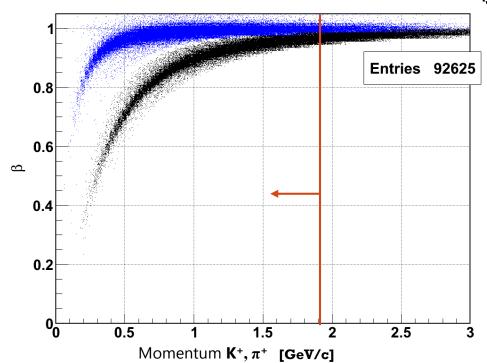


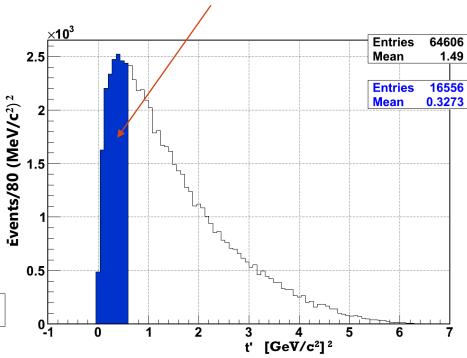


Lambda Mode


 Λ decays into p [π -] or p π -

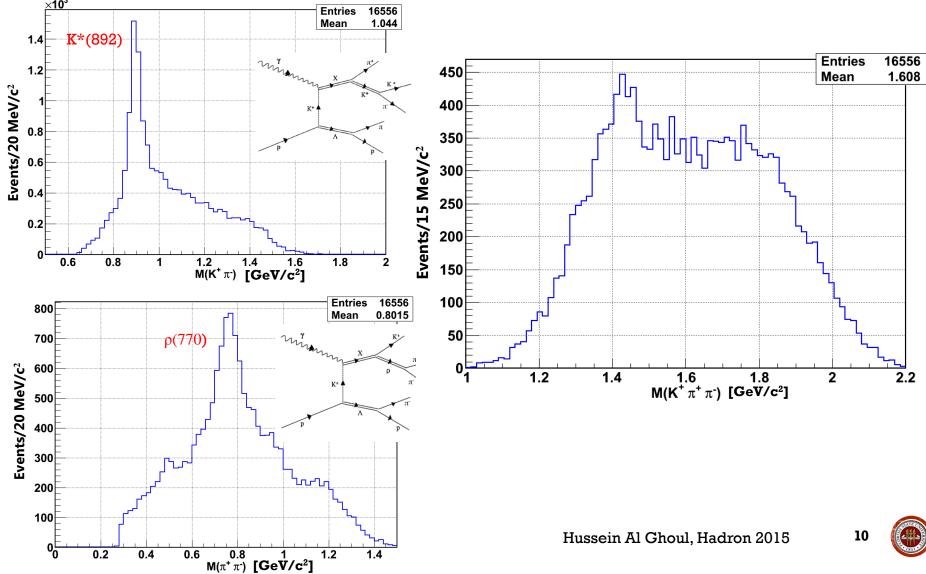
Future plans include kinematically constraining the Λ invariant mass



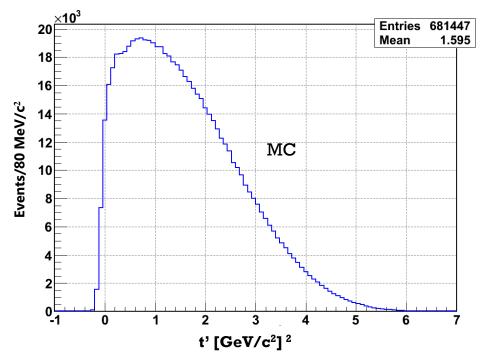


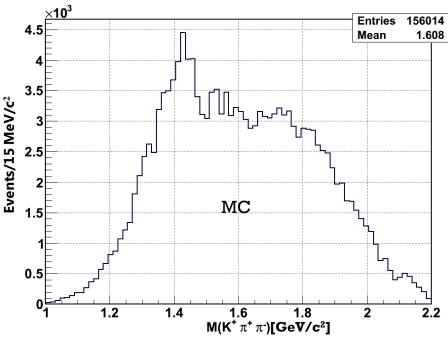
Background Reduction

Only Events below the K/π separation threshold are chosen.



Low t' cut to enhance peripheral production




Final Features

Montecarlo Events Simulation

- Generate $K\pi\pi$ phase space similar to data.
- Events are generated in $K\pi\pi$ such that the accepted events are 10 times the data in every bin.

Partial Wave Analysis

- A mass independent partial wave analysis was performed using an event based likelihood fit.
- Montecarlo events are used to determine the normalization integrals.

Minimize likelihood function to get production amplitudes

$$\log \mathcal{L} = \sum_{i}^{n} \log \left[\sum_{k \in \alpha \alpha'} \epsilon^{k} V_{\alpha}^{\epsilon k} V_{\alpha}^{* \epsilon} A_{\alpha}(\tau_{i}) \epsilon^{k} A_{\alpha}^{*}(\tau_{i}) \right] - n \left[\sum_{k \in \alpha \alpha'} \epsilon^{k} V_{\alpha}^{\epsilon k} V_{\alpha}^{* \epsilon} \Psi_{\alpha \alpha'}^{a} \right]$$

Normalization integrals from the accepted MC

Eigen State for 1+1+S waves

$$|1111> = 1/\sqrt{2} (|111> + |1-11>)$$

Calculate decay Amplitudes using the isobar model

$$\mathcal{I}(\tau) = \sum_{k \in \mathbb{Z}^d} {}^{\epsilon k} V_{\alpha}^* {}^{\epsilon k} V_{\alpha} {}^{\epsilon} A_{\alpha}^*(\tau) {}^{\epsilon} A_{\alpha}(\tau)$$

Eigen states in the reflectivity basis

$$|\epsilon, a, m\rangle = [|a, m\rangle + \epsilon P(-1)^{(J-m)}|a, -m\rangle]\Theta(m)$$

where

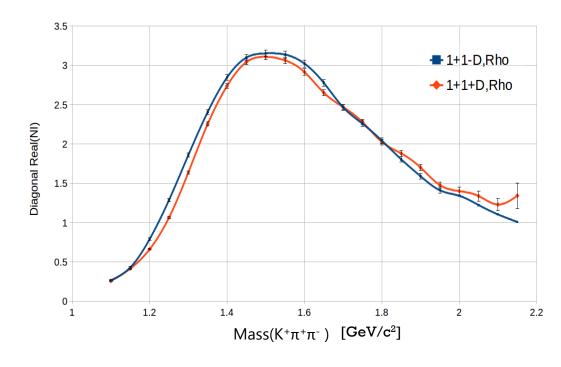
$$\Theta(m) = \frac{1}{\sqrt{2}}, \quad \text{if } m > 0$$

$$\Theta(m) = \frac{1}{2}, \quad \text{if } m = 0$$

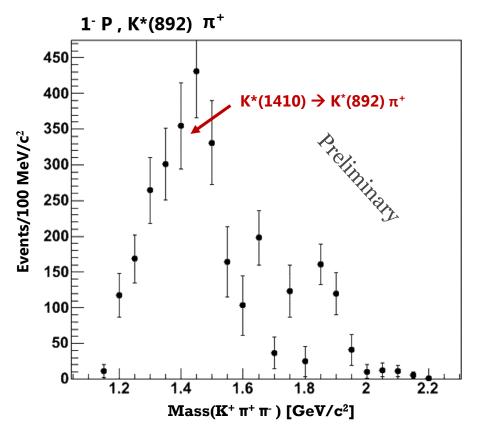
$$\Theta(m) = 0$$
, if $m < 0$

$$^{\epsilon}\Psi^{r}_{\alpha\alpha'} = \frac{1}{n_r} \sum_{i}^{n_r} {^{\epsilon}A_{\alpha}(\tau_i)} {^{\epsilon}A_{\alpha}^*(\tau_i)}$$

$${}^{\epsilon}\Psi^{a}_{\alpha\alpha'} = \frac{1}{n_a} \sum_{i}^{n_a} {}^{\epsilon}A_{\alpha}(\tau_i) {}^{\epsilon}A_{\alpha}^*(\tau_i)$$


Normalization Integrals

$$\Psi = \int A_{\alpha}(\tau_i) A_{\alpha}^*(\tau_i) \eta(\tau_i) d\tau_i$$


- A Study of the dependence of the decay amplitudes on the $(K^+\pi^+\pi^-)$ mass

AccNI 1+D,Rho VS Mass(KPiPi)

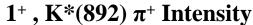
- Mass independent fit
- Data is binned in 100 MeV bins, then shifted by 50 MeV
- 19 waves included in the fit
- Flat background included in the fit
- Rank 1 Spin density matrix

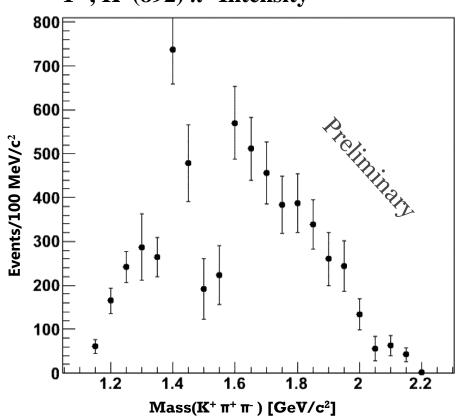
PWA Results



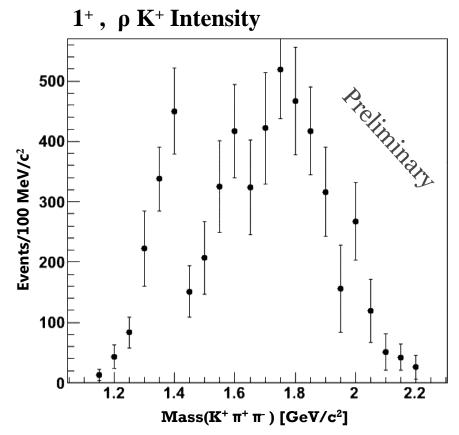
$$I(J^P) = \tfrac{1}{2}(1^-)$$

1- P


Mass $m=1414\pm15$ MeV (S = 1.3) Full width $\Gamma=232\pm21$ MeV (S = 1.1)


K*(1410) DECAY MODES	Fraction (Γ_i/Γ)		Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	410
$K\pi$	(6.6±1	.3) %		612
$K \rho \gamma K^0$	< 7	%	95%	305
γK^0	seen			619

PWA Results

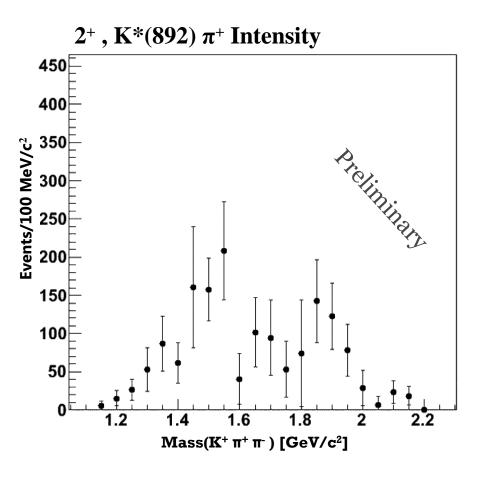


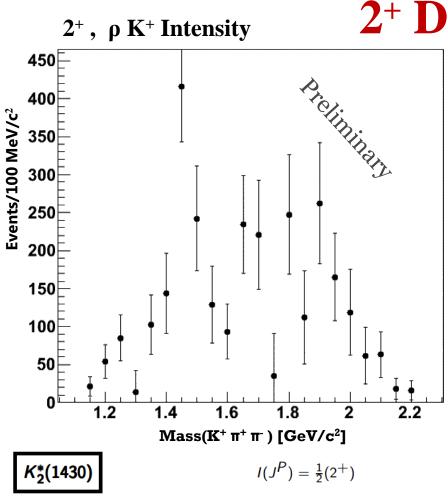
K₁(1400)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1403\pm7$ MeV Full width $\Gamma=174\pm13$ MeV $\mbox{(S}=1.6)$

The K₁(1650), reported but not confirmed


- Mass: 1600-1900 MeV


-Width: 150 - 250 MeV

- Reported decay modes: K π π , K $\!\Phi$

PWA Results

 $K_2^{*}(1430)^0$ mass $m = 1432.4 \pm 1.3$ MeV

 $K_2^*(1430)^{\pm} \text{ mass } m = 1425.6 \pm 1.5 \text{ MeV} \quad (S = 1.1)$

 $K_2^*(1430)^\pm$ full width $\Gamma=98.5\pm2.7$ MeV (S = 1.1) $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

Summary

- Over 16,500 events of the type γ p $\rightarrow \Lambda$ K⁺ π ⁺ have been acquired in a search for photoproduction of excited strange mesons.
- Largest $(\Lambda K^+ \pi^+ \pi^-)$ photoproduction dataset to date.
- Two dominating decay modes observed in the $K^+\pi^+\pi^-$ system: $K^*(892)\pi^+$ and ρ K^+ .
- A mass independent partial wave analysis was performed.
- Preliminary results for $J^P = 1^-$ are consistent with a K*(1410) decaying dominantly to a K*(892) π relative to ρ K in agreement with known observations.
- Other features of the PWA results are still under investigation.

