Time of Flight System for the GlueX experiment

Aristeidis Tsaris Florida State University Tallahassee, FL USA

GlueX Particle Identification by Time-of-Flight

Forward TOF System (What we are building at FSU)

TOF scintillators

- 44 vertical scintillators
- 44 horizontal scintillators
- Size: 2.5 x 6.0 x 252 cm³
- EJ-200 (BC-408)
- XP2020 PMTs
 - Two-sided readout (except on beamline)
- All joints are glued
- High-rate HV divider
- Magnetic shielding required
- Flight path is ~ 560 cm

Time of Flight Modules

A. Somov [GlueX-doc-1471]

* concept under consideration

Main Use of TOF System

Particle identification

 allow separation of pions from kaons up to 2-3 GeV/c and pions from protons up to 6 GeV/c

Triggering

 Provide multiplicity of charged particle tracks per event for fast decision making

How it works

• How it works:

Basic Concept:
Radiation interacts in material
Energy converted to photons
Photons collected by photodetector
Photodetector produces electrical signal
Relative time of electrical signal is measured

Key Properties of Scintillators

- Sensitive to energy
- Fast time response
- Pulse shape discrimination

Two material types:
Inorganic → high light output but slow
Organic → lower light output but fast

We use plastic scintillators:

1 photon per 100 eV
Decay time ns
Easily to shape

Resolution Depends on Light Yield

- The loss of light from a scintillator can occur in two basic ways:
- Through absorption by the scintillator material
- Through the scintillators boundaries (most important reason)

$$\theta_{\rm B} = \sin^{-1}\left(\frac{n_{\rm out}}{n_{\rm scint}}\right)$$

Scintillation Light Collection

In plastic scintillators the internal reflection is facilitated by:

- Polishing the surfaces of the plastic
- Wrap by a reflector, living a layer of air between the reflector and the scintillator
- Wrap to make light-tight enclosure

Reflective Wrapping

Signal amplitude for 4 different materials:

- Mylar, Tyvek and AL foil wrappings are similar
- ESR* wrapping prevents 40-45% more light

Photomultiplier Tube

main phenomena:

- The photo-cathode converts incident light into a current of electrons: $Q.E. = \frac{N p.e.}{N photons}$
- Secondary emission from dynodes, for example 10 dynodes with gain=4: $4^{10} ≈ 10^6$

<u>Hamamatsu H10534</u> Ultra-fast PMT 10 stages, 250ps spread

Magnetic Field Effects

PMT's are very sensitive to magnetic-fields (even to earth field: $30-60 \ \mu\text{T}$)

 shielding is require: Iron shield thickness = 2.75mm with 0.4mm µ metal (75% nickel, 15% iron, plus copper and molybdenum)

Coupling PMT and scintillator:

- We can make the optical contact directly with silicone grease
- In our case we use light guides to make this optical coupling, the light guide is glued on to the end of each media

Light Guide

connecting rectangular bar end to circular PMT face

Why we are using light guide:

- Fast PMT's require well design input optics to limit chromatic and geometric aberrations
- Inconvenient scintillator shape with the PMT
- Locate PMT w/ shield for optimal module stacking

The flux density of photons in a light guide is incompressible

The twisted light guide

TOF Studies at FSU

- $t_A = (A_L + A_R)/2$ $t_{TOF} = t_A + t_{ref}/2 = (A_L + A_R + B_L + B_R)/4$
- $t_{B} = (B_{L} + B_{R})/2$ But also $t_{TOF} = (L+R)/2$

$$\sigma^{2}(t_{\text{TOF}}) = \sigma^{2}(\Delta t_{\text{AB}}) - \sigma^{2}(t_{\text{ref}})/2$$

TOF Timing Resolution Cosmic Ray Studies

VX1290A_{TDC}: $\sigma(t_{TOF}) = \sim 100$ per plane including TDC resolution

Time of Flight Particle Identification

$$p = \beta E \rightarrow \frac{p}{p^2 + m^2} = \frac{\Delta path}{\Delta TOF}$$

In order to do particle identification we need to find it's mass:

- Momentum p → drift chambers
- Velocity $\beta = \Delta x / \Delta t$: path length and time-of-flight

Drift chambers accelerator t0 and TOF

TOF Particle Identification

The above plot shows that the TOF system will be able to identify kaons with high efficiency and low contamination up to momenta of 2GeV/c. Proton identification with very good efficiency and low contamination will be possible up to 3 GeV/c. This performance of PID at low momentum is nicely complementary to the momentum range of a RICH detector systems which can provide PID down to momenta of about 2 GeV/c.