Update on $\gamma p \rightarrow p \phi \eta \rightarrow p K + K - \gamma \gamma$

08/24/2017

Bradford Cannon

Purpose of This Talk:

- To justify PID cuts that were made in the previous talk on 08/10/2017.
- Cuts to be justified:
 - dEdX Vs p (CDC/SC)
 - DeltaT Vs P (TOF)
 - Vertex Cuts (all charged tracks)
 - Number of Particles in final state

How dEdX study was performed:

- ~5% of the data from the Spring 2017 run was used.
- A 5% confidence level cut was done on all data before plots were made.
- Compare the K- distributions with the K+ distributions in order to establish a function that can effectively separate protons from K+
- Make cuts on same data without confidence level cut

dEdX Vs P: CDC

 2.159 ± 0.004567

 2.309 ± 0.002552

 1.295 ± 0.003229

 0.7234 ± 0.001805

p (GeV/c)

After dEdX Cuts:

How DeltaT study was performed:

- ~5% of the data from the Spring 2017 run was used.
- A 5% confidence level cut was done on all data before plots were made.
- Use the known distance to the time of flight from the target and simple physics to create a cut which matches the pion background for K+,K-, and Proton.
- Make cuts on same data without confidence
 level cut

Example: Subtracting pi+ from k+

• The amount of time it takes a charged particle to reach the TOF in the lab frame is given by:

$$t = \frac{\delta X}{V} = \frac{\delta X}{\beta c}$$

• The timing difference between a pion and a kaon is therefore given by: $\delta X \sqrt{m_{\pi}^{2} + P^{2}} \sqrt{m_{k}^{2} + P^{2}}$

$$\delta t = \frac{\delta X}{C} \left[\frac{\sqrt{m_{\pi}^2 + P^2} - \sqrt{m_k^2 + P^2}}{P} \right]$$

 Since we know the observed momentum, P, and the masses of a pion and kaon, as well as the distance to the time of flight detector, we can use this function to separate pions from kaons.

Delta T Vs P: TOF

 \mathbf{K}^+

Delta T Vs P: TOF

TOF Δ T (ns)

0.2

-0.2

-0.4

0

2

3

After DeltaT TOF Cuts:

Other plots @ 5% confidence level

How Vertex study was performed:

- ~5% of the data from the Spring 2017 run was used.
- Cut on Kinematic Fit Confidence level was taken away since it will bias the vertex distribution
- Compare distributions of Proton + (K+,K-,eta) before and after cut to see if excited baryons are cut.

After vertex Cuts:

After vertex Cuts:

How Number of Particles study was performed:

- ~5% of the data from the Spring 2017 run was used.
- No cut on Kinematic Fit Confidence level
- Plot (phi/eta) Mass Vs Number of (proton,K+,K-, photons)
- Project onto invariant mass axis to study the loss of phi's or eta's

Number of Protons: phi Meson

Number of Protons: eta Meson

Number of KPlus: phi Meson

Number of KPlus: eta Meson

Number of KMinus: phi Meson

Number of Kminus: eta Meson

Number of Photon: phi Meson

Number of Photon: eta Meson

Photon Energy Vs phi/eta Meson

Number of Particle Cuts:

- Require exactly 2 photons
- Require exactly 1 Kminus (only one negative track)
- Require 1 or 2 protons (combination with K+)
- Require 1 or 2 K+ (combination with proton)

Number of Particle Cuts:

After All Cuts:

All Data/All Cuts:

etaMesonInvariantMass GeV/c²

All Data/All Cuts:

All Data/No Particle Cuts/1% KinFit:

All Data/No Particle Cuts/1% KinFit:

