Secondary Study

Discussion:

- After yesterdays meeting, we decided to perform a simple study with MC/bggen to see what the distributions of secondary photons look like compared to thrown photons.
- We also decided to look at how many thrown events we would lose by just doing a 2 photon cut and nothing else
- This study will perform both tasks mentioned above and also see the effect from this study on data

P Vs Theta; All Photons

Accepted Monte Carlo

P Vs Theta; Thrown Photons

Entries 75310 Mean x 23.2 ± 0.069 Mean y 1.554 ± 0.004502 50 Std Dev x 18.93 ± 0.04879 Std Dev y 1.236 ± 0.003184 40 30 20 10 20 40 60 80 100 120 140 Theta

Accepted Monte Carlo

bggen

P Vs Theta; Secondary Photons

Accepted Monte Carlo

bggen

Phi Vs Theta; All Photons

Accepted Monte Carlo

bggen

Phi Vs Theta; Thrown Photons

Accepted Monte Carlo

bggen

Phi Vs Theta; Secondary Photons

Accepted Monte Carlo

bggen

g1g2 Mass Vs Number of Photons in Event; All Photons Accepted Monte Carlo

Entries 58709 Mean x 3.47 ± 0.004923 0.9 Mean v 0.4206 ± 0.0007002 Std Dev x 1.192 ± 0.003481 0.1696 ± 0.0004951 0.8 Std Dev y 0.7 10^{2} 0.6 0.5 0.4 10 0.3 0.2 0.1 0, 10 5 7 9 3 4 6 Num Photons

g1g2 Mass Vs Number of Photons in Event; Thrown Photons

g1g2 Mass Vs Number of Photons in Event; Secondary Photons

g1g2 Mass with 2 Photons in Event; Thrown Photons

g1g2 Mass with more than 2 Photons in Event; Thrown Photons Accepted Monte Carlo ProjectionY of binx=[4,10] [x=3.0..10.0] ProjectionY of binx=[4,10] [x=3.0..10.0]

P Vs Theta Distributions With Cut, **All Photons**

Accepted Monte Carlo

bggen

Phi Vs Theta Distributions With Cut, All Photons

Accepted Monte Carlo

bggen

g1g2 Mass Vs Number of Photons in Event; All Photons

g1g2 Mass Vs Number of Photons in Event; Thrown Photons Accepted Monte Carlo

g1g2 Mass Vs Number of Photons in Event; Secondary Photons

10

 10^{-1}

g1g2 Mass with 2 Photons in Event; Thrown Photons

g1g2 Mass with more than 2 Photons in Event; Thrown Photons Accepted Monte Carlo ProjectionY of binx=[4,10] [x=3.0..10.0] ProjectionY of binx=[4,10] [x=3.0..10.0]

Table of Results:

	2 Gamma Cut	P Vs Theta Cut + 2 Gamma Cut
Thrown	8,000/30,315 = 26 %	1383/30,315 = 5%
bggen	1,243	1,676
Data	3,143	3,489