List of things this talk will discuss:

- Testing the 'cusp' effect seen in the background histogram for the K+K- invariant mass
 - Sigma = 0.005
 - Sigma = 0.01
 - Sigma = 0.02
 - Sigma = 0.03
- Qvalue Study using a relativistic Breit-Wigner convoluted with a Gaussian
- Thoughts on the results of these studies

Testing the 'cusp' effect:

- Background function: 3rd degree Chebyshev polynomial
- Signal function: Voigtian (Non Relativistic Breit-Wigner convoluted with a Gaussian)
 - Mass and width parameter of the Breit-Wigner are fixed
 - The resolution of the Gaussian is fixed to study its effect on the background cusp
 - The 5 free parameters come from: the amplitude of the Voigtian plus 4 parameters of the background

Event #4 – Example Fits

Sigma = 0.01, ChiSq = 1.33

Sigma = 0.03, ChiSq = 1.42

Sigma = 0.005, ChiSq = 1.14

Sigma = 0.02, ChiSq = 1.47

Event #9 – Example Fits

Sigma = 0.01, ChiSq = 2.27

Sigma = 0.005, ChiSq = 1.57

Sigma = 0.02, ChiSq = 2.90

temp_hist

Sigma = 0.03, ChiSq = 3.13

temp_hist

QValues

Sigma = 0.005

Sigma = 0.02

Chi^2/NDF

Sigma = 0.005

Sigma = 0.02

Sigma = 0.01

Signal Events

Sigma = 0.005

Sigma = 0.02

Background Events

Sigma = 0.005

Sigma = 0.02

Example Distributions of Relativistic Breit-Wigner convoluted with a Gaussian

convolution_function_0005

Event #4 – Example Fit, ChiSq = 1.14

temp_hist

Event #9 – Example Fit, ChiSq = 1.43

Entries 3000 Mean 1.095 ± 0.001788 120 Std Dev 0.09792 ± 0.001264 χ^2 / ndf 239.7 / 167 Amplitude 217.2 ± 9.6 100 Resolution 0.003515 ± 0.000308 pO $-1.393e+04 \pm 2.082e+00$ $\mathbf{p1}$ $2.029e+04 \pm 2.163e+00$ p^2 -7416 ± 1.4 80 р3 1065 ± 0.5 60 40 20 O 0.9 1.21.3 1.5 1.61.71.8

1.4

1

1.1

temp_hist

QValue

QValue_hist

Chi²/NDF

ChiSq_hist

Signal Events

final_hist

Background Events

bg_hist

Example Distributions of Relativistic Breit-Wigner convoluted with a Gaussian

Thoughts

- As the resolution of the Gaussian is increases, the 'cusp' effect starts to go away
- However, this means that the weight which use to be in the background histogram is pushed into the signal histogram (not good)
- Perhaps this is a sign that we really are properly parameterizing the K+K- invariant mass
- Using a relativistic Breit-Wigner as opposed to a non relativistic Breit-Wigner appears to make no difference