
Analysis Note for γp→ pφη

Bradford E. Cannon

June 18, 2019



Table of Contents

List of Tables iii

List of Figures v

1 Data, Codes, and Procedures 1
1.1 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Probabilistic Weightings for φη Events . . . . . . . . . . . . . . . . . 3
1.3.2 Removal of N* Background . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Acceptance Corrections for φη Invariant Mass and cos(θ)GJ Distributions 4
1.3.4 Analysis of φη Invariant Mass Plot and cos(θ)GJ Distributions . . . . 5
1.3.5 Fitting φη Invariant Mass Plots for Signal Distributions . . . . . . . . 6

2 Monte Carlo 8
2.1 Monte Carlo Features of γp→ pφη . . . . . . . . . . . . . . . . . . . . . . . 8

3 Data Selection 14
3.1 Identification of γp→ pK+K−γγ Events at GlueX . . . . . . . . . . . . . . 14

3.1.1 Spring 2017 Run Period . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Identification of Initial State Particles . . . . . . . . . . . . . . . . . . 15
3.1.3 Identification of Final State Particles . . . . . . . . . . . . . . . . . . 16

3.2 Additional Cuts for γp→ pK+K−γγ . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Kaon Selection and Pion Rejection from TOF . . . . . . . . . . . . . 35
3.2.2 Kaon Timing Selection Cut . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Fiducial Photon Cut and Two Photon Cut . . . . . . . . . . . . . . . 43
3.2.4 Exclusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.5 Tabular Summary of Particle Identification Cuts . . . . . . . . . . . . 47

4 Analysis 49
4.1 Investigation of φη correlation by means of K+K− Vs γγ Invariant Mass Plot 49

4.1.1 Cuts on the 2D Invariant Mass Plot . . . . . . . . . . . . . . . . . . . 49
4.1.2 Projections and Fits for φ and η . . . . . . . . . . . . . . . . . . . . . 49
4.1.3 Integration Results for φ and η . . . . . . . . . . . . . . . . . . . . . 52
4.1.4 Additional Statistics Study . . . . . . . . . . . . . . . . . . . . . . . . 53

i



4.1.5 Conclusion of K+K− Vs γγ Invariant Mass Plot Study . . . . . . . . 55
4.2 Probabilistic Weightings for φη Events . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Introduction to Probabilistic Event Weightings . . . . . . . . . . . . . 56
4.2.2 Three Quality Factor Methods . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Removal of N* Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Acceptance Corrections for φη Invariant Mass and cos(θ)GJ . . . . . . . . . . 82
4.5 Analysis of φη Invariant Mass Plot and cos(θ)GJ Distributions . . . . . . . . 85

4.5.1 Elliptical Mass Approach . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.2 Qφ Weighting, η Side-band Subtracted . . . . . . . . . . . . . . . . . 92
4.5.3 Qη Weighting, φ Side-band Subtracted . . . . . . . . . . . . . . . . . 98
4.5.4 Qφη Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Fitting φη Invariant Mass Plots for Signal Distributions . . . . . . . . . . . . 111
4.6.1 Elliptical Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6.2 Qφ Weighting, η Side-band Subtracted Fits . . . . . . . . . . . . . . . 116
4.6.3 Qη Weighting, K+K− Side-band Subtracted Fits . . . . . . . . . . . 118
4.6.4 Qφη Weighting Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.5 Tabular Summary of Fit Results and Discussion . . . . . . . . . . . . 122

Bibliography 125

ii



List of Tables

3.1 A table with timing cut values for all final state particles in the reaction
γp → pK+K−γγ. The values of the timing cuts change depending on both
the particle species and detector system resolution. It should be noted that
the final state photons only have the calorimeters as possible timing detectors.
This is due to the fact that they do not interact with the TOF detector. . . 47

3.2 A list which summarizes all cuts used to identify γp→ pK+K−γγ. . . . . . 48

4.1 A table which summarizes the parameters and functions used to fit the K+K−

invariant mass histograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 A table which summarizes the parameters and functions used to fit the γγ

invariant mass histograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 A table which summarizes the coordinates used to describe the γp → pX;

X → φY φ → K+K−; final state. This set of coordinates will ultimately
lead to the calculation of Qφ. The coordinates ξ0 through ξ5 are used in the
kinematic distance equation, described by Equation (4.1). The last coordinate
is the reference coordinate for this analysis. . . . . . . . . . . . . . . . . . . . 69

4.4 A table which summarizes the coordinates used to describe the γp → pX;
X → ηY ; η → γγ final state. This set of coordinates will ultimately lead to
the calculation of Qη The coordinates ξ0 through ξ5 are used in the kinematic
distance equation, described by Equation (4.1). The last coordinate is the
reference coordinate for this analysis. . . . . . . . . . . . . . . . . . . . . . . 70

4.5 A table which summarizes the coordinates used to describe the γp → pX;
X → φη φ → K+K−; η → γγ final state. This set of coordinates will
ultimately lead to the calculation of Qφη The coordinates ξ0 through ξ7 are
used in the kinematic distance equation, described by Equation (4.1). The
last two coordinates are the reference coordinates for this analysis. . . . . . . 71

4.6 A table which summarizes the parameter ranges or fixed values in rows corre-
sponding to different fit functions for the φη invariant mass. The parameters
Asig, and Abg have units of number of events, mPeak1, σPeak1, mPeak2, and
σPeak2 have units of GeV/c2, ϕ has units of radians, and r is unit less. . . . . 112

4.7 A table which summarizes the fits which utilized two interfering relativistic
Breit-Wigners as signal, plus a scaled accepted Monte Carlo distribution as
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

iii



4.8 A table which summarizes the fits which utilized one low mass relativistic
Breit-Wigner as signal, plus a scaled accepted Monte Carlo distribution as
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.9 A table which summarizes the fits which utilized one high mass relativistic
Breit-Wigner as signal, plus a scaled accepted Monte Carlo distribution as
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.10 A table which summarizes the fits which utilized only the accepted Monte
Carlo distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

iv



List of Figures

2.1 A histogram which includes the thrown beam statistics from the generated
Monte Carlo example. In the figure one can easily see the coherent peak
which maximizes at 9 GeV. Additionally, one can also see other secondary
peaks at higher energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 A two dimensional histogram which includes the thrown kinematic informa-
tion of the recoil proton. In the histogram, the horizontal axis represents
the generated θ angle in the lab frame, and the vertical axis represents the
generated momentum magnitude in the lab frame. One interesting feature of
this Monte Carlo data is that the kinematics of the recoil proton appear to be
constrained between [0.2− 2.0]GeV/c in momentum, and [0.0− 60.0]◦ in angle. 10

2.3 A two dimensional histogram which includes the thrown kinematic informa-
tion of the generated K+. In the histogram, the horizontal axis represents
the generated θ angle in the lab frame, and the vertical axis represents the
generated momentum magnitude in the lab frame. . . . . . . . . . . . . . . . 11

2.4 A two dimensional histogram which includes the thrown kinematic informa-
tion of the generated K−. In the histogram, the horizontal axis represents
the generated θ angle in the lab frame, and the vertical axis represents the
generated momentum magnitude in the lab frame. . . . . . . . . . . . . . . . 11

2.5 A two dimensional histogram which includes the thrown kinematic informa-
tion of the generated photons. In the histogram, the horizontal axis represents
the generated θ angle in the lab frame, and the vertical axis represents the gen-
erated momentum magnitude in the lab frame. The reason that the statistics
are doubled in this histogram is due to both final state photon measurements
being included in the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 A histogram which includes the generated spectrum for the Mandelstam vari-

able, t. The t-slope for the Monte Carlo presented here is 2.5
GeV 2

c4
. . . . . 12

2.7 A histogram which includes the generated φη invariant mass. In the figure
one can easily see that the invariant mass of the φη has the shape of phase
space until it reaches ∼ 3.2 GeV/c2. From that point, the invariant mass falls
less sharply until ∼ 4.0 GeV/c2. This feature of the invariant mass is directly
related to the fact that a coherent bremsstrahlung beam energy spectrum was
used. The abrupt change in the invariant mass range of 3.3 − 4.0 GeV/c2

is caused by the primary coherent peak at 9.0GeV . To visualize this in two
dimensions, see Figure [2.8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

v



2.8 A two dimensional histogram which includes the generated φη invariant mass
on the horizontal axis and the Beam Energy on the vertical axis. In the figure
one can easily see the effect that the coherent peak has on the shape of the
phase space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 An example histogram of beam time as compared to the reported Radio Fre-
quency (RF) time. In the plot there are three peaks, all of which are separated
by four nanoseconds. Also included in the plot are two red dashed cut lines
at ±2 ns. These cut lines represent the values used to perform an accidental
subtraction on the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 An example of what a reconstructed vertex distribution looks like for a final
state γ in the reaction γp→ pK+K−γγ. The upper image is the reconstructed
vertex position along the beam line, or z axis; and the lower image is the
reconstructed vertex position in the directions transverse to the beam line.
Both figures contain red dashed lines which represent the cut values for all
reconstructed final state particles. In the z direction the cut values are 51
cm ≤ Vz ≤ 79 cm, and in the transverse direction the cut values are Vr ≤ 1
cm. The z direction cut values are established from Log Entry 3456336 from
a Spring 2017 empty target run. The transverse cuts are simply established
by considering the geometric size of the target chamber. . . . . . . . . . . . . 16

3.3 A figure which shows the energy lost in the Central Drift Chamber on the
vertical axis, and the reconstructed momentum on the horizontal axis. At
lower momentum, a proton band can be seen rising sharply towards higher
energy loss values. Also contained within the figure is a white dashed line
which represents the cut value used to identify slower moving protons. The
horizontal band which deviates from the proton band at low momentum comes
from positively charged pions and kaons. . . . . . . . . . . . . . . . . . . . . 17

3.4 Timing plots for recoil proton candidates during the Spring 2017 run period
for GlueX. Protons are identified by selecting the horizontal band centered
about ∆T = 0. The curved line deviating below the horizontal proton line
comes from miss identified π+ tracks. The additional curved lines above and
below ∆T = 0 come from π+ tracks that are associated with the wrong RF
bunch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 A timing plot for accepted recoil protons from the generated reaction γp →
pX;X → φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed
momentum of the recoil proton and the vertical axis is the timing difference
between the BCAL and RF. The enhancement of statistics in the lower right
portion of the plot comes from miss identified kaons that are also present in
the accepted Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 A projection of the statistics from Figure [3.5] onto the vertical (timing) axis
between the momentum range of 0.3-1.5 GeV/c. This projection range was
chosen so that the distortion from the lower kaon band was minimized. A
Gaussian fit was performed and is included in the figure where the mean and
width of the distribution are given in the legend. . . . . . . . . . . . . . . . . 19

vi



3.7 A timing plot for accepted recoil protons from the generated reaction γp →
pX;X → φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed
momentum of the proton and the vertical axis is the timing difference between
the FCAL and RF. The enhancement of statistics in the lower right portion of
the plot comes from miss identified kaons that are also present in the accepted
Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 A projection of the statistics from Figure [3.7] onto the vertical (timing) axis
between the momentum range of 0.5-1.8 GeV/c. This projection range was
chosen so that the distortion from the lower kaon band was minimized. A
Gaussian fit was performed and is included in the figure where the mean and
width of the distribution are given in the legend. . . . . . . . . . . . . . . . . 20

3.9 A timing plot for accepted recoil protons from the generated reaction γp →
pX;X → φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed
momentum of the proton and the vertical axis is the timing difference between
the TOF and RF. The enhancement of statistics in the lower right portion of
the plot comes from miss identified kaons that are also present in the generated
Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.10 A projection of the statistics from Figure [3.9] onto the vertical (timing) axis
between the momentum range of 0.5-1.8 GeV/c. This projection range was
chosen so that the distortion from the lower kaon band was minimized. A
Gaussian fit was performed and is included in the figure where the mean and
width of the distribution are given in the legend. . . . . . . . . . . . . . . . . 21

3.11 Timing plots for K+ candidates during the Spring 2017 run period for GlueX.
K+ are identified by selecting the horizontal band centered about ∆T =
0. The curved line deviating below the horizontal K+ line comes from miss
identified π+ tracks, and the curved line deviating above the horizontal K+

line comes from miss identified proton tracks. The additional curved lines
above and below ∆T = 0 come from π+ and proton tracks that are associated
with the wrong RF bunch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.12 A timing plot for accepted K+ from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the K+ and the vertical axis is the timing difference between the BCAL
and RF. It should be noted that the statistics in this sampling are smaller
than other plots. This is due to the fact that the kinematics of the generated
channel prefer to have the kaons moving in the forward direction; and therefore
provide few timing hits in the BCAL. Additionally, the extra statistics present
in the upper left portion of the graph are due to protons that are also present
in the accepted Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.13 A projection of the statistics from Figure [3.12] onto the vertical (timing) axis
between the momentum range of 0.3-4.0 GeV/c. A Gaussian fit was performed
and is included in the figure where the mean and width of the distribution
are given in the legend. The distortion of statistics towards the higher timing
differences is due to protons that are also present in the generated Monte Carlo. 24

vii



3.14 A timing plot for accepted K+ from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the K+ and the vertical axis is the timing difference between the FCAL
and RF. The curved band that appears below the K+ band around 1.5 GeV/c
and lower comes from µ+. Although muons were not explicitly generated, the
computer program hdgeant (derived from geant) allows for some fraction of
kaons to decay weakly while in flight; resulting in observed muons. . . . . . . 24

3.15 A projection of the statistics from Figure [3.14] onto the vertical (timing) axis
between the momentum range of 2.0-4.0 GeV/c. This projection range was
chosen so that the distortion from the lower muon band and upper proton
band was minimized. A Gaussian fit was performed and is included in the
figure where the mean and width of the distribution are given in the legend. 25

3.16 A timing plot for accepted K+ from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the K+ and the vertical axis is the timing difference between the TOF and
RF. The curved band that appears below the K+ band around 2.5 GeV/c
and lower comes from µ+; and the band near the top of the plot comes from
protons. Although muons were not explicitly generated, the computer pro-
gram hdgeant (derived from geant) allows for some fraction of kaons to decay
weakly while in flight; resulting in an observed muon. . . . . . . . . . . . . . 25

3.17 A projection of the statistics from Figure [3.16] onto the vertical (timing)
axis between the momentum range of 1.9-2.0 GeV/c. This projection range
is one out of many that were studied from Figure [3.16]. The purpose of
this study is to determine the amount of muon contamination in the kaon
band as a function of momentum. The results of this study are provided in
Figure [3.18]. Lastly, two Gaussian fits were performed on this data. The
mean and width of these Gaussian fits are recorded in Figure [3.18] for each
momentum range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.18 The image above is the result of the timing study performed on Figure [3.16].
Using that figure, a number of projection histograms were fit using different
momentum ranges. An example of one of these fits is given in Figure [3.17].
The data points close to 0 ∆T correspond to the Gaussian fits performed on
the kaon signal, and the data points that approach that band from the bottom
correspond to the Gaussian fits performed on the muon signal. The horizontal
position of each point is in the middle of the projection range, and the vertical
position of each point was assigned based on the mean value of the Gaussian
fit for each particle. The horizontal error bars are the size of the projection
range, which is always 0.1 GeV/c. The vertical error bars are determined by
the width of the Gaussian fits. The average of the widths of the kaon peaks
is 0.1 ns which is the value used to determine the timing cut in Table 3.1. . 26

3.19 Timing plots for K− candidates during the Spring 2017 run period for GlueX.
K− are identified by selecting the horizontal band centered about ∆T =
0. The curved line deviating below the horizontal K− line comes from miss
identified π− tracks. The additional curved lines above and below ∆T = 0
come from π− tracks that are associated with the wrong RF bunch. . . . . . 27

viii



3.20 A timing plot for accepted K− from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the K− and the vertical axis is the timing difference between the BCAL
and RF. It should be noted that the statistics in this sampling are smaller
than other plots. This is due to the fact that the kinematics of the generated
channel prefer to have the kaons moving in the forward direction; and therefore
provide few timing hits in the BCAL. Additionally, the extra statistics present
in the lower left portion of the graph are due to muons. Although muons were
not explicitly generated, the computer program hdgeant (derived from geant)
allows for some fraction of kaons to decay weakly while in flight; resulting in
observed muons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.21 A projection of the statistics from Figure [3.20] onto the vertical (timing) axis
between the momentum range of 0.3-4.0 GeV/c. A Gaussian fit was performed
and is included in the figure where the mean and width of the distribution are
given in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.22 A timing plot for accepted K− from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the K− and the vertical axis is the timing difference between the FCAL
and RF. The curved band that appears below the K− band around 1.5 GeV/c
and lower comes from µ−. Although muons were not explicitly generated, the
computer program hdgeant (derived from geant) allows for some fraction of
kaons to decay weakly while in flight; resulting in an observed muon. . . . . 29

3.23 A projection of the statistics from Figure [3.22] onto the vertical (timing) axis
between the momentum range of 2.0-4.0 GeV/c. This projection range was
chosen so that the distortion from the lower muon band was minimized. A
Gaussian fit was performed and is included in the figure where the mean and
width of the distribution are given in the legend. . . . . . . . . . . . . . . . . 30

3.24 A timing plot for accepted K− from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the K− and the vertical axis is the timing difference between the TOF and
RF. The curved band that appears below the K− band around 2.5 GeV/c
and lower comes from µ−. Although muons were not explicitly generated, the
computer program hdgeant (derived from geant) allows for some fraction of
kaons to decay weakly while in flight; resulting in an observed muon. . . . . 30

3.25 A projection of the statistics from Figure [3.24] onto the vertical (timing) axis
between the K− momentum range of 1.2-1.3 GeV/C. This projection range
is one out of many that were studied from Figure [3.24]. The purpose of
this study is to determine the amount of muon contamination in the kaon
band as a function of momentum. The results of this study are provided in
Figure [3.26]. Lastly, two Gaussian fits were performed on this data. The
mean and width of these Gaussian fits are recorded in Figure [3.26] for each
momentum range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



3.26 The image above is the result of the timing study performed on Figure [3.24].
Using that figure, a number of projection histograms were fit using different
momentum ranges. An example of one of these fits is given in Figure [3.25].
The data points close to 0 ∆T correspond to the Gaussian fits performed on
the kaon signal, and the data points that approach that band from the bottom
correspond to the Gaussian fits performed on the muon signal. The horizontal
position of each point is in the middle of the projection range, and the vertical
position of each point was assigned based on the mean value of the Gaussian
fit for each particle. The horizontal error bars are the size of the projection
range, which is always 0.1 GeV/c. The vertical error bars are determined by
the width of the Gaussian fits. The average of the widths of the kaon peaks
is 0.1 ns which is the value used to determine the timing cut in Table 3.1. . 31

3.27 Timing plots for γ candidates during the Spring 2017 run period for GlueX. γ
are identified by selecting the horizontal band centered about ∆T = 0. Large
enhancement in statistics at low momentum and out of time with the γ line
comes from slow moving and poorly timed neutrons. The additional horizontal
lines above and below ∆T = 0 come from γ showers that are associated with
the wrong RF bunch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.28 A timing plot for accepted γ from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the γ and the vertical axis is the timing difference between the BCAL and
RF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.29 The image above is the result of the timing study performed on Figure [3.28].
Using that figure, a number of projection histograms were fit using different
momentum ranges. The horizontal position of each point is in the middle
of the projection range, and the vertical position of each point was assigned
based on the mean value of the Gaussian fit. The horizontal error bars are
the size of the projection range, which is always 0.1 GeV/c. The vertical error
bars are determined by the width of the Gaussian fit. The average of the
widths of the photon peaks is ∼ 0.5 ns which is the value used to determine
the timing cut in Table [3.1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.30 A timing plot for accepted γ from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the γ and the vertical axis is the timing difference between the FCAL and
RF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.31 The image above is the result of the timing study performed on Figure [3.30].
Using that figure, a number of projection histograms were fit using different
momentum ranges. The horizontal position of each point is in the middle
of the projection range, and the vertical position of each point was assigned
based on the mean value of the Gaussian fit. The horizontal error bars are
the size of the projection range, which is always 0.1 GeV/c. The vertical error
bars are determined by the width of the Gaussian fit. The average of the
widths of the photon peaks is ∼ 0.55 ns which is the value used to determine
the timing cut in Table [3.1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

x



3.32 An example K+K− invariant mass histogram without pion removal from the
Time of Flight. A rho peak can be seen around roughly 1.25 GeV/c2. . . . . 35

3.33 A graph which provides the strangeness conservation cut used for kaons that
are detected by the Time of Flight detector. This is identical to Figure 3.18,
except that the vertical error bars have been multiplied by a factor of 2 in
order to visualize a 2σ uncertainty. The graph also contains Equation 3.3,
with a timing shift of 0.2 ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.34 A histogram showing the K+K− invariant mass after particle identification
cuts and the Equation 3.3 cut from the Time of Flight. The figure clearly
shows a large amount of background at masses higher than the φ. This is due
to the misidentification of pions for kaons from detectors other than the Time
of Flight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.35 A two dimensional color histogram of the K+K− invariant mass versus the
timing detectors for the kaons. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.36 Projections of K+
BCALK

−
X bins from Figure 3.35. . . . . . . . . . . . . . . . . 40

3.37 Projections of K+
FCALK

−
X bins from Figure 3.35. . . . . . . . . . . . . . . . . 41

3.38 Projections of K+
TOFK

−
X bins from Figure 3.35. . . . . . . . . . . . . . . . . . 42

3.39 Invariant mass of the reconstructed γγ pair from accepted Monte Carlo. This
Monte Carlo data originally came from a γp → pφη;φ → K+K−; η → γγ
generated topology. An interesting feature of this invariant mass spectra is
that it shows a clear η peak, but also contains a background as well. The
source of this background is thoroughly studied in subsection 3.2.3. . . . . . 44

3.40 P Vs θ and φ Vs θ distributions for thrown (left column) and secondary (right
column) photons inside accepted Monte Carlo data. . . . . . . . . . . . . . . 45

3.41 Comparing how the invariant mass for a given γγ pair changes depending
on the number of reconstructed photons in an event and whether or not the
photons were thrown or secondary photons. . . . . . . . . . . . . . . . . . . 45

3.42 Number of photons reconstructed in an event versus γγ Invariant Mass for
thrown photons and secondary photons after a P < 500MeV/c and θ < 12◦

cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.43 A plot of the final missing mass square after all cuts described in this chapter. 47

4.1 A two dimensional invariant mass plot with the K+K− invariant mass on the
vertical axis, the γγ invariant mass on the horizontal axis, and a logarithmi-
cally scaled z axis. Some interesting features contained within the image are
the clear vertical bands for the π0 and η resonances which have large decay
modes to γγ final states. In addition, one can also observe a horizontal band
slightly above 1 GeV

c2
which corresponds to the φ meson decaying to a K+K−

final state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 An illustrated example of the cuts used for studying the correlation of φη. The

figure above is a two dimensional invariant mass plot which clearly shows an η
band spanning the vertical direction at∼ 0.547 GeV/c2 and a φ band spanning
the horizontal direction at ∼ 1.02 GeV/c2. The red vertical and horizontal
cut lines provide the ranges used to study φη correlation. Examples of what
the projected ranges look like are provided in Figures [4.3][4.4]. . . . . . . . 50

xi



4.3 A collection of different K+K− invariant mass projections as a function of γγ
invariant mass cut range. Each sub figure includes a red line which is a second
degree polynomial used to estimate the shape of the background, a green line
which is a Gaussian used to estimate the φ signal peak, and a blue line which
the sum total of the polynomial fit and Gaussian fit. Lastly, each sub figure
also includes the γγ invariant mass cut range used to produce the projected
figure. This information is in the title of the histogram, inside the brackets. . 51

4.4 A collection of different γγ invariant mass projections as a function of K+K−

invariant mass cut range. Each sub figure includes a red line which is a first
degree polynomial used to estimate the shape of the background, a green
line which is a Gaussian used to estimate the η signal peak, and a blue line
which the sum total of the polynomial fit and Gaussian fit. Lastly, each sub
figure also includes the K+K− invariant mass cut range used to produce the
projected figure. This information is in the title of the histogram, inside the
brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 The above figure provides the number of events for each projection range stud-
ied. These numbers were calculated by means of integrating the Gaussian fit
for either the φ or η between ±2σ. The vertical column of numbers represents
the number of η events for a given K+K− invariant mass, and the horizontal
row of numbers represents the number of φ events for a given γγ invariant
mass. The number of events observed in the intersection region was not in-
cluded in the figure due to the amount of space available. There numbers can
be found in the Conclusion section. . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 An illustration to provide the reader with an idea of how the second statistics
study is performed. All of the cut ranges are identical to the first statistics
study. The numbers provided in the figure do not represent events, but simply
indicate the index associated with a certain area of φη phase space. . . . . . 54

4.7 This figure shows the total number of counts in each box. To be clear, the
numbers in each box do not represent the total number of events, but rather
the precise amount of statistics contained within the cut lines. Upon in-
spection, one can see evidence of φη correlation, which is explained in the
Conclusion section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 A fit which will result in an extremely low quality factor due to the very few
signal events in comparison to background events at the location of the arrow,
or invariant mass of the event being considered. . . . . . . . . . . . . . . . . 60

4.9 A fit which will result in a quality factor around 0.5, due to the fact that
there are roughly the same signal and background events at the location of
the arrow, or invariant mass of the event being considered. . . . . . . . . . . 61

4.10 A fit which will result in a very high quality factor due to the large number
signal events in comparison to background events at the location of the arrow,
or invariant mass of the event being considered. . . . . . . . . . . . . . . . . 62

4.11 A fit which will result in an extremely low quality factor due to the very few
signal events in comparison to background events at the location of the arrow,
or invariant mass of the event being considered. . . . . . . . . . . . . . . . . 65

xii



4.12 A fit which will result in a quality factor somewhat above 0.5, due to the fact
that there are slightly more signal events as compared to background events
at the location of the arrow, or invariant mass of the event being considered. 66

4.13 A fit which will result in a very high quality factor due to the large number
signal events in comparison to background events at the location of the arrow,
or invariant mass of the event being considered. . . . . . . . . . . . . . . . . 67

4.14 The K+K− invariant mass distribution plotted with the signal weight, Qφ

and the background weight 1−Qφ. . . . . . . . . . . . . . . . . . . . . . . . 73
4.15 The γγ invariant mass distribution plotted with the signal weight, Qη and the

background weight 1−Qη. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.16 The pγγ invariant mass for the Elliptical Subtraction method (Subsec: 4.5.1).

This distribution shows a possible N* structure around 1650 MeV/c2. . . . . 75
4.17 The φη invariant mass for the Elliptical Subtraction method (Subsec: 4.5.1)

before N* removal. This distribution shows two possible structures at lower
mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.18 The angle of the η meson with respect to the beam direction in the lab frame
versus the beam energy for γp→ pX(1680);X(1680)→ φη Monte Carlo sample. 77

4.19 The angle of the η meson with respect to the beam direction in the lab frame
versus the beam energy for γp→ pX(1850);X(1850)→ φη Monte Carlo sample. 78

4.20 The angle of the η meson with respect to the beam direction in the lab frame
versus the beam energy for γp → N∗(1650)φ;N∗(1650) → pη Monte Carlo
sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.21 The number of N*, X(1680), and X(1850) events as a function of θ cut value. 80
4.22 The number of N*, X(1680), and X(1850) events minus the number of N*

events, as a function of θ cut value. . . . . . . . . . . . . . . . . . . . . . . . 81
4.23 The pγγ invariant mass for the Elliptical Subtraction method (Subsec: 4.5.1)

after a θ cut of 18◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.24 The φη invariant mass for the Elliptical Subtraction method (Subsec: 4.5.1)

after a θ cut of 18◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.25 The φη invariant mass acceptance factor. . . . . . . . . . . . . . . . . . . . . 83
4.26 The cos(θ)GJ acceptance factor for φη invariant mass range between 1.605-

1.707 GeV/c2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.27 The cos(θ)GJ acceptance factor for φη invariant mass range between 1.809-

1.912 GeV/c2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.28 The K+K− invariant mass Vs γγ invariant mass before elliptical Mass selection. 85
4.29 The K+K− invariant mass Vs γγ invariant mass showing the elliptical mass

selection method. The upper most histogram shows the ellipse which selects
the φη intersection region, described by Equation 4.18. The middle histogram
shows the ring which selects the background and is described by Equation 4.21.
The bottom most histogram shows the difference between the upper and mid-
dle histograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.30 The φη invariant mass for elliptical mass selection, not acceptance corrected. 88
4.31 The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2,

not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xiii



4.32 The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2,
not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.33 The signal φη invariant mass for elliptical mass selection with the acceptance
correction factors described in Figure [4.25]. The range of the distribution has
been changed due to the large error bars at high φη invariant mass values. . 91

4.34 The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2

with the acceptance correction factors described in Figure [4.26]. . . . . . . . 91
4.35 The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2

with the acceptance correction factors described in Figure [4.27]. . . . . . . . 92
4.36 The γγ invariant mass spectrum with all events weighted by Qφ. . . . . . . . 92
4.37 The γγ invariant mass spectrum with all events weighted by 1−Qφ. . . . . . 93
4.38 The K+K−γγ invariant mass spectrum with all signal events weighted by

Qφ, not acceptance corrected. The top histogram is the data which selects
the η peak contained in Figure [4.36]. The middle histogram is the data which
selects the γγ side-band data. The bottom histogram is the φη signal and is
the difference between the first histogram and the second histogram. . . . . . 94

4.39 The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2,
not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.40 The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2,
not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.41 The K+K−γγ invariant mass spectrum with all signal events weighted by Qφ,
and the η is selected by side-band subtraction. The spectrum is acceptance
corrected as described by Figure [4.25]. The range of the distribution has been
changed due to the large error bars at high φη invariant mass values. . . . . 97

4.42 The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2

with the acceptance correction factors described in Figure [4.26]. . . . . . . . 97
4.43 The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2

with the acceptance correction factors described in Figure [4.27]. . . . . . . . 98
4.44 The fit of the K+K− invariant mass spectrum with all events weighted by Qη. 99
4.45 The K+K− invariant mass spectrum with all events weighted by 1−Qη. . . 99
4.46 The K+K−γγ invariant mass spectrum with all signal events weighted by Qη,

not acceptance corrected. The top histogram is the data which selects the
φ peak contained in Figure [4.44]. The middle histogram is the data which
selects the K+K− side-band data. The bottom histogram is the φη signal and
is the difference between the first histogram and the second histogram. . . . 100

4.47 The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2,
not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.48 The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2,
not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.49 The K+K−γγ invariant mass spectrum with all signal events weighted by Qη,
and the φ is selected by side-band subtraction. The spectrum is acceptance
corrected as described by Figure [4.25]. The range of the distribution has been
changed due to the large error bars at high φη invariant mass values. . . . . 103

4.50 The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2

with the acceptance correction factors described in Figure [4.26]. . . . . . . . 104

xiv



4.51 The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2

with the acceptance correction factors described in Figure [4.27]. . . . . . . . 104
4.52 The γγ invariant mass spectrum with all signal events weighted by Qφη, not

acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.53 The K+K− invariant mass spectrum with all signal events weighted by Qφη,

not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.54 The K+K−γγ invariant mass spectrum with all signal events weighted by

Qφη, not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.55 The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2,

not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.56 The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2,

not acceptance corrected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.57 he K+K−γγ invariant mass spectrum with all signal events weighted by Qφη.

The spectrum is acceptance corrected as described by Figure [4.25]. The range
of the distribution has been changed due to the large error bars at high φη
invariant mass values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.58 The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2

with the acceptance correction factors described in Figure [4.26]. . . . . . . . 110
4.59 The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2

with the acceptance correction factors described in Figure [4.27]. . . . . . . . 111
4.60 The two dimensional color plot of the K+K−γγ invariant mass vs the break-up

momentum. All events are weighted by Qφη. . . . . . . . . . . . . . . . . . . 113
4.61 An interpolation graph, where the horizontal points are the bin values from

Figure [4.60], and the vertical values are the mean values for the break-up
momentum projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.62 Fit of the φη mass using the elliptical signal distribution in Figure [4.30]. The
fit contains two interfering relativistic Breit-Wigners as signal, plus a scaled
accepted Monte Carlo distribution as background. The χ2/ndf, probability,
and fit parameters are all given in the stat box. . . . . . . . . . . . . . . . . 114

4.63 Fit of the φη mass using the elliptical signal distribution in Figure [4.30]. The
fit contains one low mass relativistic Breit-Wigner as signal, plus a scaled
accepted Monte Carlo distribution as background. The χ2/ndf, probability,
and fit parameters are all given in the stat box. . . . . . . . . . . . . . . . . 115

4.64 Fit of the φη mass using the elliptical signal distribution in Figure [4.30]. The
fit contains one high mass relativistic Breit-Wigner as signal, plus a scaled
accepted Monte Carlo distribution as background. The χ2/ndf, probability,
and fit parameters are all given in the stat box. . . . . . . . . . . . . . . . . 115

4.65 Fit of the φη mass using the elliptical signal distribution in Figure [4.30].
The fit contains no signal distribution, only a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are
all given in the stat box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.66 Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution in
Figure [4.38]. The fit contains two interfering relativistic Breit-Wigners as
signal, plus a scaled accepted Monte Carlo distribution as background. The
χ2/ndf, probability, and fit parameters are all given in the stat box. . . . . . 116

xv



4.67 Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution in
Figure [4.38]. The fit contains one low mass relativistic Breit-Wigner as signal,
plus a scaled accepted Monte Carlo distribution as background. The χ2/ndf,
probability, and fit parameters are all given in the stat box. . . . . . . . . . . 117

4.68 Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution
in Figure [4.38]. The fit contains one high mass relativistic Breit-Wigner as
signal, plus a scaled accepted Monte Carlo distribution as background. The
χ2/ndf, probability, and fit parameters are all given in the stat box. . . . . . 117

4.69 Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution in
Figure [4.38]. The fit contains no signal distribution, only a scaled accepted
Monte Carlo distribution as background. The χ2/ndf, probability, and fit
parameters are all given in the stat box. . . . . . . . . . . . . . . . . . . . . 118

4.70 Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in
Figure [4.46]. The fit contains two interfering relativistic Breit-Wigners as
signal, plus a scaled accepted Monte Carlo distribution as background. The
χ2/ndf, probability, and fit parameters are all given in the stat box. . . . . . 118

4.71 Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in
Figure [4.46]. The fit contains one low mass relativistic Breit-Wigner as signal,
plus a scaled accepted Monte Carlo distribution as background. The χ2/ndf,
probability, and fit parameters are all given in the stat box. . . . . . . . . . . 119

4.72 Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in
Figure [4.46]. The fit contains one high mass relativistic Breit-Wigner as
signal, plus a scaled accepted Monte Carlo distribution as background. The
χ2/ndf, probability, and fit parameters are all given in the stat box. . . . . . 119

4.73 Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in
Figure [4.46]. The fit contains no signal distribution, only a scaled accepted
Monte Carlo distribution as background. The χ2/ndf, probability, and fit
parameters are all given in the stat box. . . . . . . . . . . . . . . . . . . . . 120

4.74 Fit of the φη mass using the Qφη Weighted distribution in Figure [4.54]. The
fit contains two interfering relativistic Breit-Wigners as signal, plus a scaled
accepted Monte Carlo distribution as background. The χ2/ndf, probability,
and fit parameters are all given in the stat box. . . . . . . . . . . . . . . . . 120

4.75 Fit of the φη mass using the Qφη Weighted distribution in Figure [4.54]. The
fit contains one low mass relativistic Breit-Wigner as signal, plus a scaled
accepted Monte Carlo distribution as background. The χ2/ndf, probability,
and fit parameters are all given in the stat box. . . . . . . . . . . . . . . . . 121

4.76 Fit of the φη mass using the Qφη Weighted distribution in Figure [4.54]. The
fit contains one high mass relativistic Breit-Wigner as signal, plus a scaled
accepted Monte Carlo distribution as background. The χ2/ndf, probability,
and fit parameters are all given in the stat box. . . . . . . . . . . . . . . . . 121

4.77 Fit of the φη mass using the Qφη Weighted distribution in Figure [4.54]. The
fit contains no signal distribution, only a scaled accepted Monte Carlo dis-
tribution as background. The χ2/ndf, probability, and fit parameters are all
given in the stat box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xvi



Chapter 1

Data, Codes, and Procedures

Contained within this document is a thorough description of how an analysis of the
reaction γp → pφη;φ → K+K−; η → γγ was performed. It should be immediately noted
that this document is intended for any and all collaborating members of GlueX; including but
not limited to: undergraduates, graduates, postdocs, staff scientists, and professors. Most
of the information contained within this analysis note has been directly transfered from the
thesis titled: ”Search for New and Unusual Strangeonia States Using γp→ pφη With GlueX
at Thomas Jefferson National Accelerator Facility”. This work was completed by Bradford
E. Cannon at Florida State University in order to obtain a PhD in Physics. The final version
of the thesis can be found in the Publication→Theses→2019 section of the GlueX Wiki [1].

This first chapter will be dedicated towards answering three primary questions.

1. (Data Location) Where can the data and MC be found within the FSU/JLAB com-
puting system, for a given section in this analysis note?

2. (Code Location) Where can the C++ codes be found within the FSU/JLAB computing
system, for a given section in this analysis note?

3. (Relevant Procedures) What were the procedures to either run the C++ code, or to
create the MC data, for a given section in this analysis note?

To do this, the subsections of this chapter will match the names of all chapters and
subsections after it. If a subsequent chapter or subsection contains special data, an elaborate
C++ code, or a technical computing procedure, instructions or examples will be provided
here. It should be noted that not all future chapters and subsections will be highlighted
here; only those which require additional information or explanation. Lastly, the information
included here is specifically for individuals who have a good/decent understanding of: the
GlueX analysis, C++, shell scripting, and distributed computing. If you feel that you may
not be at this level, be sure to try the GlueX Analysis Workshops provided on the GlueX
Wiki before attempting the material in this document.

1. (FSU) HOME_DIR==/d/grid12/bcannon/PhiEta

2. (JLAB) HOME_DIR==/work/halld/home/bcannon/Analysis_Note
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1.1 Monte Carlo

Data Location:

This file is the sum total of all six Monte Carlo run numbers. This tree is after generation,
hdgeant, mcsmear, and hdroot.
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/t_15/tree_kpkmgg.root

Code Location:

The file which generates φη phase space is given here. This is the file that is read by the
command genr8.
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/t_15/PhiEta.input

The file which describes the conditions for the generated Monte Carlo entering the detector
is found here. This is the file that is read by the command hdgeant.
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/t_15/control.in

Relevant Procedures:

Since this Monte Carlo generates roughly 1.7 million events for each run number, a ’poor
mans’ job submission was used on the FSU computing system. In order to recreate what
is currently in this directory, one would need to run the following shell script with a run
number passed as an argument. The shell script then takes care of everything by copying
the appropriate files into a new directory and running all of the Monte Carlo codes in there.
For each run number that is generated, there should be a separate hadron session associated
with it; either by means of a new terminal or by opening a new vnc session.
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/t_15/generate.sh

1.2 Data Selection

Data Location:

The trees that are run over by my DSelector can be found here.
/d/grid13/bcannon/PhiEta/RunPeriod-2017-01/tree_ggkpkm/tree_ggkpkm__B4_*.root

The resulting root file with an ntuple (that is used for the Quality Factor Analysis) can
be found here. This output root file also contains ALL of the cuts utilized to select the
γp→ pK+K−γγ final state, which are administered by the DSelector.
HOME_DIR/DSelector/kpkmgg/FinalCuts_NoCuts.root

Code Location:

The DSelector that is used to select the γp→ pK+K−γγ final state can be found here.
HOME_DIR/DSelector/kpkmgg/DSelector_FinalCuts.C

HOME_DIR/DSelector/kpkmgg/DSelector_FinalCuts.h
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Relevant Procedures:

To run the DSelector over all of the aforementioned trees, the following codes were used.
The shell script can take no argument, or an integer argument (numbers 1 through 6).
Passing no argument will cause the shell script to run over the entire data set; while passing
an integer argument will cause the shell script to run over one sixth of the data set. The
purpose of this approach is to allow a ’poor mans’ job submission. To run over the data
more quickly, open six different terminal or vnc sessions, and then pass a different integer
for each session.
HOME_DIR/DSelector/kpkmgg/test_DSelector_RunNumber.sh

The C++ code provided below is called by the shell script. This code will access the ROOT
ProofLite package utilized by the DSelector library in order to incorporate a multi-threaded
approach.
HOME_DIR/DSelector/kpkmgg/test_DSelector_RunNumber.cxx

1.3 Analysis

1.3.1 Probabilistic Weightings for φη Events

Data Location:

The below root file is the sum total of all Spring 2017 data after selection cuts. This file
includes the ntuple which is used to run the Probabilistic Event Weightings.
HOME_DIR/DSelector/kpkmgg/FinalCuts_NoCuts.root

When this file is run by the codes below, a new ntuple will be written to it which has multiple
weight entries for each event in the old ntuple. An example output root file can be found
here:
HOME_DIR/QValue/PhiEta/MMSQ/Poly3/FinalCuts_NoCuts.root

Code Location:

The C++ code which includes all of the intricacies of the Probabilistic Event Weight-
ing can be found here. This code is called by the next C++ code, Execute_QValue_

Relativistic_PhiEta.C.
HOME_DIR/QValue/PhiEta/MMSQ/Poly3/Calculate_QValue_Relativistic_PhiEta.C

The next C++ file is the primary code which defines all of the important fit functions and
will grab the ntuple to be used for calculation.
HOME_DIR/QValue/PhiEta/MMSQ/Poly3/Execute_QValue_Relativistic_PhiEta.C

Relevant Procedures:

To run this code, I strongly suggest running root in batch mode and in a vnc session, as
this will save a lot of time. As of right now, running this code over the 2017 data takes a
little less than one day. Therefore it is imperative to utilize a vnc session. To run, type the
command:
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root -l -q -b Execute_QValue_Relativistic_PhiEta.C()

Be sure that Calculate_QValue_Relativistic_PhiEta.C and the appropriate root file are
in the same directory.

1.3.2 Removal of N* Background

Data Location:

There are two relevant locations for this MC study. One of them contains the information
about the N*, which can be found here:
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/NStar/NStar.gamp

The other contains information about the generated states which came from the φ(1680)
and φ(1850) mesonic topologies.
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/Flat/PhiEta.gamp

Code Location:

The N* phase space is produced by calling genr8 which takes this as an input file:
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/NStar/NStar.input

The φ(1680) and φ(1850) phase space is produced by calling genr8 which takes this as an
input file:
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/Flat/PhiEta.input

Relevant Procedures:

The important thing to remember with this study is that only generated events were
used. It was not necessary to include acceptance or smearing. Also, the input file for the
mesonic states were altered by simply changing the mass and width of the resonance which
decayed to φη.

1.3.3 Acceptance Corrections for φη Invariant Mass and cos(θ)GJ
Distributions

Data Location/Code Location/Relevant Procedures:

There are a number of different data sets, codes, and procedures that are used to make
the acceptance plots. Since many of them are entangled and somewhat complicated, I have
decided to put everything into one section.

The first step is to make files with the mass and GJ distributions. To do this, the file
HOME_DIR/DSelector/kpkmgg/FinalCuts/TNtuple_Plot.C

is used to make histograms for the dissertation. Contained within this file are many functions.
However, the relevant information for the MC can be found at the bottom, in the primary
macro TNtuple_Plot(). The macro has many procedures that are commented out. Be sure
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that the procedures which call the MC are uncommented, and all others are commented out.
The input file that this code expects is a file named FinalCuts.root, which will eventually
be written to. To be very clear, because TNtuple_Plot() can make plots for many different
data sets, FinalCuts.root can also represent many different data sets. Be careful with this
fact. Once you have run TNtuple_Plot(), FinalCuts.root has changed and will contain
new histograms, so it should be immediately renamed to save the results. Also, if you want
to change the analysis that is being looked at, the initial FinalCuts.root must have the
correct ntuple inside of it so that the correct results come out.

To get a version of FinalCuts.root that represents the generated MonteCarlo, use:
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/Acceptance/run.C

which takes the output of a generated MC file and turns it into a root file with the same
ntuple structure as the data. To get a version of FinalCuts.root that represents the ac-
cepted MonteCarlo, simply generate, simulate, smear, then reconstruct MC data then run
the DSelector code:
HOME_DIR/Monte_Carlo_Data/genr8/Coherent/DSelector/DSelector_FinalCuts.C/h

After doing this for generated and accepted MC, the names of the output root files were
changed and copied to a directory. The two relevant Monte Carlo files used are:
HOME_DIR/DSelector/kpkmgg/FinalCuts/FinalCuts_MCAccepted.root

HOME_DIR/DSelector/kpkmgg/FinalCuts/FinalCuts_MCGenerated.root

These files are used as input for the program:
HOME_DIR/DSelector/kpkmgg/FinalCuts/MakeAcceptance.C

The output of this program is a file called:
HOME_DIR/DSelector/kpkmgg/FinalCuts/Correction.root

All of the relevant histograms are inside this file. It should be noted that MakeAcceptance.C
also expects a data file as well. This will not effect the results of the generated and accepted
MC. It is there so that other histograms, namely the acceptance corrected data histograms,
can be easily created.

1.3.4 Analysis of φη Invariant Mass Plot and cos(θ)GJ Distributions

If you have not done so already, read the second chapter of the previous section. It is
relevant here as well.

Data Location:

The input data for this section comes from the output of Probabilistic Weightings for φη
Events; where the root file will now have a new ntuple with several weights assigned to each
event. This input file must have the name:
HOME_DIR/DSelector/kpkmgg/FinalCuts/FinalCuts.root

As stated in paragraph two of the previous section, the output will be the same file, only
with some histograms added to it. Be sure to change the name of the file if you want to save
the results.
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Code Location:

There is one very important code which creates all of the output histograms that are not
acceptance corrected. This file is:
HOME_DIR/DSelector/kpkmgg/FinalCuts/TNtuple_Plot.C

Contained within this file are many functions. However, the relevant information for making
the histograms can be found at the bottom, in the primary macro TNtuple_Plot(). The
macro has many procedures that are commented out. Depending on which Quality Factor
analysis you want to look at, you should uncomment the Plots anf Cuts files associated with
that particular analysis. Each different analysis should be grouped together and it should
be self explanatory as to which files correspond to which analysis. For example, if you want
to look at the results for the quality factor analysis which only considers the weight of the
φ, then uncomment the *_QValuePhi.C codes, and be sure that all other groupings are
commented out.

The codes that declare and make the histograms for the φ only example are below.
Contained withing the ”Plots” code are the lines which fill the histogram. The important
thing to notice here is that the weight which is used to fill the histograms is specific to the
φ only analysis.
HOME_DIR/DSelector/kpkmgg/FinalCuts/kpkmggCuts_QValuePhi.C

HOME_DIR/DSelector/kpkmgg/FinalCuts/kpkmggPlots_QValuePhi.C

There is one more important detail that needs to be mentioned. Contained within the
”Plots” code are functions named AddHists or DrawHists (depending on the analysis that
is being considered). These functions will take in either two, or three inputs, depending on
what you want to do. Since this analysis was highlighted by fitting the φη invariant mass,
there is an option to tell the code to include the fit or not. Since this section does not want
to include a fit to this histogram, be sure that when these functions are called, there are
only two inputs passed; not three. The two inputs that need to be passed are the canvas
and histogram, but NOT the boolean ”True”.

Relevant Procedures:

root -l TNtuple_Plot.C()

1.3.5 Fitting φη Invariant Mass Plots for Signal Distributions

Data Location:

The data explanation for this section is the same as above. This section will only highlight
how to correctly fit.

Code Location:

The codes for this section are the same as the section above. However, in order to fit
the φη invariant mass, one needs to make edits to the ”Plots” code, for a given analysis. As
mentioned in the last paragraph of the previous section, each ”Plots” code contains functions
named AddHists or DrawHists (depending on the analysis that is being considered). These
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functions will take in either two, or three inputs, depending on what you want to do. Since
this analysis was highlighted by fitting the φη invariant mass, there is an option to tell the
code to include the fit or not. Since this section includes a fit to this histogram, be sure that
when these functions are called, there are three inputs passed. The three inputs that need
to be passed are the canvas, histogram, and the boolean ”True”. This boolean variable will
access a portion of code inside an IF statement which is protected by this switch.
Since this analysis tested many different fit hypotheses, the code contained inside this IF
statement has many lines which need to be correctly written, depending on which hypothesis
is being considered. Each hypothesis has a block of code associated with it which is initiated
by a comment line that describes the type of fit. Following the comment line are a series
of commands which set the proper fit parameters or values, depending on the hypothesis.
After this, the histogram is fit, then additional signal and background functions collect the
fit parameters so that they can be drawn as well. Only one fit hypothesis may be done at a
time and if chosen, the other three blocks of code must be commented out.

Relevant Procedures:

Make all proper adjustments to the ”Plots” code, including the boolean ”True”, and the
fit hypothesis adjustment. Then run:
root -l TNtuple_Plot.C()
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Chapter 2

Monte Carlo

2.1 Monte Carlo Features of γp→ pφη

In order to better understand the acceptance of the γp → pφη topology in the GlueX
spectrometer, a generated Monte Carlo sample was analyzed. More specifically, the exact
sample that was produced was γp→ pX;X → φη;φ→ K+K−; η → γγ. This Monte Carlo
sample consisted of 1,666,667 generated events for each of the run numbers 030408, 030620,
030699, 030802, 030900, and 031029. The run numbers were chosen because two have beam
polarizations in the PARA/PERP directions at low intensity (030408 and 030620), two have
PARA/PERP orientations at high intensity (030802 and 031029), and two of the run numbers
are from amorphous radiators (030699 and 030900). The total number of generated φη events
is therefore 10 million. The events were generated using a combination of a coherent and
an incoherent bremsstrahlung beam energy spectrum ranging from 3 GeV to 12 GeV. These
events were also generated with a t-slope of 2.5 (GeV/c2)2. To be more clear, the thrown
beam particles were not polarized in this sample; only the beam energy spectrum matched
that of a polarized beam spectrum plus an incoherent beam spectrum (Figure [2.1]). All final
state particle kinematics were generated using the GlueX Monte Carlo generator (genr8).
The generated final state phase space did not include any spin information from parent or
daughter states. The γ,K+, K−, φ, η, and p particles were generated using the invariant
mass values and widths provided in the PDG. The photo-produced X mass was distributed
between the lower kinematic limit mφ+mη and the upper kinematic limit which is a function
of the momentum transfer t, and the thrown beam energy.

An example of what the generated beam energy distribution looks like for this Monte
Carlo sample is given in Figure [2.1]. It should be noted that this particular Monte Carlo
sample includes both coherent and incoherent beam structures, where the peaks in the image
come from coherent Monte Carlo. The lower energy region of the beam energy spectrum
comes primarily from the incoherent data. It should also be noted that the slow rise of the
beam energy in this region is due to Lorentz factor weighting, or phase space.

Momentum versus θ distributions are also provided in Figures [2.2], [2.3], [2.4], and
[2.5]. These figures are generated Monte Carlo and represent the distributions of final state
particles in the lab frame before running hdgeant, mcsmear, and hd root. Still, the figures
provide some insight into the expected kinematic distributions of the final state particles.
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Figure 2.1: A histogram which includes the thrown beam statistics from the generated Monte
Carlo example. In the figure one can easily see the coherent peak which maximizes at 9 GeV.
Additionally, one can also see other secondary peaks at higher energy.

For example, Figure [2.2] displays the momentum versus theta distribution for the recoil
proton. This figure shows that we should expect the proton to have a very low momentum
and high recoil angle relative to the beam direction for this final state.

Additionally, Figures [2.3][2.4] seem merely identical in shape and contour. This is ex-
pected and the reason for this is that both kaons are decaying from the φ meson, and the
K+ and K− are anti- particles. In these figures, it is clear that Kaons will preferentially
travel towards the TOF/FCAL and with a momentum that should include a lot of pion
contamination (see Figures [3.18][3.26] for more information on pion contamination at high
momentum).

Lastly, Figure [2.5] shows that the final state photons will be mostly forward going and
therefore we should expect to see the majority of them interacting with the FCAL rather
than the BCAL. It is not surprising that the Monte Carlo has generated photons and kaons
that favor the forward direction, while the recoil proton has low momentum and a highly
transverse direction. This is simply a consequence of the fact that a low t interaction was
programmed into the Monte Carlo, resulting in Figure [2.6].

The last few figures to be discussed in this section involve the study of invariant mass
spectra. The first of which is the invariant mass of φη (Figure [2.7]) which shows a phase
space distribution between the values of 1.5 to 3.2 GeV/c2; then the slope of the distribution
changes drastically from 3.3 to 4 GeV/c2. These features may seem incorrect at first glance
since the generated Monte Carlo mass is supposed to just show phase space. However, upon
further inspection, it is clear that these features manifest themselves within the Monte Carlo
data because of the shape of the beam spectra. The best way to see this behavior is by
considering Figure [2.8]. This figure shows the generated beam energy on the vertical axis,
and the generated φη mass on the horizontal axis. Since the primary peak from the coherent
bremsstrahlung will dominate most of the statistics in this generated sample, the φη invariant
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Figure 2.2: A two dimensional histogram which includes the thrown kinematic information
of the recoil proton. In the histogram, the horizontal axis represents the generated θ angle
in the lab frame, and the vertical axis represents the generated momentum magnitude in
the lab frame. One interesting feature of this Monte Carlo data is that the kinematics of
the recoil proton appear to be constrained between [0.2 − 2.0]GeV/c in momentum, and
[0.0− 60.0]◦ in angle.

mass range which it couples too will be most dominant as well. Inspecting Figure [2.8], one
can clearly see the coherent peak at 9 GeV, and the corresponding φη invariant mass ranging
from 1.5 to 3.2 GeV/c2.
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Figure 2.3: A two dimensional histogram which includes the thrown kinematic information
of the generated K+. In the histogram, the horizontal axis represents the generated θ angle
in the lab frame, and the vertical axis represents the generated momentum magnitude in the
lab frame.
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Figure 2.4: A two dimensional histogram which includes the thrown kinematic information
of the generated K−. In the histogram, the horizontal axis represents the generated θ angle
in the lab frame, and the vertical axis represents the generated momentum magnitude in the
lab frame.
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Figure 2.7: A histogram which includes the generated φη invariant mass. In the figure
one can easily see that the invariant mass of the φη has the shape of phase space until
it reaches ∼ 3.2 GeV/c2. From that point, the invariant mass falls less sharply until ∼
4.0 GeV/c2. This feature of the invariant mass is directly related to the fact that a coherent
bremsstrahlung beam energy spectrum was used. The abrupt change in the invariant mass
range of 3.3 − 4.0 GeV/c2 is caused by the primary coherent peak at 9.0GeV . To visualize
this in two dimensions, see Figure [2.8].

)2 Invariant Mass (GeV/cηφ
1.5 2 2.5 3 3.5 4

B
ea

m
 E

n
er

g
y
 (

G
ev

)

3

4

5

6

7

8

9

10

11

12

Entries    1.000001e+07

0

1000

2000

3000

4000

5000

6000

7000

8000

Entries    1.000001e+07

 Invariant Mass Vs Beam Energy (Thrown)ηφ

Figure 2.8: A two dimensional histogram which includes the generated φη invariant mass on
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see the effect that the coherent peak has on the shape of the phase space.
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Chapter 3

Data Selection

3.1 Identification of γp→ pK+K−γγ Events at GlueX

In order to study potential states of bound strangeonia, it is essential to properly identify
all final and initial state particles. The final state topology that will be studied for this thesis
is γp → pK+K−γγ, where the K+K− pair are daughter states of the φ meson, and the γγ
pair are daughter states of the η meson. Therefore, the beginning of this analysis section
will focus on the particle identification of the proton, kaons, and final state photons, as well
as the incident beam and target proton. Once identification of all particles has been well
established, this analysis will then provide evidence that the final event sampling enforces
exclusivity.

3.1.1 Spring 2017 Run Period

The data presented here is the result of the successful Spring 2017 run period. The
Spring 2017 run period spanned from January 23rd to March 13th and accumulated roughly
50 billion physics events. The maximum electron beam energy used was 12 GeV, and the
accelerator ran at 250 MHz while in low intensity (beam every 4 ns), and later ran at 500
MHz while in high intensity (beam every 2 ns). Upon entering Hall D, the electron beam was
incident upon a radiator. During this run period, both amorphous and diamond radiators
were used to produce either incoherent or coherent polarized bremsstrahlung radiation. The
diamond radiator was experimentally set up to produce linear photon polarization at four
different angles relative to the lab floor - 0°(parallel with floor), 45°, 90°(perpendicular with
floor), and 135°. These directions were chosen in order to provide the detector with a uniform
sampling of linear polarization in the transverse direction to the incident beam. In order
to yield roughly the same amount of statistics for an amorphous radiator run as compared
to a diamond radiator run, a beam current of 150 nA was incident upon the amorphous
radiator, while a beam current of 100 nA was incident upon the diamond radiator. Farther
downstream, a 5 mm collimator hole was used for all radiator configurations. Lastly, the
collimated photon beam was incident upon a stationary liquid hydrogen target. This resulted
in one petabyte of files and 16 pb−1 of integrated luminosity.
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3.1.2 Identification of Initial State Particles

Photon Beam

The first step in identifying the initial state beam photon is to select the correct beam
bunch. Since the electron beam is delivered from the accelerator every four nanoseconds,
the timing of when the beam particles arrive into the hall is well known and we call this the
Radio Frequency (RF) time.

Figure 3.1: An example histogram of beam time as compared to the reported Radio Fre-
quency (RF) time. In the plot there are three peaks, all of which are separated by four
nanoseconds. Also included in the plot are two red dashed cut lines at ±2 ns. These cut
lines represent the values used to perform an accidental subtraction on the data.

In addition to the RF time, we also have the beam time. The beam time is defined as the
time which the reconstruction converged upon a common vertex time. The common vertex
time is found by using the final state charged tracks and their timing, and back tracking
them to a common point in space and time. Comparing the beam time with the RF time
provides the experiment with the correct beam bunch which should be centered at zero. An
example of what this distribution looks like and the cut used for it is given in Figure 3.1.
It should be noted that this analysis will enforce a beam timing cut of ± 6ns in order to
allow 3 beam bunches to pass. Once all cuts are made on the data and the final set of events
is known, the additional side peaks will be used for accidental subtraction. An accidental
subtraction is necessary in this analysis due to the high volume of accidental beam photons
in the primary peak at zero. The accidental subtraction will be performed on all final plots
shown in this analysis and can be executed by assigning a weight of 1 for any event with a
beam timing of ±2ns, and a weight of -0.5 for any event from the side peaks. The purpose
of assigning a weight of -0.5 for the side peaks is simply because there are twice as many
side peaks (2) as primary peaks (1).
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Target Proton

There are two cuts needed to select the initial state proton. Both of these cuts enforce
the reconstructed vertex for all final state particles to be within the geometric volume of
the target chamber. Since this analysis does not contain a particle lifetime which would
result in a detached vertex, it is imperative to reduce backgrounds from other channels that
may have this feature, such as excited baryons with a strange quark. Examples of what the
reconstructed vertex for the final state photons looks like in the beam direction and in the
transverse beam direction, is given in Figure [3.2a] and Figure [3.2b], respectively.

(a) Reconstructed vertex position along
the beam direction with cut lines at 51 and
79 cm.

(b) Reconstructed vertex position trans-
verse to the the beam direction with cut
a line at 1 cm in the radial direction.

Figure 3.2: An example of what a reconstructed vertex distribution looks like for a final state
γ in the reaction γp → pK+K−γγ. The upper image is the reconstructed vertex position
along the beam line, or z axis; and the lower image is the reconstructed vertex position in the
directions transverse to the beam line. Both figures contain red dashed lines which represent
the cut values for all reconstructed final state particles. In the z direction the cut values are
51 cm ≤ Vz ≤ 79 cm, and in the transverse direction the cut values are Vr ≤ 1 cm. The
z direction cut values are established from Log Entry 3456336 from a Spring 2017 empty
target run. The transverse cuts are simply established by considering the geometric size of
the target chamber.

3.1.3 Identification of Final State Particles

Recoil Proton

There are three cuts that were used to identify the recoil proton and remove background.
One of the cuts is a standard dE/dX cut, which separates some of the slow moving protons
from other particles of positive charge such as e+, π+, and K+. Due to the higher mass of
the proton in comparison to the other particles with positive charge, the proton will tend
to lose more energy inside of the Central Drift Chamber. This cut is highlighted in the first
GlueX paper [2], and can be seen in Figure [3.3].
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Figure 3.3: A figure which shows the energy lost in the Central Drift Chamber on the vertical
axis, and the reconstructed momentum on the horizontal axis. At lower momentum, a proton
band can be seen rising sharply towards higher energy loss values. Also contained within the
figure is a white dashed line which represents the cut value used to identify slower moving
protons. The horizontal band which deviates from the proton band at low momentum comes
from positively charged pions and kaons.

The second cut is to enforce the reconstructed vertex position of the charged proton
track came from inside the target chamber. This cut is used to reduce any background from
particles that may have a detached vertex. The cut used is identical to those found and
described in the Target section, specifically Figure [3.2a] and Figure [3.2b]. The third and
final cut that is used to identify the recoil proton is the timing difference (∆ T) from the
BCAL, FCAL, and TOF. ∆ tis defined as the difference between the reconstructed vertex
time for the particle and the time when the photon beam arrived. An example of what these
distributions look like in data, as a function of momentum, is given in Figure [3.4]. Since the
data has a lot of pion background in these plots, it is difficult to determine what the proper
timing cuts should be for all of the sub detectors. Due to this, a Monte Carlo sample of
γp→ pX;X → φη;φ→ K+K−; η → γγ was generated, simulated, and then reconstructed.
This greatly reduces the background that is present in the timing plots and therefore can be
used to estimate a proper timing cut for the proton and the sub detectors used to measure
its time. Examples of these distributions and their associated projections onto the timing
axis are given in Figure [3.5] through Figure [3.10]. A summary of all of the timing cuts
used for the recoil proton as well as all other final state particles is given in Table [3.1].
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(a) ∆t Vs P for Proton candidates that have the Barrel
Calorimeter as the timing detector in data.

(b) ∆t Vs P for Proton candidates that have the For-
ward Calorimeter as the timing detector in data.

(c) ∆t Vs P for Proton candidates that have the Time
of Flight as the timing detector in data.

Figure 3.4: Timing plots for recoil proton candidates during the Spring 2017 run period
for GlueX. Protons are identified by selecting the horizontal band centered about ∆T = 0.
The curved line deviating below the horizontal proton line comes from miss identified π+

tracks. The additional curved lines above and below ∆T = 0 come from π+ tracks that are
associated with the wrong RF bunch.
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Figure 3.5: A timing plot for accepted recoil protons from the generated reaction γp →
pX;X → φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the recoil proton and the vertical axis is the timing difference between the BCAL and
RF. The enhancement of statistics in the lower right portion of the plot comes from miss
identified kaons that are also present in the accepted Monte Carlo.

Figure 3.6: A projection of the statistics from Figure [3.5] onto the vertical (timing) axis
between the momentum range of 0.3-1.5 GeV/c. This projection range was chosen so that
the distortion from the lower kaon band was minimized. A Gaussian fit was performed and is
included in the figure where the mean and width of the distribution are given in the legend.
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Figure 3.7: A timing plot for accepted recoil protons from the generated reaction γp →
pX;X → φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed momentum of
the proton and the vertical axis is the timing difference between the FCAL and RF. The
enhancement of statistics in the lower right portion of the plot comes from miss identified
kaons that are also present in the accepted Monte Carlo.

Figure 3.8: A projection of the statistics from Figure [3.7] onto the vertical (timing) axis
between the momentum range of 0.5-1.8 GeV/c. This projection range was chosen so that
the distortion from the lower kaon band was minimized. A Gaussian fit was performed and is
included in the figure where the mean and width of the distribution are given in the legend.
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Figure 3.9: A timing plot for accepted recoil protons from the generated reaction γp →
pX;X → φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed momentum
of the proton and the vertical axis is the timing difference between the TOF and RF. The
enhancement of statistics in the lower right portion of the plot comes from miss identified
kaons that are also present in the generated Monte Carlo.

Figure 3.10: A projection of the statistics from Figure [3.9] onto the vertical (timing) axis
between the momentum range of 0.5-1.8 GeV/c. This projection range was chosen so that
the distortion from the lower kaon band was minimized. A Gaussian fit was performed and is
included in the figure where the mean and width of the distribution are given in the legend.
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K+

There are two cuts that were used to identify the final state K+ and remove background.
The first cut is to enforce the reconstructed vertex position of the K+ track came from inside
the target chamber. This cut is used to reduce any parent state of the K+ that may have
a longer lifetime and therefore a detached vertex. The cut used is identical to those found
and described in the Target section, specifically Figure [3.2a] and Figure [3.2b].

(a) ∆ tVs P for K+ candidates that
have the Barrel Calorimeter as the tim-
ing detector in data.

(b) ∆ tVs P for K+ candidates that
have the Forward Calorimeter as the
timing detector in data.

(c) ∆ tVs P for K+ candidates that
have the Time of Flight as the timing
detector in data.

Figure 3.11: Timing plots for K+ candidates during the Spring 2017 run period for GlueX.
K+ are identified by selecting the horizontal band centered about ∆T = 0. The curved line
deviating below the horizontal K+ line comes from miss identified π+ tracks, and the curved
line deviating above the horizontal K+ line comes from miss identified proton tracks. The
additional curved lines above and below ∆T = 0 come from π+ and proton tracks that are
associated with the wrong RF bunch.
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The other cut that is used to identify the K+ is the timing (∆ T) from the BCAL,
FCAL, and TOF. ∆ tis defined as the difference between the reconstructed vertex time
for the particle and the time when the photon beam arrived. An example of what these
distributions look like in data, as a function of momentum, is given in Figure [3.11]. Since
the data has a lot of pion and proton background in these plots, it is difficult to determine
what the proper timing cuts should be for all of the sub detectors. Due to this, a Monte
Carlo sample of γp→ pX;X → φη;φ→ K+K−; η → γγ was generated, simulated, and then
reconstructed. This greatly reduces the background that is present in the timing plots and
therefore can be used to estimate a proper timing cut for the K+ and the sub detectors used
to measure its time. Examples of these distributions and their associated projections onto
the timing axis are given in Figure [3.12] through Figure [3.17]. It should be noted that in
many of the Monte Carlo plots, there appears to be an additional band from a particle with
less mass. This is a consequence of using the hdgeant simulator, which will decay particles
while in flight. Therefore, the band inside the Monte Carlo plots arises from the weak decay
of a kaon to a muon and a neutrino. A summary of all of the timing cuts used for the K+

as well as all other final state particles is given in Table [3.1].

Figure 3.12: A timing plot for accepted K+ from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K+ and
the vertical axis is the timing difference between the BCAL and RF. It should be noted that
the statistics in this sampling are smaller than other plots. This is due to the fact that the
kinematics of the generated channel prefer to have the kaons moving in the forward direction;
and therefore provide few timing hits in the BCAL. Additionally, the extra statistics present
in the upper left portion of the graph are due to protons that are also present in the accepted
Monte Carlo.
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Figure 3.13: A projection of the statistics from Figure [3.12] onto the vertical (timing)
axis between the momentum range of 0.3-4.0 GeV/c. A Gaussian fit was performed and is
included in the figure where the mean and width of the distribution are given in the legend.
The distortion of statistics towards the higher timing differences is due to protons that are
also present in the generated Monte Carlo.

Figure 3.14: A timing plot for accepted K+ from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K+ and
the vertical axis is the timing difference between the FCAL and RF. The curved band that
appears below the K+ band around 1.5 GeV/c and lower comes from µ+. Although muons
were not explicitly generated, the computer program hdgeant (derived from geant) allows
for some fraction of kaons to decay weakly while in flight; resulting in observed muons.
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Figure 3.15: A projection of the statistics from Figure [3.14] onto the vertical (timing) axis
between the momentum range of 2.0-4.0 GeV/c. This projection range was chosen so that
the distortion from the lower muon band and upper proton band was minimized. A Gaussian
fit was performed and is included in the figure where the mean and width of the distribution
are given in the legend.

Figure 3.16: A timing plot for accepted K+ from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K+ and
the vertical axis is the timing difference between the TOF and RF. The curved band that
appears below the K+ band around 2.5 GeV/c and lower comes from µ+; and the band near
the top of the plot comes from protons. Although muons were not explicitly generated, the
computer program hdgeant (derived from geant) allows for some fraction of kaons to decay
weakly while in flight; resulting in an observed muon.
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Figure 3.17: A projection of the statistics from Figure [3.16] onto the vertical (timing) axis
between the momentum range of 1.9-2.0 GeV/c. This projection range is one out of many
that were studied from Figure [3.16]. The purpose of this study is to determine the amount
of muon contamination in the kaon band as a function of momentum. The results of this
study are provided in Figure [3.18]. Lastly, two Gaussian fits were performed on this data.
The mean and width of these Gaussian fits are recorded in Figure [3.18] for each momentum
range.

Figure 3.18: The image above is the result of the timing study performed on Figure [3.16].
Using that figure, a number of projection histograms were fit using different momentum
ranges. An example of one of these fits is given in Figure [3.17]. The data points close to
0 ∆T correspond to the Gaussian fits performed on the kaon signal, and the data points
that approach that band from the bottom correspond to the Gaussian fits performed on the
muon signal. The horizontal position of each point is in the middle of the projection range,
and the vertical position of each point was assigned based on the mean value of the Gaussian
fit for each particle. The horizontal error bars are the size of the projection range, which is
always 0.1 GeV/c. The vertical error bars are determined by the width of the Gaussian fits.
The average of the widths of the kaon peaks is 0.1 ns which is the value used to determine
the timing cut in Table 3.1.

26



K−

Just like its antiparticle, the K− has two cuts; the vertex and timing cuts. The vertex
cut is used to eliminate any parent state of the K− that may have a longer lifetime and
therefore a detached vertex.

(a) ∆ tVs P for K− candidates that have
the Barrel Calorimeter as the timing detec-
tor in data.

(b) ∆ tVs P for K− candidates that have
the Forward Calorimeter as the timing de-
tector in data.

(c) ∆ tVs P for K− candidates that have
the Time of Flight as the timing detector in
data.

Figure 3.19: Timing plots for K− candidates during the Spring 2017 run period for GlueX.
K− are identified by selecting the horizontal band centered about ∆T = 0. The curved line
deviating below the horizontal K− line comes from miss identified π− tracks. The additional
curved lines above and below ∆T = 0 come from π− tracks that are associated with the
wrong RF bunch.
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The cut used is identical to those found and described in the Target section, specifically
Figure [3.2a] and Figure [3.2b]. The timing cuts (∆t) for the K− are for the BCAL, FCAL,
and TOF sub detectors. ∆t is defined as the difference between the reconstructed vertex time
for the particle and the time when the photon beam arrived. Since the timing distributions
from data (Figure [3.19]) have too much background in them, a Monte Carlo sample of
γp→ pX;X → φη;φ→ K+K−; η → γγ was generated, simulated, and then reconstructed.
This greatly reduces the background that is present in the timing plots and therefore can
be used to estimate a proper timing cut for the K− and the sub detectors used to measure
its time. Examples of these distributions and their associated projections onto the timing
axis are given in Figure [3.20] through Figure [3.25]. It should be noted that in many of the
Monte Carlo plots, there appears to be an additional band from a particle with less mass.
This is a consequence of using the hdgeant simulator, which will decay particles while in
flight. Therefore, the band inside the Monte Carlo plots arises from the weak decay of a
kaon to a muon and a neutrino. A summary of all of the timing cuts used for the K− as
well as all other final state particles is given in Table [3.1].

Figure 3.20: A timing plot for accepted K− from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K− and
the vertical axis is the timing difference between the BCAL and RF. It should be noted that
the statistics in this sampling are smaller than other plots. This is due to the fact that the
kinematics of the generated channel prefer to have the kaons moving in the forward direction;
and therefore provide few timing hits in the BCAL. Additionally, the extra statistics present
in the lower left portion of the graph are due to muons. Although muons were not explicitly
generated, the computer program hdgeant (derived from geant) allows for some fraction of
kaons to decay weakly while in flight; resulting in observed muons.
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Figure 3.21: A projection of the statistics from Figure [3.20] onto the vertical (timing)
axis between the momentum range of 0.3-4.0 GeV/c. A Gaussian fit was performed and is
included in the figure where the mean and width of the distribution are given in the legend.

Figure 3.22: A timing plot for accepted K− from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K− and
the vertical axis is the timing difference between the FCAL and RF. The curved band that
appears below the K− band around 1.5 GeV/c and lower comes from µ−. Although muons
were not explicitly generated, the computer program hdgeant (derived from geant) allows
for some fraction of kaons to decay weakly while in flight; resulting in an observed muon.
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Figure 3.23: A projection of the statistics from Figure [3.22] onto the vertical (timing) axis
between the momentum range of 2.0-4.0 GeV/c. This projection range was chosen so that
the distortion from the lower muon band was minimized. A Gaussian fit was performed
and is included in the figure where the mean and width of the distribution are given in the
legend.

Figure 3.24: A timing plot for accepted K− from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K− and
the vertical axis is the timing difference between the TOF and RF. The curved band that
appears below the K− band around 2.5 GeV/c and lower comes from µ−. Although muons
were not explicitly generated, the computer program hdgeant (derived from geant) allows
for some fraction of kaons to decay weakly while in flight; resulting in an observed muon.
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Figure 3.25: A projection of the statistics from Figure [3.24] onto the vertical (timing) axis
between the K− momentum range of 1.2-1.3 GeV/C. This projection range is one out of
many that were studied from Figure [3.24]. The purpose of this study is to determine the
amount of muon contamination in the kaon band as a function of momentum. The results
of this study are provided in Figure [3.26]. Lastly, two Gaussian fits were performed on
this data. The mean and width of these Gaussian fits are recorded in Figure [3.26] for each
momentum range.

Figure 3.26: The image above is the result of the timing study performed on Figure [3.24].
Using that figure, a number of projection histograms were fit using different momentum
ranges. An example of one of these fits is given in Figure [3.25]. The data points close to
0 ∆T correspond to the Gaussian fits performed on the kaon signal, and the data points
that approach that band from the bottom correspond to the Gaussian fits performed on the
muon signal. The horizontal position of each point is in the middle of the projection range,
and the vertical position of each point was assigned based on the mean value of the Gaussian
fit for each particle. The horizontal error bars are the size of the projection range, which is
always 0.1 GeV/c. The vertical error bars are determined by the width of the Gaussian fits.
The average of the widths of the kaon peaks is 0.1 ns which is the value used to determine
the timing cut in Table 3.1.
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γ

Unlike the other final state particles, the neutral final state photons do not leave a
charged track. Therefore, the reconstruction requires at least one charged particle in the
event to be used as a reference trajectory towards the event vertex. In the case of this
study, there are three charged tracks used to determine the event vertex position. Once the
vertex position of the event is known, it is assigned to all neutral particles in the final state.
Therefore, the final state photons have a vertex distribution. These distributions and their
associated cuts are given in the Target section, specifically Figure [3.2a] and Figure [3.2b].
It should also be mentioned that final state photons do not have a timing cut for the TOF.
This is due to the fact that the time of flight can only interact with charged particles, and
therefore cannot interact with photons. The timing cuts (∆t) for the γ only come from the
BCAL, FCAL. ∆ tis defined as the difference between the reconstructed vertex time for the
particle and the time when the photon beam arrived. Since the timing distributions from
data (Figure [3.27]) have too much neutron background in them, a Monte Carlo sample of
γp→ pX;X → φη;φ→ K+K−; η → γγ was generated, simulated, and then reconstructed.
This greatly reduces the background that is present in the timing plots and therefore can
be used to estimate a proper timing cut for the γ and the sub detectors used to measure its
time. Examples of these distributions and their associated projections onto the timing axis
are given in Figure [3.28] through Figure [3.31]. A summary of all of the timing cuts used
for the photon as well as all other final state particles is given in Table [3.1].

(a) ∆ tVs Shower Energy for γ candidates that
have the Barrel Calorimeter as the timing de-
tector in data.

(b) ∆ tVs Shower Energy for γ candidates that
have the Forward Calorimeter as the timing de-
tector in data.

Figure 3.27: Timing plots for γ candidates during the Spring 2017 run period for GlueX. γ
are identified by selecting the horizontal band centered about ∆T = 0. Large enhancement
in statistics at low momentum and out of time with the γ line comes from slow moving and
poorly timed neutrons. The additional horizontal lines above and below ∆T = 0 come from
γ showers that are associated with the wrong RF bunch.

32



Figure 3.28: A timing plot for accepted γ from the generated reaction γp → pX;X →
φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the γ and
the vertical axis is the timing difference between the BCAL and RF.

Figure 3.29: The image above is the result of the timing study performed on Figure [3.28].
Using that figure, a number of projection histograms were fit using different momentum
ranges. The horizontal position of each point is in the middle of the projection range, and
the vertical position of each point was assigned based on the mean value of the Gaussian fit.
The horizontal error bars are the size of the projection range, which is always 0.1 GeV/c.
The vertical error bars are determined by the width of the Gaussian fit. The average of the
widths of the photon peaks is ∼ 0.5 ns which is the value used to determine the timing cut
in Table [3.1].
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Figure 3.30: A timing plot for accepted γ from the generated reaction γp → pX;X →
φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the γ and
the vertical axis is the timing difference between the FCAL and RF.

Figure 3.31: The image above is the result of the timing study performed on Figure [3.30].
Using that figure, a number of projection histograms were fit using different momentum
ranges. The horizontal position of each point is in the middle of the projection range, and
the vertical position of each point was assigned based on the mean value of the Gaussian fit.
The horizontal error bars are the size of the projection range, which is always 0.1 GeV/c.
The vertical error bars are determined by the width of the Gaussian fit. The average of the
widths of the photon peaks is ∼ 0.55 ns which is the value used to determine the timing cut
in Table [3.1].
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3.2 Additional Cuts for γp→ pK+K−γγ

3.2.1 Kaon Selection and Pion Rejection from TOF

One key aspect to performing a φη analysis is to both identify the φ and the η mesons
while also reducing the amount of background in each of their invariant mass spectra. One
of the issues with the K+K− invariant mass spectra is that it contains misidentified pions.
This background causes a peak in the K+K− invariant mass around 1.2 GeV/c2. This
peak is a manifestation of a ρ0 which can decay to a π+π− final state. An example of this
background is illustrated nicely in Figure 3.32. It should be noted that all of the data used
in this subsection is only 20 percent of the total data set.
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Figure 3.32: An example K+K− invariant mass histogram without pion removal from the
Time of Flight. A rho peak can be seen around roughly 1.25 GeV/c2.

One important aspect of QCD and the quark model is the conservation of quark flavor
in hadronic decays, or decays which involve the interaction of the strong nuclear force.
Conservation of quark flavor states that the initial number flavored quarks minus the initial
number of anti-quarks of the same flavor, must be conserved. An example of this can be any
strong or electromagnetic interaction which is being studied with the GlueX spectrometer.
The GlueX experiment has an initial state photon which has no net quark content, plus
a proton which has two up quarks and one down quark. Since the GlueX experiment is
designed to study hadronic interactions, the final state must have a net quark flavor of two
up quarks and one down quark. Considering the γp → pφη interaction, it is clear that this
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requirement is met. The initial and final state proton are identical in quark flavor, and the
φ and η mesons have no net quark flavor to them. Moreover, since the K+K− decay of the
φ meson is being considered, the overall strangeness of this decay needs to be conserved as
well. To state this more explicitly, the K+ meson consists of a us̄ composite state, while the
the K− meson consists of a sū composite state. Since each kaon carries either a strange or
anti-strange quark, it is only necessary to observe one kaon well. The method is based on
strangeness conservation.

Figure 3.33: A graph which provides the strangeness conservation cut used for kaons that
are detected by the Time of Flight detector. This is identical to Figure 3.18, except that the
vertical error bars have been multiplied by a factor of 2 in order to visualize a 2σ uncertainty.
The graph also contains Equation 3.3, with a timing shift of 0.2 ns.

Strangeness conservation is used to both preserve good φη statistics, while also reducing
the amount of background under the φ peak (Figure 3.32). Since the Time of Flight detector
has the best timing resolution out of all subdetectors in the GlueX spectrometer, it will be
used as an example in this section. In order to understand how strangeness conservation is
implemented in this analysis, Figure 3.33 is provided. Contained within this figure is the
timing versus momentum plot for the K+, identical to Figure 3.18. Also contained within
this diagram is a red line which represents the cut that will be used to separate particles
with ’good strangeness’ as opposed to particles that ’do not have good strangeness’. This
red line is derived from simple equations of physics in the following way:
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The flight time it takes for any relativistic particle to travel a distance δX at a velocity
V in the lab frame, can be expressed using Equation 3.1.

t =
δX

V
=
δX

βc
(3.1)

Furthermore, it is well known from Special Relativity that β = P/E. Using the relativistic
equation for invariant mass, we can rewrite Equation 3.1 as Equation 3.2.

t =
δX

c

√
m2
i + P 2

P
(3.2)

Since Equation 3.2 is true for any particle, we can then use it to describe the timing
difference between pions and kaons in the lab frame, as measured by the Time of Flight.
This final equation will take the form of Equation 3.3.

δt =
δX

c

√
m2
π + P 2 −

√
m2
K + P 2

P
(3.3)

The parameters δX, c, mπ, and mK are known for Equation 3.3 since one is the speed
of light, two are invariant masses, and the other is the distance that the charged particle
traveled from the target chamber to the Time of Flight wall; which is a measured quantity
in our experiment for all charged tracks. Therefore, the only two variables left over are δt
and P which serve as the vertical and horizontal axis variables, respectively.

One last modification of Equation 3.3 is needed in order to take the form seen in Fig-
ure 3.33. If the equation is left the way that it is, the red line would simply bisect the pion
curve, and would therefore not work well as a background cut. Therefore, Equation 3.3 is
shifted up by 0.2 ns. This parameter was chosen based on the timing study that was per-
formed on the Monte Carlo and is therefore a 2σ timing shift. It should be noted that since
the K+ and K− mesons are anti-particles, as well as the π+ and π−, the same equation can
be used to separate background for both kaons.

Given Equation 3.3 and Figure 3.33, strangeness conservation can now be addressed.
In order to enforce strangeness conservation, it is imperative to identify one ’good kaon’.
Good kaons will have one characteristic to them which is that they need to be positively
identified by the Time of Flight detector. A positive identification will be defined as any
kaon candidate that has timing above or to the left of the red line given in Figure [3.33].
Any particle that is to the right or below the red line is not guaranteed to be a kaon,
and is therefore ’unknown’. Strangeness conservation allows us to preserve more statistics
because all that is needed to justify the observation of a final state which includes a K+K−

is one ’good kaon’. Therefore, any combination that the has either a K+ or a K− with the
characteristic mentioned above will be accepted. The only combinations that will be rejected
are those which both kaon candidates fail the characteristic mentioned above. To emphasize
the importance and effectiveness of this cut, one should see what the K+K− invariant mass
looks like without strangeness conservation (Figure 3.32), and then compare it to the K+K−

invariant mass with strangeness conservation (Figure 3.38c).
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3.2.2 Kaon Timing Selection Cut

After the particle identification cuts and the kaon selection from the Time of Flight, it
was found that there was still a large amount of background in the K+K− invariant mass
plot. This background was in all likelihood due to misidentified pions that were mistaken for
kaons from detectors other than the Time of Flight. This can happen because of the timing
and momentum resolutions inherent in any particle physics experiment. Furthermore, as can
be seen in many of the timing plots provided, charged particles are in fact indistinguishable
at high momentum. An example of the K+K− invariant mass histogram can be seen in
Figure 3.34.
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Figure 3.34: A histogram showing the K+K− invariant mass after particle identification cuts
and the Equation 3.3 cut from the Time of Flight. The figure clearly shows a large amount
of background at masses higher than the φ. This is due to the misidentification of pions for
kaons from detectors other than the Time of Flight.

Due to this background, a study was performed over 5 percent of the data in order to
understand where it may be coming from. The answer to this question was found by splitting
up the K+K− invariant mass into different sub detectors which are responsible for the timing
of the kaons. At GlueX, the three sub detectors which are responsible for providing timing
and particle identification for charged particles are the Barrel Calorimeter, the Forward
Calorimeter, and the Time of Flight. Since both the K+ and the K− can interact with any
three of these sub detectors, there are nine total possible timing combinations that need to
be considered. In order to properly understand these combinations, a two dimensional color
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Figure 3.35: A two dimensional color histogram of the K+K− invariant mass versus the
timing detectors for the kaons.

histogram was provided to show how the K+K− invariant mass changes as a function of sub
detector timing for the kaons (Figure 3.35).

There are three important observations that can be made from Figure 3.35. One obser-
vation is that there is an overwhelming amount of background which comes from the Barrel
Calorimeter timing for both K+ and K−. The second observation is that the Forward
Calorimeter has little to no statistics what so ever. This is because the GlueX reconstruc-
tion algorithm prefers timing from sub detectors that have the best timing resolution. Since
the Time of Flight and the Forward Calorimeter are in the same geometric direction, they
tend to provide timing information for the same charged tracks. Since the timing resolu-
tion of the Time of Flight detector is better than the Forward Calorimeter, the majority of
forward going charged tracks have timing from the Time of Flight. The last observation of
Figure 3.35 is that nearly all of the events which appear to have a φ meson reconstructed
in them only exist in the last bin which is the TOF/TOF timing bin. More specifically,
it appears that most of the relevant φη events will only have kaon timing that came from
the Time of Flight detector. Therefore, all other timing sub detectors for the kaons can be
thrown out. To further emphasize this point, projections of all nine bins contained within
Figure 3.35 have been provided in Figure [3.36], Figure [3.37], and Figure [3.38]. These
figures clearly show K+K− invariant mass spectra which contain all background and no sign
of a φ meson; with the exception of the TOF/TOF projection.
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3.2.3 Fiducial Photon Cut and Two Photon Cut

Before performing the γp → pφη Monte Carlo study, it was well known that there was
a lot of photon background seen in the data. After studying the data for quite some time,
it was found that a two photon cut would destroy most of the background associated with
photons and would also result in an observed η resonance in a γγ invariant mass plot. At
the time, it was unknown why the cut appeared to throw out a lot of photon background
while simultaneously appearing to enhance signal. After carefully studying accepted Monte
Carlo, background generated Monte Carlo (bggen), and data, it was found that much of this
background is attributed to secondary photons. A secondary photon should be thought of as
a photon that did not originate from any photoproduction reaction, nor from any expected
decay of parent states. Therefore, a secondary photon can be thought of as a photon that
arose from an interaction within the GlueX spectrometer from a final state particle. An
example of a secondary photon that would be present in γp→ pφη data can be explained by
means of high momentum and forward going kaons (Figures [2.3][2.4]). Since it is very likely
that most of the kaons in this channel will interact with either the Time of Flight detector
or the Forward Calorimeter, it is expected that these particles will deposit a lot of energy
in this region of the spectrometer. These high momentum particles will cause a signal in
one or both of these detectors and will also cause a hadronic shower in the FCAL. These
hadronic showers will be much wider and irregular in comparison to an electromagnetic
shower. In addition to hadronic showers, another source of secondary photons are delta-
electrons which are knocked out by charged tracks or beam halo anywhere in the downstream
direction where they cannot be tracked by the FDC. These additional backgrounds create
low energy electromagnetic showers in the FCAL but cannot be vetoed due to an absence of
a reconstructed track. The additional reconstructed photons will therefore cause the number
of photons reconstructed in an event to be fictitiously higher than what was actually present
within the detector. To first order, this perhaps explains why doing a two photon cut on
data will both greatly reduce background and enhance a signal. However, many important
questions will still remain about this cut. How much signal do we lose by simply performing
a two photon cut? Furthermore, is there a better way to cut out the background and preserve
as many signal events as possible? This subsection will show that this effect does in fact
manifest itself in both Monte Carlo and data; and will perform an analysis on Monte Carlo
and data to show the best way of reducing secondary photons.

The first evidence that suggests the existence of secondary photons in γp → pφη;φ →
K+K−; η → γγ accepted Monte Carlo can be seen by simply plotting the invariant mass
of a reconstructed γγ pair (Figure [3.39]). The data which went into this plot was created
by throwing γp → pφη;φ → K+K−; η → γγ into the GlueX detector and then simulating
its behavior with hdgeant and mcsmear. The invariant mass spectrum in Figure [3.39]
shows a clear peak from the generated η meson on top of a background that spans to low
mass. If this sample initially only threw two photons exactly equal to the η meson invariant
mass, then why are there so many low mass photon combinations that appear to be in the
shape of background? To answer this question, we can separate our reconstructed Monte
Carlo particles into two categories: particles that were generated and particles that were
not generated. In doing so, we can see where this background comes from and also how to
possibly reduce it.
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Figure 3.39: Invariant mass of the reconstructed γγ pair from accepted Monte Carlo. This
Monte Carlo data originally came from a γp→ pφη;φ→ K+K−; η → γγ generated topology.
An interesting feature of this invariant mass spectra is that it shows a clear η peak, but also
contains a background as well. The source of this background is thoroughly studied in
subsection 3.2.3.

The signal and background seen in Figure [3.39] can be studied by displaying P Vs θ
and φ Vs θ plots for the thrown photons and the secondary photons in Figure [3.40]. The
most important feature to take away from these plots is the tendency for secondary photons
to be at a shallow angle relative to the beam direction (below 12◦) while also having a low
three momentum magnitude (below 500 MeV/c). Simply knowing the distribution of these
photons gives us some insight into where they came from. Since neutral photons can only
be detected by either the Forward Calorimeter or the Barrel Calorimeter and most of these
photons appear in the forward direction, it is clear that FCAL showers are causing these
photons to appear.

The reconstructed invariant mass for a given γγ combination within an event as a function
of the number of photons reconstructed within an event can also be shown. By using our
Monte Carlo samples, we can also separate these plots into thrown and secondary photons,
identical to what we did in Figure [3.40]. The reconstructed invariant mass of two photons
versus the number of reconstructed photons in an event is given in Figure [3.41]. There is one
important observation that should be taken away from the two sub figures. In Figure 3.41a
a clear η resonance can be seen which spans a large number of reconstructed photons per
event. This sub figure indicates that performing a two photon cut on the signal data is not
good for signal events at this stage.

In fact, after fitting a Gaussian function to the η peaks between 3 and 10 reconstructed
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(a) P Vs θ distribution for thrown Monte
Carlo photons.

(b) P Vs θ distribution for secondary Monte
Carlo photons.

(c) φ Vs θ distribution for thrown Monte
Carlo photons.

(d) φ Vs θ distribution for secondary Monte
Carlo photons.

Figure 3.40: P Vs θ and φ Vs θ distributions for thrown (left column) and secondary (right
column) photons inside accepted Monte Carlo data.

(a) Number of photons reconstructed in an
event versus γγ Invariant Mass for thrown pho-
tons.

(b) Number of photons reconstructed in an
event versus γγ Invariant Mass for secondary
photons.

Figure 3.41: Comparing how the invariant mass for a given γγ pair changes depending on the
number of reconstructed photons in an event and whether or not the photons were thrown
or secondary photons.
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(a) Number of photons reconstructed in an
event versus γγ Invariant Mass for thrown pho-
tons after a P < 500 MeV/c and θ < 12◦ cut.

(b) Number of photons reconstructed in an
event versus γγ Invariant Mass for secondary
photons after a P < 500MeV/c and θ < 12◦

cut.

Figure 3.42: Number of photons reconstructed in an event versus γγ Invariant Mass for
thrown photons and secondary photons after a P < 500MeV/c and θ < 12◦ cut.

photons, it was found that ∼8,000 combinations would be lost out of a total of ∼30,000;
resulting in a 26 percent loss of events. Therefore, it is imperative to perform a P vs θ cut
before a two photon cut.

Seeing that there is a non negligible amount of secondary photons left in accepted Monte
Carlo, the next cut that will be applied to all of the data is a P Vs θ cut, where P <
500MeV/c and θ < 12◦. After enforcing these cuts on all photons, the distribution of
number of photons reconstructed in an event versus γγ invariant mass is shown once again
in Figure [3.42]. It is easy to see that most of the η signal has migrated to the two photon
bin and simultaneously much of the secondary background has been reduced in the accepted
Monte Carlo data set. Due to this, a two photon cut is now necessary to do in order to reduce
some of the left over background at higher number of reconstructed photons per event.

In this section it was shown that it is necessary to perform a P Vs θ cut of P < 500MeV/c
and θ < 12◦ and a two photon cut. After completing this sequence of cuts, it was found that
94 percent of background data was cut, while preserving 93 percent of signal data.

3.2.4 Exclusivity

The last cuts that need to take place in order to observe γp → pφη are two; one which
reduces the number of photons from the beam, and the other which cuts on the missing
mass squared of the system. After all cuts had been made, it was found that there were still
residual combinations from events which came directly from the beam photons and not the
final state particles. After the proper beam timing cut, the event selection will then loop
over available combinations in order to select the best available beam photon. This is done
by selecting the beam photon which reconstructs the missing mass squared that is closest to
zero. After enforcing this criteria, it is guaranteed that only one combination per event will
survive. After this selection of events, an additional cut is placed on the data which enforces
exclusivity. This is done by only allowing events with a missing mass squared between
−0.02 GeV2/c4 ≤ MM2 ≤ 0.02 GeV2/c4 (Figure 3.43). The enforcement of exclusivity
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removes any background that did not properly conserve the measured four momentum from
the γp → pK+K−γγ reaction. To finalize this section Table 3.2 is a summarized list of all
cuts performed by this analysis.
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Figure 3.43: A plot of the final missing mass square after all cuts described in this chapter.

3.2.5 Tabular Summary of Particle Identification Cuts

Table 3.1: A table with timing cut values for all final state particles in the reaction γp →
pK+K−γγ. The values of the timing cuts change depending on both the particle species and
detector system resolution. It should be noted that the final state photons only have the
calorimeters as possible timing detectors. This is due to the fact that they do not interact
with the TOF detector.

Particle Detector ∆T Cut [ns] (2σ)

Proton BCAL ± 0.6
Proton FCAL ± 1.0
Proton TOF ± 0.4
K+ BCAL ± 0.7
K+ FCAL ± 0.8
K+ TOF ± 0.2
K− BCAL ± 0.7
K− FCAL ± 0.8
K− TOF ± 0.2
γ BCAL ± 1.0
γ FCAL ± 1.1
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Table 3.2: A list which summarizes all cuts used to identify γp→ pK+K−γγ.

# Description of Cut Reference

1 Timing cuts for all final state particles Table 3.1
2 Vertex cuts for all final state particles Figures 3.2a, 3.2b
3 Beam timing cut Figure 3.1
4 Proton dE/dX cut [2]
5 P vs θ Cut for photons Subsec: 3.2.3
6 Two Photon Cut Subsec: 3.2.3
7 Kaon Selection Subsec: 3.2.1
8 Kaon Timing Selection Subsec: 3.2.2
9 −0.02GeV 2/c4 ≤MM2 ≤ 0.02GeV 2/c4 Subsec: 3.2.4
10 γBeam with MM2 closest to zero Subsec: 3.2.4
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Chapter 4

Analysis

4.1 Investigation of φη correlation by means of K+K−

Vs γγ Invariant Mass Plot

The image illustrated in Figure 4.1 is the data in question. On the vertical axis is the
K+K− invariant mass and on the horizontal axis is the γγ invariant mass. To be absolutely
clear, this is a plot of invariant mass versus invariant mass and is therefore not a Dalitz Plot.
Some interesting features contained within the image are the clear vertical bands for the π0

and η resonances which have large decay modes to γγ final states. In addition, one can also
observe a horizontal band slightly above 1 GeV

c2
which corresponds to the φ meson decaying

to a K+K− final state. This analysis will focus on the region where the φ meson and η
meson bands cross in order to determine if their intersection region contains some type of
correlation.

4.1.1 Cuts on the 2D Invariant Mass Plot

In order to analyze the φη region of this data, only events which fall within ±10σφ away
from the φ peak and ±10ση away from the η peak will be considered. This was done by
taking different slices of either the γγ or K+K− data, then projecting the invariant mass
distribution onto the opposite axis. For example, there were five different φ mass regions
studied in this analysis. Each fit corresponds to a different γγ mass range. The γγ mass
ranges are all 4ση in width, and span a total mass range of mη − 10σ to mη + 10σ. An
example with labeled cut lines is provided in Figure 4.2. It should be noted that the analysis
of the η mass was not studied symmetrically about the φ due to the K+K− threshold.

4.1.2 Projections and Fits for φ and η

Once the data had been cut and projected in the ten different mass regions, the φ and
η peaks were fit. In the instance of the φ meson, the signal plus background events were
fit with a Gaussian plus a second degree polynomial. The fit range used in each histogram
projection for the φ meson spans from mφ − 6σφ to mφ + 30σφ . The unusually large fit
range was necessary in order to properly estimate the background surrounding the φ mass.
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Figure 4.1: A two dimensional invariant mass plot with the K+K− invariant mass on the
vertical axis, the γγ invariant mass on the horizontal axis, and a logarithmically scaled z
axis. Some interesting features contained within the image are the clear vertical bands for
the π0 and η resonances which have large decay modes to γγ final states. In addition, one
can also observe a horizontal band slightly above 1 GeV

c2
which corresponds to the φ meson

decaying to a K+K− final state.
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Figure 4.2: An illustrated example of the cuts used for studying the correlation of φη.
The figure above is a two dimensional invariant mass plot which clearly shows an η band
spanning the vertical direction at ∼ 0.547 GeV/c2 and a φ band spanning the horizontal
direction at ∼ 1.02 GeV/c2. The red vertical and horizontal cut lines provide the ranges
used to study φη correlation. Examples of what the projected ranges look like are provided
in Figures [4.3][4.4].
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In the instance of the η meson, the signal plus background events were fit with a Gaussian
plus a first degree polynomial due to the relatively flat background surrounding the η peak.
The fit range used for the η meson spans mη ± 6ση

GeV
c2

. The resulting fits are provided
in Figures 4.3 and [4.4], where the blue line represents the fit for all events (signal plus
background), the green line represents the Gaussian fit (signal events), and the red line
represents the polynomial fit (background events). Each histogram contains a title with
brackets at the end. The arguments encapsulated by the brackets is the cut range that was
used for that particular projection sample.
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Figure 4.3: A collection of different K+K− invariant mass projections as a function of γγ
invariant mass cut range. Each sub figure includes a red line which is a second degree
polynomial used to estimate the shape of the background, a green line which is a Gaussian
used to estimate the φ signal peak, and a blue line which the sum total of the polynomial fit
and Gaussian fit. Lastly, each sub figure also includes the γγ invariant mass cut range used
to produce the projected figure. This information is in the title of the histogram, inside the
brackets.
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Figure 4.4: A collection of different γγ invariant mass projections as a function of K+K−

invariant mass cut range. Each sub figure includes a red line which is a first degree polynomial
used to estimate the shape of the background, a green line which is a Gaussian used to
estimate the η signal peak, and a blue line which the sum total of the polynomial fit and
Gaussian fit. Lastly, each sub figure also includes the K+K− invariant mass cut range used
to produce the projected figure. This information is in the title of the histogram, inside the
brackets.

4.1.3 Integration Results for φ and η

After obtaining accurate fits for all regions, integration of the Gaussian fit functions was
performed. Each Gaussian fit was integrated in the range of m ± 2σm, where m represents
either mφ or mη mass coupled with the addition or subtraction of two standard deviations in
each direction. Integration of the Gaussian fits provides an accurate estimate for the number
of signal events that exists for that particular sampling of γγ Vs K+K− phase space. The
estimated number of signal events have been added to Figure [4.5], with the exception of the
φη intersection region which will be discussed in more detail in the Conclusion section.
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Figure 4.5: The above figure provides the number of events for each projection range studied.
These numbers were calculated by means of integrating the Gaussian fit for either the φ or
η between ±2σ. The vertical column of numbers represents the number of η events for a
given K+K− invariant mass, and the horizontal row of numbers represents the number of
φ events for a given γγ invariant mass. The number of events observed in the intersection
region was not included in the figure due to the amount of space available. There numbers
can be found in the Conclusion section.

4.1.4 Additional Statistics Study

In addition to the analysis mentioned above, an alternative study has been included which
simply samples the phase space and records the number of events within that sample. To
do this, the same cut ranges as before were used. The only difference is that this approach
only considers the 3x3 grid surrounding the φη intersection region. Each region is a box cut
which is exactly 4σφ x 4ση in area. Each area is given an index to denote the specific region
of phase space that is being sampled and an illustration is provided in Figure [4.6].

Using the diagram as a reference, it is easy to see that the average number of background
events within this phase space can be calculated using the formula NBG = (A1 + A3 +
A7 + A9)/4. Additionally, the average number of φ and η events plus background can be
calculated using NBG + Nφ = (A4 + A6)/2 and NBG + Nη = (A2 + A8)/2, respectively.
Lastly, quantification of the number of correlated events in region 5 is possible by using

53



)2 Invariant Mass (GeV/c
2

γ
1

γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
2

 I
n

v
ar

ia
n

t 
M

as
s 

(G
eV

/c


K
+

K

0.95

1

1.05

1.1

1.15

1.2
Entries  740089

Mean x  0.000887± 0.5445 

Mean y  0.0002619±  1.101 

Std Dev x  0.0006272± 0.2053 

Std Dev y  0.0001852± 0.0606 

0

5

10

15

20

25

30

35

40

45Entries  740089

Mean x  0.000887± 0.5445 

Mean y  0.0002619±  1.101 

Std Dev x  0.0006272± 0.2053 

Std Dev y  0.0001852± 0.0606 

σ10η σ6η

σ6φ
σ2φ

σ6η σ2η

σ2φ
σ+2φ

σ2η σ+2η

σ+2φ
σ+6φ

σ+2η σ+6η

σ+6φ
σ+10φ

σ+6η σ+10η

σ+10φ
σ+14φ

1 2 3

4 55 6

7 8 9

 Invariant Mass


K+ Invariant Mass vs K
2

γ
1

γ

Figure 4.6: An illustration to provide the reader with an idea of how the second statistics
study is performed. All of the cut ranges are identical to the first statistics study. The num-
bers provided in the figure do not represent events, but simply indicate the index associated
with a certain area of φη phase space.

NBG + Nφ + Nη + Ncorrelated = A5. The number of events contained within each region of
phase space is given in Figure [4.7].

The first step of this simplistic analysis is to determine what the average number of
background events is, which is calculated to be 453. Knowing this, the number of φ and
η events can now be determined by using the equations NBG + Nφ = (A4 + A6)/2 and
NBG + Nη = (A2 + A8)/2, and then subtracting the average number of background events.
Upon doing this, it was found that Nφ is 423 and Nη is 433. To complete this analysis, the
number of correlated events can now be estimated by using the equation NBG +Nφ +Nη +
Ncorrelated = A5, and subtracting NBG, Nφ, and Nη. The total number of correlated events
is 2446. This calculation shows once again that there is an overflow of events within the φη
intersection region that cannot be explained by the presence of background or the addition
of events from the φ and η bands.
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Figure 4.7: This figure shows the total number of counts in each box. To be clear, the
numbers in each box do not represent the total number of events, but rather the precise
amount of statistics contained within the cut lines. Upon inspection, one can see evidence
of φη correlation, which is explained in the Conclusion section.

4.1.5 Conclusion of K+K− Vs γγ Invariant Mass Plot Study

Figure [4.5] provides the estimated number of signal events for the φ and η bands near the
φη intersection region. If there is no correlation between φ and η events, the total number
of signal events in the intersection region should be equal to the sum of an η peak plus a φ
peak. Taking the numbers from Figure [4.5], the average number of signal events in the φ
band is φevents ∼ 482, and the average number of signal events in the η band is ηevents ∼ 500.
Therefore, it is estimated that the number of signal events within the φη intersection region
should be just shy of 1000 events if there is no correlation present. After integrating the
Gaussian fit for the φ and η mesons in the intersection region, it was found that there were
3194 events corresponding to the φ fit, and 2993 events corresponding to the η fit. Both of
these fits not only yield roughly the same number of events, but they also produce an event
estimate which is a factor of three higher than what would have been there from the φ and η
bands alone. The large increase in event statistics within the φη intersection region strongly
suggests that some type of correlation is present within this area of K+K− γγ phase space.
It should be clearly noted that the nature of this correlation is not identified at this time.
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Moreover, it is unclear if this φη enhancement corresponds to a φη bound state, or comes
from some other topology such as γp→ N∗φ and γp→ N∗η.

4.2 Probabilistic Weightings for φη Events

Throughout the course of history, physicists have tried clever ways of reducing the amount
of background that is present under a given signal, or resonance. An example of this may
be the classic side band subtraction, where the signal region will be defined by some average
mass value, plus or minus a well defined width. If one were to perform a cut about this region
after particle identification and cuts, there still may be background underneath the peak. In
order to eliminated the background under the signal, one thing to do is use the background
near the peak as reference for subtraction. To do this, one would use background events that
are located at both higher and lower mass values far away from the signal, so long as the total
mass range used is equal to the mass range for selecting the signal region. The side band
subtraction method works well for some physics analyses, but not all. Side band subtraction
is an issue with this analysis because the primary purpose is to observe structures in the φη
invariant mass spectra. Performing a side band subtraction is problematic because it allows
events well below the φη threshold to exist in the background spectra. Subtracting off these
events from the primary signal region results in a final φη invariant mass spectra which has
negative event counts at low φη mass values. Therefore, it is imperative to seek alternative
background subtraction methods. The method that will be presented in this analysis uses a
probabilistic weighting procedure which will be explained in this section.

4.2.1 Introduction to Probabilistic Event Weightings

One of the issues with a side band subtraction method is that it treats all events with a
relative weight of one. The purpose of this section is to describe and propose a new method
which does not treat all events with a value of one, but instead assigns a fractional weight to
an event based on a quality factor, or Q-factor. The quality value idea was first introduced
in 2008 by M. Williams, M. Bellis, and C. A. Meyer in a paper titled ”Separating Signals
from Non-Interfering Backgrounds using Probabilistic Event Weightings.” [3]. The paper
considers a generic situation in which there is a data set of n total events described by
m coordinates, which will be written as ~ξ. Within the data set, there exists ns total signal
events and nb total background events, and therefore n = ns+nb. In addition, both the signal
and the background distributions are functions of the coordinates, such that S(~ξ) can be

thought of as a signal distribution and B(~ξ) can be thought of as a background distribution.

Contained within the set of coordinates ~ξ, there exists a reference coordinate (ξr) with which
we know the functional form of S(ξr) and B(ξr) a priori. The reference coordinate that is
used in this thesis as well as in the paper mentioned above is the invariant mass of a final
state. For many invariant mass distributions, the functional form of the signal distribution,
S(ξr) can be represented with a well known signal function. Some examples of well known
signal functions are Gaussian, Voigtian, and Breit-Wigner distributions. In addition, the
background distribution, B(ξr), can be represented with an nth degree polynomial function.

Since the signal and background distributions are not necessarily known a priori for the
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other coordinates, we use them to calculate a kinematic distance on an event by event basis.
This is done by using the Equation (4.1).

d2ij =
∑
k 6=r

[
ξik − ξ

j
k

Rk

]2

(4.1)

In Equation(4.1), the total kinematic distance is calculated between some event i, as
compared to another event j. This is done by taking the sum of the squared difference
over all of the coordinates ξk, except for the reference coordinate ξr. The difference between
coordinates is then normalized by the parameter Rk. The parameter Rk is the total maximum
difference for a given coordinate ξk. An example of this may be the measurement of an
azimuthal angle which spans from 0 to 2π. Therefore, the Rk for an azimuthal angle would be
2π. Upon closer inspection, one should realize that Equation(4.1) is simply a representation
of the Pythagorean Theorem in a normalized m− 1 dimensional kinematic space.

After calculating all of the kinematic distances for an event i, as compared to all other
events within the data set 1...j...n, it is then necessary to only keep the nearest neighbors.
The nearest neighbors, by definition, are a subset of the n events which have the smallest
kinematic distance with respect to the ith event that is being considering. The purpose of
only keeping the nearest neighbors stems from the assumption that a signal or background
events will share similar kinematic measurements with other signal or background events.
The number of nearest neighbors for a set of events n is an arbitrary amount, and does
not greatly effect the quality factor calculation; so long as the amount is a small fraction of
the total events n. Once the list of nearest neighbors is known for the ith event, it is then
necessary to plot their reference coordinate, ξr, onto a histogram. This histogram should
contain a well understood signal distribution S(ξr, ~α), and background distribution B(ξr, ~α),
as mentioned above; where ~α is the set of known/unknown fit parameters used to describe
the signal or background distribution. The histogram will then be fit by the sum of the
signal and background distributions such that F (ξr, ~α) = S(ξr, ~α) + B(ξr, ~α). The quality
factor can then be calculated by using the reference coordinate value for the ith event and
plugging it into the signal and background functions by using Equation(4.2), where α̂ is the
set of fitted parameters for the signal or background distribution.

Qi =
S(ξir, α̂i)

S(ξir, α̂i) +B(ξir, α̂i)
(4.2)

Once the quality factor is known for an event i, it can be recorded, and then the analysis
can consider the next event and repeat the sequence all over again. Once all events have
been run over, the quality factors for each event are used as a weight for plotting inside
histograms. If the quality factor is correctly calculated for each event, the method should
be able to separate signal from background. More specifically, if a histogram of the K+K−

invariant mass is plotted with Qi as the weight for the ith event, one should see a ’pure’ φ
peak with absolutely no background. In addition, if the K+K− invariant mass is plotted
with 1−Qi as the weight for the ith event, one should see all background and absolutely no
φ peak. Therefore, the sum of the signal histogram plus the background histogram should
be equal to the K+K− invariant mass with all events having a weight of 1.
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Determining the Number of Nearest Neighbors

After the kinematic distances are calculated for all events with respect to the ith event,
they are sorted in order from smallest kinematic distance to largest kinematic distance. Only
the the nearest neighbors, or the set of events with the smallest kinematic distance, will be
used to determine the quality factor of a given event. For this analysis, there were a total of
16,981 events after selection cuts, and the number of nearest neighbors used was 500. This
number was chosen somewhat arbitrarily; it is important to pick the smallest number possible
such that the events used truly are those which share the most similar kinematic features
to the event that is being considering. If the number was extremely large with respect to
the total number of events, the analysis will not work properly. Events that are background
will have some nearest neighbors that are signal, and vice versa. Furthermore, the number
of nearest neighbors needs to be large enough such that a fit can converge with the filled
histogram. If the number of nearest neighbors is too small, ROOT will fail to provide any
signal or background information inside the histogram, and therefore calculation of a quality
factor will be impossible. Considering these two constraints and testing with different values,
it was found that the smallest number which did not result in any fitting failures was 500.

Fitting the K+K− Invariant Mass

Upon determining the nearest neighbors of the ith event, the next step is to plot and fit
the set of K+K− and γγ invariant mass distributions. As mentioned above, it is extremely
difficult to model the invariant mass distribution for the K+K− final state. Simply picking
a signal distribution plus a polynomial background is not enough to properly parameterize
the K+K− invariant mass near or around the φ peak. After attempting several different
combinations of signal and background functions, it was found that the best way to accurately
describe both the φ and the background near it is to use convoluted functions. A convolution
is the operation between two functions which expresses how the shape of one function is
modified by the other. The purpose for utilizing a convoluted function when attempting to
fit an invariant mass histogram is to describe both the shape of the distribution as well as
the inherent resolution of the data. Since both the φ peak and the background surrounding
it contain similar resolutions, it is appropriate to fit the K+K− invariant mass distribution
with the summation of a signal function plus a background function, both of which are then
convoluted by a third function which manages the resolution.

The signal function chosen to describe the φ peak is a relativistic Breit-Wigner (Equation
4.3).

|Q1(m)|2 = A ∗ |F1(m) ∗∆1(m)|2 (4.3)

Contained within this equation is a fit parameter, A, which simply scales the function in
order to match the distribution. Also contained in this equation are two functions of mass,
the Blatt-Weisskopf centrifugal-barrier factor for a spin 1 particle (Equation 4.4),

F1(m) =

√
2
√
m2/4−m2

K√
m2/4−m2

K + pR/c
(4.4)

58



and a standard Breit-Wigner (Equation 4.5) for a particle with spin 1.

∆1(m) =
mo ∗ Γo

m2
o −m2 − imoΓ1(m)

(4.5)

The Blatt-Weisskopf function plays an important role in the fit since it forces the signal
function to be equal to zero when the K+K− mass is at threshold. It should be noted that√
m2/4−m2

K appears throughout many of the equations mentioned. This smaller function
represents the magnitude of the breakup momentum for either the K+ or K− daughter
particle, given some parent mass m, in the rest frame of the parent particle. Additionally,
the mass dependent width (Equation 4.6) also helps to describe the changing width of the
φ due to the K+K− mass near threshold.

Γ1(m) = Γo
mo

m

√
m2/4−m2

K√
m2
o/4−m2

K

F 2
1 (m)

F 2
1 (mo)

(4.6)

Finally, in many of the equations, mK is the mass of a K+/−, mo is the φ mass value
as determined by the fit, and Γo is the natural width of the φ. The value chosen for this

parameter was taken from the PDG and is Γo = 0.004266
GeV

c2
.

Plotted along with the signal function is the background function which is simply a third
degree polynomial, given by Equation (4.7).

b(m) = C1 ∗ (m− C0)
3 + C2 ∗ (m− C0)

2 + C3 ∗ (m− C0) (4.7)

The background equation has three free parameters and one fixed parameter. The free
parameters are the coefficients in front of the powered terms of m; specifically C1, C2, and
C3. Since the background shape can drastically change due to the event and its nearest
neighbors, these parameters are not given any restriction on their values (Table 4.1). The

one fixed parameter is C0 which is set to 0.987354
GeV

c2
. This value is the smallest possible

mass which can produce the K+K− final state, and is easily derived by simply performing the

calculation mK+ +mK− = 2∗mK± = 0.987354
GeV

c2
. The purpose of fixing this parameter is

force the polynomial background to have a root at the K+K− threshold. While attempting
different fit functions to describe the K+K− invariant mass, it was found that the polynomial
function often exaggerated, or over fit the area near the K+K− threshold. This caused an
effect which resulted in weighted histograms that took away good events near the low mass
side of the φ peak. Forcing the background function to be equal to zero at the K+K−

threshold fixed this issue.
To complete the fit of the K+K− invariant mass, the signal and background function

are added together, then convoluted by a Gaussian in order to compensate for the kaon
momentum resolution of the GlueX spectrometer. Although the signal and background
functions mentioned above had to be programmed by hand, the convolution of these functions
with a Gaussian could be fed into the ROOT library using the TF1Convolution object. More
precisely, the total function used to describe the K+K− invariant mass for all events is given
in Equation (4.8).
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Figure 4.8: A fit which will result in an extremely low quality factor due to the very few
signal events in comparison to background events at the location of the arrow, or invariant
mass of the event being considered.
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Figure 4.9: A fit which will result in a quality factor around 0.5, due to the fact that there
are roughly the same signal and background events at the location of the arrow, or invariant
mass of the event being considered.
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Figure 4.10: A fit which will result in a very high quality factor due to the large number
signal events in comparison to background events at the location of the arrow, or invariant
mass of the event being considered.
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T (m) =

∫
[s(m′) + b(m′)]G(m−m′)dm′ (4.8)

In the equation above, m′ is simply a dummy variable for integration, and m represents
the K+K− invariant mass. The function s(m′) is a relativistic Breit-Wigner (Equation 4.3),
and the b(m′) is the polynomial background function referenced in Equation (4.7). Finally,
G(m−m′) is the Gaussian function which is responsible for describing the resolution. This
particular Gaussian function has one free parameter, and one fixed parameter. The free
parameter is the width of the Gaussian, and the fixed parameter is the mean of the Gaussian
which is simply set to zero. Because the Gaussian is being convoluted over the range of the
fit, the value of the mean in this instance does not matter. Adding all things together, the
total function listed in Equation (4.8) has one independent variable, two fixed parameters,
and six free parameters, half of which are restricted (Table 4.1). Once a fit has converged,
the parameters of the total function can be extracted and used to plot a signal function and
a background function. This procedure is mathematically allowed due to the distributive
property of convolutions; and therefore the final background and signal function can be
written in Equation (4.9) and Equation (4.10), respectively.

B(m) =

∫
b(m′)G(m−m′)dm′ (4.9)

S(m) =

∫
s(m′)G(m−m′)dm′ (4.10)

Examples of different fits of the K+K− invariant mass distributions have been provided
in Figures[4.8][4.9][4.10]. Each figure contains a blue line which represents the total fit of
the data (Equation 4.8), a green line which represents the signal portion of the fit (Equation
4.10), and a red line which represents the background portion of the fit (Equation 4.9).
Located within each plot is also a vertical arrow which is pointed in the downward direction.
This arrow represents the invariant mass value of the event for which the quality factor
is being calculated. Also contained within each figure is a legend with the values of the
parameters for each fit.

Table 4.1: A table which summarizes the parameters and functions used to fit the K+K−

invariant mass histograms.

K+K− invariant mass Functions:
Function Parameters Initial Values Restricted Range

Relativistic B.W.
Amplitude 10 0− 100

mφ 1.019 1.01− 1.03

3rd Degree Polynomial
C0 0.987354 Fixed

C1, C2, C3 −1200, 200, 200 Free

Gaussian
µ 0 Fixed
σ 0.005 0− 0.05
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Fitting the γγ Invariant Mass

On top of fitting the K+K− invariant mass, it is also necessary to fit the γγ invariant
mass. Fitting this distribution is far more simple than what was needed to describe the
K+K− invariant mass. The η resonance sits on top of a simple background, and is far enough
away from the dominant π0 peak that further inspection of the background is not necessary.
In addition, since the η resonance is nowhere near the threshold for γγ, performing any type of
advanced fit to include breakup momentum and resolution effects is not necessary. Therefore,
the γγ invariant mass spectra was fit by utilizing the summation of a signal function and a
background function. The signal function is a Voigtian (Equation 4.12), which is technically a
non relativistic Breit-Wigner (Equation 4.11) convoluted with a Gaussian. This convolution
is necessary because the GlueX resolution of the η resonance is much greater than the natural
width of the η meson, which is on the order of a keV. In the total signal function (Equation
4.12) there is one independent variable, and three fit parameters, and one fixed parameter.
The independent variable is the γγ invariant mass, and the fixed parameter is the natural
width of the η meson which is listed in the PDG as Γo = 1.31keV . The fit parameters of the
function are the amplitude, A which simply scales the function to fit the statistics, the mass
value of the η for the fit parameter µ, and the resolution of the η. The limits and starting
values of all parameters are summarized in Table 4.2.

|∆(m)|2 =
Γo

(m− µ)2 +
Γ2
o

4

(4.11)

S(m) = A

∫
|∆(m′)|2G(m−m′)dm′ (4.12)

The background function that was chosen to describe the γγ background was a Chebyshev
polynomial (Equation 4.13). It should be noted that the functional form of this third order
polynomial is different than the one that was used to describe the K+K− because there is
no threshold effect that has to be accounted for in the γγ invariant mass. This function has
four free fit parameters with no restrictions on value due to the variability of background
shapes in this analysis.

B(m) = C3 ∗ x3 + C2 ∗ x2 + C1 ∗ x+ C0 (4.13)

Finally, the total function that was used to ultimately fit the γγ invariant mass distribu-
tions was the sum of Equation 4.12 and Equation 4.13. A summary of all parameters and
functions used to fit the γγ invariant mass is given in Table 4.2.

Examples of different fits of the γγ invariant mass distributions have been provided in
Figures[4.11][4.12][4.13]. Just like the examples given for the K+K− invariant mass fits,
each figure contains a blue line which represents the total fit of the data. The total fit
in this particular instance is simply the sum of a Voigtian and a third degree Chebyshev
polynomial. The figures also contain a green line which represents the signal portion of the
fit and a red line which represents the background portion of the fit. These are described by
a Voigtian and third degree Chebyshev polynomial, respectively. Located within each plot
is also a vertical arrow which is pointed in the downward direction. This arrow represents
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Figure 4.11: A fit which will result in an extremely low quality factor due to the very few
signal events in comparison to background events at the location of the arrow, or invariant
mass of the event being considered.
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Figure 4.12: A fit which will result in a quality factor somewhat above 0.5, due to the fact
that there are slightly more signal events as compared to background events at the location
of the arrow, or invariant mass of the event being considered.
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Figure 4.13: A fit which will result in a very high quality factor due to the large number
signal events in comparison to background events at the location of the arrow, or invariant
mass of the event being considered.
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the invariant mass value of the event for which the quality factor is being calculated. Also
contained within each figure is a legend with the values of the parameters for each fit.

Table 4.2: A table which summarizes the parameters and functions used to fit the γγ invari-
ant mass histograms.

γγ invariant mass Functions:
Function Parameters Initial Values Restricted Range

Voigtian

Amplitude 2 0− 5
mη 0.547 0.52− 0.56
σ 0.02 0.001− 0.1
Γ 0.00000131 Fixed

3rd Chebyshev Polynomial C0, C1, C2, C3 None Free

4.2.2 Three Quality Factor Methods

In order to thoroughly study the φη final state, a total of three unique quality factor
methods were attempted. Each of these analyses follow the standard quality factor prescrip-
tion detailed in Subsection 4.2.1. Each analysis is unique because a different set of kinematic
observables was used to find the set nearest neighbors for each event.

1. (φ Only) The first quality factor method considers the kinematic observables of the
K+K− system, and therefore can only separate the φ signal from the K+K− back-
ground. The quality factor for this analysis will be denoted with Qφ.

2. (η Only) The second quality factor method only considers the kinematics observables
of the γγ system, and therefore only separates the η signal from the γγ background.
The quality factor for this analysis will be denoted with Qη.

3. (φη) The third and final quality factor analysis considers the kinematics observables
for both the K+K− system and the γγ system. The quality factor for this analysis will
be denoted with Qφη.

The specific list of kinematic observables and how a quality factor was calculated for each
analysis is detailed in Subsections 4.2.2, 4.2.2, and 4.2.2, respectively.

It should be noted that the φ Only analysis will use the same fit functions for the K+K−

invariant mass distribution (Subsection 4.2.1), and it will not fit the γγ invariant mass
distribution. The η Only analysis will use the same fit functions for the γγ invariant mass
distribution (Subsection 4.2.1), and it will not fit the K+K− invariant mass distribution.
Finally, the φη analysis will use both the function for the K+K− invariant mass distribution
(Subsection 4.2.1), and the function for the γγ invariant mass distribution (Subsection 4.2.1).
Lastly, all three analyses only accept the 500 nearest neighbors (Subsection 4.2.1).
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Calculating the Kinematic Distance Between Events

As mentioned in Subsection 4.2.2, there are a total of three unique quality factor anal-
yses attempted in this thesis, and therefore there are three unique calculations to find the
kinematic distance between events.

φ Only

The list of kinematic observables used to identify the φ meson and to ultimately calculate
Qφ are given in Table 4.3.

Table 4.3: A table which summarizes the coordinates used to describe the γp→ pX; X → φY
φ → K+K−; final state. This set of coordinates will ultimately lead to the calculation of
Qφ. The coordinates ξ0 through ξ5 are used in the kinematic distance equation, described
by Equation (4.1). The last coordinate is the reference coordinate for this analysis.

ξk Coordinate Maximum Range of Coordinate

ξ0 K+
HE cos(θ) 2

ξ1 K+
HEφ 2π radians

ξ2 GJ, cos(θ) 2
ξ3 GJ, φ 2π radians
ξ4 Ebeam 9 GeV

ξ5 t 3.3
GeV 2

c4

ξr K+K− invariant mass Reference Coordinate

Since this quality factor analysis is only attempting to separate the φ from K+K− back-
ground, there is no need to include any information about the η or its decay products, γγ.
Therefore, in order to properly identify the γp → pX; X → φY φ → K+K− final state,
a total of six coordinates are needed. Two of the six coordinates come from the angular
distributions of the daughter states of φ: K+

HE cos(θ), K
+
HEφ; where the angles φ and θ are

the polar coordinates in the helicity reference frame, or the rest frame of the φ. Two more
of the eight total coordinates will come from the angular distributions of φ. Much like the
kaons, these coordinates will be GJ, cos(θ) and GJ, φ; where φ and cos(θ) are polar angles in
the Gottfried-Jackson frame; or the rest frame of the K+K−γγ parent state. The last two
coordinates needed are the beam energy (Ebeam), and the momentum transfer, t. Since t is
the well known Mandelstam variable, t is related to the beam energy and the four momen-
tum of the φη parent state, such that t2 = (γµ −Xµ)2; where γµ is the energy-momentum
four vector for the beam, and Xµ is the energy-momentum four vector for the φη parent
state. Since t, the beam energy Ebeam, and the mass of the K+K−γγ parent state is known,
the magnitude of the K+K−γγ parent state momentum is directly proportional to these
measurements. Knowing the magnitude of the momentum and the mass of the K+K−γγ
parent state allows us to fully describe the γp → pX; X → φY φ → K+K− reaction. The
final detail that needs to be mentioned is the reference coordinate that is used in this quality
factor analysis. Because it is imperative to have a pure φ signal, the reference coordinate for
this procedure will be the K+K− invariant mass. Although this coordinate does not play a
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role in the calculation of the kinematic distance, it is imperative to define it as the reference
coordinate which will ultimately serve as the tool to separate signal events from background
events, and to calculate Qφ.

η Only

The list of kinematic observables used to identify the η meson and to ultimately calculate
Qη are given in Table 4.4.

Table 4.4: A table which summarizes the coordinates used to describe the γp → pX; X →
ηY ; η → γγ final state. This set of coordinates will ultimately lead to the calculation of
Qη The coordinates ξ0 through ξ5 are used in the kinematic distance equation, described by
Equation (4.1). The last coordinate is the reference coordinate for this analysis.

ξk Coordinate Maximum Range of Coordinate

ξ0 γHE cos(θ) 2
ξ1 γHEφ 2π radians
ξ2 GJ, cos(θ) 2
ξ3 GJ, φ 2π radians
ξ4 Ebeam 9 GeV

ξ5 t 3.3
GeV 2

c4

ξr γγ invariant mass Reference Coordinate

This quality factor analysis is only attempting to separate the η from γγ background,
there is no need to include any information about the φ or its decay products, K+K−.
Therefore, in order to properly identify the γp → pX; X → ηY ; η → γγ final state, a
total of six coordinates are needed. Two of the six coordinates come from the angular
distributions of the daughter states of η: γHE cos(θ), γHEφ; where the angles φ and θ are the
polar coordinates in the helicity reference frame, or the rest frame of the η. Two more of
the eight total coordinates will come from the angular distributions of η. Much like the
photon, these coordinates will be GJ, cos(θ) and GJ, φ; where φ and cos(θ) are polar angles
in the Gottfried-Jackson frame; or the rest frame of the K+K−γγ parent state. The last two
coordinates needed are the beam energy (Ebeam), and the momentum transfer, t. Since t is
the well known Mandelstam variable, t is related to the beam energy and the four momentum
of the φη parent state, such that t2 = (γµ −Xµ)2; where γµ is the energy-momentum four
vector for the beam, and Xµ is the energy-momentum four vector for the φη parent state.
Since t, the beam energy Ebeam, and the mass of the K+K−γγ parent state is known,
the magnitude of the K+K−γγ parent state momentum is directly proportional to these
measurements. Knowing the magnitude of the momentum and the mass of the K+K−γγ
parent state allows us to fully describe the γp→ pX; X → ηY ; η → γγ reaction. The final
detail that needs to be mentioned is the reference coordinate that is used in this quality
factor analysis. Because it is imperative to have a pure η signal, the reference coordinate
for this procedure will be the γγ invariant mass. Although this coordinate does not play a
role in the calculation of the kinematic distance, it is imperative to define it as the reference
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coordinate which will ultimately serve as the tool to separate signal events from background
events, and to calculate Qη.

φη

The list of kinematic observables used to identify the φ meson and the η meson; and to
ultimately calculate Qφη are given in Table 4.5.

Table 4.5: A table which summarizes the coordinates used to describe the γp→ pX; X → φη
φ→ K+K−; η → γγ final state. This set of coordinates will ultimately lead to the calculation
of Qφη The coordinates ξ0 through ξ7 are used in the kinematic distance equation, described
by Equation (4.1). The last two coordinates are the reference coordinates for this analysis.

ξk Coordinate Maximum Range of Coordinate

ξ0 K+
HE cos(θ) 2

ξ1 K+
HEφ 2π radians

ξ2 γHE cos(θ) 2
ξ3 γHEφ 2π radians
ξ4 GJ, cos(θ) 2
ξ5 GJ, φ 2π radians
ξ6 Ebeam 9 GeV

ξ7 t 3.3
GeV 2

c4

ξr K+K− invariant mass Reference Coordinate
ξr γγ invariant mass Reference Coordinate

The final quality factor analysis is attempting to identify both the φ and η mesons and
to also reject any background. It should be noted that the backgrounds for this analysis are
different and include φγγ, ηK+K−, and K+K−γγ. Therefore, in order to properly identify
the γp → pX; X → φη φ → K+K−; η → γγ final state, a total of eight coordinates are
needed. Four of the eight coordinates come from the angular distributions of the daughter
states of φ and η. More specifically, the four coordinates are K+

HE cos(θ), K
+
HEφ, γHE cos(θ),

γHEφ; where the angles φ and θ are the polar coordinates in the helicity reference frame. It
should be noted that since the K+ and γ particles are daughters of different parent states,
they will have different helicity frames which are relative to the rest frames of φ and η mesons,
respectively. Two more of the eight total coordinates will come from the angular distributions
of φ and η. Much like the K+ and γ particles, these coordinates will be GJ, cos(θ) and GJ, φ;
where φ and cos(θ) are polar angles in the Gottfried-Jackson frame; or the rest frame of the
φη parent state. The last two coordinates needed to describe the γp→ pφη final state is the
beam energy (Ebeam), and the momentum transfer, t. Since t is the well known Mandelstam
variable, t is related to the beam energy and the four momentum of the φη parent state,
such that t2 = (γµ−Xµ)2; where γµ is the energy-momentum four vector for the beam, and
Xµ is the energy-momentum four vector for the φη parent state. Since t, the beam energy
Ebeam, and the mass of the φη parent state is known, the magnitude of the φη parent state
momentum is directly proportional to these measurements. Knowing the magnitude of the
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momentum and the mass of the φη parent state allows us to fully describe the γp → pφη
reaction. The final detail that needs to be mentioned is the reference coordinates that are
used in this quality factor analysis. Because it is imperative to have a pure φη signal, there
will be two reference coordinates for this procedure. One of them will be the K+K− invariant
mass, and the other will be the γγ invariant mass. Although these coordinates do not play
a role in the calculation of the kinematic distance, it is imperative to define them as the
reference coordinates which will ultimately serve as the tool to separate signal events from
background events, and to calculate Qφη.

Calculating the Quality Factor

Once the fits of the K+K− and γγ invariant mass histograms have converged, the final
step of calculating a quality factor can be performed. This is done by knowing the signal
and background functions, as well as their fitted parameters, for both the K+K− and γγ
distributions. Knowing the parameters of the fit will allow the user to accurately estimate
the number of signal events and the number of background events for a given invariant mass
value. The invariant mass value that should be used is the one which corresponds to the
event that is being studied, and the parameters are determined by the fit of the invariant
mass distribution of nearest neighbors. More specifically, the quality factor associated with
the K+K− invariant mass distribution will be Equation 4.14.

Qφ =
S(mKK)

S(mKK) +B(mKK)
(4.14)

In Equation (4.14), the function S(m) is the convoluted relativistic Breit-Wigner de-
scribed by Equation (4.10), and the function B(m) is the convoluted third degree polynomial
described by Equation (4.9). Lastly, the mKK variable describes the K+K− mass of the event
being considered. The quality factor associated with the γγ invariant mass distribution will
be Equation 4.15.

Qη =
S(mγγ)

S(mγγ) +B(mγγ)
(4.15)

In Equation 4.15, the function S(m) is a Voigtian function, which is the convolution of
a non-relativistic Breit-Wigner with a Gaussian, described by Equation 4.12. The function
B(m) is the simply a third degree Chevyshev polynomial described by Equation 4.13. Lastly,
the mγγ variable describes the γγ invariant mass of the event being considered. The last
quality factor which considers both the kinematics of the φ and the η is given in Equation
(4.16).

Qφη =
S(mKK)

S(mKK) +B(mKK)
∗ S(mγγ)

S(mγγ) +B(mγγ)
(4.16)

In Equation (4.16), the signal and background functions for the K+K− and γγ invariant
mass distributions are the same as those mentioned in Equation 4.14 and Equation 4.15,
respectively.

The key difference between all three quality factor calculations comes from the fact
that they are all using a different set of kinematic variables to determine a set of nearest
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neighbors. Therefore, the K+K− invariant mass distribution using the φ Only method will
be different from the K+K− invariant mass distribution using the φη method. Conversely,
the γγ invariant mass distribution using the η Only method will be different from the γγ
invariant mass distribution using the φη method. This subtlety will result in different φη
invariant mass yields, depending on the quality factor method that is being considered.

Quality Factor Highlights

The effectiveness of the quality factor approach is highlighted in Figure 4.14 and Figure
4.15. Figure 4.14 shows what the K+K− invariant mass distribution looks like when plotting
events with weights Qφ and with weights 1−Qφ. One can clearly see that the quality factor
effectively separated the signal φ meson from the K+K− background. Figure 4.15 shows
what the γγ invariant mass distribution looks like when plotting events with weights Qη and
with weights 1 − Qη. One can clearly see that the quality factor effectively separated the
signal η meson from the γγ background.
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Figure 4.14: The K+K− invariant mass distribution plotted with the signal weight, Qφ and
the background weight 1−Qφ.
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Figure 4.15: The γγ invariant mass distribution plotted with the signal weight, Qη and the
background weight 1−Qη.

4.3 Removal of N* Background

After all particle identification cuts, selection cuts, and the determination of Quality
Factors, an N* structure was found in the signal data a posteriori (Figure [4.16]). Also
contained within the signal data were possible low mass structures in the φη invariant mass
(Figure [4.17]).

The reason that an N* background can be seen in γp → pφη data is due to the fact
that an N* can decay into a proton and η. More specifically, this background will have
the reaction γp → N∗φ; N∗ → pη. As you can see, this baryonic reaction has an identical
final state to γp → pφη, but is a completely different reaction. What’s worse is that this
background can have a missing mass/energy that is near zero. Therefore, it is imperative to
search of a method that will effectively separate this background from signal.

Many avenues were researched in order to remove the N* background; all but one were
shown not to work properly. Some of the background subtraction methods that were at-
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Figure 4.16: The pγγ invariant mass for the Elliptical Subtraction method (Subsec: 4.5.1).
This distribution shows a possible N* structure around 1650 MeV/c2.

Figure 4.17: The φη invariant mass for the Elliptical Subtraction method (Subsec: 4.5.1)
before N* removal. This distribution shows two possible structures at lower mass.

tempted included a t cut, a beam energy cut, and a pγγ mass cut. All of these methods
either did not effectively remove the N* background or removed too many signal events.

The one method which did remove the most N* background while also preserving the most
signal statistics was cutting on the lab frame angle of the η meson. This cut was shown to
effectively separate N* background from low mass φη structures by generating three different
sets of Monte Carlo data. It should be noted that these data sets are completely different
from the one mentioned in Chapter 3.
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1. γp→ pX(1680);X(1680)→ φη

2. γp→ pX(1850);X(1850)→ φη

3. γp→ N∗(1650)φ;N∗(1650)→ pη

Each of these Monte Carlo data sets were generated with a t-slope of 2.5. This slope was
chosen because it closely matched the data at this stage. All three Monte Carlo data sets
were also generated with a flat beam distribution. The purpose of this was to understand
how certain cuts would effect the statistics at different beam energies; all of which would
have roughly the same amount of statistics. An example of this is given in Figure [4.18]
through Figure [4.20].

In all figures, the vertical axis is the angle the η meson and the horizontal axis is the beam
energy. The angle θ is the polar coordinate in the lab frame which is the angle between the
beam direction and the direction of the η. The first two figures ([4.18] and [4.19]) show similar
behavior. In both Monte Carlo samples the direction of the η relative to beam direction is
very shallow, and for the most part is always below 12◦ at higher beam energies. However,
the last figure ([4.20]) shows completely different kinematic behavior. The N* Monte Carlo
has very few events below 12◦, and on average will decay the η at angles between 20◦ and
40◦. Knowing this, a study of these Monte Carlo sets as a function of θ cut was performed.

Figure [4.21] provides the number of events as a function of different θ cut values for each
Monte Carlo sample. This particular study looks at cut values in 1.5◦ increments, starting at
0◦ and going as high as 45◦. The most important observation that this figure provides is that
the number of signal events rises rapidly at lower θ cut values, whereas the N* background
loses a large amount of statistics at lower θ cut values.To find the optimal θ cut value which
contains the most signal events on top of background events, the same set of data is used
and plotted in Figure [4.22]. The difference between Figure [4.21] and Figure [4.22] is that
the N* statistics have been subtracted from all Monte Carlo data sets. This method of
subtraction shows that the optimal θ cut is in the range of 15◦-18◦. Since the most signal
statistics should be preserved, the higher cut value of 18◦ was chosen.

At a cut value of 18◦, 10 percent of the signal Monte Carlo is lost and 82 percent of
the background is removed. However, it should be mentioned again that all three Monte
Carlo samples were generated with a flat beam spectrum. In order to approximate the data
more accurately, the same samples were generated with a coherent beam spectrum. Since
the coherent beam spectrum will force a higher density of events in the range of 8 GeV - 9
GeV, the amount of lost signal events will drop and the the amount of removed background
will stay the same (Figure [4.18]-Figure [4.20]). After performing the same study with a
coherent beam distribution for all Monte Carlo samples, a cut value of 18◦ was still optimal.
At this cut, 6 percent of the signal Monte Carlo was lost and 82 percent of the background
was removed.

After the completion of this Monte Carlo study, the cut of 18◦ θ was enforced on the data
sample. The results of this cut and the effect that it has on the N* background can be seen
in Figure [4.23]. The effect that it has on the φη invariant mass can be seen in Figure [4.24].
Approximately 500 events were lost after the θ cut at 18◦. However, the majority of these
statistics were lost in the N* peak, while the apparent low mass structures in the φη invariant
mass remained the same.
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Figure 4.18: The angle of the η meson with respect to the beam direction in the lab frame
versus the beam energy for γp→ pX(1680);X(1680)→ φη Monte Carlo sample.
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Figure 4.19: The angle of the η meson with respect to the beam direction in the lab frame
versus the beam energy for γp→ pX(1850);X(1850)→ φη Monte Carlo sample.
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Figure 4.20: The angle of the η meson with respect to the beam direction in the lab frame
versus the beam energy for γp→ N∗(1650)φ;N∗(1650)→ pη Monte Carlo sample.
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Figure 4.21: The number of N*, X(1680), and X(1850) events as a function of θ cut value.
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Figure 4.22: The number of N*, X(1680), and X(1850) events minus the number of N*
events, as a function of θ cut value.
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Figure 4.23: The pγγ invariant mass for the Elliptical Subtraction method (Subsec: 4.5.1)
after a θ cut of 18◦.

Figure 4.24: The φη invariant mass for the Elliptical Subtraction method (Subsec: 4.5.1)
after a θ cut of 18◦.

4.4 Acceptance Corrections for φη Invariant Mass and

cos(θ)GJ

Before the final results of the φη invariant mass and cos(θ)GJ are shown, the acceptance
corrections for each distribution are given. The acceptance corrections were found by using
the generated Monte Carlo sample highlighted in Chapter 3.

This Monte Carlo sample was then simulated inside the detector using hdgeant, a soft-
ware package inside the GlueX library which allows users to simulate what generated Monte
Carlo will look like inside the detector. Once the simulation is complete, the simulated data
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Figure 4.25: The φη invariant mass acceptance factor.
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Figure 4.26: The cos(θ)GJ acceptance factor for φη invariant mass range between 1.605-1.707
GeV/c2.

will then be passed to mcsmear. Much like hdgeant, this is another software package inside
the GlueX library which allows users to simulate the resolution of the GlueX detector after
the simulation phase. After the Monte Carlo data has resolution effects added, it is then
passed into the final stage, hdroot, which provides reconstruction to the Monte Carlo sam-
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Figure 4.27: The cos(θ)GJ acceptance factor for φη invariant mass range between 1.809-1.912
GeV/c2.

ple. After hdroot has completed reconstruction, a data file is reproduced which is identical
to a real GlueX data file. Once this file is created, the same selection cuts that were used on
the data will be enforced on the Monte Carlo sample. All Monte Carlo events that survive
all phases of this simulation process are called the accepted Monte Carlo events. Finding
the acceptance factors after this is very simple. To calculate the acceptance factors for a
given observable, a histogram must be filled with the accepted Monte Carlo, then divided by
another histogram which is filled with the generated Monte Carlo. The two observables that
will be studied in this thesis are the φη invariant mass and the cos(θ)GJ distributions for dif-
ferent φη invariant mass ranges. The acceptance factors for the φη invariant mass are given
in Figure [4.25]. There are two important results from this figure. The first observation is
that there appears to be a large spike in the acceptance factor at very low φη invariant mass.
This is expected and is due to the φη threshold being very close to this value. Since the
generated Monte Carlo cannot create an invariant mass that is less than mφ +mη, there are
very few events in this region. However, once the generated Monte Carlo is passed through
the simulation, it is completely possible to have reconstructed events with a φη invariant
mass below threshold. Since the acceptance factor is defined as the number of accepted
Monte Carlo divided by the number of generated Monte Carlo, the acceptance factor jumps
in this region of the invariant mass. The second important observation to take away from
this figure is that the acceptance factors in the region of interest is relatively smooth and
well behaved. Since it appears that there may be structures from data (Figure [4.24]) in the
φη mass range from 1.6 to 2 GeV/c2 it is important that the best acceptance in the Monte
Carlo is also in the region.
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4.5 Analysis of φη Invariant Mass Plot and cos(θ)GJ Dis-

tributions

After performing all cuts on the input data and establishing quality factors for three
different nearest neighbor approaches, the φη invariant mass can be studied. In order to
study this distribution, a total of four different methods were used to identify a φη final
state. Each approach, along with supporting plots, are given in the subsections below.

4.5.1 Elliptical Mass Approach

There was no weighting method used for this approach. Every event has a relative weight
of 1, with the exception of events which came from beam photons that were out of time.
This analysis has three sets of histograms, one of them is signal plus background, another
is just background and the third is the difference between the previous two, which can be
interpreted at a signal distribution. An example of what the overall data set looks like is
given in Figure [4.28], and an example of the signal and background selection is given in
Figure [4.29].

Figure 4.28: The K+K− invariant mass Vs γγ invariant mass before elliptical Mass selection.

The area which selects the φη intersection can be defined using the equation for an ellipse
(Equation 4.17), where the variable x will be substituted for the K+K− invariant mass, and
the variable y will be substituted for the γγ invariant mass. Furthermore, the ellipse will
need to be centered at the φ and η intersection. Therefore, the x variable will need to be
shifted by mφ, and the y variable will need to be shifted by mη. Lastly, the semi-minor axis
(a) and the semi-major axis (b) will need to be proportional to the width of the φ meson
and the η meson, respectively. Since both resonances should have statistics which resemble
that of a Gaussian distribution, a 2σ width was chosen to select the signal region. This will
ensure that roughly 95 percent of the signal events will be selected. Therefore, the equation
which describes the φη intersection in Figure [4.29] can be written as Equation 4.18.
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1 =
x2

a2
+
y2

b2
(4.17)

1 =
(mKK −mφ)2

(2σφ)2
+

(mγγ −mη)
2

(2ση)2
(4.18)

The elliptical subtraction method requires that the same amount of K+K− vs γγ area is
used to select signal and background regions. The area for an ellipse is well known, and is
given in Equation 4.19. We can take the semi-major and semi-minor axis parameters from
Equation 4.18 and plug it into Equation 4.19 in order to derive the total K+K− vs γγ signal
area (Equation 4.20).

A = πab (4.19)

Aφη = π(2σφ)(2ση) = 4πσφση (4.20)

Knowing that the total signal area is equal to 4πσφση, it is easy to define the background
area. The first parameter that needs to be chosen is the inner radius of the background
selection. Once again, it is assumed that both resonances resemble a Gaussian distribution.
Therefore, an inner radius of 3σ was chosen so that less that 1 percent of signal events would
be selected, and therefore the majority of events would be background. Knowing that the
inner radius will be 3σ, it is easy to derive the outer radius of the background selection. Once
again, the total area of the background must be equal to the signal selection area of 4πσφση.
Therefore, the outer radius of the background selection will be

√
13σ. The derivation of

this area is given in Equation 4.21, and the selection is shown in the second histogram of
Figure [4.29].

ABG = π(
√

13σφ)(
√

13ση)− π(3σφ)(3ση) = 4πσφση (4.21)

Now that the signal and background selections have been well defined for this method,
the relevant invariant mass and angular distributions can be shown. Figure [4.30] shows
the φη invariant mass distributions corresponding to different elliptical mass selections. The
upper histogram of Figure [4.30] shows an immediate indication of two structures at lower
φη invariant mass. This distribution is compared to the second histogram in Figure [4.30]
which is not a φη selection. The histogram may show a possible structure at low invariant
mass which causes the signal distribution to become slightly distorted. It should be noted
that this structure is seen in other background invariant mass plots and may be an indication
of a decay mode to ηKK.

The two structures seen in Figure [4.30] can be investigated by studying the angular
distribution of the daughter particles in the Gottfried-Jackson frame. This distribution is
important since its structure can provide an indication of what the parents spin state is.
These distributions are produced by selecting φη invariant mass ranges which correlate to
the positions of the two structures, but do not overlap with each other. The range that
was selected for the first structure is between (1.605-1.707) GeV/c2, and the range that was
selected for the seconds structure is between (1.809-1.912) GeV/c2. The cos(θ) distribution
for the first structure is given in Figure [4.31], and the cos(θ) distribution for the second
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Figure 4.29: The K+K− invariant mass Vs γγ invariant mass showing the elliptical mass
selection method. The upper most histogram shows the ellipse which selects the φη intersec-
tion region, described by Equation 4.18. The middle histogram shows the ring which selects
the background and is described by Equation 4.21. The bottom most histogram shows the
difference between the upper and middle histograms.
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structure is given in Figure [4.32]. The cos(θ) distribution for each structure does not
currently provide information which may help to identify the spin state. However, it is clear
that the cos(θ) distribution is different for each structure.
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Figure 4.30: The φη invariant mass for elliptical mass selection, not acceptance corrected.
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Figure 4.31: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2,
not acceptance corrected.

Using only the signal plots from Figure [4.30], [4.31], and [4.32], the acceptance corrections
provided in Subsection 4.4 can be used to understand the amount of statistics that were lost
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Figure 4.32: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2,
not acceptance corrected.

due to detector acceptance. The acceptance corrected figures are provided in [4.33][4.34][4.35]
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below. Due to the mostly flat acceptance for all figures, none of the final plots presented
here are greatly altered other than the amount of statistics in each bin.
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Figure 4.33: The signal φη invariant mass for elliptical mass selection with the acceptance
correction factors described in Figure [4.25]. The range of the distribution has been changed
due to the large error bars at high φη invariant mass values.
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Figure 4.34: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2

with the acceptance correction factors described in Figure [4.26].
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Figure 4.35: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2

with the acceptance correction factors described in Figure [4.27].

4.5.2 Qφ Weighting, η Side-band Subtracted

This analysis uses the quality factor weights for the φ only method described in Subsection
4.2.2. Since this method only separates φ signal fromK+K− background, it does not separate
the η signal from γγ background with just Qφ weighting. An example of the Qφ weighted
γγ invariant mass distribution is given in Figure [4.36].

Figure 4.36: The γγ invariant mass spectrum with all events weighted by Qφ.

In order to select the φη final state, a γγ invariant mass cut of ±2ση was enforced to
select the η signal region. This selection was chosen because the η peak is assumed to have a
shape which resembles a Gaussian distribution. A 2σ selection cut ensures that roughly 95
percent of the η signal will be selected. In addition to this signal selection, a side-band cut
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Figure 4.37: The γγ invariant mass spectrum with all events weighted by 1−Qφ.

was enforced on the γγ invariant mass in order to approximate the background. One of the
side-band regions ranged from mη − 5ση ≤ mγγ ≤ mη − 3ση, and the other side-band region
ranged from mη + 3ση ≤ mγγ ≤ mη + 5ση. These regions were chosen for two reasons. One
of which is the fact that the total mγγ range used to select the η signal region must be equal
to the range used to select the background region. The second reason is to ensure that less
than 1 percent of data would be contained within the background selection.

Once the signal and background selections are established, the φη final state can be
studied with this weighting method. The φη final state is found by weighting all events with
Qφ, then selecting the η signal region. Once this distribution is known, a second distribution
is filled with the γγ side-band selection. Taking the difference between the two distributions
provides a φη final state. An example of what all of these distributions look like is provided
in Figure [4.38]. The top histogram of Figure [4.38] is the K+K−γγ invariant mass weighted
by Qφ and a 2σ selection of the η peak. The middle histogram is the K+K−γγ invariant
mass weighted by Qφ and a γγ side-band selection. Finally, the bottom histogram is the
difference between the top histogram and the middle histogram. The bottom histogram of
Figure [4.38] is considered to be the φη invariant mass plot for this weighting method. The
reason that this is the signal plot for this method is because the φ has been identified by
means of the nearest neighbors approach described in Subsection 4.2.2; and the η has been
identified by means of a side-band subtraction.

Contained within the signal histogram of Figure [4.38] are two structures which resemble
the structures also seen in Subsection 4.5.1. In order to better understand the nature of
these structures, the cos(θ)GJ angles are extracted for these regions of φη invariant mass.
The cos(θ)GJ angles for the first structure are given in Figure [4.39] and are found by imposing
a cut on the φη invariant mass with a range of 1.605-1.707 GeV/c2. The cos(θ)GJ angles for
the second structure are given in Figure [4.40] and are found by imposing a cut on the φη
invariant mass with a range of 1.809-1.912 GeV/c2. There is no clear angular structure in
Figure [4.39] or Figure [4.40]. The only clear observation that is made is that the angular
distributions of each region are different from one another.
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Figure 4.38: The K+K−γγ invariant mass spectrum with all signal events weighted by Qφ,
not acceptance corrected. The top histogram is the data which selects the η peak contained
in Figure [4.36]. The middle histogram is the data which selects the γγ side-band data. The
bottom histogram is the φη signal and is the difference between the first histogram and the
second histogram.
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Figure 4.39: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2,
not acceptance corrected.
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Figure 4.40: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2,
not acceptance corrected.
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Figure 4.41: The K+K−γγ invariant mass spectrum with all signal events weighted by Qφ,
and the η is selected by side-band subtraction. The spectrum is acceptance corrected as
described by Figure [4.25]. The range of the distribution has been changed due to the large
error bars at high φη invariant mass values.
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Figure 4.42: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2

with the acceptance correction factors described in Figure [4.26].

Using only the signal plots from Figure [4.38], [4.39], and [4.40], the acceptance corrections
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provided in Subsection 4.4 can be used to correct any detector effects. The acceptance
corrected figures are provided in [4.41][4.42][4.43] below. Due to the mostly flat acceptance
for all figures, none of the final plots presented here are greatly altered other than the amount
of statistics in each bin.
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Figure 4.43: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2

with the acceptance correction factors described in Figure [4.27].

4.5.3 Qη Weighting, φ Side-band Subtracted

This analysis uses the quality factor weights for the η only method described in Subsection
4.2.2. Since this method only separates η signal from γγ background, it does not separate the
φ signal from K+K− background with just Qη weighting. An example of the Qη weighted
K+K− invariant mass distribution is given in Figure [4.44].

In order to select the φη final state, a K+K− invariant mass cut of ±2σφ was enforced to
select the φ signal region. This selection was chosen because the φ peak is assumed to have
a shape which resembles a Gaussian distribution. A 2σ selection cut ensures that roughly 95
percent of the φ signal will be selected. In addition to this signal selection, a side-band cut
was enforced on the K+K− invariant mass in order to approximate the background. One of
the side-band regions ranged from mφ− 5σφ ≤ mK+K− ≤ mφ− 3σφ, and the other side-band
region ranged from mφ + 3σφ ≤ mK+K− ≤ mφ + 5σφ. These regions were chosen for two
reasons. One of which is the fact that the total mK+K− range used to select the φ signal
region must be equal to the range used to select the background region. The second reason
is to ensure that less than 1 percent of data would be contained within the background
selection.
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Figure 4.44: The fit of the K+K− invariant mass spectrum with all events weighted by Qη.

Figure 4.45: The K+K− invariant mass spectrum with all events weighted by 1−Qη.

Once the signal and background selections are established, the φη final state can be stud-
ied with this weighting method. The φη final state is found by weighting all events with
Qη, then selecting the φ signal region. Once this distribution is know, a second distribution
is filled with the K+K− side-band selection. Taking the difference between the two distri-
butions provides a φη final state. An example of what all of these distributions look like is
provided in Figure [4.46]. The top histogram of Figure [4.46] is the K+K−γγ invariant mass
weighted by Qη and a 2σ selection of the φ peak. The middle histogram is the K+K−γγ
invariant mass weighted by Qη and a K+K− side-band selection. Finally, the bottom his-
togram is the difference between the top histogram and the middle histogram. The bottom
histogram of Figure [4.46] is considered to be the φη invariant mass plot for this weighting
method. The reason that this is the signal plot for this method is because the η has been
identified by means of the nearest neighbors approach described in Subsection 4.2.2; and the
φ has been identified by means of a side-band subtraction.
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Figure 4.46: The K+K−γγ invariant mass spectrum with all signal events weighted by Qη,
not acceptance corrected. The top histogram is the data which selects the φ peak contained
in Figure [4.44]. The middle histogram is the data which selects the K+K− side-band data.
The bottom histogram is the φη signal and is the difference between the first histogram and
the second histogram.
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Figure 4.47: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2,
not acceptance corrected.
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Figure 4.48: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2,
not acceptance corrected.
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One interesting result from this method and the others presented in this thesis is the
ability to study backgrounds. The middle histogram of Figure [4.46] shows a clear indication
that a structure is present in the ηKK invariant mass. This structure is also seen in the
background histograms of Figure [4.30] and Figure [4.54]. However, this structure is not seen
in the background histogram of Figure [4.38]. The consistency of this structure showing up
in some backgrounds, but not all, provides evidence that it may have a decay mode to both
φη and ηKK.
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Figure 4.49: The K+K−γγ invariant mass spectrum with all signal events weighted by Qη,
and the φ is selected by side-band subtraction. The spectrum is acceptance corrected as
described by Figure [4.25]. The range of the distribution has been changed due to the large
error bars at high φη invariant mass values.

Contained within the signal histogram of Figure [4.46] are two structures which resemble
the structures also seen in Subsection 4.5.1, Subsection 4.5.2. In order to better understand
the nature of these structures, the cos(θ)GJ angles are extracted for these regions of φη
invariant mass. The cos(θ)GJ angles for the first structure are given in Figure [4.47] and are
found by imposing a cut on the φη invariant mass with a range of 1.605-1.707 GeV/c2. The
cos(θ)GJ angles for the second structure are given in Figure [4.48] and are found by imposing
a cut on the φη invariant mass with a range of 1.809-1.912 GeV/c2. There is no clear angular
structure in Figure [4.47] or Figure [4.48]. The only clear observation that is made is that
the angular distributions of each region are different from one another.

Using only the signal plots from Figure [4.46], [4.47], and [4.48], the acceptance corrections
provided in Subsection 4.4 can be used to correct any detector effects. The acceptance
corrected figures are provided in [4.49][4.50][4.51] below. Due to the mostly flat acceptance
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for all figures, none of the final plots presented here are greatly altered other than the amount
of statistics in each bin.
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Figure 4.50: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2

with the acceptance correction factors described in Figure [4.26].
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Figure 4.51: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2

with the acceptance correction factors described in Figure [4.27].
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4.5.4 Qφη Weighting

This analysis uses the quality factor weights for the φη only method described in Subsec-
tion 4.2.2. Since this method separates both η signal from γγ background, and φ signal from
K+K− background, the only weight that is needed event by event is Qφη. An example of
the Qφη weighted K+K−γγ invariant mass distribution and the corresponding background
plot is given in Figure [4.54].

One interesting result from this method and the others presented in this thesis is the
ability to study backgrounds. The lower histogram of Figure [4.54] shows a clear indication
that a structure is present in the 1−Qφη weighted invariant mass. This structure is also seen
in the background histograms of Figure [4.30] and Figure [4.46]. However, this structure is
not seen in the background histogram of Figure [4.38].

Figure 4.52: The γγ invariant mass spectrum with all signal events weighted by Qφη, not
acceptance corrected.
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Contained within the signal histogram of Figure [4.54] are two structures which resemble
the structures also seen in Subsection 4.5.1, Subsection 4.5.2, and and Subsection 4.5.3. In
order to better understand the nature of these structures, the cos(θ)GJ angles are extracted
for these regions of φη invariant mass. The cos(θ)GJ angles for the first structure are given
in Figure [4.55] and are found by imposing a cut on the φη invariant mass with a range of
1.605-1.707 GeV/c2. The cos(θ)GJ angles for the second structure are given in Figure [4.56]
and are found by imposing a cut on the φη invariant mass with a range of 1.809-1.912
GeV/c2. There is no clear angular structure in Figure [4.55] or Figure [4.56]. The only clear
observation that is made is that the angular distributions of each region are different from
one another.

Figure 4.53: The K+K− invariant mass spectrum with all signal events weighted by Qφη,
not acceptance corrected.
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Using only the signal plots from Figure [4.54], [4.55], and [4.56], the acceptance corrections
provided in Subsection 4.4 can be used to improve the statistics in each figure as well as
correct any detector effects. The acceptance corrected figures are provided in [4.57][4.58][4.59]
below. Due to the mostly flat acceptance for all figures, none of the final plots presented
here are greatly altered other than the amount of statistics in each bin.
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Figure 4.54: The K+K−γγ invariant mass spectrum with all signal events weighted by Qφη,
not acceptance corrected.
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Figure 4.55: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2,
not acceptance corrected.
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Figure 4.56: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2,
not acceptance corrected.
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Figure 4.57: he K+K−γγ invariant mass spectrum with all signal events weighted by Qφη.
The spectrum is acceptance corrected as described by Figure [4.25]. The range of the distri-
bution has been changed due to the large error bars at high φη invariant mass values.
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Figure 4.58: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2

with the acceptance correction factors described in Figure [4.26].
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Figure 4.59: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2

with the acceptance correction factors described in Figure [4.27].

4.6 Fitting φη Invariant Mass Plots for Signal Distri-

butions

Since the acceptance of the φη invariant mass is not reliable near threshold (Figure 4.25),
the signal distributions without acceptance corrections will be fit. Using the signal distri-
butions for all selections methods mentioned above, the φη invariant mass distribution will
be tested with four different functions. Each function contains accepted Monte Carlo as a
background function. It should be noted that this accepted Monte Carlo sample has a t, and
beam energy distribution which matches data. The four different functions are the following:

1. Two interfering relativistic Breit-Wigners as signal, plus a scaled accepted Monte Carlo
distribution as background.

2. One low mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo
distribution as background.

3. One high mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo
distribution as background.

4. No signal distribution, only a scaled accepted Monte Carlo distribution as background.

The purpose of fitting the signal distributions with each function mentioned above is to
test the probability of structures existing within the data set. More specifically, this method
will test the probability of observing: two structures, only one low mass structure, only one
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high mass structure, or no structures at all.
The signal fit that will be used for each function is described by Equation 4.22.

|Q(m)|2 = A ∗ | F1(m)

F1(mPeak1)
∗∆1(m) + reiϕ ∗ F3(m)

F3(mPeak2)
∗∆3(m)|2 (4.22)

This equation in closely related to Equation 4.3 except that there is an additional rel-
ativistic Breit-Wigner, and the Blatt-Weisskopf centrifugal-barrier factors are normalized.
This additional relativistic Breit-Wigner contains an imaginary coefficient and a Blatt-
Weisskopf centrifugal-barrier factor for a spin 3 particle. The purpose of normalizing the
Blatt-Weisskopf centrifugal-barrier factors is to have the fit parameter r represent the rela-
tive ratio between the amplitudes of the first peak and the second peak. The spin values of
1 and 3 for the first and second peaks were chosen because their mass and width values are
comparable to known ss̄ resonances in the PDG. The first peak has a similar mass and width
to the φ(1680), which is reported as (mφ(1680) = 1680 ± 20, σφ(1680) = 150 ± 50)MeV/c2 in
the PDG. The second peak has a similar mass and width to the φ3(1850), which is reported
as (mφ(1850) = 1854± 7, σφ(1850) = 87+28

−23)MeV/c2 in the PDG.
The signal fit for each distribution will use a total of 7 parameters, 4 of them will be

the mass and width of the first and second peak, another 2 will come from the phase and
ratio values contained within the complex coefficient, and the last parameter is the overall
normalization. The background for each fit is simply the phase space produced by the
accepted Monte Carlo multiplied by a normalization coefficient. Therefore, the total function
used to fit the φη invariant mass will have 8 parameters. The difference in each fitting method
in terms of their free or fixed parameter values is given in Table 4.6.

Table 4.6: A table which summarizes the parameter ranges or fixed values in rows corre-
sponding to different fit functions for the φη invariant mass. The parameters Asig, and Abg
have units of number of events, mPeak1, σPeak1, mPeak2, and σPeak2 have units of GeV/c2, ϕ
has units of radians, and r is unit less.

φη Invariant Mass Parameter Ranges and Functions:
Functions Asig mPeak1 σPeak1 mPeak2 σPeak2 r ϕ Abg

1) 2BW + BG 0-100 1.6-1.7 0-0.3 1.8-1.9 0-0.3 0-10 -3.15-3.15 0-0.02
2) Low BW + BG 0-100 1.6-1.7 0-0.3 1.850 0 0 0 0-0.02
3) High BW + BG 0-100 1.680 0 1.8-1.9 0-0.3 1 0 0-0.02

4) BG Only 0 1.680 0 1.850 0 0 0 0-0.02

The last technicality of the φη invariant mass fit that needs to be addressed is the method
for representing the breakup momentum, which will clearly be different than the form used
in Subsection 4.2.1. Deriving the breakup momentum in the rest frame of the φη parent
state is straight forward and has the form given in Equation 4.23.

|P | =

√
m2(m2 − 2(m2

η +m2
φ)) + (m2

η −m2
φ)

2m
(4.23)
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Figure 4.60: The two dimensional color plot of the K+K−γγ invariant mass vs the break-up
momentum. All events are weighted by Qφη.
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Figure 4.61: An interpolation graph, where the horizontal points are the bin values from
Figure [4.60], and the vertical values are the mean values for the break-up momentum pro-
jections.
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The issue with this Equation 4.23 as compared to
√
m2 − (2mK)2 is the fact that the

invariant mass values of mη and mφ have a width, whereas mK does not. This means that
the breakup momentum for the φη invariant mass cannot be represented functionally, and
therefore data must be used. To do this, the breakup momentum and φη invariant mass is
plotted on a two dimensional color plot for each event (Figure [4.60]). All events are weighted
with Qφη in order to use the purest sample.

Looping through each bin of K+K−γγ invariant mass from Figure [4.60] and projecting
onto the vertical axis will provide the φη break-up momentum spread for that mass range.
Taking the mean break-up momentum value for each bin provides a data driven interpola-
tion for Equation 4.23. More specifically, for a given φη invariant mass value, a breakup
momentum is assigned based on the linear fit between two points given in Figure [4.61].
Using this breakup momentum, the signal distribution for each selection method can be fit.

4.6.1 Elliptical Fits

Figure 4.62: Fit of the φη mass using the elliptical signal distribution in Figure [4.30]. The
fit contains two interfering relativistic Breit-Wigners as signal, plus a scaled accepted Monte
Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given
in the stat box.
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Figure 4.63: Fit of the φη mass using the elliptical signal distribution in Figure [4.30]. The
fit contains one low mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte
Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given
in the stat box.

Figure 4.64: Fit of the φη mass using the elliptical signal distribution in Figure [4.30]. The
fit contains one high mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte
Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given
in the stat box.
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Figure 4.65: Fit of the φη mass using the elliptical signal distribution in Figure [4.30].
The fit contains no signal distribution, only a scaled accepted Monte Carlo distribution as
background. The χ2/ndf, probability, and fit parameters are all given in the stat box.

4.6.2 Qφ Weighting, η Side-band Subtracted Fits

Figure 4.66: Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution in
Figure [4.38]. The fit contains two interfering relativistic Breit-Wigners as signal, plus a
scaled accepted Monte Carlo distribution as background. The χ2/ndf, probability, and fit
parameters are all given in the stat box.
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Figure 4.67: Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution in
Figure [4.38]. The fit contains one low mass relativistic Breit-Wigner as signal, plus a
scaled accepted Monte Carlo distribution as background. The χ2/ndf, probability, and fit
parameters are all given in the stat box.

Figure 4.68: Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution in
Figure [4.38]. The fit contains one high mass relativistic Breit-Wigner as signal, plus a
scaled accepted Monte Carlo distribution as background. The χ2/ndf, probability, and fit
parameters are all given in the stat box.
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Figure 4.69: Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution in
Figure [4.38]. The fit contains no signal distribution, only a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the
stat box.

4.6.3 Qη Weighting, K+K− Side-band Subtracted Fits

Figure 4.70: Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in
Figure [4.46]. The fit contains two interfering relativistic Breit-Wigners as signal, plus a
scaled accepted Monte Carlo distribution as background. The χ2/ndf, probability, and fit
parameters are all given in the stat box.
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Figure 4.71: Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in
Figure [4.46]. The fit contains one low mass relativistic Breit-Wigner as signal, plus a
scaled accepted Monte Carlo distribution as background. The χ2/ndf, probability, and fit
parameters are all given in the stat box.

Figure 4.72: Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in
Figure [4.46]. The fit contains one high mass relativistic Breit-Wigner as signal, plus a
scaled accepted Monte Carlo distribution as background. The χ2/ndf, probability, and fit
parameters are all given in the stat box.
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Figure 4.73: Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in
Figure [4.46]. The fit contains no signal distribution, only a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the
stat box.

4.6.4 Qφη Weighting Fits

Figure 4.74: Fit of the φη mass using the Qφη Weighted distribution in Figure [4.54]. The
fit contains two interfering relativistic Breit-Wigners as signal, plus a scaled accepted Monte
Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given
in the stat box.
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Figure 4.75: Fit of the φη mass using the Qφη Weighted distribution in Figure [4.54]. The
fit contains one low mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte
Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given
in the stat box.

Figure 4.76: Fit of the φη mass using the Qφη Weighted distribution in Figure [4.54]. The
fit contains one high mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte
Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given
in the stat box.
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Figure 4.77: Fit of the φη mass using the Qφη Weighted distribution in Figure [4.54]. The
fit contains no signal distribution, only a scaled accepted Monte Carlo distribution as back-
ground. The χ2/ndf, probability, and fit parameters are all given in the stat box.

4.6.5 Tabular Summary of Fit Results and Discussion

Table 4.7: A table which summarizes the fits which utilized two interfering relativistic Breit-
Wigners as signal, plus a scaled accepted Monte Carlo distribution as background.

Two Interfering Relativistic Breit-Wigners + Accepted Monte Carlo:

Selection Method
Peak1 Mass (GeV/c2) Peak1 Width (GeV/c2)

Probability
Peak2 Mass (GeV/c2) Peak2 Width (GeV/c2)

Elliptical
1.662 ± 0.021 0.2239 ± 0.0713

0.6903
1.891 ± 0.009 0.04206 ± 0.01911

Qφ, η − γγ 1.664 ± 0.015 0.1829 ± 0.0435
0.6511

1.873 ± 0.006 0.02542 ± 0.02847

Qη, φ−KK
1.641 ± 0.014 0.1605 ± 0.0455

0.9338
1.886 ± 0.019 0.07986 ± 0.05530

Qφη
1.666 ± 0.014 0.2165 ± 0.0469

0.9324
1.876 ± 0.013 0.05008 ± 0.03252
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Table 4.8: A table which summarizes the fits which utilized one low mass relativistic Breit-
Wigner as signal, plus a scaled accepted Monte Carlo distribution as background.

Low Mass Relativistic Breit-Wigner + Accepted Monte Carlo:
Selection Method Peak1 Mass (GeV/c2) Peak1 Width (GeV/c2) Probability

Elliptical 1.702 ± 0.036 0.3374 ± 0.0936 0.09677
Qφ, η − γγ 1.671 ± 0.016 0.2076 ± 0.0530 0.1641

GeV/c2 Qη, φ−KK 1.665 ± 0.022 0.2354 ± 0.0811 0.4522
Qφη 1.678 ± 0.016 0.258 ± 0.058 0.5056

Table 4.9: A table which summarizes the fits which utilized one high mass relativistic Breit-
Wigner as signal, plus a scaled accepted Monte Carlo distribution as background.

High Mass Relativistic Breit-Wigner + Accepted Monte Carlo:
Selection Method Peak2 Mass (GeV/c2) Peak2 Width (GeV/c2) Probability

Elliptical 1.828 ± 0.005 0.01821 ± 0.00941 2.683e-17
Qφ, η − γγ 1.869 ± 0.004 0.01557 ± 0.00559 1.2e-21
Qη, φ−KK 1.872 ± 0.006 0.01289 ± 0.00715 6.246e-26

Qφη 1.868 ± 0.005 0.0108 ± 0.0054 0

Table 4.10: A table which summarizes the fits which utilized only the accepted Monte Carlo
distribution.

Accepted Monte Carlo:
Selection Method Probability

Elliptical 5.449e-17
Qφ 1.21e-21
Qη 3.528e-25
Qφη 0

Since each selection method appeared to contain two different structures in the φη in-
variant mass, it was necessary study the validity of them by means of fitting with several
different functions. Each function returned a different set of parameters, and a probability.
Using the probability of each function, a number of deductions can be made. Given the set of
probabilities presented in Table 4.10, it is clear that the signal data for each selection method
is not a manifestation of φη phase space. In addition, the probabilities presented in Table 4.8
as compared to Table 4.9, may indicated that the first peak carries a greater significance
than the second peak. Lastly, the probabilities presented in Table 4.7 as compared to all
other tables shows that the fit that contains two interfering relativistic Breit-Wigners always
has a higher probability than any other function, regardless of selection method. This large
difference in probability is good evidence that there are two structures in the φη invariant
mass.

Since Table 4.7 always contains the highest probabilities, the parameter values from that
table will be used to approximate the mass and width of each peak. The weighted average
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for the mass, width, and errors for each peak will be calculated using Equation 4.24 and
Equation 4.25.

x̄± δx̄ =
Σiwixi
Σiwi

± (Σiwi)
−1/2 (4.24)

wi = 1/(δxi)
2 (4.25)

Plugging in the mass, width, and error values for each selection method in Table 4.7, it
was found that the first peak had a weighted average of (mPeak1 = 1.657 ± 0.008)GeV

c2
for

the invariant mass, and a weighted average of (σPeak1 = 0.190± 0.024)GeV
c2

for the width. In
addition, the second structure had a weighted average of (mPeak2 = 1.879 ± 0.004)GeV

c2
for

the invariant mass, and a weighted average of (σPeak2 = 0.042± 0.014)GeV
c2

for the width.
The weighted mass and width values for the first peak closely resemble that of the φ(1680),

which is the radially excited version of the φ(1020), and has been mentioned several times
throughout this thesis. The φ(1680) is assumed to be a pure ss̄ state according to the PDG.
However, the structure observed in this data cannot be identified as the φ(1680) due to the
lack of statistics and therefore the inability to perform a partial wave analysis which provides
the quantum numbers of the state. The φ(1680) has been seen in photoproduction, but only
from KK final states and not from φη. It should be noted that the φ(1680) invariant mass
value reported by photoproduction experiments is significantly higher than those reported
by e+e− collider experiments.

Furthermore, the weighted mass and width values for the second peak closely resemble
that of the φ3(1850). The φ3(1850) is assumed to be a pure ss̄ state according to the PDG.
However, the structure observed in this data cannot be identified as the φ3(1850) due to the
lack of statistics and therefore the inability to perform a partial wave analysis which provides
the quantum numbers of the state. Some interesting facts about the φ3(1850) is that it has
only been seen in KK and KK∗ final states from experiments with a kaon beam. The
φ3(1850) has never been seen in photoproduction or e+e− collider experiments. It should
also be noted that an ss̄ triplet state of (1−−, 2−−, 3−−) is expected to be close to this invariant
mass value [4]. Given Table 1.2 from Chapter 1, it is clear that all of these states, as well as
the φ(1680), can decay to a φη final state. However, further investigation of this final state
is needed in order to properly identify the observed structures. Analyzing the Spring 2018
Physics Run and the Fall 2018 Physics run at GlueX will more than quadruple the current
physics data set, and will allow for a more diverse investigation of these structures. Some
of these additional investigations may include a beam asymmetry, cross section, or a partial
wave analysis.
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