$\gamma p \longrightarrow p \phi \eta U p date$

Bradford Cannon Florida State University 02/21/2019

Outline

- Motivation
- Cuts
- Quality Factor Method
- Preliminary Results

Search for New and Unusual Strangeonia States Using $\gamma p \longrightarrow p \varphi \eta$

• $\gamma p \rightarrow p \varphi \eta$ is expected to be dominated by an ss parent state

 Observation of a state with a large branching fraction to φη and small branches to non strange final states would establish an ss̄ state.

Cuts for $\gamma p \longrightarrow p \Phi \eta$

- dE/dX in CDC for proton
- PID Timing Cuts
- 51 cm < Vertex Z < 79 cm
- Vertex R <= 1 cm
- RF Timing (3 beam bunches)
- Unused Shower Energy < 50 MeV
- |MM²| < 0.02

- Fiducial Photon Cut (θ<12° and E < 500 MeV)
- K+K- Invariant Mass < 1.055
- $0.3 < \gamma\gamma$ Invariant Mass < 0.8
- Kaon Timing from TOF Only
- <u>Strangeness Conservation</u>
- Beam Photon With Best MM²

Fiducial Photon Cut

Kaon Timing From TOF Only

ProjectionY of binx=2 [x=0.5..1.5] [K⁺_{BCAL}K⁻_{FCAL}]

(a) Projection of $K_{BCAL}^+ K_{BCAL}^-$ bin from Figure (a) Projection of $K_{FCAL}^+ K_{BCAL}^-$ bin from Figure 3 (a) Projection of $K_{TOF}^+ K_{BCAL}^-$ bin from Figure 33. ProjectionY of binx=8 [x=6.5..7.5] [K⁺_{TOF}K⁻_{FCAL}]

ProjectionY of binx=3 [x=1.5..2.5] [K⁺_{BCAL}K_{TOF}]

(b) Projection of $K_{BCAL}^+ K_{FCAL}^-$ bin from Figure (b) Projection of $K_{FCAL}^+ K_{FCAL}^-$ bin from Figure 3 (b) Projection of $K_{TOF}^+ K_{FCAL}^-$ bin from Figure 33. ProjectionY of binx=9 [x=7.5..8.5] [K⁺_{TOF}K_{TOF}]

(c) Projection of $K_{BCAL}^+ K_{TOF}^-$ bin from Figure 3 (c) Projection of $K_{FCAL}^+ K_{TOF}^-$ bin from Figure 33 (c) Projection of $K_{TOF}^+ K_{TOF}^-$ bin from Figure 33.

K*K Mass

2.5

Strangeness Conservation

Strangeness Conservation

Quality Factor Method

- A method for separating signal and background
- M. Williams, M. Bellis and C. A. Meyer "Separating Signals from Non-Interfering Backgrounds using Probabilistic Event Weightings."

Assumption:

- A given event has a set of other events which it shares similar kinematic features with. These are called nearest neighbors
- Plotting the invariant mass of the event with its nearest neighbors provides insight into the "Quality Factor" or probability that the event is signal or background

Quality Factor Method

Algorithm:

- For a given event calculate a kinematic distance between that event and all other events
- Only accept the N nearest neighbors to that event
- Plot the K+K- and gg invariant mass for the N nearest neighbors
- Fit each invariant mass distribution with a signal function plus a background function
- Calculate the number of signal and background events at the mass value of the event using the fits
- Assign a Quality Factor to the event: Q = s / (s+bg)

K+K- Invariant Mass

yy Invariant Mass

Preliminary Results: QFactor

Preliminary Results: QFactor Fit

Preliminary Results: Elliptical Subtraction

Preliminary Results: N* Background

Summary

- We observe two structures in the φη Invariant Mass
- The first structure is consistent with the φ(1680), or the radially excited φ. This has only been observed in e⁻e⁺ experiments
- The second structure is consistent with the φ₃(1850). This has only been observed in K⁻p→KK̄, KK̄^{*} experiments

			J^{PC}	Name	Mass (MeV)
n=2	L=0	S=0	0^{-+}	η_s	1415
		S=1	1	ϕ	1680
	L=1	S=0	1^{+-}	h_1	1850
		S=1	0^{++}	f_0	2000
			1^{++}	f_1	1950
			2^{++}	f_2	2000
n=3	L=0	S=0	0^{-+}	η_s	1950
		S=1	1	ϕ	2050

Table 2: Radial Excitations of $(I=0,s\overline{s})$ Mesons

			J^{PC}	Name	Mass (MeV)
n=1	L=0	S=0	0^{-+}	η,η'	548,958
		S=1	1	ϕ	1020
	L=1	S=0	1^{+-}	h'_1	1380
		S=1	0^{++}	f_0^{\prime}	1500
			1^{++}	f_1'	1530
			2^{++}	f_2'	1525
	L=2	S=0	2^{-+}	η_2^{\prime}	1850
		S=1	1	ϕ_1	1850
			2	ϕ_2	1850
			3	ϕ_3	1854

Table 3: Orbital Excitations of $(I=0,s\overline{s})$ Mesons