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GLOSSARY OF ACRONYMS

ADC An analog/amplitude to digital converter.
BCAL Barrel Calorimeter.
CDC Central Drift Chamber.
CEBAF Continuous Electron Beam Accelerator Facility.
DIRC Detector of Internally Reflected Cherenkov Radiation.
FCAL Forward Calorimeter.
FDC Forward Drift Chamber.
GEANT4 The fourth version of GEANT, which is a collection of simulation softwares designed

to describe the passage of elementary particles through matter, using Monte Carlo
methods.

genr8 An event generator used to generate event four-vectors
GlueX The name of the experiment and detector located in Hall D of Jefferson Lab.
JLAB Thomas Jefferson National Accelerator Facility.
Linac Linear Accelerator; or the linear section of the accelerator track at JLAB.
OZI Okubo-Zweig-Iizuka Suppression.
QCD Quantum Chromodynamics.
PS Pair Spectrometer.
RF Radio Frequency. More specifically, the frequency at which the electron beam oscil-

lates about the acclerator track.
ST Start Counter.
TDC Time to digital converter.
TOF Time of Flight detector.
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ABSTRACT

We perform an analysis dedicated to the search for new and unusual strangeonium states pro-

duced in the reaction γp → pφη. The data used for this analysis was recorded during the Spring

2017 physics run for Hall D of Thomas Jefferson National Accelerator Facility, where the GlueX

experiment is located. The GlueX experiment uses a linearly polarized coherent bremsstrahlung

beam of up to 12 GeV in energy. This photon beam interacts with a stationary liquid hydrogen

target located inside the GlueX detector. The subsequent photoproduction will provide final states

ideal for studying both exotic and non-exotic ss̄ mesons.
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CHAPTER 1

A BRIEF INTRODUCTION TO PARTICLE

PHYSICS

1.1 Early Discoveries

One of the most important questions in all of particle physics is ”what is matter made of?”

That is to say, what are the fundamental building blocks for which all things are comprised of.

This question dates all the way back to ancient Greece where philosophers postulated the existence

of an atom; something that is indivisible. This idea resonated throughout time, with the eventual

discovery of the electron by J.J Thomson in 1897. Thomson discovered the electron by testing

the properties of cathode rays, where he subjected the rays to a magnetic field. When the rays

were shown to bend due to the presence of the magnetic field, it was known that the rays must

be charged particles with mass. He then applied an external electric field in the opposite direction

of the bent particles. Adjusting the electric field strength allowed him to measure the velocity of

the particles (approximately ninety percent the speed of light) and to also measure the amount of

charge per mass, e/m.

Upon measuring this quantity, Thomson realized that the particle had an e/m of 1.7×107, or a

quantity 1700 times that of hydrogen. This meant that the particle either had an extremely large

electrical charge and similar mass in comparison to hydrogen, or the particle had similar charge and

an extremely small mass. Thomson correcly determined that the particle possessed the properties

of similar charge and an extremely small mass. At the time, Thomson refered to his new discovery

as a ’corpuscle’; and indeed he knew that this particle of mass and charge was fundamental. ”The

corpuscle appear to form a part of all kinds of matter under the most diverse conditions; it seems

natural therefore to regard it as one of the bricks of which atoms are built up.” [37]. Joseph John

Thomson would eventually win the 1906 Nobel Prize in Physics for ”recognition of the great merits

of his theoretical and experimental investigations on the conduction of electricity by gases”.

The mysteries surrounding the nature of matter were nowhere near settled, however. If Thomson

was correct in that electrons were everywhere in nature, then why was so much ordinary matter

1



electrically neutral? Thomson attempted to explain this phenomena with his famous ’plum pudding’

model. In his plum pudding model, he envisioned the electrons were attached to a paste that was

electrically positive, but with no internal structure. This hypothesis would eventually be shown

inaccurate by Ernest Rutherford’s gold foil experiment. Rutherford conducted this experiment by

shooting charged helium particles towards a stationary sheet of gold foil. The idea of the experiment

was simple. If matter is made of pudding as Thomson suggested, then the helium particle will pass

through the gold foil slightly perturbed, but in no way greatly deviated from its original direction

of motion. However, Rutherford discovered the exact opposite. Most of the time the helium passed

through the gold foil completely unscathed. Yet, a small fraction of interactions showed the helium

deflecting off of the gold foil at large angles. These discoveries provided a number of interesting

insights. First off, that matter was most certainly not made of a paste or a pudding; but instead

matter was comprised of compact and heavy objects with vast amount of empty space between

them. Additionally, since Thomson had shown that the electron had to be extremely light, it

must be the case that the helium particles were bouncing off an entirely different particle; what

Rutherford postulated as the proton.

But the proton could not be the final answer to everything that existed inside the nucleus. The

structure of organized matter still had one last void to fill which was now the problem of the periodic

table of the elements. Considering the first three elements, we know that hydrogen has one proton

and one electron. The next element is Helium, which is four times the weight of the proton, but

only has two electrons. Then there is Lithium, seven times larger that the proton but only has three

electrons. If each fundamental element in nature has an electron that matches a proton to make it

electrically neutral, then why are the masses of the elements not equal to the number of electrons

or protons inside the nucleus? This question would be answered in 1932 by the physicist James

Chadwick. Chadwick had a similar experimental setup as Rutherford - firing Helium particles

towards a stationary target; only this time the target was Berillium. The interaction of the Helium

beam with the Berillium target subsequently produced a Carbon-12 and some electrically neutral

radiation. Using kinematics and the conservation of momentum, Chadwick was able to determine

that the mass of the electrically neutral radiation was almost exactly the same as that of a proton.

He would eventually win the 1935 Nobel Prize in physics for his discovery of the neutron. [12]
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Once the neutron had been discovered, many physicists believed that all of matter was organized

with three fundamental particles - the proton, the neutron and the electron. However, there were

still some questions that had not been answered about organized matter such as ”how do protons

and neutrons remain in a bound state inside the nucleus”? The first significant theory to describe

the bound states of protons and neutrons was done by Hideki Yukawa in 1934. He postulated

the existence of a particle that had a mass between the proton and the electron which he named

the pion. The pion would eventually be discovered but not without confusion. Multiple charged

particles with masses between the proton and electron had been observed in experimentation,

especially with cosmic rays. The amount of charged and neutral particles with masses between the

proton and electron continued to grow to an absurd amount. This led physicists to wonder if there

were different fundamental building blocks of matter other than the proton, the neutron, and the

electron. [14]

1.2 The Standard Model of Particle Physics

To date, there are only a handful of what physicists would label as ’fundamental particles’. We

typically organize these particles into groups depending on the properties that they possess. The

first group of fundamental particles that will be discussed are the neutrinos. Currently there are

three species of neutrinos - the electron neutrino, the muon neutrino, and the tau neutrino; or νe,

νµ, and ντ , respectively. For each neutrino there exists a corresponding antineutrino as well (ν̄e, ν̄µ,

and ν̄τ ). Neutrinos are unique particles due to the fact that they have no electromagnetic charge,

have an extremely small mass, and they can only interact by means of the weak nuclear force.

Neutrinos can also oscillate between the three different flavor states mentioned above and have an

interesting history in the realm of particle physics. However, in order to keep this discussion short,

we will not delve into those details.

You may have thought the names of the neutrino species listed above as somewhat random;

but in fact, they are not. These names are chosen because they are grouped with three more

particles, all of which share the same names - the electron, the muon, and the tau; or e, µ, and

τ , respectively. Just like the neutrinos, these particles all have associated antiparticles (ē, µ̄, and

τ̄). The differences between this set of particles and the neutrinos is the fact that they all have

much higher masses, possess one unit of negative electromagnetic charge, and can therefore interact
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both weakly and electromagnetically. All six of these particles and their associated antiparticles

are classified as leptons or ’light weights’.

The next set of particles that I would like to discuss are the most important particles for

the subject of this thesis: the quarks. Just like the leptons, there are six quarks with mass,

electromagnetic charge, and they all have corresponding anti-particles as well. There are six flavors

of quarks: up, down, charm, strange, top, bottom; or u, d, c, s, t, b. You may notice that the

names are grouped in pairs of names that seem to be opposite of one another. This naming scheme

has some historical significance, but the most important thing to take away is that the ’up’ quarks

(u,c,t) have a positive electromagnetic charge of +2/3, and the ’down’ quarks (d,s,b) have a negative

electromagnetic charge of -1/3. Lastly, the quarks can interact by means of three different forces:

the weak nuclear force, the electromagnetic force, and the strong nuclear force.

All of the aforementioned quarks and leptons have one very important characteristic in common

between them; they are all spin 1/2 particles or fermions. There are other fundamental particles

that exist which are not fermions. These particles are referred to as gauge bosons, or spin 1

particles. All of these particles are described as ’mediators’ since they are the particles responsible

for communicating force between other fermions. There are currently four mediators known - the

W and Z bosons, the photon, and the gluon. The W and Z gauge bosons are the only particles

with mass and are responsible for mediating the weak nuclear force. There are two W bosons,

one that has a positive electromagnetic charge and one that has a negative electromagnetic charge.

There is only one Z boson and that simply has a neutral electromagnetic charge. Since the Z and

W bosons mediate the weak nuclear force, they can interact with all of the fermions mentioned

in the previous paragraphs. The photon is the most well known of the four gauge bosons and is

responsible for mediating the electromagnetic force. Unlike the W bosons, the photon has no mass

or electromagnetic charge and can interact with all of the fermions mentioned before except the

neutrinos (because they have no electromagnetic charge). Lastly there is the gluon, which much

like the photon, has no mass or electromagnetic charge. However, the gluon is special in that it

has a charge that is not completely obvious. We call this the color charge and it is the way that

we explain the interaction of the strong nuclear force between quarks and gluons in the Standard

Model. The gluon does not interact with any of the fermions except for the quarks.

4



There is one last particle which is the Higgs Boson. The Higgs may sound familiar to the reader

due to its recent discovery on July 4th, 2012 [27]. Although this particle is arguably the most

important discovery in particle physics for quite some time, we will not go into details about its

nature here. All that the reader needs to know is that it is the particle responsible for giving mass

to all of the fundamental particles. Having said this, all of the previously mentioned particles are

parts to something that we like to call The Standard Model of Particle Physics. A depiction of

these particles in a nicely organized fashion is given in Figure 1.1 below.

Figure 1.1: An illustration of The Standard Model of Particle Physics. The bottom left (green)
boxes contain the six flavors of leptons, and the top left (purple) boxes contain the six flavors of
quarks. The middle vertical column (red) displays all of the gauge bosons or mediators in the same
row as the particles with which they interact. The far right box (yellow) box contains the Higgs
Boson.
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1.3 Meson Spectroscopy

We spent a great deal of time describing what we know as the fundamental building blocks of

nature in the previous section. However, one thing that I did not mention was that quarks cannot

exist individually in nature. That is to say, it is impossible to observe a single quark by itself, it

must be in some type of bound state. So the next question that I would like to address is how

exactly these quarks can combine to create the plethora of particles that we can observe in our

every day world.

To date, there are only two ways that quarks can exist inside bound states. One of the ways

that they can combine is in groups of three, with three quarks (qqq) or three antiquarks (q̄q̄q̄).

These groups of three quarks are called baryons or ’heavy weights’; and they are called antibaryons

when they have three antiquarks. Two well known examples of baryons are protons and neutrons

where the proton is comprised of two up quarks and one down quark (uud) and the neutron is

comprised of one up quark and two down quarks (udd). It should be easy enough to realize then

that the anti-proton and anti-neutron have the same composition as the proton and neutron except

all of the quarks are antiquarks (ūūd̄, ūd̄d̄). The second way that quarks can exist inside a bound

state is when they combine in groups of two, where one is a quark and the other is an antiquark, or

qq̄. These composite particles are given the name mesons, or ’middle weights’. Since there are six

quarks and two different primary ways in which they can organize with both matter and antimatter,

one quickly realizes that there is an abundant amount of possible hadronic combinations. A fair

question that one may have is ’how do particle physicists organize baryons and mesons into groups?’

This question would eventually be answered with the creation of the Eightfold Way by Murray

Gell-Mann circa 1961 [13]. Gell-Man introduced a way of organizing all of the known mesons

and baryons into groups that shared patterns of strangeness, charge, and isospin. These diagrams

helped to show that hadronic matter is comprised of six different quarks and antiquarks which are

held together by their interaction via the strong nuclear force. Examples of baryon and meson

multiplets are depicted in Figure 1.2 below [31].

The strong nuclear force is described by Quantum Chromodynamics (QCD), which is a theory

that predicts the behaviour of particles and their coupling to the color field. These particles include

all quarks, antiquarks, and gluons which are the quantized mediators of the strong force. When

a quark and an antiquark are in a bound state (ie - a meson) their individual quantum numbers
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Figure 1.2: (upper-left) JPC = 0−+ pseudoscalar meson multiplet. (upper-right) JPC = 1/2+

baryon multiplet. (lower-left) JPC = 1−− vector meson multiplet. (lower-right) JPC = 3/2+

baryon multiplet

combine to make a total bound state with a given JPC ; where J is the quantum number for total

angular momentum, P is the quantum number for parity, and C is the quantum number for charge

conjugation. Knowing that quarks and antiquarks are fermions and therefore have 1/2 spins, it is

easy to investigate the allowed quantum mechanical bound states of all qq̄ mesons, regardless of

their quark-antiquark flavor combination. A list of good quantum numbers for all mesons is given

below in Table 1.1. If you take a closer look at the resulting JPC states in Table 1.1, you should

notice that certain states are missing; such as 0−−, 0+−, 1−+, and 2+−. These states are known as

exotic JPC meson states, or exotic quantum number states. In addition to exotic quantum number

states of mesons, QCD allows other exotic states such as qq̄qq̄ (four quark), qqqqq̄ (pentaquark), and

qq̄g (gluonically excited meson). Interestingly, some experiments have observed structures which

resembles some of these exotic states [34]. However, more evidence needs to be provided in order

to identify these resonances as undisputed exotic states. Having said that, the primary goal of the

GlueX experiment is to unambiguously map all light quark exotic meson multiplets. Discussion of
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Table 1.1: List of good quantum numbers for mesons, where s represents the spin of the meson and l
represents the relative orbital angular momentum between the quark and antiquark. Constraints :
|l − s| <= J <= |l + s|, P = (−1)l+1, C = (−1)l+s

s l = 0 l = 1 l = 2

s = 0 0−+ 1+− 2−+

s = 1 1−− 0++,1++,2++ 1−−,2−−,3−−

the GlueX experiment will be presented in Chapter 2.

1.4 Motivation

At this point in history, there are no universally accepted non qq̄ meson states; only observed

exotic meson candidates. The primary reason for this is the absence of an established qq̄g nonet.

The purpose of the GlueX experiment at Jefferson Lab is to unambiguously map exotic meson

states. In order to establish exotic nonets, we need to first understand non exotic meson states. An

example of a non exotic state that is poorly understood is ss̄, or strangeonia. Out of the twenty-

two expected ss̄ resonances below 2.2 GeV, only seven probable resonances exist : ηη′, φ(1020),

h1(1386), f1(1426), f ′2(1525), φ(1680), and φ3(1850); where ηη′ is counted as one resonance [20].

Of these seven resonances, only three of them are considered pure ss̄ states - φ(1020) f ′2(1525),

and φ3(1850). Due to the heavy nature of the strange quark in comparison to the up and down

quarks, one would expect more pure ss̄ states to exist in nature. Historically, there has been some

controversy over the identification of ss̄ states in the 1600-2200 MeV mass range; specifically the

φ(1680), the X(1750), and the Y (2175) meson states.

1.4.1 φ(1680)

The first observation of φ(1680) came from the DM1 collaboration at DCI in 1981. The experi-

ment analysed the Ko
sK

o
L final state and observed a small enhancement in the cross section between

1.6-1.8 GeV center of mass energy [26]. Research on the φ(1680) continued to be done by many

collaborations [31], however there is one particular study that stands out due its large sampling of

statistics and the fact that it includes φη as a final state topology.
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(a) Invariant Mass Spectrum for the KsKπ
final state.

(b) Measured cross section for the KsKπ
final state.

(c) Relative phase difference between the
isoscalar and isovector components of the
KK∗(892) final state.

(d) Measured cross section of the isoscalar
component of the KK∗(892) final state.

(e) Invariant mass spectrum for the φη final
state.

(f) Measured cross section for the φη final
state.

Figure 1.3: Highlighted results from the BaBar detector and collaboration where there is significant evience
to suggest that a φ(1680) has been observed from both KK∗(892) and φη final states by means of electron
positron annihilation.[22] 9



In 2008, the BABAR collaboration published a study containing many different topologies

arising from electron-positron annihilation; most notably: e+e− → KK∗(892) and e+e− → φη. The

KK∗(892) signal was studied by means of a Dalitz plot analysis and then showing the isovector and

isoscalar components of the cross section (Figure 1.3d), as well as the phase difference plot between

the two components (Figure 1.3c). The results strongly suggested that an isoscalar resonance

exists at 1.7 GeV/c in the center of mass frame. The paper also provided an invariant mass plot

(Figure 1.3a) and a measured cross section (Figure 1.3b) of the KsKπ final state, which was the

final state of the KK∗(892) parent state. Once again, both plots provided evidence of a resonance

at 1.7 GeV/c.

The φη analysis provided far fewer statistics in comparison to the KsKπ final state. However,

the same plots were shown and provided the same conclusion (Figures 1.3e and 1.3f). Furthermore,

since the resonance was thought to be an isoscaler that decayed to φη and KsKπ, it was concluded

that the parent state must have been ss̄; more specifially, the radially excited version of the φ(1020).

This enhancement was eventually observed to have a dominant decay into a neutral KK∗ final state.

An odd feature of the φ(1680) is that it has only been observed in electron-positron annihilation

experiments, and has never been observed in photoproduction [19].

1.4.2 X(1750)

Six months after the discovery of the φ(1680), the X(1750) meson was observed by the Omega

Photon collaboration at CERN [24]. The experiment analysed a K+K− final state from photopro-

duction and found an enhancement in the invariant mass spectrum of the K+K− pair. To be clear,

the statistics of this study were very low and only produced 100 events in the peak region. The

same collaboration produced another paper four years later which provided many more statistics

and a matching result [32]. A clear resonance at 1760 MeV/c was observed, however the spin and

parity of this state were not well described by angular distributions and therefore could not be con-

firmed as the radially excited version of the φ(1020). Significant evidence would eventually become

available in the year 2002, when the FOCUS collaboration performed another photoproduction

study on a K+K− final state [30]. There were three significant findings from this analysis, the first

being an observation of a resonance after performing a transverse momentum cut on the K+K−

system (Figure 1.4a). Second, a study was performed on the same final state as BaBar (KsKπ)

where no significant resonances were found in any invariant mass spectra (Figure 1.4b). Finally,
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(a) Invariant Mass Spectrum for the K+K−

final state after transverse momentum cut.
(b) Invariant Mass Spectrum for the K∗K
final state after transverse momentum cut.

Figure 1.4: Highlighted results from the FOCUS collaboration where there is significant evidence to suggest
that an X(1750) has been observed in the K+K− invariant mass sepctrum. Additionally, no resonance is
found inside the K∗K invariant mass spectrum.[30]

using these two results, branching ratios of X(1750)→ K∗K were compared to X(1750)→ K+K−.

It was found that these ratios were both less that 0.183 with a 90 percent confidence level. The

observation of the X(1750) raises many questions and a lot of confusion. In all likelihood, the

φ(1680) probably is the radially excited form of the φ(1020) since the masses of the other radially

excited vector mesons are ω(1650) and ρ(1700). However, it is a complete mystery as to why the

φ(1680) is seen so clearly in electron positron annihilation with no sign of a resonance at 1750

MeV/c2; yet we see a clear X(1750) resonance from photoproduction and no observable structure

near 1680 MeV/c2. To quote the final line from the FOCUS publication ”The interpretation of the

X(1750) remains uncertain”.

1.4.3 Y(2175)

Lastly, the BaBar collaboration at SLAC discovered a structure at 2175 MeV/c2 in the reaction

e+e− → φf0(980) → K+K−ππ [23]. Since the f0(980) decays to a neutral and charged pion final

state, both the π+π− and π0π0 topologies were studied in the analysis. In each instance, a resonance

was obseved inside the cross sections of the charged and neutral final states. Additionally, the

K+K−π
+,0π

−,0 final state invariant mass distributions showed a clear enhancement around 2175

MeV/c2. Due to the fact that the structure came from the φf0(980) intermediate state, one can

easily deduce that the parent state is both isosinglet and has quantum numbers equivalent to
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1−−. Furthermore, it has been suggested that this resonance may be a four quark strangeonium

hybrid state for serveral reasons. One of the reasons is the fact that no isosinglet vector mesons

have been seen to have an invariant mass this large. A second reason is the possibility that this

state is analgous to the Y (4260) state which is belived to be either a cc̄g or csc̄s̄ exotic state. It

follows naturally that the Y (2175) could either be an ss̄g or an sss̄s̄ exotic state. What makes this

resonance even more enticing for this dissertation is that its quantum numbers forbid decay into

ηη
′
, η
′
η
′
, and φφ final states due to C-parity and G-partiy violations. However, the φη and φη

′
final

states are quantum mechanically allowed. Assuming the Y (2175) is a four quark sss̄s̄ resonance,

many theoretical models view this bound state as an ss s̄s̄ ’diquark’ molecule. If this is true, then

the primary decays of the Y (2175) should be to the φη and φη
′

final states [28].

The underlying issue with all of the observations previously described is that the production

of final state kaons does not necessarily confirm the existence of an ss̄ state. The observation of

the Y (2175) may be evidence of an ss̄ exotic state. However, this cannot be officially resolved due

to the fact that the valence quarks and gluons for the f0(980) are not known or well understood.

Therefore, the only way to ensure that a state has ss̄ content is to choose an intermediate state

in which the parent uū / dd̄ content is suppressed. One channel that will resolve this ambiguity

is φη. If a state is shown to have a significant branching fraction to φη, it will be good evidence

that the state is an ss̄ state. Furthermore, if a state is not seen in the φη channel, it will be good

evidence that the state has little to no ss̄ content. The reason for this will be described in more

detail below.

1.5 Proposed Analysis

The purpose of this research is to accomplish at least one out of two goals. The first is to

provide a spectrum of excited ss̄ states using the φη channel. The φη channel is a unique final

state to study because it can only be produced from a parent state that is dominantly comprised

of ss̄ quarks. The reason for this is due to a few different characteristics of the φη final state. One

characteristic is due to the fact that the φ meson is almost pure ss̄, and that the η meson has a super

position of uū, dd̄, and ss̄ quark content. Since quark flavor is conserved in hadronic decays, having

a strange and anti-strange particle in the final state is an absolute must. Another characteristic

that makes φη a desirable channel to study is because the daughter states are both isosinglet and
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(a) Feynman Diagram for OZI allowed pro-
cess.

(b) Feynman Diagram for OZI forbidden
process.

Figure 1.5: (Figure 1.5a) Feynman Diagram depicting the decay of a parent ss̄ state into φη strangeonia.
(Figure 1.5b) Feynman Diagram depicting the decay of an arbitrary qq̄ parent state into φη quarkonia.

relatively light in mass. The conservation of isospin in strong decays ensures that the parent state

of an exclusive γp → pφη reaction must be isosinglet as well. The last characteristic is that the

φη channel is Okubo-Zweig-Iizuka (OZI) suppressed from uū and dd̄ parent states. To describe it

briefly, OZI suppression exists in nature when a quark and anti-quark bound state annihilate to

produce gluons. The subsequent gluons then hadronize into pairs of flavorless qq̄ mesons.

OZI suppression is known to exist in particle physics due to two major mesonic examples; the

branching fraction of φ(1020)→ π+π−π0 and the lifetime of the J/ψ. As we now know, the φ(1020)

is an ss̄ bound state. Since pions only contain up and down quarks, the ss̄ pair would have to

annihilate in order to create a three pion final state; thus making a low branching fraction due to

OZI suppression. The J/ψ has an abnormally long lifetime beause it’s mass is too low to decay

into a pair of D mesons. Since the only remaining particles to decay into are leptons or hadrons

with up down and strange quarks, the J/ψ decay is OZI suppressed, giving it a longer lifetime.

Example Feynman diagrams for ss̄ and OZI suppressed hadronic decays into φη final states are

given in Figure 1.5 [18] [38] [15].

As previously stated, an observation of a parent state that has a large branching fraction to

φη will be good evidence of a dominant ss̄ excited state. Conversely, if there is an absence of a

state into φη, it should have little to no ss̄ content. Understanding and establishing dominant ss̄

states is an important aspect to meson spectroscopy because there are only three well known states
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Table 1.2: List of good quantum numbers (JPC) for the parent stare of φη, where l represents the
relative orbital angular momentum between the φ meson and the η meson.

l JPC

l = 0 1+−

l = 1 0−−, 1−−, 2−−

l = 2 1+−, 2+−, 3+−

l = 3 2−−, 3−−, 4−−

to date; the φ(1020), the f
′
2(1525), and the φ3(1854). The second goal of this research will be to

search for exotic mesons using the φη channel. Knowing that the φ meson has JPC = 1−−, and

that the η meson has JPC = 0−+, it is easy to derive what parent states can produce φη with

different relative angular momentum. A table of possible parent states is given in Table 1.2.

There are three states in Table 1.2 that are of particular interest, the most obvious being the

0−− and the 2+− quantum states since they are inherently JPC exotic for mesons. The other state

of interest is the 2−− since it is not well understood for ss̄ bound states [31].
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CHAPTER 2

GLUEX

The data in this thesis came from the Spring 2017 run period which was recorded by the GlueX

experiment located at Thomas Jefferson National Accelerator Facility in Newport News, Virginia

(Figure 2.1). The Spring 2017 run started on January 23rd, 2017 and ended on March 13th,

2017. The conditions for this run were fairly stable and the only major change was increasing the

beam current by 50% on February 24th, 2017. The run consisted of five different radiator settings

including an amorphous radiator, and four different orientations of the linear polarization vector.

The four different diamond radiator orientations included an angle of 0◦, 45◦, 90◦, and 135◦ relative

to the lab floor. There were two reasons for choosing these four different diamond orientations.

The first reason is that we need to have a set of data which is perpendicular in photon polarization

relative to another set of data. Therefore, the data set which was measured at 0◦ is perpendicular

to the data set which was measured at 90◦. Similarly, the 45◦ data set is perpendicular to the 135◦

data set. The second reason for choosing four different diamond orientations was to make sure the

acceptance inside the spectrometer remained the same for different photon polarization angles.

Over the course of the entire Spring 2017 run, there were 10.4x109 physics triggers recorded for

the 0◦ diamond orientation, 11.0 × 109 physics triggers recorded for the 90◦ diamond orientation,

10.0 × 109 physics triggers recorded for the 45◦ diamond orientation, 10.2 × 109 physics triggers

recorded for the 135◦ diamond orientation, and 8.0×109 physics triggers recorded for the amorphous

radiator. Therefore, a total of 50 billion physics triggers were recorded for the Spring 2017 run,

resulting in 120 TB of reconstructed event files. In addition, there was a trigger rate of roughly

50 kHz for the diamond and amorphous radiators. The run conditions were initially set to a ”low

intensity” beam current of 100 nA for the diamond radiator, and 150 nA for the amorphous radiator.

As previously mentioned, the beam current was then increased to 150 nA for the diamond radiator

and 200 nA for the amorphous radiator. For the entirety of this run, a 5 mm collimator hole was

used for the beam line and a 75 µm Beryllium converter was used to measure photon polarization.

As of this date, the Spring 2017 run is the most successful reconstructed physics run period for
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GlueX. It should be noted, however, that the Spring 2018 run should have even more statistics

once the data is reconstructed an analyzed.

Figure 2.1: A picture taken from inside Hall D. From this angle, the photon beam would be coming
towards the viewer, and eventually interact with the liquid hydrogen target located inside the
apparatus. One can easily identify the shell of the superconducting barrel-shaped solenoid as well
as the back side of the forward calorimeter and some photomultiplier tubes attached to the time of
flight detector. [8]

2.1 Jefferson Lab

Thomas Jefferson National Accelerator Facility (JLab) is a U.S. Department of Energy Office of

Science national laboratory which contains 1,500 scientists from 30 different countries and a total

of 230 institutions worldwide (Figure 2.2). The lab has also completed nearly 200 experiments

from all of its halls (not counting the new Hall D) and has graduated more than 500 Ph.D’s

due to the exceptional research conducted there. The primary mission of JLab is to understand

the atomic nucleus by utilizing the Continuous Electron Beam Accelerator Facility (CEBAF) and

the four experimental halls which receive its electrons. In addition, JLab also contains advanced

computing resources, theoretical, and applied research which will help to educate future generations

of scientists. The lab recently received over three hundred million dollars to upgrade the CEBAF
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from 6 GeV to 12 GeV in energy. The upgrade included many new features of the CEBAF such

as ten new superconducting radio-frequency (SRF) accelerating elements; or five per linear section

of the accelerator. There were also ten new RF stations to power the ten new cryomodules (SRF)

which required doubling the refrigeration capacity at JLab. Modifications to the magnets in the

recirculation arcs and their power supplies were also an obvious necessity in order to keep the higher

energy beam confined to the existing beam path. There was also a tenth magnetic arc added to

the curved section of the CEBAF. This extra arc allows us to send beam towards the north linac

which will then boost the electron beam to 12 GeV, the amount necessary to accommodate the

experimental program in Hall D. All in all, this upgrade will allow scientists and researchers at

Jefferson Lab to explore a greater amount of detail that may be hidden within the atomic nucleus.

This upgrade was also coupled with the construction and creation of a new experimental Hall D,

which houses the GlueX experiment and is the ultimate source for the data contained within this

thesis [9].

Figure 2.2: A picture taken of the Thomas Jefferson National Accelerator Facility (JLab) in New-
port News, Virginia. In this picture, the electron beam from the Continuous Electron Beam Accel-
erator Facility (CEBAF) will travel in a clockwise motion. The two linear accelerator sections of
the CEBAF are near the two parallel lab roads which run towards and away from the picture view.
Three circular grass mounds can be observed in the lower part of this picture which represent the
locations of Hall A, Hall B, and Hall C. Hall D is located diagonally across the CEBAF from those
three halls and somewhat visible in this picture. [8]

2.2 CEBAF

CEBAF is an acronym which stands for Continuous Electron Beam Accelerator Facility (Fig-

ure 2.3). The beam is created by shining laser light onto a gallium-arsenide wafer that is roughly
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the size of a postage stamp. The laser light forces the bound electrons to fly off of the surface of

the wafer and towards magnets which confine the electrons into a stream of particles the width of a

human hair. These electrons are then passed into the linear accelerator region of the CEBAF. The

linear accelerator contains a series of accelerator cavities called Radio Frequency (RF) cavities which

are responsible for increasing the energy and momentum of the electron beam. These cavities are

superconducting and therefore cooled by a central helium liquefier which contains approximately

16,500 gallons of liquid helium and also keeps the RF cavities at -456 degrees Fahrenheit, or 2

degrees Kelvin. Attached to the two linear accelerator regions of the CEBAF are two arc regions.

These arc regions contain large magnets responsible for steering and focusing the electron beam

between the two linear accelerators. In total, the CEBAF is 7/8 of a mile in distance, or 1400

meters long, and is 25 feet below ground. The accelerator tunnel itself is 13.5 feet wide and 10 ft

tall with 2 feet of concrete for its walls. Electrons travel through the straight section of the track

up to 5.5 times which allow them to obtain energies as high as 11.5 GeV for Halls A, B, and C; and

up to 12 GeV for Hall D. The CEBAF can also deliver beam to all four of the experimental halls

simultaneously, allowing a wide variety of research to be done concurrently at Jefferson Lab. [1]

Figure 2.3: An illustration of the 12 GeV CEBAF upgrade at Jefferson Lab. This depiction shows
where many of the aforementioned upgrades were physically placed within CEBAF and JLab. [8]
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2.2.1 Injector

The CEBAF injector is a unique piece of equipment because it provides beam to the main

accelerator at JLab while having to work in sync with two recirculating linear accelerators operating

at 1497 MHz. The beam can be delivered to each experimental hall at 499 MHz, one third of the

linear accelerator’s frequency. This allows simultaneous operation of three halls at JLab; where

the three beams are typically at 499 MHz with 120 degrees phase separation. Figure 2.4 shows

the general layout of the injector [35]. The beam is created by using one of the 100 keV photo

cathodes, the other gun being a hot spare.

Figure 2.4: An illustration of the injector at CEBAF, showing components for photo-producing,
bunching and accelerating the beam electrons up to the point where they are ready to be injected
into the linear section of the accelerator. [35]

The next element in the injector is the pre-buncher cavity, followed by emittance limiting

apertures A1, A2, and then the three beam chopper system. The three beam chopper system is in

charge of initial timing and longitudinal structure of the beam. Just like the three halls that will

eventually receive the electron beam, this system operates at 499 MHz with three independently

variable slits to define a phase acceptance from 0 to 110 ps for each beam. This part of the apparatus

is important because it assures that any beam outside this window would not go correctly through

the bunching and acceleration process, and therefore is stopped at the choppers. After the chopper

is a device called the buncher which starts the main bunching of the beams. The capture section

follows this which simply provides acceleration of the beams to 500 keV in energy. The phase and

amplitude of buncher and capture cavities are crucial to the beam bunch length and energy spread.
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Following the buncher and capture is the bunch length cavity which is a diagnostic system used to

tune the beam bunch length by measuring the beam timing. Next are a series of superconducting

radio frequency (SRF) cavities which ultimately accelerate the electrons to a final energy or 23 to

68 MeV. There are also three Faraday cups in the injector to measure the beam current at different

stages; as well as some magnetic elements which provide transverse focusing and steering of the

beam.

2.2.2 RF Cavities

After the electrons leave the injector, they receive a boost in energy due to several RF cavities

that are located inside the linear section of the accelerator. The RF cavities are made with super-

conducting niobium material and are maintained at 2K using liquid Helium. The cavities have a

cycloid geometry in the direction that the electrons travel, and are azimuthally symmetric. The

specific design of these cavities are depicted below in Figure[2.5].

Figure 2.5: An example of the RF cavity design at CEBAF. The electrons would enter the cavity
from the left hand side nozzle that is sticking out of the main cavity. Upon entering the cavity,
the electrons will have their linear momentum increased inside the cycloid section of the RF cavity.
After an increase in linear momentum, the electrons will exit the main cavity to the right. [8]

The electrons will have their linear momentum increased inside the cavities due to a standing

radio frequency (RF) electromagnetic wave. The standing waves are kept in phase with the electron

beam bunches that are sent from the injector. The acceleration of the electrons is possible due to

the changing electric field inside the RF cavities. Once the electrons are inside one of the cavities,
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the electron is accelerated forward due to an electric field. This field is created by a negative charge

collection behind the electron beam bunch, and a positive electric charge ahead of the electron

beam bunch. Since the negative charge will repel the electrons and the positive charge will attract

the electrons, there is an overall force applied to the beam bunch, causing its linear momentum to

increase. An example of this is illustrated in Figure[2.6] below.

Figure 2.6: An example of how electrons are accelerated inside the CEBAF at Jefferson Lab. The
electron beam bunches enter the RF cavities from the right and are immediately repelled away from
the negative charge collection on the cavity, while simultaneously attracted to the positive charge
collection farther down stream. As the electrons travel from one cell to the next, the charges will
alternate, causing the electron to always maintain a positive acceleration from left to right. [8]

2.2.3 Linac

After the electron beam bunches are accelerated by the RF cavities, they must then turn around

by 180◦ to be accelerated by the other linear section of the accelerator and to ultimately complete

one full pass. The steering of the electrons is accomplished by several magnets which are precisely

positioned throughout the east and west arcs of the accelerator. The first magnet is responsible for

separating the beam into five different mono-energetic beam bunches. Since the linear accelerators

will boost the energy of the electrons discretely, the first magnet can be tuned to bend the lower

energy electrons more abruptly, while barely affecting the motion of more energetic electrons. This

means that the more energetic electrons will bend upward, towards the ceiling of the beam tunnel,

while the more energetic electrons will stay relatively level with respect to the beam tunnel floor

(Figure[2.7]). In order to turn the beam, a series of magnets are placed along the beam pipes for
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the different energy levels. After the electron beam has done five passes, it will enter its last turn

until it enters Hall D where the GlueX experiment will convert it into a photon beam.

Figure 2.7: A picture inside the acclerator tunnel at Thomas Jefferson National Accelerator Facility;
specifically the North Linac section of the accelerator which houses the magnets used to turn the
electron beam. The blue box located in the lower left portion of the picture is the magnet responsible
for splitting the electron beam into the monoenergetic beam bunches which will eventually continue
into one of the five beam pipes in the picture. Farther down stream are several magnets used to
steer the beam around the accelerator. Image source [8]

2.3 Hall D

After an electron beam bunch has made 5.5 passes around the JLab accelerator ring and reaches

an energy of 12 GeV, it will be passed towards Hall D. This section will follow the electron beam

towards the diamond radiator where it will convert some of its momentum to Bremsstrahlung

radiation. This radiation will then continue down the beam pipe and into the GlueX spectrometer

where it will interact with a stationary liquid hydrogen target. All of the relevant sub detectors

inside the beam pipe, as well as inside the GlueX spectrometer will be described in the subsections

below.
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2.3.1 Diamond Radiator

There are four different experimental halls at Jefferson Lab; Hall A, Hall B, Hall C, and Hall D.

Halls A, B, and C are located at the south-west section of the accelerator oval, whereas Hall D is

located unaccompanied at the opposite end of the accelerator oval. When electrons are approaching

the direction of Halls A, B, and C, they can either continue straight into those halls or continue

around the track towards Hall D. Once inside the Hall D, the beam collides into a diamond radiator.

Figure 2.8: A photograph taken from a monitoring camera located inside the beam tunnel. The
photograph shows the goniometer which is the disk shaped metal mount in the middle of the square
object. Located inside this disk is the diamond radiator which can be seen due to a faint blue light
being emitted from its surface. [6]

The diamond radiator is a synthetic material with a nearly perfect lattice structure in order

to produce highly polarized photons. It is roughly sixty microns thick and has a square cross

sectional area, with each size having a length of 5.6 millimeters. The diamond radiator is mounted

onto a goniometer which allows the GlueX experiment to change its orientation relative to the

incident electron beam (Figure[2.8]). The orientation of the diamond radiator plane with respect

to the electron beam can change two properties of the coherent Bremsstrahlung radiation. The first

property is the energy of the coherent peak, which can be changed by adjusting the transverse angle
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of the normal of the radiator plane with respect to the beam direction. The second property is the

polarization direction of the coherent Bremsstrahlung radiation, which can be adjusted by rotating

the radiator in the azimuthal direction with respect to the normal of the radiator plane. Since it

is desirable to keep the energy of the coherent peak a constant throughout an experimental run

period, the only property of the beam that will consistently change is the polarization direction.

It should be noted that there is an additional radiator used to collect data at GlueX which

does not produce coherent Bremsstrahlung radiation. This radiator is amorphous and is used

intermittently between runs with different diamond radiator orientations. [7]

2.3.2 Photon Beam

Once the linearly polarized photon beam is created by the diamond radiator, it continues straight

towards the GlueX detector. Before reaching Hall D, the beam travels through a series collimators

which only allow photons traveling with a particular direction to pass. This reduces the amount of

noise from the Bremsstrahlung radiation and ensures that the beam is traveling towards the proton

target. In addition, the scattered electrons that are left over from the interaction with the diamond

radiator are bent by a magnetic field and are ejected towards a tagger which measures their energy.

Knowing the initial energy of the incident electron beam, and then measuring the recoiled energy

of the electrons allows us to get an idea of the energy of the photons that are about to enter Hall D.

In addition to the energy, the photon tagger can also provide timing information for the photons

that arrive into the hall. As previously mentioned, there are two radiators that are used for GlueX;

a diamond radiator and an amorphous radiator. The biggest difference between these two radiators

is the presence of an organized lattice structure. Since the amorphous radiator has a homogeneous

distribution, the photon polarization will be uniform in all directions, while a lattice distribution

will only allow photon polarization in one direction. The difference in atomic structure between

the two radiators will result in a coherent peak which will be visible in a beam energy distribution.

Additionally, the photons contained within the coherent peak will be highly polarized. In the case

of GlueX, our radiator is designed to produce a fourty percent linear photon polarization at the

edge of the coherent peak. These effects are most easily understood by referencing Figure[2.9],

which is from the first GlueX physics publication [29].
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Figure 2.9: (a) Photon beam intensity versus energy as measured by the pair spectrometer (not
corrected for instrumental acceptance). (b) Photon beam polarization as a function of beam energy,
as measured by the triplet polarimeter, with data points offset horizontally by 0.015 GeV for clarity.
[29]

2.3.3 Triplet Polarimeter (TPOL)

The triplet polarimeter (Figure [2.10]) is responsible for measuring the degree of polarization

from the coherent Bremsstrahlung radiation created by the diamond radiator. The triplet polarime-

ter measures the degree of photon polarization using the triplet photoproduction process. When

an incident photon interacts with the electromagnetic field of a bound state electron, the incident

photon can spontaneously convert into an electron-positron pair, in addition to kicking the bound
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state electron out of its orbital. Since the recoil electron will have a very large polar scattering angle

with respect to the incident beam direction, the triplet polarimeter is responsible for measuring

the azimuthal distribution of the recoil electron. Conversely, the electron-positron pair will carry

most of the longitudinal momentum from the incident photon, therefore causing them to travel

farther down stream and eventually detected by the pair spectrometer. The azimuthal angular dis-

tribution of the recoil electron will provide information on the polarization of the incident photon.

The determination of photon polarization in the triplet polarimeter is similar to the study of beam

asymmetries, such that the triplet cross section is proportional to the total cross section multiplied

by a factor which involves the cosine of the recoil electron. Measuring the coefficient from a fit of

the recoil electron angle will allow GlueX to determine the degree of polarization of photons as a

function of beam energy. [33]

Figure 2.10: A picture of the triplet polarimeter inside the Hall D beamline. The photon beam will
enter the triplet polarimeter from the upper left part of the picture and travel to the right. After
interaction with the triplet polarimeter, an electron-positron pair will travel beyond the wall on
the right portion of the photograph, where the pair spectrometer is located; as well as the GlueX
spectrometer. [33]
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2.3.4 Pair Spectrometer (PS)

After a photon interacts with the thin converter of the triplet polarimeter, an electron-positron

pair are immediately produced with high longitudinal momentum, causing them to travel down-

stream. A dipole magnet of 1.8 Tesla is located after the triplet polarimeter in order to separate the

photoproduced electron and positron and to not affect neutral particles such as the beam photons.

Upon separation, the electron and positron will eventually be detected by scintillators on the pair

spectrometer (Figure[2.11]).

Figure 2.11: A picture of the pair spectrometer. [4]

The scintillation array on the pair spectrometer consists of sixteen course counters, as well

as an additional layer containing a high-granularity hodoscope. Since the electrons and positrons

will travel in opposite directions due to the dipole magnetic field, there are two arms on the pair

spectrometer, each of which can measure an electron/positron energy between 3 GeV and 6.25 GeV.

This electron/positron energy range corresponds to a photon energy between 6 GeV to 12 GeV.

The addition of the pair spectrometer allows GlueX to measure two important features about the

incident photon beam, the energy and the flux (Figure [ 2.9a]). As previously mentioned, the pair

spectrometer has the ability to reconstruct the energy of the pair produced electron and positron,

thus allowing us to measure the energy of the incident photon. Additionally, knowing the radiation

length of the diamond or amorphous radiator in conjunction with the amount of hits per beam

bunch that the pair spectrometer sees, allows us to estimate the photon flux entering the GlueX
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spectrometer. Accurately measuring the beam energy is obviously important for determining the

amount of energy allowed in a final state, and measuring the beam flux is important for determining

cross sections of final states as well. [21] [7]

2.3.5 Target

As the photon beam travels down the beam pipe and enters the GlueX detector, it will eventually

interact with the target. The target at GlueX is a proton, so therefore the target chamber is filled

with liquid Hydrogen (LH2) which is stored at roughly 18 degrees Kelvin and at a pressure of

16 psiA. The entrance and exit of the target chamber are made from the polymide film material

Kapton [11], and are 75 µm thick. The liquid hydrogen is insulated from the start counter by five

layers of aluminized mylar and cerex material. The length of the target is aligned in the direction

of the photon beam in order to increase the likelihood of observing an interaction with one of the

protons at rest. [16] [7]

2.3.6 Start Counter (ST)

The start counter is the first detector located outside of the target chamber. The purpose of

the start counter is to record the time of the photon-proton interaction which took place inside the

target chamber, and to ultimately identify which beam bucket caused an event. Due to this, the

start counter is designed to handle photon intensities up to 108
γ

s
, and must also have the ability

to differentiate between beam buckets which can be separated by as little as 2 nanoseconds, or

500 MHz. The detector consists of thirty scintillators which are uniformly distributed around the

target chamber in the azimuthal direction, which can be seen in the schematic given in Figure

[2.12]. The scintillators contain silicon photomultipliers in order to record when the detector fires

and to ultimately create a signal. Another important aspect of the start counter is the fact that its

components and are not affected by the superconducting solenoid magnet which produces a strong

magnetic field where the apparatus is located. The start counter has a timing resolution which

ranges from 450 to 700 picoseconds and can correctly identify beam buckets up to a 94 percent

accuracy. It also provides a ninety percent solid angle coverage around the target chamber, with

the exception of highly back scattered angles with respect to the beam direction, and a hole in the

forward direction due the beam halo. [25] [7]
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Figure 2.12: A schematic of the start counter located at the center of the GlueX spectrometer. The
photon beam enters the detector from the upper left hand corner of the schematic and will exit
the lower right hand corner of the schematic, out of the nozzle of the device. The start counter
encapsulates the target chamber and makes its measurements using the scintillator paddles labeled
on the diagram. [25]

2.3.7 Superconducting Solenoid/Magnet

The superconducting solenoid/magnet is the outer most part of the barrel portion of the GlueX

detector. It was originally built and used by the Stanford Linear Accelerator (SLAC) in the 1970’s

for the LASS detector; and was even used for the E-135 experiment in the early 80’s. In 1985, the

solenoid was moved to Los Alamos National Laboratory (LANL) in order to be used for the MEGA

experiment. Eventually, the superconducting magnet was moved to Hall D of Jefferson Lab during

April of 2000, and has been housed there ever since. The superconducting solenoid has a diameter

of 1.85 meters, and is 4.8 meters in length and can be seen in Figure [2.13]. This barrel shaped

geometry contains four separate superconducting toroidal coils connected in series, as well as four

cryostats, which all contribute to produce a magnetic field. When operating at the maximum GlueX

current, the magnet can produce a magnetic field inside the spectrometer of roughly two Tesla in

the direction of the beam direction. The operating current is 1360 Amperes, which produces an

inductance of 26.3 Henry and a stored energy of 24 mega joules inside the coil. In order for the coil
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of the solenoid to be superconducting, there is a common liquid Helium reservoir located on top of

the barrel in order to cool the system. Part of the cooling apparatus can be seen in Figure[2.13].

The purpose of the superconducting solenoid/magnet is to produce a magnetic field responsible

for bending charged particles inside the detector. The existence of this magnetic field allows us to

determine both the charge of a particle as well as its momentum. The momentum of a charged

particle is proportional to the radius of curvature around a magnetic field line. Having the ability

to measure both the charge and momentum of charged particles is crucial for any physics analysis

at GlueX. [10] [7]

Figure 2.13: A picure taken of the solenoid located inside Hall D. [10]

2.3.8 Central Drift Chamber (CDC)

There are two subdetectors inside the GlueX spectrometer which are responsible for tracking

charged particles; one of them is the forward drift chamber, and the other is the central drift cham-

ber. The central drift chamber has a cylindrical/barrel geometry, much like the superconducting

solenoid, with the exception that the central drift chamber surrounds the target and start counter,
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and is inside of the barrel calorimeter. The large cylindrical chamber is 1.5 m long and has an

inner radius of 10 cm and an outer radius of 54 cm. Located within the central drift chamber are

twenty four layers of 1.6 cm diameter straw tubes, containing a total of 3522 anode wires made of

gold-plated tungsten at their centroid (Figure[2.14]).

Figure 2.14: A picure taken of the central drift chamber before being installed into the GlueX
spectrometer inside Hall D. [4]

Between the anode wires and the walls of the straw tubes is a mixture of carbon dioxide and

Argonne gas at atmospheric pressure. The purpose of this gas is to become ionized when a charged

particle has passed through it. This ionized gas is then attracted to the gold-plated tungsten wires

due to the fact that they have a voltage. The charge deposited onto the wire will induce a current

inside the anode which will then be read out by electronics in order to record the geometric path
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that a charged particle has taken within the central drift chamber. This chamber is optimized for

charged tracks with highly transverse momentum and therefore covers a polar angle range between

6 and 165 degrees with respect to the beam direction. In addition, the barrel shaped geometry of

the central drift chamber provides a full angular coverage in the azimuthal direction. The detector

has been optimized for a position resolution perpendicular to the wires of 150 micrometers, and

can also provide information on the loss of energy per unit distance. This measurement allows the

GlueX spectrometer to separate positively charged pions from protons with momentum as high as

450 MeV/c. In addition to energy loss, the central drift chamber is also responsible for measuring

momentum of charged particles by utilizing the path that a charged particle has taken inside the

magnetic field of the spectrometer. Knowing the momentum of charged particles is another crucial

measurement for performing physics analyses at GlueX. [7] [3]

2.3.9 Forward Drift Chamber (FDC)

The forward drift chambers (FDC) are located downstream of the central drift chamber and

are encapsulated by the superconducting solenoid/magnet and barrel calorimeter. The purpose

of the detector is to track charged particles originating from the target chamber with shallow

angles relative to the beam direction. Since it is in the downstream direction, the forward drift

chamber is designed to provide a large number of measurements in a short amount of time due

to high momentum and the high multiplicity of tracks. Much like the central drift chamber, it

must also have good spatial resolution of charged particle paths in order to accurately reconstruct

their momentum. To perform these tasks, the forward drift chamber uses two planes comprised

of cathode strips which face a wire plane. The cathode strips are analogous to the argon-carbon

dioxide gas inside the straws of the central drift chamber; when struck by a particle, a charge

is induced onto the strips. This excess of charge is measured by the detector and with timing

information, can properly reconstruct the path of a charged particle. The FDC detector includes

four separate but identical 62 disk-shaped packages. Each of the disk shaped packages contains six

independent planar drift chambers with separate gas volumes. Contained within these gas volumes

are an anode wire frame with two cathode strip planes. There are also aluminized mylar planes

which act as ground between the electrically charged strips. The four sets of electrical planes with

six gas volumes can easily bee seen in Figure[2.15]. [7]
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Figure 2.15: A picture taken of the forward drift chamber being surveyed on the floor of Hall D
before installation. [4]

2.3.10 Barrel Calorimeter (BCAL)

At this point, a lot has been said about the detection of charged particles, but not a lot has

been said about the detection of neutral particles, specifically, photons. One of the devices that

is designed to detect photons is the barrel calorimeter. Originally constructed at the University

of Regina, the BCAL is a lead scintillating fiber matrix, located immediately inside the super

conducting solenoid. This sub detector has an outer radius of 90 cm, an inner radius of 65 cm, and

is 390 cm in length, as seen in Figure[2.16]. The primary goal of the barrel calorimeter and the

forward calorimeter is to measure photons which originated from the decays of π0 and η; both of

which produce two photons as a decay mode.

When a particle enters the BCAL, it excites several electrons inside the scintillation material,

which then radiate energy in the form of photons. The photons travel down the scintillation fibers

until they reach the endpoints of the barrel where they are then collected by light guides which

then leads to silicon photo multipliers (SiPM). The SiPMs collect the light signals and convert
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Figure 2.16: A picture of the barrel calorimeter before assembly into the superconducting solenoid.
[4]

them into amplified electrical pulses. The barrel calorimeter performs this duty by accurately

reconstructing the positions and energies of photons within the GlueX spectrometer. The BCAL

can measure individual photon energies as low as 60 MeV and as high as 2.5 GeV, and additionally

can provide timing information for photons and charged tracks originating from the target chamber.

The timing, energy, and position resolution for the barrel calorimeter is somewhat tricky to define,

as many of these parameters are a function of the incident photons energy and angle with respect

to the lead scintillating blocks. As an example, the energy resolution of the BCAL depends on the

number of photo-electrons detected by the photo sensors at the end of the scintillators. The number

of photo electrons produced within a lead block is directly proportional to the energy deposited by

the incident photon. The photon position is determined by the time difference at upstream and

downstream fiber ends. [7] [36] [5]
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2.3.11 Forward Calorimeter (FCAL)

Much like the barrel calorimeter, the forward calorimeter is designed to detect photons which

were radiated by either π0 or η mesons; only this detector is placed in the forward direction rather

than a direction more transverse to the beam direction. The forward calorimeter is comprised of an

array of lead glass blocks which collectively form a circular pattern to cover the end of the barrel

segment of the GlueX spectrometer, as seen in Figure[2.17].

Figure 2.17: A picture of the forward calorimeter with no cover in front of it. One can clearly see
the lead blocks used to reconstruct photons in the forward direction. [4]

The lead glass scintillators detect high energy photons because of their tendency to sponta-

neously pair produce into an electron-positron pair upon entering the lead glass medium. The

resulting electron-positron pairs emit bremsstrahlung radiation, which can then spontaneously pair

produce into another electron-positron pair. This process will continue until all of the energy from

the original photon has been completely absorbed by the lead glass in a process which is known

as showering. When the electron-positron pair travel through the lead glass material at a high

enough velocity, they can produce Cherenkov radiation which is collected and measured by photo-
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multiplier tubes attached to the end of the lead blocks. The amound of Cherenkov radiation that

is detected by the absorbing lead block is directly proportional to the amount of energy deposited

into it. Therefore, knowing the position, energy, and timing of the electromagnetic shower allows

us to perform particle identification on photons traveling in the forward direction. The forward

calorimeter has a circular lead glass array with a diameter of 2.4 m and has 2800 lead glass blocks.

The front face of the forward calorimeter is 560 cm down stream from the center of the target

chamber. Each lead glass block has a rectangular geometry, with a (4x4) cm square base and a

height of 45 cm. In addition, a 3x3 square array of lead block located near the beam hole were

removed from the detector due to the high rates inherent within that region of the detector. [7] [2]

2.3.12 Time of Flight Detector (TOF)

Unlike the aforementioned detectors, the time of flight (TOF) is square in shape and is (252 x

252) cm in size. The sub detector has two layers of scintillator paddles, one layer that is parallel

to the floor of Hall D, and a second layer that is perpendicular to the floor of Hall D. Each layer

contains 38 ’standard’ paddles, 4 ’half width’ paddles, and 4 ’half length’ paddles. The dimensions

of the standard paddles are (2.54 x 6 x 252) cm, while the half width paddles are (2.54 x 3 x 252)

cm, and the half length paddles are (2.54 x 6 x 120) cm. The purpose of the half width paddles

is to compensate for the higher rates that take place closer to the beam hole, and the purpose of

the half length paddles is to allow the beam to pass through the beam hole. All of these different

paddles can be seen by closely inspecting Figure[2.18].

The time of flight is located downstream of the cylindrical portion of the GlueX detector and is

before the forward calorimeter. The time of flight is comprised of transparent scintillating bars that

are wrapped in highly reflective material so that no light can escape. The scintillation material

in the TOF is similar to the scintillation material in the BCAL. When a particle hits the time

of flight, the electrons inside the scintillation material become excited and radiate photons which

travel down the material and are eventually collected by a photomultiplier tube. The purpose of

the time of flight is to deduce how long it took a particle to travel from the interaction vertex

inside the target chamber, all the way to the wall of the time of flight. Since the distance travelled

by a charged particle is known from the reconstructed drift chamber paths, we can divide this by

the flight time in order to calculate a velocity. In addition to the path of a charged particle, the

momentum of it can also be measured since that it is proportional to its radius of curvature with
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respect to the magnetic field within the spectrometer. Measuring the momentum of a charged

particle and calculating its velocity within the chamber allows us to approximate the mass of the

particle which ultimately leads to a particle identification. [7]

Figure 2.18: A picture of the time of flight after sucessful assembly inside Hall D. [4]

37



CHAPTER 3

MONTE CARLO

3.1 Monte Carlo Features of γp→ pφη

In order to better understand the acceptance of the γp → pφη topology in the GlueX spec-

trometer, a generated Monte Carlo sample was analyzed. More specifically, the exact sample that

was produced was γp → pX;X → φη;φ → K+K−; η → γγ. This Monte Carlo sample con-

sisted of 1,666,667 generated events for each of the run numbers 030408, 030620, 030699, 030802,

030900, and 031029. The run numbers were chosen because two have beam polarizations in the

PARA/PERP directions at low intensity (030408 and 030620), two have PARA/PERP orientations

at high intensity (030802 and 031029), and two of the run numbers are from amorphous radiators

(030699 and 030900). The total number of generated φη events is therefore 10 million. The events

were generated using a combination of a coherent and an incoherent bremsstrahlung beam energy

spectrum ranging from 3 GeV to 12 GeV. These events were also generated with a t-slope of 2.5

(GeV/c2)2. To be more clear, the thrown beam particles were not polarized in this sample; only

the beam energy spectrum matched that of a polarized beam spectrum plus an incoherent beam

spectrum (Figure [3.1]). All final state particle kinematics were generated using the GlueX Monte

Carlo generator (genr8). The generated final state phase space did not include any spin information

from parent or daughter states. The γ,K+,K−, φ, η, and p particles were generated using the in-

variant mass values and widths provided in the PDG. The photo-produced X mass was distributed

between the lower kinematic limit mφ + mη and the upper kinematic limit which is a function of

the momentum transfer t, and the thrown beam energy.

An example of what the generated beam energy distribution looks like for this Monte Carlo

sample is given in Figure [3.1]. It should be noted that this particular Monte Carlo sample includes

both coherent and incoherent beam structures, where the peaks in the image come from coherent

Monte Carlo. The lower energy region of the beam energy spectrum comes primarily from the

incoherent data. It should also be noted that the slow rise of the beam energy in this region is due

to Lorentz factor weighting, or phase space.
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Figure 3.1: A histogram which includes the thrown beam statistics from the generated Monte Carlo
example. In the figure one can easily see the coherent peak which maximizes at 9 GeV. Additionally,
one can also see other secondary peaks at higher energy.

Momentum versus theta distributions are also provided in Figures [3.2], [3.3], [3.4], and [3.5].

These figures are generated Monte Carlo and represent the distributions of final state particles in the

lab frame before running hdgeant, mcsmear, and hd root. Still, the figures provide some insight

into the expected kinematic distributions of the final state particles. For example, Figure [3.2]

displays the momentum versus theta distribution for the recoil proton. This figure shows that we

should expect the proton to have a very low momentum and high recoil angle relative to the beam

direction for this final state.

Additionally. Figures [3.3][3.4] seem merely identical in shape and contour. This is expected and

the reason for this is that both kaons are decaying from the φ meson, and the K+ and K− are anti-

particles. In these figures, it is clear that Kaons will preferentially travel towards the TOF/FCAL

and with a momentum that should include a lot of pion contamination (see Figures [4.18][4.26] for

more information on pion contamination at high momentum).

Lastly, Figure [3.5] shows that the final state photons will be mostly forward going and therefore

we should expect to see the majority of them interacting with the FCAL rather than the BCAL.

It is not surprising that the Monte Carlo has generated photons and kaons that favor the forward

direction, while the recoil proton has low momentum and a highly transverse direction. This is
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Figure 3.2: A two dimensional histogram which includes the thrown kinematic information of the
recoil proton. In the histogram, the horizontal axis represents the generated θ angle in the lab
frame, and the vertical axis represents the generated momentum magnitude in the lab frame. One
interesting feature of this Monte Carlo data is that the kinematics of the recoil proton appear to
be constrained between [0.2− 2.0]GeV/c in momentum, and [0.0− 60.0]◦ in angle.

simply a consequence of the fact that a low t interaction was programmed into the Monte Carlo,

resulting in Figure [3.6].

The last few figures to be discussed in this section involve the study of invariant mass spectra.

The first of which is the invariant mass of φη (Figure [3.7]) which shows a phase space distribution

between the values of 1.5 to 3.2 GeV/c2; then the slope of the distribution changes drastically from

3.3 to 4 GeV/c2. These features may seem incorrect at first glance since the generated Monte

Carlo mass is supposed to just show phase space. However, upon further inspection, it is clear

that these features manifest themselves within the Monte Carlo data because of the shape of the

beam spectra. The best way to see this behavior is by considering Figure [3.8]. This figure shows

the generated beam energy on the vertical axis, and the generated φη mass on the horizontal axis.

Since the primary peak from the coherent bremsstrahlung will dominate most of the statistics in

this generated sample, the φη invariant mass range which it couples too will be most dominant as

well. Inspecting Figure [3.8], one can clearly see the coherent peak at 9 GeV, and the corresponding

φη invariant mass ranging from 1.5 to 3.2 GeV/c2.
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Figure 3.3: A two dimensional histogram which includes the thrown kinematic information of the
generated K+. In the histogram, the horizontal axis represents the generated θ angle in the lab
frame, and the vertical axis represents the generated momentum magnitude in the lab frame.
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Figure 3.4: A two dimensional histogram which includes the thrown kinematic information of the
generated K−. In the histogram, the horizontal axis represents the generated θ angle in the lab
frame, and the vertical axis represents the generated momentum magnitude in the lab frame.
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Figure 3.7: A histogram which includes the generated φη invariant mass. In the figure one can easily
see that the invariant mass of the φη has the shape of phase space until it reaches ∼ 3.2GeV/c2.
From that point, the invariant mass falls less sharply until ∼ 4.0GeV/c2. This feature of the
invariant mass is directly related to the fact that a coherent bremsstrahlung beam energy spectrum
was used. The abrupt change in the invariant mass range of 3.3 − 4.0GeV/c2 is caused by the
primary coherent peak at 9.0GeV . To visualize this in two dimensions, see Figure [3.8].
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CHAPTER 4

DATA SELECTION

4.1 Identification of γp→ pK+K−γγ Events at GlueX

In order to study potential states of bound strangeonia, it is essential to properly identify all

final and initial state particles. The final state topology that will be studied for this thesis is

γp → pK+K−γγ, where the K+K− pair are daughter states of the φ meson, and the γγ pair are

daughter states of the η meson. Therefore, the beginning of this analysis section will focus on the

particle identification of the proton, kaons, and final state photons, as well as the incident beam

and target proton. Once identification of all particles has been well established, this analysis will

then provide evidence that the final event sampling enforces exclusivity.

4.1.1 Spring 2017 Run Period

The data presented here is the result of the successful Spring 2017 run period. The Spring 2017

run period spanned from January 23rd to March 13th and accumulated roughly 50 billion physics

events. The maximum electron beam energy used was 12 GeV, and the accelerator ran at 250

MHz while in low intensity (beam every 4 ns), and later ran at 500 MHz while in high intensity

(beam every 2 ns). Upon entering Hall D, the electron beam was incident upon a radiator. During

this run period, both amorphous and diamond radiators were used to produce either incoherent

or coherent polarized bremsstrahlung radiation. The diamond radiator was experimentally set up

to produce linear photon polarization at four different angles relative to the lab floor - 0°(parallel

with floor), 45°, 90°(perpendicular with floor), and 135°. These directions were chosen in order

to provide the detector with a uniform sampling of linear polarization in the transverse direction

to the incident beam. In order to yield roughly the same amount of statistics for an amorphous

radiator run as compared to a diamond radiator run, a beam current of 150 nA was incident upon

the amorphous radiator, while a beam current of 100 nA was incident upon the diamond radiator.

Farther downstream, a 5mm collimator hole was used for all radiator configurations. Lastly, the
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collimated photon beam was incident upon a stationary liquid hydrogen target. This resulted in

one petabyte of files and 16 pb−1 of integrated luminosity.

4.1.2 Identification of Initial State Particles

Photon Beam. The first step in identifying the initial state beam photon is to select the

correct beam bunch. Since the electron beam is delivered from the accelerator every four nanosec-

onds, the timing of when the beam particles arrive into the hall is well known and we call this the

Radio Frequency (RF) time.

Figure 4.1: An example histogram of beam time as compared to the reported Radio Frequency
(RF) time. In the plot there are three peaks, all of which are separated by four nanoseconds. Also
included in the plot are two red dashed cut lines at ±2 ns. These cut lines represent the values
used to perform an accidental subtraction on the data.
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In addition to the RF time, we also have the beam time. The beam time is defined as the time

which the reconstruction converged upon a common vertex time. The common vertex time is found

by using the final state charged tracks and the their timing, and back tracking them to a common

point in space and time. Comparing the beam time with the RF time provides the experiment with

the correct beam bunch which should be centered at zero. An example of what this distribution

looks like and the cut used for it is given in Figure 4.1. It should be noted that this analysis

will enforce a beam timing cut of ±6ns in order to allow 3 beam bunches to pass. Once all cuts

are made on the data and the final set of events is known, the additional side peaks will be used

for accidental subtraction. An accidental subtraction is necessary in this analysis due to the high

volume of accidental beam photons in the primary peak at zero. The accidental subtraction will be

performed on all final plots shown in this analysis and can be executed by assigning a weight of 1

for any event with a beam timing of ±2ns, and a weight of -0.5 for any event from the side peaks.

The purpose of assigning a weight of -0.5 for the side peaks is simply because there are twice as

many side peaks (2) as primary peaks (1).

Target Proton. There are two cuts needed to select the initial state proton. Both of these

cuts enforce the reconstructed vertex for all final state particles to be within the geometric volume

of the target chamber. Since this analysis does not contain a particle lifetime which would result in

a detached vertex, it is imperative to reduce backgrounds from other channels that may have this

feature, such as excited baryons with a strange quark. Examples of what the reconstructed vertex

for the final state photons looks like in the beam direction and in the transverse beam direction, is

given in Figure [4.2a] and Figure [4.2b], respectively.

4.1.3 Identification of Final State Particles

Recoil Proton. There are three cuts that were used to identify the recoil proton. One of

the cuts is a standard dE/dX cut, which separates some of the slow moving protons from other

particles of positive charge such as e+, π+, and K+. Due to the higher mass of the proton in

comparison to the other particles with positive charge, the proton will tend to lose more energy

inside of the Central Drift Chamber. This cut is highlighted in the first GlueX paper [29], and can

be seen in Figure [4.3].

The second cut is to enforce the reconstructed vertex position of the charged proton track came

from inside the target chamber. This cut is used to reduce any background from particles that
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(a) Reconstructed vertex position along the
beam direction with cut lines at 51 and 79 cm.

(b) Reconstructed vertex position transverse
to the the beam direction with cut a line at 1
cm in the radial direction.

Figure 4.2: An example of what a reconstructed vertex distribution looks like for a final state γ
in the reaction γp → pK+K−γγ. The upper image is the reconstructed vertex position along the
beam line, or z axis; and the lower image is the reconstructed vertex position in the directions
transverse to the beam line. Both figures contain red dashed lines which represent the cut values
for all reconstructed final state particles. In the z direction the cut values are 51 cm ≤ Vz ≤ 79
cm, and in the transverse direction the cut values are Vr ≤ 1 cm. The z direction cut values are
established from Log Entry 3456336 from a Spring 2017 empty target run. The transverse cuts are
simply established by considering the geometric size of the target chamber.

Figure 4.3: A figure which shows the energy lost in the Central Drift Chamber on the vertical axis,
and the reconstructed momentum on the horizontal axis. At lower momentum, a proton band can
be seen rising sharply towards higher energy loss values. Also contained within the figure is a white
dashed line which represents the cut value used to identify slower moving protons. The horizontal
band which deviates from the proton band at low momentum comes from positively charged pions
and kaons.
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(a) ∆ T Vs P for Proton candidates that have
the Barrel Calorimeter as the timing detector in
data.

(b) ∆ T Vs P for Proton candidates that have
the Forward Calorimeter as the timing detector
in data.

(c) ∆ T Vs P for Proton candidates that have
the Time of Flight as the timing detector in
data.

Figure 4.4: Timing plots for recoil proton candidates during the Spring 2017 run period for GlueX.
Protons are identified by selecting the horizontal band centered about ∆T = 0. The curved line
deviating below the horizontal proton line comes from miss identified π+ tracks. The additional
curved lines above and below ∆T = 0 come from π+ tracks that are associated with the wrong RF
bunch.
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may have a detached vertex. The cut used is identical to those found and described in the Target

section, specifically Figure [4.2a] and Figure [4.2b]. The third and final cut that is used to identify

the recoil proton is the timing difference (∆ T) from the BCAL, FCAL, and TOF. ∆ T is defined

as the difference between the reconstructed vertex time for the particle and the time when the

photon beam arrived. An example of what these distributions look like in data, as a function of

momentum, is given in Figure [4.4]. Since the data has a lot of pion background in these plots, it

is difficult to determine what the proper timing cuts should be for all of the sub detectors. Due to

this, a Monte Carlo sample of γp → pX;X → φη;φ → K+K−; η → γγ was generated, simulated,

and then reconstructed. This greatly reduces the background that is present in the timing plots

and therefore can be used to estimate a proper timing cut for the proton and the sub detectors

used to measure its time. Examples of these distributions and their associated projections onto the

timing axis are given in Figure [4.5] through Figure [4.10]. A summary of all of the timing cuts

used for the recoil proton as well as all other final state particles is given in Table [4.1].

Figure 4.5: A timing plot for accepted recoil protons from the generated reaction γp → pX;X →
φη;φ→ K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the recoil proton
and the vertical axis is the timing difference between the BCAL and RF. The enhancement of
statistics in the lower right portion of the plot comes from miss identified kaons that are also
present in the accepted Monte Carlo.
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Figure 4.6: A projection of the statistics from Figure [4.5] onto the vertical (timing) axis between
the momentum range of 0.3-1.5 GeV/c. This projection range was chosen so that the distortion
from the lower kaon band was minimized. A Gaussian fit was performed and is included in the
figure where the mean and width of the distribution are given in the legend.

Figure 4.7: A timing plot for accepted recoil protons from the generated reaction γp → pX;X →
φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the proton and
the vertical axis is the timing difference between the FCAL and RF. The enhancement of statistics
in the lower right portion of the plot comes from miss identified kaons that are also present in the
accepted Monte Carlo.
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Figure 4.8: A projection of the statistics from Figure [4.7] onto the vertical (timing) axis between
the momentum range of 0.5-1.8 GeV/c. This projection range was chosen so that the distortion
from the lower kaon band was minimized. A Gaussian fit was performed and is included in the
figure where the mean and width of the distribution are given in the legend.

Figure 4.9: A timing plot for accepted recoil protons from the generated reaction γp → pX;X →
φη;φ → K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the proton and
the vertical axis is the timing difference between the TOF and RF. The enhancement of statistics
in the lower right portion of the plot comes from miss identified kaons that are also present in the
generated Monte Carlo.
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Figure 4.10: A projection of the statistics from Figure [4.9] onto the vertical (timing) axis between
the momentum range of 0.5-1.8 GeV/c. This projection range was chosen so that the distortion
from the lower kaon band was minimized. A Gaussian fit was performed and is included in the
figure where the mean and width of the distribution are given in the legend.

K+. There are two cuts that were used to identify the final stateK+. The first cut is to enforce

the reconstructed vertex position of the K+ track came from inside the target chamber. This cut is

used to reduce any parent state of the K+ that may have a longer lifetime and therefore a detached

vertex. The cut used is identical to those found and described in the Target section, specifically

Figure [4.2a] and Figure [4.2b]. The other cut that is used to identify the K+ is the timing (∆

T) from the BCAL, FCAL, and TOF. ∆ T is defined as the difference between the reconstructed

vertex time for the particle and the time when the photon beam arrived. An example of what

these distributions look like in data, as a function of momentum, is given in Figure [4.11]. Since

the data has a lot of pion and proton background in these plots, it is difficult to determine what

the proper timing cuts should be for all of the sub detectors. Due to this, a Monte Carlo sample of

γp → pX;X → φη;φ → K+K−; η → γγ was generated, simulated, and then reconstructed. This

greatly reduces the background that is present in the timing plots and therefore can be used to

estimate a proper timing cut for the K+ and the sub detectors used to measure its time. Examples

of these distributions and their associated projections onto the timing axis are given in Figure [4.12]

through Figure [4.17]. It should be noted that in many of the Monte Carlo plots, there appears to

be an additional band from a particle with less mass. This is a consequence of using the hdgeant

simulator, which will decay particles while in flight. Therefore, the band inside the Monte Carlo

52



plots arises from the weak decay of a kaon to a muon and a neutrino. A summary of all of the

timing cuts used for the K+ as well as all other final state particles is given in Table [4.1].

(a) ∆ T Vs P for K+ candidates that have
the Barrel Calorimeter as the timing detec-
tor in data.

(b) ∆ T Vs P for K+ candidates that have
the Forward Calorimeter as the timing de-
tector in data.

(c) ∆ T Vs P for K+ candidates that have
the Time of Flight as the timing detector in
data.

Figure 4.11: Timing plots for K+ candidates during the Spring 2017 run period for GlueX. K+

are identified by selecting the horizontal band centered about ∆T = 0. The curved line deviating
below the horizontal K+ line comes from miss identified π+ tracks, and the curved line deviating
above the horizontal K+ line comes from miss identified proton tracks. The additional curved lines
above and below ∆T = 0 come from π+ and proton tracks that are associated with the wrong RF
bunch.
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Figure 4.12: A timing plot for accepted K+ from the generated reaction γp → pX;X → φη;φ →
K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K+ and the vertical
axis is the timing difference between the BCAL and RF. It should be noted that the statistics
in this sampling are smaller than other plots. This is due to the fact that the kinematics of the
generated channel prefer to have the kaons moving in the forward direction; and therefore provide
few timing hits in the BCAL. Additionally, the extra statistics present in the upper left portion of
the graph are due to protons that are also present in the accepted Monte Carlo.

Figure 4.13: A projection of the statistics from Figure [4.12] onto the vertical (timing) axis between
the momentum range of 0.3-4.0 GeV/c. A Gaussian fit was performed and is included in the figure
where the mean and width of the distribution are given in the legend. The distortion of statistics
towards the higher timing differences is due to proton that are also present in the generated Monte
Carlo.
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Figure 4.14: A timing plot for accepted K+ from the generated reaction γp → pX;X → φη;φ →
K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K+ and the vertical
axis is the timing difference between the FCAL and RF. The curved band that appears below
the K+ band around 1.5 GeV/c and lower comes from µ+. Although muons were not explicitly
generated, the computer program hdgeant (derived from geant) allows for some fraction of kaons
to decay weakly while in flight; resulting in a observed muons.

Figure 4.15: A projection of the statistics from Figure [4.14] onto the vertical (timing) axis between
the momentum range of 2.0-4.0 GeV/c. This projection range was chosen so that the distortion
from the lower muon band and upper proton band was minimized. A Gaussian fit was performed
and is included in the figure where the mean and width of the distribution are given in the legend.
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Figure 4.16: A timing plot for accepted K+ from the generated reaction γp → pX;X → φη;φ →
K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K+ and the vertical
axis is the timing difference between the TOF and RF. The curved band that appears below the K+

band around 2.5 GeV/c and lower comes from µ+; and the band near the top of the plot comes from
protons. Although muons were not explicitly generated, the computer program hdgeant (derived
from geant) allows for some fraction of kaons to decay weakly while in flight; resulting in an observed
muon.

Figure 4.17: A projection of the statistics from Figure [4.16] onto the vertical (timing) axis between
the momentum range of 1.9-2.0 GeV/c. This projection range is one out of many that were studied
from Figure [4.16]. The purpose of this study is to determine the amount of muon contamination in
the kaon band as a function of momentum. The results of this study are provided in Figure [4.18].
Lastly, two Gaussian fits were performed on this data. The mean and width of these Gaussian fits
are recorded in Figure [4.18] for each momentum range.
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Figure 4.18: The image above is the result of the timing study performed on Figure [4.16]. Using
that figure, a number of projection histograms were fit using different momentum ranges. An
example of one of these fits is given in Figure [4.17]. The data points close to 0 ∆T correspond
to the Gaussian fits performed on the kaon signal, and the data points that approach that band
from the bottom correspond to the Gaussian fits performed on the muon signal. The horizontal
position of each point is in the middle of the projection range, and the vertical position of each
point was assigned based on the mean value of the Gaussian fit for each particle. The horizontal
error bars are the size of the projection range, which is always 0.1 GeV/c. The vertical error bars
are determined by the width of the Gaussian fits. The average of the widths of the kaon peaks is
0.1 ns which is the value used to determine the timing cut in Table 4.1.

K−. Just like its antiparticle, the K− has two identifying cuts; the vertex and timing cuts.

The vertex cut is used to eliminate any parent state of the K− that may have a longer lifetime

and therefore a detached vertex. The cut used is identical to those found and described in the

Target section, specifically Figure [4.2a] and Figure [4.2b]. The timing cuts (∆ T) for the K−

are for the BCAL, FCAL, and TOF sub detectors. ∆ T is defined as the difference between the

reconstructed vertex time for the particle and the time when the photon beam arrived. Since

the timing distributions from data (Figure [4.19]) have too much background in them, a Monte

Carlo sample of γp → pX;X → φη;φ → K+K−; η → γγ was generated, simulated, and then

reconstructed. This greatly reduces the background that is present in the timing plots and therefore

can be used to estimate a proper timing cut for the K− and the sub detectors used to measure

its time. Examples of these distributions and their associated projections onto the timing axis are

given in Figure [4.20] through Figure [4.25]. It should be noted that in many of the Monte Carlo

plots, there appears to be an additional band from a particle with less mass. This is a consequence

of using the hdgeant simulator, which will decay particles while in flight. Therefore, the band

inside the Monte Carlo plots arises from the weak decay of a kaon to a muon and a neutrino. A
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summary of all of the timing cuts used for the K− as well as all other final state particles is given

in Table [4.1].

(a) ∆ T Vs P for K− candidates that have
the Barrel Calorimeter as the timing detector
in data.

(b) ∆ T Vs P for K− candidates that have the
Forward Calorimeter as the timing detector in
data.

(c) ∆ T Vs P for K− candidates that have the
Time of Flight as the timing detector in data.

Figure 4.19: Timing plots for K− candidates during the Spring 2017 run period for GlueX. K−

are identified by selecting the horizontal band centered about ∆T = 0. The curved line deviating
below the horizontal K− line comes from miss identified π− tracks. The additional curved lines
above and below ∆T = 0 come from π− tracks that are associated with the wrong RF bunch.
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Figure 4.20: A timing plot for accepted K− from the generated reaction γp → pX;X → φη;φ →
K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K− and the vertical
axis is the timing difference between the BCAL and RF. It should be noted that the statistics in this
sampling are smaller than other plots. This is due to the fact that the kinematics of the generated
channel prefer to have the kaons moving in the forward direction; and therefore provide few timing
hits in the BCAL. Additionally, the extra statistics present in the lower left portion of the graph
are due to muons. Although muons were not explicitly generated, the computer program hdgeant
(derived from geant) allows for some fraction of kaons to decay weakly while in flight; resulting in
observed muons.

Figure 4.21: A projection of the statistics from Figure [4.20] onto the vertical (timing) axis between
the momentum range of 0.3-4.0 GeV/c. A Gaussian fit was performed and is included in the figure
where the mean and width of the distribution are given in the legend.
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Figure 4.22: A timing plot for accepted K− from the generated reaction γp → pX;X → φη;φ →
K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K− and the vertical
axis is the timing difference between the FCAL and RF. The curved band that appears below
the K− band around 1.5 GeV/c and lower comes from µ−. Although muons were not explicitly
generated, the computer program hdgeant (derived from geant) allows for some fraction of kaons
to decay weakly while in flight; resulting in an observed muon.

Figure 4.23: A projection of the statistics from Figure [4.22] onto the vertical (timing) axis between
the momentum range of 2.0-4.0 GeV/c. This projection range was chosen so that the distortion
from the lower muon band was minimized. A Gaussian fit was performed and is included in the
figure where the mean and width of the distribution are given in the legend.
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Figure 4.24: A timing plot for accepted K− from the generated reaction γp → pX;X → φη;φ →
K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the K− and the vertical
axis is the timing difference between the TOF and RF. The curved band that appears below the K−

band around 2.5 GeV/c and lower comes from µ−. Although muons were not explicitly generated,
the computer program hdgeant (derived from geant) allows for some fraction of kaons to decay
weakly while in flight; resulting in an observed muon.

Figure 4.25: A projection of the statistics from Figure [4.24] onto the vertical (timing) axis be-
tween the K− momentum range of 1.2-1.3 GeV/C. This projection range is one out of many that
were studied from Figure [4.24]. The purpose of this study is to determine the amount of muon
contamination in the kaon band as a function of momentum. The results of this study are provided
in Figure [4.26]. Lastly, two Gaussian fits were performed on this data. The mean and width of
these Gaussian fits are recorded in Figure [4.26] for each momentum range.
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Figure 4.26: The image above is the result of the timing study performed on Figure [4.24]. Using
that figure, a number of projection histograms were fit using different momentum ranges. An
example of one of these fits is given in Figure [4.25]. The data points close to 0 ∆T correspond
to the Gaussian fits performed on the kaon signal, and the data points that approach that band
from the bottom correspond to the Gaussian fits performed on the muon signal. The horizontal
position of each point is in the middle of the projection range, and the vertical position of each
point was assigned based on the mean value of the Gaussian fit for each particle. The horizontal
error bars are the size of the projection range, which is always 0.1 GeV/c. The vertical error bars
are determined by the width of the Gaussian fits. The average of the widths of the kaon peaks is
0.1 ns which is the value used to determine the timing cut in Table 4.1.

γ. Unlike the other final state particles, the neutral final state photons do not leave a charged

track. Therefore, the reconstruction requires at least one charged particle in the event to be used

as a reference trajectory towards the event vertex. In the case of this study, there are three charged

tracks used to determine the event vertex position. Once the vertex position of the event is known,

it is assigned to all neutral particles in the final state. Therefore, the final state photons have a

vertex distribution. These distributions and their associated cuts are given in the Target section,

specifically Figure [4.2a] and Figure [4.2b]. It should also be mentioned that final state photons do

not have a timing cut for the TOF. This is due to the fact that the time of flight can only interact

with charged particles, and therefore cannot interact with photons. The timing cuts (∆ T) for the γ

only come from the BCAL, FCAL. ∆ T is defined as the difference between the reconstructed vertex
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time for the particle and the time when the photon beam arrived. Since the timing distributions

from data (Figure [4.27]) have too much neutron background in them, a Monte Carlo sample of

γp → pX;X → φη;φ → K+K−; η → γγ was generated, simulated, and then reconstructed. This

greatly reduces the background that is present in the timing plots and therefore can be used to

estimate a proper timing cut for the γ and the sub detectors used to measure its time. Examples of

these distributions and their associated projections onto the timing axis are given in Figure [4.28]

through Figure [4.31]. A summary of all of the timing cuts used for the photon as well as all other

final state particles is given in Table [4.1].

(a) ∆ T Vs Shower Energy for γ candidates
that have the Barrel Calorimeter as the tim-
ing detector in data.

(b) ∆ T Vs Shower Energy for γ candidates
that have the Forward Calorimeter as the
timing detector in data.

Figure 4.27: Timing plots for γ candidates during the Spring 2017 run period for GlueX. γ are
identified by selecting the horizontal band centered about ∆T = 0. Large enhancement in statistics
at low momentum and out of time with the γ line comes from slow moving and poorly times
neutrons. The additional horizontal lines above and below ∆T = 0 come from γ showers that are
associated with the wrong RF bunch.
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Figure 4.28: A timing plot for accepted γ from the generated reaction γp → pX;X → φη;φ →
K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the γ and the vertical axis
is the timing difference between the BCAL and RF.

Figure 4.29: The image above is the result of the timing study performed on Figure [4.28]. Using
that figure, a number of projection histograms were fit using different momentum ranges. The
horizontal position of each point is in the middle of the projection range, and the vertical position
of each point was assigned based on the mean value of the Gaussian fit. The horizontal error
bars are the size of the projection range, which is always 0.1 GeV/c. The vertical error bars are
determined by the width of the Gaussian fit. The average of the widths of the photon peaks is
∼ 0.5 ns which is the value used to determine the timing cut in Table [4.1].
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Figure 4.30: A timing plot for accepted γ from the generated reaction γp → pX;X → φη;φ →
K+K−; η → γγ. The horizontal axis is the reconstructed momentum of the γ and the vertical axis
is the timing difference between the FCAL and RF.

Figure 4.31: The image above is the result of the timing study performed on Figure [4.30]. Using
that figure, a number of projection histograms were fit using different momentum ranges. The
horizontal position of each point is in the middle of the projection range, and the vertical position
of each point was assigned based on the mean value of the Gaussian fit. The horizontal error
bars are the size of the projection range, which is always 0.1 GeV/c. The vertical error bars are
determined by the width of the Gaussian fit. The average of the widths of the photon peaks is
∼ 0.55 ns which is the value used to determine the timing cut in Table [4.1].
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4.2 Additional Cuts for γp→ pK+K−γγ

4.2.1 Kaon Selection and Pion Rejection from TOF

One key aspect to performing a φη analysis is to both identify the φ and the η mesons while

also reducing the amount of background in each of their invariant mass spectra. One of the issues

with the K+K− invariant mass spectra is that it contains misidentified pions. This background

causes a peak in the K+K− invariant mass around 1.2GeV/c2. This peak is a manifestation of a

ρ0 which can decay to a π+π− final state. An example of this background is illustrated nicely in

Figure 4.32.
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Figure 4.32: An example K+K− invariant mass histogram without pion removal from the Time of
Flight. A rho peak can be seen around roughly 1.25GeV/c2 .

One important aspect of QCD and the quark model is the conservation of quark flavor in

hadronic decays, or decays which involve the interaction of the strong nuclear force. Conservation

of quark flavor states that the initial number flavored quarks minus the initial number of anti-quarks

of the same flavor, must be conserved. An example of this can be any strong interaction which
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is being studied with the GlueX spectrometer. The GlueX experiment has an initial state photon

which has no net quark content, plus a proton which has two up quarks and one down quark. Since

the GlueX experiment is designed to study hadronic interactions, the final state must have a net

quark flavor of two up quarks and one down quark. Considering the γp → pφη interaction, it is

clear that this requirement is met. The initial and final state proton are identical in quark flavor,

and the φ and η mesons have no net quark flavor to them. Moreover, since the K+K− decay of the

φ meson is being considered, the overall strangeness of this decay needs to be conserved as well. To

state this more explicitly, the K+ meson consists of a us̄ composite state, while the the K− meson

consists of a sū composite state. Since each kaon carries either a strange or anti-strange quark, it

is only necessary to observe one kaon well. The method is based on strangeness conservation.

Figure 4.33: A graph which provides the strangeness conservation cut used for kaons that are
detected by the Time of Flight detector. This is identical to Figure 4.18, except that the vertical
error bars have been multiplied by a factor of 2 in order to visualize a 2σ uncertainty. The graph
also contains Equation 4.3, with a timing shift of 0.2 ns.
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Strangeness conservation is used to both preserve good φη statistics, while also reducing the

amount of background under the φ peak (Figure 4.32). Since the Time of Flight detector has the

best timing resolution out of all subdetectors in the GlueX spectrometer, it will be used as an

example in this section. In order to understand how strangeness conservation is implemented in

this analysis, Figure 4.33 is provided. Contained within this figure is the timing versus momentum

plot for the K+, identical to Figure 4.18. Also contained within this diagram is a red line which

represents the cut that will be used to separate particles with ’good strangeness’ as opposed to

particles that ’do not have good strangeness’. This red line is derived from simple equations of

physics in the following way:

The flight time it takes for any relativistic particle to travel a distance δX at a velocity V in

the lab frame, can be expressed using Equation 4.1.

t =
δX

V
=
δX

βc
(4.1)

Furthermore, it is well known from Special Relativity that β = P/E. Using the relativistic

equation for invariant mass, we can rewrite Equation 4.1 as Equation 4.2.

t =
δX

c

√
m2
i + P 2

P
(4.2)

Since Equation 4.2 is true for any particle, we can then use it to describe the timing difference

between pions and kaons in the lab frame, as measured by the Time of Flight. This final equation

will take the form of Equation 4.3.

δt =
δX

c

√
m2
π + P 2 −

√
m2
K + P 2

P
(4.3)

The parameters δX, c, mπ, and mK are known for Equation 4.3 since one is the speed of light,

two are invariant masses, and the other is the distance that the charged particle traveled from the

target chamber to the Time of Flight wall; which is a measured quantity in our experiment for all

charged tracks. Therefore, the only two variables left over are δt and P which serve as the vertical

and horizontal axis variables, respectively.

One last modification of Equation 4.3 is needed in order to take the form seen in Figure 4.33.

If the equation is left the way that it is, the red line would simply bisect the pion curve, and would
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therefore not work well as a background cut. Therefore, Equation 4.3 is shifted up by 0.2 ns. This

parameter was chosen based on the timing study that was performed on the Monte Carlo and is

therefore a 2σ timing shift. It should be noted that since the K+ and K− mesons are anti-particles,

as well as the π+ and π−, the same equation can be used to separate background for both kaons.

Given Equation 4.3 and Figure 4.33, strangeness conservation can now be addressed. In order

to enforce strangeness conservation, it is imperative to identify one ’good kaon’. Good kaons will

have one characteristic to them which is that they need to be positively identified by the Time of

Flight detector. A positive identification will be defined as any kaon candidate that has timing

above or to the left of the red line given in Figure [4.33]. Any particle that is to the right or below

the red line is not guaranteed to be a kaon, and is therefore ’unknown’. Strangeness conservation

allows us to preserve more statistics because all that is needed to justify the observation of a final

state which includes a K+K− is one ’good kaon’. Therefore, any combination that the has either a

K+ or a K− with the characteristic mentioned above will be accepted. The only combinations that

will be rejected are those which both kaon candidates fail the characteristic mentioned above. To

emphasize the importance and effectiveness of this cut, one should see what the K+K− invariant

mass looks like without strangeness conservation (Figure 4.32), and then compare it to the K+K−

invariant mass with strangeness conservation (Figure 4.38c).

4.2.2 Kaon Timing Selection Cut

After the particle identification cuts and the kaon selection from the Time of Flight, it was

found that there was still a large amount of background in the K+K− invariant mass plot. This

background was in all likelihood due to misidentified pions that were mistaken for kaons from

detectors other than the Time of Flight. This can happen because of the timing and momentum

resolutions inherent in any particle physics experiment. Furthermore, as can be seen in many of

the timing plots provided, charged particles are in fact indistinguishable at high momentum. An

example of the K+K− invariant mass histogram can be seen in Figure 4.34.

Due to this background, a study was performed over 5 percent of the data in order to understand

where it may be coming from. The answer to this question was found by splitting up the K+K−

invariant mass into different sub detectors which are responsible for the timing of the kaons. At

GlueX, the three sub detectors which are responsible for providing timing and particle identification

for charged particles are the Barrel Calorimeter, the Forward Calorimeter, and the Time of Flight.
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Figure 4.34: A histogram showing the K+K− invariant mass after particle identification cuts and
the Equation 4.3 cut from the Time of Flight. The figure clearly shows a large amount of background
at masses higher than the φ. This is due to the misidentification of pions for kaons from detectors
other than the Time of Flight.

Since both the K+ and the K− can interact with any three of these sub detectors, there are nine

total possible timing combinations that need to be considered. In order to properly understand

these combinations, a two dimensional color histogram was provided to show how the K+K−

invariant mass changes as a function of sub detector timing for the kaons (Figure 4.35).

There are three important observations that can be made from Figure 4.35. One observation

is that there is an overwhelming amount of background which comes from the Barrel Calorimeter

timing for both K+ and K−. The second observation is that the Forward Calorimeter has little

to no statistics what so ever. This is because the GlueX reconstruction algorithm prefers timing

from sub detectors that have the best timing resolution. Since the Time of Flight and the Forward

Calorimeter are in the same geometric direction, they tend to provide timing information for the

same charged tracks. Since the timing resolution of the Time of Flight detector is better than the
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Figure 4.35: A two dimensional color histogram of the K+K− invariant mass versus the timing
detectors for the kaons.

Forward Calorimeter, the majority of forward going charged tracks have timing from the Time of

Flight. The last observation of Figure 4.35 is that merely all of the events which appear to have

a φ meson reconstructed in them only exist in the last bin which is the TOF/TOF timing bin.

More specifically, it appears that most of the relevant φη events will only have kaon timing that

came from the Time of Flight detector. Therefore, all other timing sub detectors for the kaons

can be thrown out. To further emphasize this point, projections of all nine bins contained within

Figure 4.35 have been provided in Figure [4.36], Figure [4.37], and Figure [4.38]. These figures

clearly show K+K− invariant mass spectra which contain all background and no sign of a φ meson;

with the exception of the TOF/TOF projection.
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Figure 4.36: Projections of K+
BCALK

−
X bins from Figure 4.35.
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4.2.3 Fiducial Photon Cut and Two Photon Cut

Before performing the γp→ pφη Monte Carlo study, it was well known that there was a lot of

photon background seen in the data. After studying the data for quite some time, it was found

that a two photon cut would destroy most of the background associated with photons and would

also result in an observed η resonance in a γγ invariant mass plot. At the time, it was unknown

why the cut appeared to throw out a lot of photon background while simultaneously appearing

to enhance signal. After carefully studying accepted Monte Carlo, background generated Monte

Carlo (bggen), and data, it was found that much of this background is attributed to secondary

photons. A secondary photon should be thought of as a photon that did not originate from any

photoproduction reaction, nor from any expected decay of parent states. Therefore, a secondary

photon can be thought of as a photon that arose from an interaction within the GlueX spectrometer

from a final state particle. An example of a secondary photon that would be present in γp→ pφη

data can be explained by means of high momentum and forward going kaons (Figures [3.3][3.4]).

Since it is very likely that most of the kaons in this channel will interact with either the Time of

Flight detector or the Forward Calorimeter, it is expected that these particles will deposit a lot of

energy in this region of the spectrometer. These high momentum particles will cause a signal in

one or both of these detectors and will also cause a hadronic shower in the FCAL. These hadronic

showers will be much wider and irregular in comparison to an electromagnetic shower. In addition

to hadronic showers, another source of secondary photons are delta-electrons which are knocked

out by charged tracks or beam halo anywhere in the downstream direction where they cannot be

tracked by the FDC. These additional backgrounds create low energy electromagnetic showers in

the FCAL but cannot be vetoed due to an absence of a reconstructed track. The additional re-

constructed photons will therefore cause the number of photons reconstructed in an event to be

fictitiously higher than what was actually present within the detector. To first order, this perhaps

explains why doing a two photon cut on data will both greatly reduce background and enhance a

signal. However, many important questions will still remain about this cut. How much signal do

we lose by simply performing a two photon cut? Furthermore, is there a better way to cut out the

background and preserve as many signal events as possible? This subsection will show that this

effect does in fact manifest itself in both Monte Carlo and data; and will perform an analysis on

Monte Carlo and data to show the best way of reducing secondary photons.
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The first evidence that suggests the existence of secondary photons in γp→ pφη;φ→ K+K−; η →

γγ accepted Monte Carlo can be seen by simply plotting the invariant mass of a reconstructed γγ

pair (Figure [4.39]). The data which went into this plot was created by throwing γp → pφη;φ →

K+K−; η → γγ into the GlueX detector and then simulating its behavior with hdgeant and

mcsmear. The invariant mass spectrum in Figure [4.39] shows a clear peak from the generated

η meson on top of a background that spans to low mass. If this sample initially only threw two

photons exactly equal to the η meson invariant mass, then why are there so many low mass photon

combinations that appear to be in the shape of background? To answer this question, we can

separate our reconstructed Monte Carlo particles into two categories: particles that were generated

and particles that were not generated. In doing so, we can see where this background comes from

and also how to possibly reduce it.

Figure 4.39: Invariant mass of the reconstructed γγ pair from accepted Monte Carlo. This Monte
Carlo data originally came from a γp → pφη;φ → K+K−; η → γγ generated topology. An
interesting feature of this invariant mass spectra is that it shows a clear η peak, but also contains
a background as well. The source of this background is thoroughly studied in subsection 4.2.3.

The signal and background seen in Figure [4.39] can be studied by displaying P Vs θ and φ Vs

θ plots for the thrown photons and the secondary photons in Figure [4.40]. The most important
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(a) P Vs θ distribution for thrown Monte Carlo
photons.

(b) P Vs θ distribution for secondary Monte
Carlo photons.

(c) φ Vs θ distribution for thrown Monte Carlo
photons.

(d) φ Vs θ distribution for secondary Monte
Carlo photons.

Figure 4.40: P Vs θ and φ Vs θ distributions for thrown (left column) and secondary (right column)
photons inside accepted Monte Carlo data.

feature to take away from these plots is the tendency for secondary photons to be at a shallow angle

relative to the beam direction (below 12◦) while also having a low three momentum magnitude

(below 500 MeV/c). Simply knowing the distribution of these photons gives us some insight

into where they came from. Since neutral photons can only be detected by either the Forward

Calorimeter or the Barrel Calorimeter and most of these photons appear in the forward direction,

it is clear that FCAL showers are causing these photons to appear.

The reconstructed invariant mass for a given γγ combination within an event as a function

of the number of photons reconstructed within an event can also be shown. By using our Monte

Carlo samples, we can also separate these plots into thrown and secondary photons, identical to

what we did in Figure [4.40]. The reconstructed invariant mass of two photons versus the number

of reconstructed photons in an event is given in Figure [4.41]. There is one important observation
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(a) Number of photons reconstructed in an event
versus γγ Invariant Mass for thrown photons.

(b) Number of photons reconstructed in an event
versus γγ Invariant Mass for secondary photons.

Figure 4.41: Comparing how the invariant mass for a given γγ pair changes depending on the
number of reconstructed photons in an event and whether or not the photons were thrown or
secondary photons.

that should be taken away from the two sub figures. In Figure 4.41a a clear η resonance can be

seen which spans a large number of reconstructed photons per event. This sub figure indicates that

performing a two photon cut on the signal data is not good for signal events at this stage.

In fact, after fitting a Gaussian function to the η peaks between 3 and 10 reconstructed photons,

it was found that ∼8,000 combinations would be lost out of a total of ∼30,000; resulting in a 26

percent loss of events. Therefore, it is imperative to perform a P vs θ cut before a two photon cut.

Seeing that there is a non negligible amount of secondary photons left in accepted Monte Carlo,

the next cut that will be applied to all of the data is a P Vs θ cut, where P < 500MeV/c

and θ < 12◦. After enforcing these cuts on all photons, the distribution of number of photons

reconstructed in an event versus γγ invariant mass is shown once again in Figure [4.42]. It is easy

to see that most of the η signal has migrated to the two photon bin and simultaneously much of

the secondarybackground has been reduced in the accepted Monte Carlo data set. Due to this, a

two photon cut is now necessary to do in order to reduce some of the left over background at higher

number of reconstructed photons per event.

In this section it was shown that it is necessary to perform a P Vs θ cut of P < 500MeV/c and

θ < 12◦ and a two photon cut. After completing this sequence of cuts, it was found that 94 percent

of background data was cut, while preserving 93 percent of signal data.
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(a) Number of photons reconstructed in an event
versus γγ Invariant Mass for thrown photons after
a P < 500MeV/c and θ < 12◦ cut.

(b) Number of photons reconstructed in an event
versus γγ Invariant Mass for secondary photons after
a P < 500MeV/c and θ < 12◦ cut.

Figure 4.42: Number of photons reconstructed in an event versus γγ Invariant Mass for thrown
photons and secondary photons after a P < 500MeV/c and θ < 12◦ cut.

4.2.4 Exclusivity

The last cuts that need to take place in order to observe γp→ pφη are two; one which reduces

the number of photons from the beam, and the other which cuts on the missing mass squared of

the system. After all cuts had been made, it was found that there were still residual combinations

from events which came directly from the beam photons and not the final state particles. After the

proper beam timing cut, the event selection will then loop over available combinations in order to

select the best available beam photon. This is done by selecting the beam photon which reconstructs

the missing mass squared that is closest to zero. After enforcing this criteria, it is guaranteed that

only one combination per event will survive. After this selection of events, an additional cut is

placed on the data which enforces exclusivity. This is done by only allowing events with a missing

mass squared between −0.02GeV 2/c4 ≤ MM2 ≤ 0.02GeV 2/c4 (Figure 4.43). The enforcement of

exclusivity removes any background that did not properly conserve the measured four momentum

from the γp → pK+K−γγ reaction. To finalize this section Table 4.2 is a summarized list of all

cuts performed by this analysis.
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Figure 4.43: A plot of the final missing mass square after all cuts described in this chapter.

4.2.5 Tabular Summary of Particle Identification Cuts

Particle Detector ∆T Cut [ns] (2σ)

Proton BCAL ± 0.6

Proton FCAL ± 1.0

Proton TOF ± 0.4

K+ BCAL ± 0.7

K+ FCAL ± 0.8

K+ TOF ± 0.2

K− BCAL ± 0.7

K− FCAL ± 0.8

K− TOF ± 0.2

γ BCAL ± 1.0

γ FCAL ± 1.1

Table 4.1: A table with timing cut values for all final state particles in the reaction γp→ pK+K−γγ.
The values of the timing cuts change depending on both the particle species and detector system
resolution. It should be noted that the final state photons only have the calorimeters as possible
timing detectors. This is due to the fact that they do not interact with the TOF detector.
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# Description of Cut Reference

1 Timing cuts for all final state particles Table 4.1

2 Vertex cuts for all final state particles Figures 4.2a, 4.2b

3 Beam timing cut Figure 4.1

4 Proton dE/dX cut [29]

5 P vs θ Cut for photons Subsec: 4.2.3

6 Two Photon Cut Subsec: 4.2.3

7 Kaon Selection Subsec: 4.2.1

8 Kaon Timing Selection Subsec: 4.2.2

9 −0.02GeV 2/c4 ≤MM2 ≤ 0.02GeV 2/c4 Subsec: 4.2.4

10 γBeam with MM2 closest to zero Subsec: 4.2.4

Table 4.2: A list which summarizes all cuts used to identify γp→ pK+K−γγ.
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CHAPTER 5

ANALYSIS

5.1 Investigation of φη correlation by means of K+K− Vs γγ
Invariant Mass Plot

The image illustrated in Figure 5.1 is the data in question. On the vertical axis is the K+K−

invariant mass and on the horizontal axis is the γγ invariant mass. To be absolutely clear, this is

a plot of invariant mass versus invariant mass and is therefore not a Dalitz Plot. Some interesting

features contained within the image are the clear vertical bands for the π0 and η resonances which

have large decay modes to γγ final states. In addition, one can also observe a horizontal band

slightly above 1 GeV
c2

which corresponds to the φ meson decaying to a K+K− final state. This

analysis will focus on the region where the φ meson and η meson bands cross in order to determine

if their intersection region contains some type of correlation.

5.1.1 Cuts on the 2D Invariant Mass Plot

In order to analyze the φη region of this data, only events which fall within ±10σφ away from

the φ peak and ±10ση away from the η peak will be considered. This was done by taking different

slices of either the γγ or K+K− data, then projecting the invariant mass distribution onto the

opposite axis. For example, there were five different φ mass regions studied in this analysis. Each

fit corresponds to a different γγ mass range. The γγ mass ranges are all 4ση in width, and span a

total mass range of mη−10σ to mη+10σ. An illustrated example with labeled cut lines is provided

in Figure 5.2. It should be noted that the analysis of the η mass was not studied symmetrically

about the φ due to the K+K− threshold.

5.1.2 Projections and Fits forφ and η

Once the data had been cut and projected in the ten different mass regions, the φ and η peaks

were fit. In the instance of the φ meson, the signal plus background events were fit with a Gaussian

plus a second degree polynomial. The fit range used in each histogram projection for the φ meson

spans from mφ−6σφ to mφ+30σφ . The unusually large fit range was necessary in order to properly
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Figure 5.1: A two dimensional invariant mass plot with the K+K− invariant mass on the vertical
axis, the γγ invariant mass on the horizontal axis, and a logarithmically scaled z axis. Some inter-
esting features contained within the image are the clear vertical bands for the π0 and η resonances
which have large decay modes to γγ final states. In addition, one can also observe a horizontal
band slightly above 1 GeV

c2
which corresponds to the φ meson decaying to a K+K− final state.

estimate the background surrounding the φ mass. In the instance of the η meson, the signal plus

background events were fit with a Gaussian plus a first degree polynomial due to the relatively flat

background surrounding the η peak. The fit range used for the η meson spans mη ± 6ση
GeV
c2

. The

resulting fits are provided in the images below where the blue line represents the fit for all events

(signal plus background), the green line represents the Gaussian fit (signal events), and the red line

represents the polynomial fit (background events). Each histogram contains a title with brackets

at the end. The arguments encapsulated by the brackets is the cut range that was used for that

particular projection sample.
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Figure 5.2: An illustrated example of the cuts used for studying the correlation of φη. The figure
above is a two dimensional invariant mass plot which clearly shows an η band spanning the vertical
direction at ∼ 0.547GeV/c2 and a φ band spanning the horizontal direction at ∼ 1.02GeV/c2. The
red vertical and horizontal cut lines provide the ranges used to study φη correlation. Examples of
what the projected ranges look like are provided in Figures [5.3][5.4].

5.1.3 Integration Results for φ and η

After obtaining accurate fits for all regions, integration of the Gaussian fit functions was per-

formed. Each Gaussian fit was integrated in the range of m± 2σm, where m represents either mφ

or mη mass coupled with the addition or subtraction of two standard deviations in each direction.

Integration of the Gaussian fits provides an accurate estimate for the number of signal events that

exists for that particular sampling of γγ Vs K+K− phase space. The estimated number of signal

events have been added to Figure [5.5], with the exception of the φη intersection region which will

be discussed in more detail in the Conclusion section.
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Figure 5.3: A collection of different K+K− invariant mass projections as a function of γγ invariant
mass cut range. Each sub figure includes a red line which is a second degree polynomial used to
estimate the shape of the background, a green line which is a Gaussian used to estimate the φ
signal peak, and a blue line which the sum total of the polynomial fit and Gaussian fit. Lastly,
each sub figure also includes the γγ invariant mass cut range used to produce the projected figure.
This information is in the title of the histogram, inside the brackets.

5.1.4 Additional Statistics Study

In addition to the analysis mentioned above, an alternative study has been included which

simply samples the phase space and records the number of events within that sample. To do this,

the same cut ranges as before were used. The only difference is that this approach only considers

the 3x3 grid surrounding the φη intersection region. Each region is a box cut which is exactly 4σφ

x 4ση in area. Each area is given an index to denote the specific region of phase space that is being

sampled and an illustration is provided in Figure [5.6].
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Figure 5.4: A collection of different γγ invariant mass projections as a function of K+K− invariant
mass cut range. Each sub figure includes a red line which is a first degree polynomial used to
estimate the shape of the background, a green line which is a Gaussian used to estimate the η
signal peak, and a blue line which the sum total of the polynomial fit and Gaussian fit. Lastly,
each sub figure also includes the K+K− invariant mass cut range used to produce the projected
figure. This information is in the title of the histogram, inside the brackets.

Using the diagram as a reference, it is easy to see that the average number of background

events within this phase space can be calculated using the formula NBG = (A1 +A3 +A7 +A9)/4.

Additionally, the average number of φ and η events plus background can be calculated using

NBG + Nφ = (A4 + A6)/2 and NBG + Nη = (A2 + A8)/2, respectively. Lastly, quantification of

the number of correlated events in region 5 is possible by using NBG +Nφ +Nη +Ncorrelated = A5.

The number of events contained within each region of phase space is given in Figure [5.7].

The first step of this simplistic analysis is to determine what the average number of background
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Figure 5.5: The above figure provides the number of events for each projection range studied. These
numbers were calculated by means of integrating the Gaussian fit for either the φ or η between ±2σ.
The vertical column of numbers represents the number of η events for a given K+K− invariant
mass, and the horizontal row of numbers represents the number of φ events for a given γγ invariant
mass. The number of events observed in the intersection region was not included in the figure due
to the amount of space available. There numbers can be found in the Conclusion section.

events is, which is calculated to be 453. Knowing this, the number of φ and η events can now be

determined by using the equations NBG + Nφ = (A4 + A6)/2 and NBG + Nη = (A2 + A8)/2, and

then subtracting the average number of background events. Upon doing this, it was found that

Nφ is 423 and Nη is 433. To complete this analysis, the number of correlated events can now be

estimated by using the equation NBG +Nφ +Nη +Ncorrelated = A5, and subtracting NBG, Nφ, and

Nη. The total number of correlated events is 2446. This calculation shows once again that there

is an overflow of events within the φη intersection region that cannot be explained by the presence
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Figure 5.6: An illustration to provide the reader with an idea of how the second statistics study is
performed. All of the cut ranges are identical to the first statistics study. The numbers provided
in the figure do not represent events, but simply indicate the index associated with a certain area
of φη phase space.

of background or the addition of events from the φ and η bands.

5.1.5 Conclusion of K+K− Vs γγ Invariant Mass Plot Study

Figure [5.5] provides the estimated number of signal events for the φ and η bands near the φη

intersection region. If there is no correlation between φ and η events, the total number of signal

events in the intersection region should be equal to the sum of an η peak plus a φ peak. Taking

the numbers from Figure [5.5], the average number of signal events in the φ band is φevents ∼ 482,

and the average number of signal events in the η band is ηevents ∼ 500. Therefore, it is estimated

that the number of signal events within the φη intersection region should be just shy of 1000 events
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Figure 5.7: This figure shows the total number of counts in each box. To be clear, the numbers in
each box do not represent the total number of events, but rather the precise amount of statistics
contained within the cut lines. Upon inspection, one can see evidence of φη correlation, which is
explained in the Conclusion section.

if there is no correlation present. After integrating the Gaussian fit for the φ and η mesons in the

intersection region, it was found that there were 3194 events corresponding to the φ fit, and 2993

events corresponding to the η fit. Both of these fits not only yield roughly the same number of

events, but they also produce an event estimate which is a factor of three higher than what would

have been there from the φ and η bands alone. The large increase in event statistics within the

φη intersection region strongly suggests that some type of correlation is present within this area

of K+K− γγ phase space. It should be clearly noted that the nature of this correlation is not

identified at this time. Moreover, it is unclear if this φη enhancement corresponds to a φη bound

state, or comes from some other topology such as γp→ N∗φ.
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5.2 Probabilistic Weightings for φη Events

Throughout the course of history, physicists have tried clever ways of reducing the amount of

background that is present under a given signal, or resonance. An example of this may be the

classic side band subtraction, where the signal region will be defined by some average mass value,

plus or minus a well defined width. If one were to perform a cut about this region after particle

identification and cuts, there still may be background underneath the peak. In order to eliminated

the background under the signal, one thing to do is use the background near the peak as reference

for subtraction. To do this, one would use background events that are located at both higher

and lower mass values far away from the signal, so long as the total mass range used is equal to

the mass range for selecting the signal region. The side band subtraction method works well for

some physics analyses, but not all. Side band subtraction is an issue with this analysis because

the primary purpose is to observe structures in the φη invariant mass spectra. Performing a side

band subtraction is problematic because it allows events well below the φη threshold to exist in the

background spectra. Subtracting off these events from the primary signal region results in a final

φη invariant mass spectra which has negative event counts at low φη mass values. Therefore, it is

imperative to seek alternative background subtraction methods. The method that will be presented

in this analysis uses a probabilistic weighting procedure which will be explained in this section.

5.2.1 Introduction to Probabilistic Event Weightings

One of the issues with a side band subtraction method is that it treats all events with a relative

weight of one. The purpose of this section is to describe and propose a new method which does

not treat all events with a value of one, but instead assigns a fractional weight to an event based

off of a quality factor, or Q-factor. The quality value idea was first introduced in 2008 by M.

Williams, M. Bellis, and C. A. Meyer in a paper titled ”Separating Signals from Non-Interfering

Backgrounds using Probabilistic Event Weightings.” [17]. The paper considers a generic situation

in which there is a data set of n total events described by m coordinates, which will be written

as ~ξ. Within the data set, there exists ns total signal events and nb total background events, and

therefore n = ns + nb. In addition, both the signal and the background distributions are functions

of the coordinates, such that S(~ξ) can be thought of as a signal distribution and B(~ξ) can be

thought of as a background distribution. Contained within the set of coordinates ~ξ, there exists
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a reference coordinate (ξr) with which we know the functional form of S(ξr) and B(ξr) a priori.

The reference coordinate that is used in this thesis as well as in the paper mentioned above is the

invariant mass of a final state. For many invariant mass distributions, the functional form of the

signal distribution, S(ξr) can be represented with a well known signal function. Some examples of

well known signal functions are Gaussian, Voigtian, and Breit-Wigner distributions. In addition,

the background distribution, B(ξr), can be represented with an nth degree polynomial function.

Since the signal and background distributions are not necessarily known a priori for the other

coordinates, we use them to calculate a kinematic distance on an event by event basis. This is done

by using the Equation (5.1).

d2ij =
∑
k 6=r

[
ξik − ξ

j
k

Rk

]2
(5.1)

In Equation(5.1), the total kinematic distance is calculated between some event i, as compared

to another event j. This is done by taking the sum of the squared difference over all of the

coordinates ξk, except for the reference coordinate ξr. The difference between coordinates is then

normalized by the parameter Rk. The parameter Rk is the total maximum difference for a given

coordinate ξk. An example of this may be the measurement of an azimuthal angle which spans from

0 to 2π. Therefore, the Rk for an azimuthal angle would be 2π. Upon closer inspection, one should

realize that Equation(5.1) is simply a representation of the Pythagorean Theorem in a normalized

m− 1 dimensional kinematic space.

After calculating all of the kinematic distances for an event i, as compared to all other events

within the data set 1...j...n, it is then necessary to only keep the nearest neighbors. The nearest

neighbors, by definition, are a subset of the n events which have the smallest kinematic distance

with respect to the ith event that is being considering. The purpose of only keeping the nearest

neighbors stems from the assumption that a signal or background events will share similar kinematic

measurements with other signal or background events. The number of nearest neighbors for a set

of events n is an arbitrary amount, and does not greatly effect the quality factor calculation; so

long as the amount is a small fraction of the total events n. Once the list of nearest neighbors is

known for the ith event, it is then necessary to plot their reference coordinate, ξr, onto a histogram.

This histogram should contain a well understood signal distribution S(ξr, ~α), and background

distribution B(ξr, ~α), as mentioned above; where ~α is the set of known/unknown fit parameters
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used to describe the signal or background distribution. The histogram will then be fit by the sum

of the signal and background distributions such that F (ξr, ~α) = S(ξr, ~α) + B(ξr, ~α). The quality

factor can then be calculated by using the reference coordinate value for the ith event and plugging

it into the signal and background functions by using Equation(5.2), where α̂ is the set of fitted

parameters for the signal or background distribution.

Qi =
S(ξir, α̂i)

S(ξir, α̂i) +B(ξir, α̂i)
(5.2)

Once the quality factor is known for an event i, it can be recorded, and then the analysis can

consider the next event and repeat the sequence all over again. Once all events have been run

over, the quality factors for each event are used as a weight for plotting inside histograms. If the

quality factor is correctly calculated for each event, the method should be able to separate signal

from background. More specifically, if a histogram of the K+K− invariant mass is plotted with Qi

as the weight for the ith event, one should see a ’pure’ φ peak with absolutely no background. In

addition, if the K+K− invariant mass is plotted with 1 − Qi as the weight for the ith event, one

should see all background and absolutely no φ peak. Therefore, the sum of the signal histogram

plus the background histogram should be equal to the K+K− invariant mass with all events having

a weight of 1.

Determining the Number of Nearest Neighbors. After the kinematic distances are

calculated for all events with respect to the ith event, they are sorted in order from smallest

kinematic distance to largest kinematic distance. Only the the nearest neighbors, or the set of

events with the smallest kinematic distance, will be used to determine the quality factor of a given

event. For this analysis, there were a total of 16,981 events after selection cuts, and the number of

nearest neighbors used was 500. This number was chosen somewhat arbitrarily; it is important to

pick the smallest number possible such that the events used truly are those which share the most

similar kinematic features to the event that is being considering. If the number was extremely

large with respect to the total number of events, the analysis will not work properly. Events that

are background will have some nearest neighbors that are signal, and vice versa. Furthermore, the

number of nearest neighbors needs to be large enough such that a fit can converge with the filled

histogram. If the number of nearest neighbors is too small, ROOT will fail to provide any signal or

background information inside the histogram, and therefore calculation of a quality factor will be
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impossible. Considering these two constraints and testing with different values, it was found that

the smallest number which did not result in any fitting failures was 500.

Fitting the K+K− Invariant Mass. Upon determining the nearest neighbors of the ith

event, the next step is to plot and fit the set of K+K− and γγ invariant mass distributions. As

mentioned above, it is extremely difficult to model the invariant mass distribution for the K+K−

final state. Simply picking a signal distribution plus a polynomial background is not enough to

properly parameterize the K+K− invariant mass near or around the φ peak. After attempting

several different combinations of signal and background functions, it was found that the best way

to accurately describe both the φ and the background near it is to use convoluted functions. A

convolution is the operation between two functions which expresses how the shape of one function

is modified by the other. The purpose for utilizing a convoluted function when attempting to fit an

invariant mass histogram is to describe both the shape of the distribution as well as the inherent

resolution of the data. Since both the φ peak and the background surrounding it contain similar

resolutions, it is appropriate to fit the K+K− invariant mass distribution with the summation of a

signal function plus a background function, both of which are then convoluted by a third function

which manages the resolution.

The signal function chosen to describe the φ peak is a relativistic Breit-Wigner (Equation 5.3).

|Q1(m)|2 = A ∗ |F1(m) ∗∆1(m)|2 (5.3)

Contained within this equation is a fit parameter, A, which simply scales the function in order

to match the distribution. Also contained in this equation are two functions of mass, the Blatt-

Weisskopf centrifugal-barrier factor for a spin 1 particle (Equation 5.4),

F1(m) =

√
2
√
m2 − (2mK)2√

m2 − (2mK)2 + pR/c
(5.4)

and a standard Breit-Wigner (Equation 5.5) for a particle with spin 1.

∆1(m) =
mo ∗ Γo

m2
o −m2 − imoΓ1(m)

(5.5)

The Blatt-Weisskopf function plays an important role in the fit since it forces the signal function

to be equal to zero when the K+K− mass is at threshold. It should be noted that
√
m2 − (2mK)2
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appears throughout many of the equations mentioned. This smaller function represents the magni-

tude of the breakup momentum for either the K+ or K− daughter particle, given some parent mass

m, in the rest frame of the parent particle. Additionally, the mass dependent width (Equation 5.6)

also helps to describe the changing width of the φ due to the K+K− mass near threshold.

Γ1(m) = Γo
mo

m

√
m2 − (2mK)2√
m2
o − (2mK)2

F 2
1 (m)

F 2
1 (mo)

(5.6)

Finally, in many of the equations, mK is the mass of a K+/−, mo is the φ mass value as

determined by the fit, and Γo is the natural width of the φ. The value chosen for this parameter

was taken from the PDG and is Γo = 0.004266
GeV

c2
.

Plotted along with the signal function is the background function which is simply a third degree

polynomial, given by Equation (5.7).

b(m) = C1 ∗ (m− C0)
3 + C2 ∗ (m− C0)

2 + C3 ∗ (m− C0) (5.7)

The background equation has three free parameters and one fixed parameter. The free pa-

rameters are the coefficients in front of the powered terms of m; specifically C1, C2, and C3.

Since the background shape can drastically change due to the event and its nearest neighbors,

these parameters are not given any restriction on their values (Table 5.1). The one fixed pa-

rameter is C0 which is set to 0.987354
GeV

c2
. This value is the smallest possible mass which

can produce the K+K− final state, and is easily derived by simply performing the calculation

mK+ +mK− = 2∗mK± = 0.987354
GeV

c2
. The purpose of fixing this parameter is force the polyno-

mial background to have a root at the K+K− threshold. While attempting different fit functions to

describe the K+K− invariant mass, it was found that the polynomial function often exaggerated,

or over fit the area near the K+K− threshold. This caused an effect which resulted in weighted his-

tograms that took away good events near the low mass side of the φ peak. Forcing the background

function to be equal to zero at the K+K− threshold fixed this issue.

To complete the fit of the K+K− invariant mass, the signal and background function are added

together, then convoluted by a Gaussian in order to compensate for the kaon momentum resolution

of the GlueX spectrometer. Although the signal and background functions mentioned above had

to be programmed by hand, the convolution of these functions with a Gaussian could be fed into
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Figure 5.8: A fit which will result in an extremely low quality factor due to the very few signal
events in comparison to background events at the location of the arrow, or invariant mass of the
event being considered.
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Figure 5.9: A fit which will result in a quality factor around 0.5, due to the fact that there are
roughly the same signal and background events at the location of the arrow, or invariant mass of
the event being considered.
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Figure 5.10: A fit which will result in a very high quality factor due to the large number signal
events in comparison to background events at the location of the arrow, or invariant mass of the
event being considered.

97



the ROOT library using the TF1Convolution object. More precisely, the total function used to

describe the K+K− invariant mass for all events is given in Equation (5.8).

T (m) =

∫ [
s(m′) + b(m′)

]
G(m−m′)dm′ (5.8)

In the equation above, m′ is simply a dummy variable for integration, and m represents the

K+K− invariant mass. The function s(m′) is a relativistic Breit-Wigner (Equation 5.3), and the

b(m′) is the polynomial background function referenced in Equation (5.7). Finally, G(m −m′) is

the Gaussian function which is responsible for describing the resolution. This particular Gaussian

function has one free parameter, and one fixed parameter. The free parameter is the width of the

Gaussian, and the fixed parameter is the mean of the Gaussian which is simply set to zero. Because

the Gaussian is being convoluted over the range of the fit, the value of the mean in this instance

does not matter. Adding all things together, the total function listed in Equation (5.8) has one

independent variable, two fixed parameters, and six free parameters, half of which are restricted

(Table 5.1). Once a fit has converged, the parameters of the total function can be extracted and used

to plot a signal function and a background function. This procedure is mathematically allowed due

to the distributive property of convolutions; and therefore the final background and signal function

can be written in Equation (5.9) and Equation (5.10), respectively.

B(m) =

∫
b(m′)G(m−m′)dm′ (5.9)

S(m) =

∫
s(m′)G(m−m′)dm′ (5.10)

Examples of different fits of the K+K− invariant mass distributions have been provided in

Figures[5.8][5.9][5.10]. Each figure contains a blue line which represents the total fit of the data

(Equation 5.8), a green line which represents the signal portion of the fit (Equation 5.10), and a

red line which represents the background portion of the fit (Equation 5.9). Located within each

plot is also a vertical arrow which is pointed in the downward direction. This arrow represents the

invariant mass value of the event for which the quality factor is being calculated. Also contained

within each figure is a legend with the values of the parameters for each fit.
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K+K− invariant mass Functions:

Function Parameters Initial Values Restricted Range

Relativistic B.W.
Amplitude 10 0− 100

mφ 1.019 1.01− 1.03

3rd Degree Polynomial
C0 0.987354 Fixed

C1, C2, C3 −1200, 200, 200 Free

Gaussian
µ 0 Fixed
σ 0.005 0− 0.05

Table 5.1: A table which summarizes the parameters and functions used to fit the K+K− invariant
mass histograms.

Fitting the γγ Invariant Mass. On top of fitting the K+K− invariant mass, it is also

necessary to fit the γγ invariant mass. Fitting this distribution is far more simple than what was

needed to describe the K+K− invariant mass. The η resonance sits on top of a simple background,

and is far enough away from the dominant π0 peak that further inspection of the background is

not necessary. In addition, since the η resonance is nowhere near the threshold for γγ, performing

any type of advanced fit to include breakup momentum and resolution effects is not necessary.

Therefore, the γγ invariant mass spectra was fit by utilizing the summation of a signal function

and a background function. The signal function is a Voigtian (Equation 5.12), which is technically

a non relativistic Breit-Wigner (Equation 5.11) convoluted with a Gaussian. This convolution is

necessary because the GlueX resolution of the η resonance is much greater than the natural width

of the η meson, which is on the order of a keV. In the total signal function (Equation 5.12) there

is one independent variable, and three fit parameters, and one fixed parameter. The independent

variable is the γγ invariant mass, and the fixed parameter is the natural width of the η meson

which is listed in the PDG as Γo = 1.31keV . The fit parameters of the function are the amplitude,

A which simply scales the function to fit the statistics, the mass value of the η for the fit parameter

µ, and the resolution of the η. The limits and starting values of all parameters are summarized in

Table 5.2.

|∆(m)|2 =
Γo

(m− µ)2 +
Γ2
o

4

(5.11)

S(m) = A

∫
|∆(m′)|2G(m−m′)dm′ (5.12)
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Figure 5.11: A fit which will result in an extremely low quality factor due to the very few signal
events in comparison to background events at the location of the arrow, or invariant mass of the
event being considered.
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Figure 5.12: A fit which will result in a quality factor somewhat above 0.5, due to the fact that
there are slightly more signal events as compared to background events at the location of the arrow,
or invariant mass of the event being considered.
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Figure 5.13: A fit which will result in a very high quality factor due to the large number signal
events in comparison to background events at the location of the arrow, or invariant mass of the
event being considered.
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The background function that was chosen to describe the γγ background was a Chebyshev poly-

nomial (Equation 5.13). It should be noted that the functional form of this third order polynomial

is different than the one that was used to describe the K+K− because there is no threshold effect

that has to be accounted for in the γγ invariant mass. This function has four free fit parameters

with no restrictions on value due to the variability of background shapes in this analysis.

B(m) = C3 ∗ x3 + C2 ∗ x2 + C1 ∗ x+ C0 (5.13)

Finally, the total function that was used to ultimately fit the γγ invariant mass distributions

was the sum of Equation 5.12 and Equation 5.13. A summary of all parameters and functions used

to fit the γγ invariant mass is given in Table 5.2.

Examples of different fits of the γγ invariant mass distributions have been provided in Fig-

ures[5.11][5.12][5.13]. Just like the examples given for the K+K− invariant mass fits, each figure

contains a blue line which represents the total fit of the data. The total fit in this particular in-

stance is simply the sum of a Voigtian and a third degree Chebyshev polynomial. The figures also

contain a green line which represents the signal portion of the fit and a red line which represents

the background portion of the fit. These are described by a Voigtian and third degree Chebyshev

polynomial, respectively. Located within each plot is also a vertical arrow which is pointed in the

downward direction. This arrow represents the invariant mass value of the event for which the

quality factor is being calculated. Also contained within each figure is a legend with the values of

the parameters for each fit.

γγ invariant mass Functions:

Function Parameters Initial Values Restricted Range

Voigtian

Amplitude 2 0− 5
mη 0.547 0.52− 0.56
σ 0.02 0.001− 0.1
Γ 0.00000131 Fixed

3rd Chebyshev Polynomial C0, C1, C2, C3 None Free

Table 5.2: A table which summarizes the parameters and functions used to fit the γγ invariant
mass histograms.
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5.2.2 Three Quality Factor Methods

In order to thoroughly study the φη final state, a total of three unique quality factor methods

were attempted. Each of these analyses follow the standard quality factor prescription detailed in

Subsection 5.2.1. Each analysis is unique because a different set of kinematic observables was used

to find the set nearest neighbors for each event.

1. (φ Only) The first quality factor method considers the kinematic observables of the K +K−
system, and therefore can only separate the φ signal from the K + K− background. The

quality factor for this analysis will be denoted with Qφ.

2. (η Only) The second quality factor method only considers the kinematics observables of the

γγ system, and therefore only separates the η signal from the γγ background. The quality

factor for this analysis will be denoted with Qη.

3. (φη) The third and final quality factor analysis considers the kinematics observables for both

the K +K− system and the γγ system. The quality factor for this analysis will be denoted

with Qφη.

The specific list of kinematic observables and how a quality factor was calculated for each

analysis is detailed in Subsections 5.2.2 and 5.2.2, respectively.

It should be noted that the φ Only analysis will use the same fit functions for the K+K−

invariant mass distribution (Subsection 5.2.1), and it will not fit the γγ invariant mass distribution.

The η Only analysis will use the same fit functions for the γγ invariant mass distribution (Subsection

5.2.1), and it will not fit the K+K− invariant mass distribution. Finally, the φη analysis the

function for the K+K− invariant mass distribution (Subsection 5.2.1), and the γγ invariant mass

distribution (Subsection 5.2.1). Lastly, all three analyses only accept the 500 nearest neighbors

(Subsection 5.2.1).

Calculating the Kinematic Distance Between Events. As mentioned in Subsection

5.2.2, there are a total of three unique quality factor analyses attempted in this thesis, and therefore

there are three unique calculations to find the kinematic distance between events.

φ Only. The list of kinematic observables used to identify the φ meson and to ultimately

calculate Qφ are given in Table 5.3.

Since this quality factor analysis is only attempting to separate the φ from K+K− background,

there is no need to include any information about the η or its decay products, γγ. Therefore,
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ξk Coordinate Maximum Range of Coordinate

ξ0 K+
HE cos(θ) 2

ξ1 K+
HEφ 2π radians

ξ2 GJ, cos(θ) 2

ξ3 GJ, φ 2π radians

ξ4 Ebeam 9 GeV

ξ5 t 3.3
GeV 2

c4

ξr K+K− invariant mass Reference Coordinate

Table 5.3: A table which summarizes the coordinates used to describe the γp → pX; X → φY
φ→ K+K−; final state. This set of coordinates will ultimately lead to the calculation of Qφ. The
coordinates ξ0 through ξ5 are used in the kinematic distance equation, described by Equation (5.1).
The last coordinate is the reference coordinate for this analysis.

in order to properly identify the γp → pX; X → φY φ → K+K− final state, a total of six

coordinates are needed. Two of the six coordinates come from the angular distributions of the

daughter states of φ: K+
HE cos(θ), K

+
HEφ; where the angles φ and θ are the polar coordinates in the

helicity reference frame, or the rest frame of the φ. Two more of the eight total coordinates will

come from the angular distributions of φ. Much like the kaons, these coordinates will be GJ, cos(θ)

and GJ, φ; where φ and cos(θ) are polar angles in the Gottfried-Jackson frame; or the rest frame

of the K+K−γγ parent state. The last two coordinates needed are the beam energy (Ebeam), and

the momentum transfer, t. Since t is the well known Mandelstam variable, t is related to the beam

energy and the four momentum of the φη parent state, such that t2 = (γµ −Xµ)2; where γµ is the

energy-momentum four vector for the beam, and Xµ is the energy-momentum four vector for the

φη parent state. Since t, the beam energy Ebeam, and the mass of the K+K−γγ parent state is

known, the magnitude of the K+K−γγ parent state momentum is directly proportional to these

measurements. Knowing the magnitude of the momentum and the mass of the K+K−γγ parent

state allows us to fully describe the γp → pX; X → φY φ → K+K− reaction. The final detail

that needs to be mentioned is the reference coordinate that is used in this quality factor analysis.

Because it is imperative to have a pure φ signal, the reference coordinate for this procedure will be

the K+K− invariant mass. Although this coordinate does not play a role in the calculation of the

kinematic distance, it is imperative to define it as the reference coordinate which will ultimately

serve as the tool to separate signal events from background events, and to calculate Qφ.
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η Only. The list of kinematic observables used to identify the η meson and to ultimately

calculate Qη are given in Table 5.4.

ξk Coordinate Maximum Range of Coordinate

ξ0 γHE cos(θ) 2

ξ1 γHEφ 2π radians

ξ2 GJ, cos(θ) 2

ξ3 GJ, φ 2π radians

ξ4 Ebeam 9 GeV

ξ5 t 3.3
GeV 2

c4

ξr γγ invariant mass Reference Coordinate

Table 5.4: A table which summarizes the coordinates used to describe the γp → pX; X → ηY ;
η → γγ final state. This set of coordinates will ultimately lead to the calculation of Qη The
coordinates ξ0 through ξ5 are used in the kinematic distance equation, described by Equation (5.1).
The last coordinate is the reference coordinate for this analysis.

This quality factor analysis is only attempting to separate the η from γγ background, there is

no need to include any information about the φ or its decay products, K+K−. Therefore, in order

to properly identify the γp → pX; X → ηY ; η → γγ final state, a total of six coordinates are

needed. Two of the six coordinates come from the angular distributions of the daughter states of η:

γHE cos(θ), γHEφ; where the angles φ and θ are the polar coordinates in the helicity reference frame,

or the rest frame of the η. Two more of the eight total coordinates will come from the angular

distributions of η. Much like the photon, these coordinates will be GJ, cos(θ) and GJ, φ; where φ

and cos(θ) are polar angles in the Gottfried-Jackson frame; or the rest frame of the K+K−γγ parent

state. The last two coordinates needed are the beam energy (Ebeam), and the momentum transfer,

t. Since t is the well known Mandelstam variable, t is related to the beam energy and the four

momentum of the φη parent state, such that t2 = (γµ −Xµ)2; where γµ is the energy-momentum

four vector for the beam, and Xµ is the energy-momentum four vector for the φη parent state. Since

t, the beam energy Ebeam, and the mass of the K+K−γγ parent state is known, the magnitude of

the K+K−γγ parent state momentum is directly proportional to these measurements. Knowing

the magnitude of the momentum and the mass of the K+K−γγ parent state allows us to fully

describe the γp → pX; X → ηY ; η → γγ reaction. The final detail that needs to be mentioned is

the reference coordinate that is used in this quality factor analysis. Because it is imperative to have
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a pure η signal, the reference coordinate for this procedure will be the γγ invariant mass. Although

this coordinate does not play a role in the calculation of the kinematic distance, it is imperative

to define it as the reference coordinate which will ultimately serve as the tool to separate signal

events from background events, and to calculate Qη.

φη. The list of kinematic observables used to identify the φ meson and the η meson; and to

ultimately calculate Qφη are given in Table 5.5.

ξk Coordinate Maximum Range of Coordinate

ξ0 K+
HE cos(θ) 2

ξ1 K+
HEφ 2π radians

ξ2 γHE cos(θ) 2

ξ3 γHEφ 2π radians

ξ4 GJ, cos(θ) 2

ξ5 GJ, φ 2π radians

ξ6 Ebeam 9 GeV

ξ7 t 3.3
GeV 2

c4

ξr K+K− invariant mass Reference Coordinate

ξr γγ invariant mass Reference Coordinate

Table 5.5: A table which summarizes the coordinates used to describe the γp → pX; X → φη
φ → K+K−; η → γγ final state. This set of coordinates will ultimately lead to the calculation
of Qφη The coordinates ξ0 through ξ7 are used in the kinematic distance equation, described by
Equation (5.1). The last two coordinates are the reference coordinates for this analysis.

The final quality factor analysis is attempting to identify both the φ and η mesons and to also

reject any background. It should be noted that the backgrounds for this analysis are different

and include φγγ, ηK+K−, and K+K−γγ. Therefore, in order to properly identify the γp → pX;

X → φη φ→ K+K−; η → γγ final state, a total of eight coordinates are needed. Four of the eight

coordinates come from the angular distributions of the daughter states of φ and η. More specifically,

the four coordinates are K+
HE cos(θ), K

+
HEφ, γHE cos(θ), γHEφ; where the angles φ and θ are the polar

coordinates in the helicity reference frame. It should be noted that since the K+ and γ particles

are daughters of different parent states, they will have different helicity frames which are relative to

the rest frames of φ and η mesons, respectively. Two more of the eight total coordinates will come

from the angular distributions of φ and η. Much like the K+ and γ particles, these coordinates will

be GJ, cos(θ) and GJ, φ; where φ and cos(θ) are polar angles in the Gottfried-Jackson frame; or
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the rest frame of the φη parent state. The last two coordinates needed to describe the γp → pφη

final state is the beam energy (Ebeam), and the momentum transfer, t. Since t is the well known

Mandelstam variable, t is related to the beam energy and the four momentum of the φη parent

state, such that t2 = (γµ−Xµ)2; where γµ is the energy-momentum four vector for the beam, and

Xµ is the energy-momentum four vector for the φη parent state. Since t, the beam energy Ebeam,

and the mass of the φη parent state is known, the magnitude of the φη parent state momentum is

directly proportional to these measurements. Knowing the magnitude of the momentum and the

mass of the φη parent state allows us to fully describe the γp→ pφη reaction. The final detail that

needs to be mentioned is the reference coordinates that are used in this quality factor analysis.

Because it is imperative to have a pure φη signal, there will be two reference coordinates for this

procedure. One of them will be the K+K− invariant mass, and the other will be the γγ invariant

mass. Although these coordinates do not play a role in the calculation of the kinematic distance,

it is imperative to define them as the reference coordinates which will ultimately serve as the tool

to separate signal events from background events, and to calculate Qφη.

Calculating the Quality Factor. Once the fits of the K+K− and γγ invariant mass his-

tograms have converged, the final step of calculating a quality factor can be performed. This is done

by knowing the signal and background functions, as well as their fitted parameters, for both the

K+K− and γγ distributions. Knowing the parameters of the fit will allow the user to accurately

estimate the number of signal events and the number of background events for a given invariant

mass value. The invariant mass value that should be used is the one which corresponds to the

event that is being studied, and the parameters are determined by the fit of the invariant mass

distribution of nearest neighbors. More specifically, the quality factor associated with the K+K−

invariant mass distribution will be Equation 5.14.

Qφ =
S(mKK)

S(mKK) +B(mKK)
(5.14)

In Equation (5.14), the function S(m) is the convoluted relativistic Breit-Wigner described by

Equation (5.10), and the function B(m) is the convoluted third degree polynomial described by

Equation (5.9). Lastly, the mKK variable describes the K+K− mass of the event being considered.

The quality factor associated with the γγ invariant mass distribution will be Equation 5.15.

108



Qη =
S(mγγ)

S(mγγ) +B(mγγ)
(5.15)

In Equation 5.15, the function S(m) is a Voigtian function, which is the convolution of a

non-relativistic Breit-Wigner with a Gaussian, described by Equation 5.12. The function B(m)

is the simply a third degree Chevyshev polynomial described by Equation 5.13. Lastly, the mγγ

variable describes the γγ invariant mass of the event being considered. The last quality factor

which considers both the kinematics of the φ and the η is given in Equation (5.16).

Qφη =
S(mKK)

S(mKK) +B(mKK)
∗ S(mγγ)

S(mγγ) +B(mγγ)
(5.16)

In Equation (5.16), the signal and background functions for the K+K− and γγ invariant mass

distributions are the same as those mentioned in Equation 5.14 and Equation 5.15, respectively.

The key difference between all three quality factor calculations comes from the fact that they

are all using a different set of kinematic variables to determine a set of nearest neighbors. Therefore,

the K+K− invariant mass distribution using the φ Only method will be different from the K+K−

invariant mass distribution using the φη method. Conversely, the γγ invariant mass distribution

using the η Only method will be different from the γγ invariant mass distribution using the φη

method. This subtlety will result in different φη invariant mass yields, depending on the quality

factor method that is being considered.

Quality Factor Highlights. The effectiveness of the quality factor approach is highlighted

in Figure 5.14 and Figure 5.15. Figure 5.14 shows what the K+K− invariant mass distribution

looks like when plotting events with weights Qφ and with weights 1−Qφ. One can clearly see that

the quality factor effectively separated the signal φ meson from the K+K− background. Figure

5.15 shows what the γγ invariant mass distribution looks like when plotting events with weights

Qη and with weights 1 −Qη. One can clearly see that the quality factor effectively separated the

signal η meson from the γγ background.

109



Entries  16981

Mean   0.000105±  1.021 

Std Dev   05− 7.423e± 0.007107 

)2 Mass (GeV/c
­

K+K
0.99 1 1.01 1.02 1.03 1.04 1.05

2
E

v
en

ts
 /

 0
.0

0
1

 G
eV

/c

0

50

100

150

200

250

Entries  16981

Mean   0.000105±  1.021 

Std Dev   05− 7.423e± 0.007107 

 Weighted
φ

 Mass : Q
­

K+K

Entries  16981

Mean   0.0002362±  1.028 

Std Dev    0.000167± 0.01695 

)2 Mass (GeV/c
­

K+K
0.99 1 1.01 1.02 1.03 1.04 1.05

2
E

v
en

ts
 /

 0
.0

0
1

 G
eV

/c

0

20

40

60

80

100
Entries  16981

Mean   0.0002362±  1.028 

Std Dev    0.000167± 0.01695 

 Weighted
φ

 Mass : 1 ­ Q
­

K+K

Figure 5.14: The K+K− invariant mass distribution plotted with the signal weight, Qφ and the
background weight 1−Qφ.
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5.3 Removal of N* Background

After all particle identification cuts, selection cuts, and the determination of Quality Factors,

an N* structure was found in the signal data a posteriori (Figure [5.16]). Also contained within

the signal data were possible low mass structures in the φη invariant mass (Figure [5.17]).

Figure 5.16: The pγγ invariant mass for the Elliptical Subtraction method (Subsec: 5.5.1). This
distribution shows a possible N* structure around 1650 MeV/c2.

Figure 5.17: The φη invariant mass for the Elliptical Subtraction method (Subsec: 5.5.1) before N*
removal. This distribution shows two possible structures at lower mass.

The reason that an N* background can be seen in γp→ pφη data is due to the fact that an N*
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can decay into a proton and η. More specifically, this background will have the reaction γp→ N∗φ;

N∗ → pη. As you can see, this baryonic reaction has an identical final state to γp→ pφη, but is a

completely different reaction. What’s worse is that this background can have a missing mass/energy

that is near zero. Therefore, it is imperative to search of a method that will effectively separate

this background from signal.

Many avenues were researched in order to remove the N* background; all but one were shown

not to work properly. Some of the background subtraction methods that were attempted included

a t cut, a beam energy cut, and a pγγ mass cut. All of these methods either did not effectively

remove the N* background or removed too many signal events.

The one method which did remove the most N* background while also preserving the most signal

statistics was cutting on the lab frame angle of the η meson. This cut was shown to effectively

separate N* background from low mass φη structures by generating three different sets of Monte

Carlo data. It should be noted that these data sets are completely different from the one mentioned

in Chapter 3.

1. γp→ pX(1680);X(1680)→ φη

2. γp→ pX(1850);X(1850)→ φη

3. γp→ N∗φ;N∗ → pη

Each of these Monte Carlo data sets were generated with a t-slope of 2.5. This slope was

chosen because it closely matched the data at this stage. All three Monte Carlo data sets were

also generated with a flat beam distribution. The purpose of this was to understand how certain

cuts would effect the statistics at different beam energies; all of which would have roughly the same

amount of statistics. An example of this is given in Figure [5.18] through Figure [5.20].

In all figures, the vertical axis is the angle the η meson and the horizontal axis is the beam

energy. The angle θ is the polar coordinate in the lab frame which is the angle between the beam

direction and the direction of the η. The first two figures ([5.18] and [5.19]) show similar behavior.

In both Monte Carlo samples the direction of the η relative to beam direction is very shallow, and

for the most part is always below 12◦ at higher beam energies. However, the last figure ([5.20])

shows completely different kinematic behavior. The N* Monte Carlo has very few events below
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Figure 5.18: The angle of the η meson with respect to the beam direction in the lab frame versus
the beam energy for γp→ pX(1680);X(1680)→ φη Monte Carlo sample.
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Figure 5.19: The angle of the η meson with respect to the beam direction in the lab frame versus
the beam energy for γp→ pX(1850);X(1850)→ φη Monte Carlo sample.
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Figure 5.20: The angle of the η meson with respect to the beam direction in the lab frame versus
the beam energy for γp→ N∗φ;N∗ → pη Monte Carlo sample.

116



12◦, and on average will decay the η at angles between 20◦ and 40◦. Knowing this, a study of these

Monte Carlo sets as a function of θ cut was performed.

Figure [5.21] provides the number of events as a function of different θ cut values for each Monte

Carlo sample. This particular study looks at cut values in 1.5◦ increments, starting at 0◦ and going

as high as 45◦. The most important observation that this figure provides is that the number of

signal events rises rapidly at lower θ cut values, whereas the N* background loses a large amount

of statistics at lower θ cut values.To find the optimal θ cut value which contains the most signal

events on top of background events, the same set of data is used and plotted in Figure [5.22]. The

difference between Figure [5.21] and Figure [5.22] is that the N* statistics have been subtracted

from all Monte Carlo data sets. This method of subtraction shows that the optimal θ cut is in the

range of 15◦-18◦. Since the most signal statistics should be preserved, the higher cut value of 18◦

was chosen.

At a cut value of 18◦, 10 percent of the signal Monte Carlo is lost and 82 percent of the

background is removed. However, it should be mentioned again that all three Monte Carlo samples

were generated with a flat beam spectrum. In order to approximate the data more accurately, the

same samples were generated with a coherent beam spectrum. Since the coherent beam spectrum

will force a higher density of events in the range of 8 GeV - 9 GeV, the amount of lost signal

events will drop and the the amount of removed background will stay the same (Figure [5.18]-

Figure [5.20]). After performing the same study with a coherent beam distribution for all Monte

Carlo samples, a cut value of 18◦ was still optimal. At this cut, 6 percent of the signal Monte Carlo

was lost and 82 percent of the background was removed.

After the completion of this Monte Carlo study, the cut of 18◦ θ was enforced on the data sample.

The results of this cut and the effect that it has on the N* background can be seen in Figure [5.23].

The effect that it has on the φη invariant mass can be seen in Figure [5.24]. Approximately 500

events were lost after the θ cut at 18◦. However, the majority of these statistics were lost in the

N* peak, while the apparent low mass structures in the φη invariant mass remained the same.
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Figure 5.21: The number of N*, X(1680), and X(1850) events as a function of θ cut value.
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Figure 5.22: The number of N*, X(1680), and X(1850) events minus the number of N* events, as
a function of θ cut value.
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Figure 5.23: The pγγ invariant mass for the Elliptical Subtraction method (Subsec: 5.5.1) after a
θ cut of 18◦.

Figure 5.24: The φη invariant mass for the Elliptical Subtraction method (Subsec: 5.5.1) after a θ
cut of 18◦.

5.4 Acceptance Corrections for φη Invariant Mass and cos(θ)GJ

Before the final results of the φη invariant mass and cos(θ)GJ are shown, the acceptance correc-

tions for each distribution are given. The acceptance corrections were found by using the generated

Monte Carlo sample highlighted in Chapter 3.

This Monte Carlo sample was then simulated inside the detector using hdgeant, a software
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Figure 5.25: The φη invariant mass acceptance factor.
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Figure 5.26: The cos(θ)GJ acceptance factor for φη invariant mass range between 1.605-1.707
GeV/c2.

package inside the GlueX library which allows users to simulate what generated Monte Carlo will

look like inside the detector. Once the simulation is complete, the simulated data will then be passed
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Figure 5.27: The cos(θ)GJ acceptance factor for φη invariant mass range between 1.809-1.912
GeV/c2.

to mcsmear. Much like hdgeant, this is another software package inside the GlueX library which

allows users to simulate the resolution of the GlueX detector after the simulation phase. After the

Monte Carlo data has resolution effects added, it is then passed into the final stage, hdroot, which

provides reconstruction to the Monte Carlo sample. After hdroot has completed reconstruction, a

data file is reproduced which is identical to a real GlueX data file. Once this file is created, the same

selection cuts that were used on the data will be enforced on the Monte Carlo sample. All Monte

Carlo events that survive all phases of this simulation process are called the accepted Monte Carlo

events. Finding the acceptance factors after this is very simple. To calculate the acceptance factors

for a given observable, a histogram must be filled with the accepted Monte Carlo, then divided by

another histogram which is filled with the generated Monte Carlo. The two observables that will

be studied in this thesis are the φη invariant mass and the cos(θ)GJ distributions for different φη

invariant mass ranges. The acceptance factors for the φη invariant mass are given in Figure [5.25].

There are two important results from this figure. The first observation is that there appears to be

a large spike in the acceptance factor at very low φη invariant mass. This is expected and is due

to the φη threshold being very close to this value. Since the generated Monte Carlo cannot create

an invariant mass that is less than mφ + mη, there are very few events in this region. However,
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once the generated Monte Carlo is passed through the simulation, it is completely possible to have

reconstructed events with a φη invariant mass below threshold. Since the acceptance factor is

defined as the number of accepted Monte Carlo divided by the number of generated Monte Carlo,

the acceptance factor jumps in this region of the invariant mass. The second important observation

to take away from this figure is that the acceptance factors in the region of interest is relatively

smooth and well behaved. Since it appears that there may be structures from data (Figure [5.24])

in the φη mass range from 1.6 to 2 GeV/c2 it is important that the best acceptance in the Monte

Carlo is also in the region.

5.5 Analysis of φη Invariant Mass Plot and cos(θ)GJ
Distributions

After performing all cuts on the input data and establishing quality factors for three different

nearest neighbor approaches, the φη invariant mass can be studied. In order to study this distribu-

tion, a total of four different methods were used to identify a φη final state. Each approach, along

with supporting plots, are given in the subsections below.

5.5.1 Elliptical Mass Approach

There was no weighting method used for this approach. Every event has a relative weight of 1,

with the exception of events which came from beam photons that were out of time. This analysis

has three sets of histograms, one of them is signal plus background, another is just background

and the third is the difference between the previous two, which can be interpreted at a signal

distribution. An example of what the overall data set looks like is given in Figure [5.28], and an

example of the signal and background selection is given in Figure [5.29].

The area which selects the φη intersection can be defined using the equation for an ellipse

(Equation 5.17), where the variable x will be substituted for the K+K− invariant mass, and the

variable y will be substituted for the γγ invariant mass. Furthermore, the ellipse will need to be

centered at the φ and η intersection. Therefore, the x variable will need to be shifted by mφ, and

the y variable will need to be shifted by mη. Lastly, the semi-minor axis (a) and the semi-major

axis (b) will need to be proportional to the width of the φ meson and the η meson, respectively.

Since both resonances should have statistics which resemble that of a Gaussian distribution, a 2σ
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Figure 5.28: The K+K− invariant mass Vs γγ invariant mass before elliptical Mass selection.

width was chosen to select the signal region. This will ensure that roughly 95 percent of the signal

events will be selected. Therefore, the equation which describes the φη intersection in Figure [5.29]

can be written as Equation 5.18.

1 =
x2

a2
+
y2

b2
(5.17)

1 =
(mKK −mφ)2

(2σφ)2
+

(mγγ −mη)
2

(2ση)2
(5.18)

The elliptical subtraction method requires that the same amount of K+K− vs γγ area is used

to select signal and background regions. The area for an ellipse is well known, and is given in

Equation 5.19. We can take the semi-major and semi-minor axis parameters from Equation 5.18

and plug it into Equation 5.19 in order to derive the total K+K− vs γγ signal area (Equation 5.20).

A = πab (5.19)

Aφη = π(2σφ)(2ση) = 4πσφση (5.20)

Knowing that the total signal area is equal to 4πσφση, it is easy to define the background area.

The first parameter that needs to be chosen is the inner radius of the background selection. Once

again, it is assumed that both resonances resemble a Gaussian distribution. Therefore, an inner
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radius of 3σ was chosen so that less that 1 percent of signal events would be selected, and therefore

the majority of events would be background. Knowing that the inner radius will be 3σ, it is easy to

derive the outer radius of the background selection. Once again, the total area of the background

must be equal to the signal selection area of 4πσφση. Therefore, the outer radius of the background

selection will be
√

13σ. The derivation of this area is given in Equation 5.21, and the selection is

shown in the second histogram of Figure [5.29].

ABG = π(
√

13σφ)(
√

13ση)− π(3σφ)(3ση) = 4πσφση (5.21)

Now that the signal and background selections have been well defined for this method, the

relevant invariant mass and angular distributions can be shown. Figure [5.30] shows the φη invariant

mass distributions corresponding to different elliptical mass selections. The upper histogram of

Figure [5.30] shows an immediate indication of two structures at lower φη invariant mass. This

distribution is compared to the second histogram in Figure [5.30] which is not a φη selection. The

histogram may show a possible structure at low invariant mass which causes the signal distribution

to become slightly distorted. It should be noted that this structure is seen in other background

invariant mass plots and may be an indication of a decay mode to ηKK.

The two structures seen in Figure [5.30] can be investigated by studying the angular distribution

of the daughter particles in the Gottfried-Jackson frame. This distribution is important since its

structure can provide an indication of what the parents spin state is. These distributions are

produced by selecting φη invariant mass ranges which correlate to the positions of the two structures,

but do not overlap with each other. The range that was selected for the first structure is between

(1.605-1.707) GeV/c2, and the range that was selected for the seconds structure is between (1.809-

1.912) GeV/c2. The cos(θ) distribution for the first structure is given in Figure [5.31], and the

cos(θ) distribution for the second structure is given in Figure [5.32]. The cos(θ) distribution for

each structure does not currently provide information which may help to identify the spin state.

However, it is clear that the cos(θ) distribution is different for each structure.

Using only the signal plots from Figure [5.30], [5.31], and [5.32], the acceptance corrections

provided in Subsection 5.4 can be used to understand the amount of statistics that were lost due

to detector acceptance. The acceptance corrected figures are provided in [5.33][5.34][5.35] below.
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Figure 5.30: The φη invariant mass for elliptical mass selection, not acceptance corrected.
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Figure 5.31: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2, not
acceptance corrected.

128



Integral   490.5

 (unitless)
GJ

)θcos(
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
v
en

ts
 /

 0
.0

8
0
 u

n
it

le
ss

0

5

10

15

20

25

30

35

40 Integral   490.5

 ­ Signal+Background
GJ

)θPeak 2 cos(

Integral    69.5

 (unitless)
GJ

)θcos(
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
v
en

ts
 /

 0
.0

8
0
 u

n
it

le
ss

2−

0

2

4

6

8

10

12

14

16

18

Integral    69.5

 ­ Background
GJ

)θPeak 2 cos(

Integral     421

 (unitless)
GJ

)θcos(
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
v
en

ts
 /

 0
.0

8
0
 u

n
it

le
ss

0

5

10

15

20

25

30

35

40

Integral     421

 ­ Signal
GJ

)θPeak 2 cos(

Figure 5.32: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2, not
acceptance corrected.
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Due to the mostly flat acceptance for all figures, none of the final plots presented here are greatly

altered other than the amount of statistics in each bin.
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Figure 5.33: The signal φη invariant mass for elliptical mass selection with the acceptance correction
factors described in Figure [5.25]. The range of the distribution has been changed due to the large
error bars at high φη invariant mass values.
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Figure 5.34: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2 with the
acceptance correction factors described in Figure [5.26].
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Figure 5.35: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2 with the
acceptance correction factors described in Figure [5.27].

5.5.2 Qφ Weighting, η Side-band Subtracted

This analysis uses the quality factor weights for the φ only method described in Subsection

5.2.2. Since this method only separates φ signal from K+K− background, it does not separate the

η signal from γγ background with just Qφ weighting. An example of the Qφ weighted γγ invariant

mass distribution is given in Figure [5.36].

Figure 5.36: The γγ invariant mass spectrum with all events weighted by Qφ.
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In order to select the φη final state, a γγ invariant mass cut of ±2ση was enforced to select the

η signal region. This selection was chosen because the η peak is assumed to have a shape which

resembles a Gaussian distribution. A 2σ selection cut ensures that roughly 95 percent of the η

signal will be selected. In addition to this signal selection, a side-band cut was enforced on the γγ

invariant mass in order to approximate the background. One of the side-band regions ranged from

mη − 5ση ≤ mγγ ≤ mη − 3ση, and the other side-band region ranged from mη + 3ση ≤ mγγ ≤

mη + 5ση. These regions were chosen for two reasons. One of which is the fact that the total mγγ

range used to select the η signal region must be equal to the range used to select the background

region. The second reason is to ensure that less than 1 percent of data would be contained within

the background selection.

Once the signal and background selections are established, the φη final state can be studied

with this weighting method. The φη final state is found by weighting all events with Qφ, then

selecting the η signal region. Once this distribution is known, a second distribution is filled with

the γγ side-band selection. Taking the difference between the two distributions provides a φη final

state. An example of what all of these distributions look like is provided in Figure [5.37]. The top

histogram of Figure [5.37] is the K+K−γγ invariant mass weighted by Qφ and a 2σ selection of the

η peak. The middle histogram is the K+K−γγ invariant mass weighted by Qφ and a γγ side-band

selection. Finally, the bottom histogram is the difference between the top histogram and the middle

histogram. The bottom histogram of Figure [5.37] is considered to be the φη invariant mass plot

for this weighting method. The reason that this is the signal plot for this method is because the φ

has been identified by means of the nearest neighbors approach described in Subsection 5.2.2; and

the η has been identified by means of a side-band subtraction.

Contained within the signal histogram of Figure [5.37] are two structures which resemble the

structures also seen in Subsection 5.5.1. In order to better understand the nature of these structures,

the cos(θ)GJ angles are extracted for these regions of φη invariant mass. The cos(θ)GJ angles for

the first structure are given in Figure [5.38] and are found by imposing a cut on the φη invariant

mass with a range of 1.605-1.707 GeV/c2. The cos(θ)GJ angles for the second structure are given

in Figure [5.39] and are found by imposing a cut on the φη invariant mass with a range of 1.809-

1.912 GeV/c2. There is no clear angular structure in Figure [5.38] or Figure [5.39]. The only clear
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observation that is made is that the angular distributions of each region are different from one

another.
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Figure 5.37: The K+K−γγ invariant mass spectrum with all signal events weighted by Qφ, not
acceptance corrected. The top histogram is the data which selects the η peak contained in Fig-
ure [5.36]. The middle histogram is the data which selects the γγ side-band data. The bottom
histogram is the φη signal and is the difference between the first histogram and the second his-
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Figure 5.38: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2, not
acceptance corrected.
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Figure 5.39: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2, not
acceptance corrected.
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Using only the signal plots from Figure [5.37], [5.38], and [5.39], the acceptance corrections

provided in Subsection 5.4 can be used to correct any detector effects. The acceptance corrected

figures are provided in [5.40][5.41][5.42] below. Due to the mostly flat acceptance for all figures,

none of the final plots presented here are greatly altered other than the amount of statistics in each

bin.
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Figure 5.40: The K+K−γγ invariant mass spectrum with all signal events weighted by Qφ, and
the η is selected by side-band subtraction. The spectrum is acceptance corrected as described by
Figure [5.25]. The range of the distribution has been changed due to the large error bars at high
φη invariant mass values.
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Figure 5.41: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2 with the
acceptance correction factors described in Figure [5.26].
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Figure 5.42: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2 with the
acceptance correction factors described in Figure [5.27].

5.5.3 Qη Weighting, φ Side-band Subtracted

This analysis uses the quality factor weights for the η only method described in Subsection

5.2.2. Since this method only separates η signal from γγ background, it does not separate the φ

signal from K+K− background with just Qη weighting. An example of the Qη weighted K+K−

invariant mass distribution is given in Figure [5.43].

Figure 5.43: The fit of the K+K− invariant mass spectrum with all events weighted by Qη.
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In order to select the φη final state, a K+K− invariant mass cut of ±2σφ was enforced to select

the φ signal region. This selection was chosen because the φ peak is assumed to have a shape

which resembles a Gaussian distribution. A 2σ selection cut ensures that roughly 95 percent of

the φ signal will be selected. In addition to this signal selection, a side-band cut was enforced

on the K+K− invariant mass in order to approximate the background. One of the side-band

regions ranged from mφ− 5σφ ≤ mK+K− ≤ mφ− 3σφ, and the other side-band region ranged from

mφ + 3σφ ≤ mK+K− ≤ mφ + 5σφ. These regions were chosen for two reasons. One of which is the

fact that the total mK+K− range used to select the φ signal region must be equal to the range used

to select the background region. The second reason is to ensure that less than 1 percent of data

would be contained within the background selection.

Once the signal and background selections are established, the φη final state can be studied

with this weighting method. The φη final state is found by weighting all events with Qη, then

selecting the φ signal region. Once this distribution is know, a second distribution is filled with the

K+K− side-band selection. Taking the difference between the two distributions provides a φη final

state. An example of what all of these distributions look like is provided in Figure [5.44]. The top

histogram of Figure [5.44] is the K+K−γγ invariant mass weighted by Qη and a 2σ selection of the

φ peak. The middle histogram is the K+K−γγ invariant mass weighted by Qη and a K+K− side-

band selection. Finally, the bottom histogram is the difference between the top histogram and the

middle histogram. The bottom histogram of Figure [5.44] is considered to be the φη invariant mass

plot for this weighting method. The reason that this is the signal plot for this method is because

the η has been identified by means of the nearest neighbors approach described in Subsection 5.2.2;

and the φ has been identified by means of a side-band subtraction.

One interesting result from this method and the others presented in this thesis is the ability to

study backgrounds. The middle histogram of Figure [5.44] shows a clear indication that a structure

is present in the ηKK invariant mass. This structure is also seen in the background histograms of

Figure [5.30] and Figure [5.50]. However, this structure is not seen in the background histogram

of Figure [5.37]. The consistency of this structure showing up in some backgrounds, but not all,

provides evidence that it may have a decay mode to both φη and ηKK.

Contained within the signal histogram of Figure [5.44] are two structures which resemble the

structures also seen in Subsection 5.5.1, Subsection 5.5.2. In order to better understand the nature
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Figure 5.44: The K+K−γγ invariant mass spectrum with all signal events weighted by Qη, not
acceptance corrected. The top histogram is the data which selects the φ peak contained in Fig-
ure [5.43]. The middle histogram is the data which selects the K+K− side-band data. The bottom
histogram is the φη signal and is the difference between the first histogram and the second his-
togram.
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Figure 5.45: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2, not
acceptance corrected.
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Figure 5.46: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2, not
acceptance corrected.
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of these structures, the cos(θ)GJ angles are extracted for these regions of φη invariant mass. The

cos(θ)GJ angles for the first structure are given in Figure [5.45] and are found by imposing a cut

on the φη invariant mass with a range of 1.605-1.707 GeV/c2. The cos(θ)GJ angles for the second

structure are given in Figure [5.46] and are found by imposing a cut on the φη invariant mass with

a range of 1.809-1.912 GeV/c2. There is no clear angular structure in Figure [5.45] or Figure [5.46].

The only clear observation that is made is that the angular distributions of each region are different

from one another.

Using only the signal plots from Figure [5.44], [5.45], and [5.46], the acceptance corrections

provided in Subsection 5.4 can be used to correct any detector effects. The acceptance corrected

figures are provided in [5.47][5.48][5.49] below. Due to the mostly flat acceptance for all figures,

none of the final plots presented here are greatly altered other than the amount of statistics in each

bin.
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Figure 5.47: The K+K−γγ invariant mass spectrum with all signal events weighted by Qη, and
the φ is selected by side-band subtraction. The spectrum is acceptance corrected as described by
Figure [5.25]. The range of the distribution has been changed due to the large error bars at high
φη invariant mass values.
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Figure 5.48: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2 with the
acceptance correction factors described in Figure [5.26].
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Figure 5.49: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2 with the
acceptance correction factors described in Figure [5.27].
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5.5.4 Qφη Weighting

This analysis uses the quality factor weights for the φη only method described in Subsec-

tion 5.2.2. Since this method separates both η signal from γγ background, and φ signal from

K+K− background, the only weight that is needed event by event is Qφη. An example of the Qφη

weighted K+K−γγ invariant mass distribution and the corresponding background plot is given in

Figure [5.50].

One interesting result from this method and the others presented in this thesis is the ability to

study backgrounds. The lower histogram of Figure [5.50] shows a clear indication that a structure

is present in the 1 − Qφη weighted invariant mass. This structure is also seen in the background

histograms of Figure [5.30] and Figure [5.44]. However, this structure is not seen in the background

histogram of Figure [5.37].

Contained within the signal histogram of Figure [5.50] are two structures which resemble the

structures also seen in Subsection 5.5.1, Subsection 5.5.2, and and Subsection 5.5.3. In order

to better understand the nature of these structures, the cos(θ)GJ angles are extracted for these

regions of φη invariant mass. The cos(θ)GJ angles for the first structure are given in Figure [5.51]

and are found by imposing a cut on the φη invariant mass with a range of 1.605-1.707 GeV/c2.

The cos(θ)GJ angles for the second structure are given in Figure [5.52] and are found by imposing

a cut on the φη invariant mass with a range of 1.809-1.912 GeV/c2. There is no clear angular

structure in Figure [5.51] or Figure [5.52]. The only clear observation that is made is that the

angular distributions of each region are different from one another.

Using only the signal plots from Figure [5.50], [5.51], and [5.52], the acceptance corrections

provided in Subsection 5.4 can be used to improve the statistics in each figure as well as correct any

detector effects. The acceptance corrected figures are provided in [5.53][5.54][5.55] below. Due to

the mostly flat acceptance for all figures, none of the final plots presented here are greatly altered

other than the amount of statistics in each bin.
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Figure 5.50: The K+K−γγ invariant mass spectrum with all signal events weighted by Qφη, not
acceptance corrected.

145



Integral   476.6

 (unitless)
GJ

)θcos(
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
v

en
ts

 /
 0

.1
0

0
 u

n
it

le
ss

0

5

10

15

20

25

30

35
Integral   476.6

 Weighted
ηφ

 : Q
GJ

)θPeak 1 cos(

Integral    1007

 (unitless)
GJ

)θcos(
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
v

en
ts

 /
 0

.1
0

0
 u

n
it

le
ss

0

10

20

30

40

50

60

70

80

90
Integral    1007

 Weighted
ηφ

 : 1 ­ Q
GJ

)θPeak 1 cos(

Figure 5.51: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2, not
acceptance corrected.
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Figure 5.52: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2, not
acceptance corrected.

147



Integral  7.965e+04

)2 Invariant Mass (GeV/cγγ
­

K+K
1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

2
E

v
en

ts
 /

 0
.0

2
0
 G

eV
/c

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Integral  7.965e+04

 Invariant Massγγ
­

K+Acceptance Corrected Data of K

Figure 5.53: he K+K−γγ invariant mass spectrum with all signal events weighted by Qφη. The
spectrum is acceptance corrected as described by Figure [5.25]. The range of the distribution has
been changed due to the large error bars at high φη invariant mass values.
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Figure 5.54: The cos(θ)GJ distribution for φη invariant mass between 1.605-1.707 GeV/c2 with the
acceptance correction factors described in Figure [5.26].
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Figure 5.55: The cos(θ)GJ distribution for φη invariant mass between 1.809-1.912 GeV/c2 with the
acceptance correction factors described in Figure [5.27].

5.6 Fitting φη Invariant Mass Plots for Signal Distributions

Since the acceptance of the φη invariant mass is not reliable near threshold (Figure 5.25), the

signal distributions without acceptance corrections will be fit. Using the signal distributions for all

selections methods mentioned above, the φη invariant mass distribution will be tested with four

different functions.

1. Two interfering relativistic Breit-Wigners as signal, plus a scaled accepted Monte Carlo dis-

tribution as background.

2. One low mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo distri-

bution as background.

3. One high mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo distri-

bution as background.

4. No signal distribution, only a scaled accepted Monte Carlo distribution as background.

The purpose of fitting the signal distributions with each function mentioned above is to test the

probability of structures existing within the data set. More specifically, this method will test the

probability of observing two structures, only one low mass structure, only one high mass structure,
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or no structures at all.

The signal fit that will be used for each function is described by Equation 5.22.

|Q(m)|2 = A ∗ | F1(m)

F1(mPeak1)
∗∆1(m) + reiϕ ∗ F3(m)

F3(mPeak2)
∗∆3(m)|2 (5.22)

This equation in closely related to Equation 5.3 except that there is an additional relativistic

Breit-Wigner, and the Blatt-Weisskopf centrifugal-barrier factors are normalized. This additional

relativistic Breit-Wigner contains an imaginary coefficient and a Blatt-Weisskopf centrifugal-barrier

factor for a spin 3 particle. The purpose of normalizing the Blatt-Weisskopf centrifugal-barrier

factors is to have the fit parameter r represent the relative ratio between the amplitudes of the first

peak and the second peak. The spin values of 1 and 3 for the first and second peaks were chosen

because their mass and width values compared to known ss̄ resonances in the PDG. The first peak

has a similar mass and width to the φ(1680), which is reported as (mφ(1680) = 1680± 20, σφ(1680) =

150±50)MeV/c2. The second peak has a similar mass and width to the φ3(1850), which is reported

as (mφ(1850) = 1854± 7, σφ(1850) = 87+28
−23)MeV/c2.

The signal fit for each distribution will use a total of 7 parameters, 4 of them will be the

mass and width of the first and second peak, another 2 will come from the phase and ratio values

contained within the complex coefficient, and the last parameter is the overall normalization. The

background for each fit is simply the phase space produced by the accepted Monte Carlo multiplied

by a normalization coefficient. Therefore, the total function used to fit the φη invariant mass will

have 8 parameters. The difference in each fitting method in terms of their free or fixed parameter

values is given in Table 5.6.

φη Invariant Mass Parameter Ranges and Functions:

Functions Asig mPeak1 σPeak1 mPeak2 σPeak2 r ϕ Abg

1) 2BW + BG 0-100 1.6-1.7 0-0.3 1.8-1.9 0-0.3 0-10 -3.15-3.15 0-0.02

2) Low BW + BG 0-100 1.6-1.7 0-0.3 1.850 0 0 0 0-0.02

3) High BW + BG 0-100 1.680 0 1.8-1.9 0-0.3 1 0 0-0.02

4) BG Only 0 1.680 0 1.850 0 0 0 0-0.02

Table 5.6: A table which summarizes the parameter ranges or fixed values in rows corresponding
to different fit functions for the φη invariant mass. The parameters Asig, r, ϕ, and Abg are all unit
less; whereas the parameters mPeak1, σPeak1, mPeak2, and σPeak2 have units of GeV/c2.
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The last technicality of the φη invariant mass fit that needs to be addressed is the method

for representing the breakup momentum, which will clearly be different than the form used in

Subsection 5.2.1. Deriving the breakup momentum in the rest frame of the φη parent state is

straight forward and has the form given in Equation 5.23.

|P | =

√
m2(m2 − 2(m2

η +m2
φ)) + (m2

η −m2
φ)

2m
(5.23)

The issue with this Equation 5.23 as compared to
√
m2 − (2mK)2 is the fact that the invariant

mass values of mη and mφ have a width, whereas mK does not. This means that the breakup

momentum for the φη invariant mass cannot be represented functionally, and therefore data must

be used. To do this, the breakup momentum and φη invariant mass is plotted on a two dimensional

color plot for each event (Figure [5.56]). All events are weighted with Qφη in order to use the purest

sample.
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Looping through each bin of K+K−γγ invariant mass from Figure [5.56] and projecting onto

the vertical axis will provide the φη break-up momentum spread for that mass range. Taking the

mean break-up momentum value for each bin provides a data driven interpolation for Equation 5.23.

More specifically, for a given φη invariant mass value, a breakup momentum is assigned based off of

the linear fit between two points given in Figure [5.57]. Using this breakup momentum, the signal

distribution for each selection method can be fit.
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Figure 5.57: An interpolation graph, where the horizontal points are the bin values from Fig-
ure [5.56], and the vertical values are the mean values for the break-up momentum projections.
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5.6.1 Elliptical Fits

Figure 5.58: Fit of the φη mass using the elliptical signal distribution in Figure [5.30]. The fit
contains two interfering relativistic Breit-Wigners as signal, plus a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the stat
box.

Figure 5.59: Fit of the φη mass using the elliptical signal distribution in Figure [5.30]. The fit
contains one low mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the stat
box.
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Figure 5.60: Fit of the φη mass using the elliptical signal distribution in Figure [5.30]. The fit
contains one high mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the stat
box.

Figure 5.61: Fit of the φη mass using the elliptical signal distribution in Figure [5.30]. The fit
contains no signal distribution, only a scaled accepted Monte Carlo distribution as background.
The χ2/ndf, probability, and fit parameters are all given in the stat box.
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5.6.2 Qφ Weighting, η Side-band Subtracted Fits

Figure 5.62: Fit of the φη mass using the Qφ Weighted, η−γγ Sideband distribution in Figure [5.37].
The fit contains two interfering relativistic Breit-Wigners as signal, plus a scaled accepted Monte
Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given in the
stat box.

Figure 5.63: Fit of the φη mass using the Qφ Weighted, η−γγ Sideband distribution in Figure [5.37].
The fit contains one low mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the stat
box.
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Figure 5.64: Fit of the φη mass using the Qφ Weighted, η−γγ Sideband distribution in Figure [5.37].
The fit contains one high mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte
Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given in the
stat box.

Figure 5.65: Fit of the φη mass using the Qφ Weighted, η − γγ Sideband distribution in Fig-
ure [5.37]. The fit contains no signal distribution, only a scaled accepted Monte Carlo distribution
as background. The χ2/ndf, probability, and fit parameters are all given in the stat box.
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5.6.3 Qη Weighting, K+K− Side-band Subtracted Fits

Figure 5.66: Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in Fig-
ure [5.44]. The fit contains two interfering relativistic Breit-Wigners as signal, plus a scaled ac-
cepted Monte Carlo distribution as background. The χ2/ndf, probability, and fit parameters are
all given in the stat box.

Figure 5.67: Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in Fig-
ure [5.44]. The fit contains one low mass relativistic Breit-Wigner as signal, plus a scaled accepted
Monte Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given
in the stat box.
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Figure 5.68: Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in Fig-
ure [5.44]. The fit contains one high mass relativistic Breit-Wigner as signal, plus a scaled accepted
Monte Carlo distribution as background. The χ2/ndf, probability, and fit parameters are all given
in the stat box.

Figure 5.69: Fit of the φη mass using the Qη Weighted, φ−KK Sideband distribution in Fig-
ure [5.44]. The fit contains no signal distribution, only a scaled accepted Monte Carlo distribution
as background. The χ2/ndf, probability, and fit parameters are all given in the stat box.
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5.6.4 Qφη Weighting Fits

Figure 5.70: Fit of the φη mass using the Qφη Weighted distribution in Figure [5.50]. The fit
contains two interfering relativistic Breit-Wigners as signal, plus a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the stat
box.

Figure 5.71: Fit of the φη mass using the Qφη Weighted distribution in Figure [5.50]. The fit
contains one low mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the stat
box.
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Figure 5.72: Fit of the φη mass using the Qφη Weighted distribution in Figure [5.50]. The fit
contains one high mass relativistic Breit-Wigner as signal, plus a scaled accepted Monte Carlo
distribution as background. The χ2/ndf, probability, and fit parameters are all given in the stat
box.

Figure 5.73: Fit of the φη mass using the Qφη Weighted distribution in Figure [5.50]. The fit
contains no signal distribution, only a scaled accepted Monte Carlo distribution as background.
The χ2/ndf, probability, and fit parameters are all given in the stat box.
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5.6.5 Tabular Summary of Fit Results

Two Interfering Relativistic Breit-Wigners + Accepted Monte Carlo:

Selection Method
Peak1 Mass (GeV/c2) Peak1 Width (GeV/c2)

Probability
Peak2 Mass (GeV/c2) Peak2 Width (GeV/c2)

Elliptical
1.662 ± 0.021 0.2239 ± 0.0713

0.6903
1.891 ± 0.009 0.04206 ± 0.01911

Qφ, η − γγ 1.664 ± 0.015 0.1829 ± 0.0435
0.6511

1.873 ± 0.006 0.02542 ± 0.02847

Qη, φ−KK
1.641 ± 0.014 0.1605 ± 0.0455

0.9338
1.886 ± 0.019 0.07986 ± 0.05530

Qφη
1.666 ± 0.014 0.2165 ± 0.0469

0.9324
1.876 ± 0.013 0.05008 ± 0.03252

Table 5.7: A table which summarizes the fits which utilized two interfering relativistic Breit-Wigners
as signal, plus a scaled accepted Monte Carlo distribution as background.

Low Mass Relativistic Breit-Wigner + Accepted Monte Carlo:

Selection Method Peak1 Mass (GeV/c2) Peak1 Width (GeV/c2) Probability

Elliptical 1.7 ± 0.1 0.3337 ± 0.0363 0.09674

Qφ, η − γγ 1.671 ± 0.016 0.2076 ± 0.0530 0.1641

Qη, φ−KK 1.665 ± 0.022 0.2354 ± 0.0811 0.4522

Qφη 1.678 ± 0.016 0.258 ± 0.058 0.5056

Table 5.8: A table which summarizes the fits which utilized one low mass relativistic Breit-Wigner
as signal, plus a scaled accepted Monte Carlo distribution as background.

High Mass Relativistic Breit-Wigner + Accepted Monte Carlo:

Selection Method Peak2 Mass (GeV/c2) Peak2 Width (GeV/c2) Probability

Elliptical 1.828 ± 0.005 0.01821 ± 0.00941 2.683e-17

Qφ, η − γγ 1.869 ± 0.004 0.01557 ± 0.00559 1.2e-21

Qη, φ−KK 1.872 ± 0.006 0.01289 ± 0.00715 6.246e-26

Qφη 1.868 ± 0.005 0.0108 ± 0.0054 0

Table 5.9: A table which summarizes the fits which utilized one high mass relativistic Breit-Wigner
as signal, plus a scaled accepted Monte Carlo distribution as background.
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Accepted Monte Carlo:

Selection Method Probability

Elliptical 5.449e-17

Qφ 1.21e-21

Qη 3.528e-25

Qφη 0

Table 5.10: A table which summarizes the fits which utilized only the accepted Monte Carlo
distribution.
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CHAPTER 6

SUMMARY

The advancement of meson spectroscopy has entered a new age with the creation and construc-

tion of the GlueX spectrometer at Thomas Jefferson National Accelerator Facility. The study of

photoproduced quark-antiquark bound states will only improve as more statistics accumulate in

the coming years. Past photoproduction experiments have attempted to study the φη final state,

but only managed to observe a few hundred events with no indication of and any structures in the

invariant mass spectra. The statistics presented in this thesis are well into the thousands and show

good evidence that two structures are present in the final invariant mass plots.

To verify the validity of these structures and observations, a collection of different signal and

background studies were performed on the data. In each instant, the structures observed in the φη

final state remained, with comparable values for mass and width. The final sampling was refined

in order to remove as many sources of background as possible. These included the removal of

N* baryonic backgrounds from γp → N∗φ;N∗ → pη as well as backgrounds from misidentified

kaons. Although the mass and widths of the structures observed in the φη invariant mass plots are

consistent with pure ss̄ candidates in the PDG, identification of these structures is not possible with

the statistics at hand. Further investigation needs to be done, including the analysis of the Spring

2018 Physics Run and the Fall 2018 Physics run at GlueX. The addition of these statistics will

more than quadruple the current physics data set; and will allow for a more diverse investigation

of these structures. Some of these additional investigations may include a beam asymmetry, cross

section, or a partial wave analysis.
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