The Experimental Status of Glueballs

V. Crede1 and C. A. Meyer2
1Florida State University, Tallahassee, FL 32306 USA
2Carnegie Mellon University, Pittsburgh, PA 15213 USA

October 23, 2008

Abstract

1 Introduction

While we believe that Quantum Chromodynamics (QCD) is the correct description of the interactions of quarks and gluons, it is a theory that is very difficult to solve in the low-energy regime—that which describes the particles of which the universe is made. This is changing with advances that have been made in Lattice QCD, and the access to ever faster computers. Within QCD, one of the perplexing issues has been the existence of gluonic excitations. In the meson sector, nearly all the observed states can be explained as simple $q\bar{q}$ systems, with the naive quark model both providing a very good explanations for these particles, as well as providing a nice framework in which they can be described.

However, both phenomenological models and lattice calculations predict that there should exist additional states in which the gluons themselves can contribute to the quantum numbers of the states. These include the pure-gluon states known as glueballs as well as $q\bar{q}$ states with explicit glue, known as hybrid mesons. Some of these latter states are expected to have quantum numbers which are forbidden to $q\bar{q}$ systems—exotic quantum numbers which can provide a unique signature for the existence of such particles.

Over the last decade, a great deal of new experimental data on mesons has been collected. This new information bears directly on both the search for, and our current understanding of gluonic excitations of mesons, in particular glueballs and hybrids. In this review, we will focus on glueballs, rather than gluonic excitations in general. This paper will review the new data, and present a sampling of the phenomenological work that has been developed based on this.

In order to be able to discuss glueballs, it is necessary to understand conventional quark-antiquark systems (mesons). Over the last decade, there have been several relevant reviews on this subject, all of which touch upon gluonic excitations at some level. A very nice review

2 Meson Spectroscopy

Before discussing the expectations for gluonic excitations, we will briefly discuss the simple quark model picture for mesons. A meson consists of a \(q \bar{q} \) system, which because it contains both a particle and an antiparticle, has intrinsics negative parity, \(P = -1 \). The total parity of such a system is given as \(P = (-1)^L \), where \(L \) is the orbital angular momentum in the \(q \bar{q} \) system. Because quarks have spin \(\frac{1}{2} \), the total spin of such a system can be either \(S = 0 \) or \(S = 1 \), which leads to a total angular momentum \(J = L + S \), where the sum is made according to the rules of addition for angular momentum. In addition the parity, there is also C-parity, or charge conjugation, which for a \(q \bar{q} \) system is \(C = (-1)^{L+S} \).

The two lightest quarks also carry an additional quantum number: isospin. Each has total isospin \(\frac{1}{2} \), with the \(u \) quark being the \(+\frac{1}{2} \) part and the \(d \) quark being the \(-\frac{1}{2} \) part of the doublet. If we form a meson out of only these, we can have \(I = 0 \) or \(I = 1 \). If one of the quarks is a strange quark, then \(I = \frac{1}{2} \), and if both are strange, then \(I = 0 \). For a \(q \bar{q} \) system, we can define an additional conserved quantum number, G-parity: \(G = (-1)^{L+S+I} \). Using these relationships to build up possible \(J^{PC} \)'s for mesons, we find that the following quantum numbers are allowed:

\[
0^{--}, 0^{++}, 1^{--}, 1^{--}, 2^{--}, 2^{+-}, 3^{--}, 3^{+-}, 3^{--}, \cdots
\]

and looking carefully at these, we find that there is a sequence of \(J^{PC} \)'s which are not allowed for a simple \(q \bar{q} \) system.

\[
0^{--}, 0^{+-}, 1^{+-}, 2^{+-}, 3^{+-}, \cdots
\]

These latter quantum numbers are known as explicitly exotic quantum numbers and if observed, would correspond to something beyond the simple \(q \bar{q} \) states of the quark model.

If we now consider only the three lightest quarks, \(u, d \) and \(s \) then we can form 9 \(q \bar{q} \) combinations, all of which can have the same \(S, L \) and \(J \). We can represent these in spectroscopic notation, \(^{2S+1}L_J \), or as states of total spin, parity and for the neutral states, charge conjugation: \(J^{PC} \). Naively, these \(q \bar{q} \) combinations would simply be a quark and an antiquark. However, those states consisting of the same quark and antiquark \((u\bar{u}, d\bar{d} \) and \(s\bar{s}) \) are rotated into three other states based on Isospin and \(SU(3) \) symmetries. The combinations shown in equation 3 correspond the the non-zero isospin states, while those in
equation 4 correspond to a pair of isospin zero states. The latter two states are also mixed by SU(3) to yield a singlet \(|1> \) and an octet \(|8>\) state.

\[
\begin{align*}
(d\bar{s}) & (u\bar{s}) \\
(d\bar{u}) & \frac{1}{\sqrt{3}}(u\bar{u} - d\bar{d}) \\
(s\bar{d}) & (s\bar{u}) \\
\end{align*}
\]

\[|8> = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s}) \quad |1> = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s}) \]

(3)

The nominal mapping of these states onto the familiar pseudoscalar mesons is shown in 5 and 6.

\[
\begin{array}{cccc}
\pi^- & K^0 & K^+ & \pi^+ \\
\bar{K}^0 & K^- & \eta & \eta' \\
\end{array}
\]

(5)

However, because SU(3) is broken, the two \(I = 0 \) mesons in a given nonet are usually admixtures of the singlet \(|1> = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})\) and octet \(|8> = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})\) states. In nature, the physical states are mixtures, where the degree of mixing is given by an angle \(\theta \).

\[
\begin{align*}
f &= \cos \theta |1> + \sin \theta |8> \\
f' &= \cos \theta |8> - \sin \theta |1> \\
\end{align*}
\]

(7)

(8)

For the vector mesons, \(\omega \) and \(\phi \), one state is nearly pure light-quark \((n\bar{n})\) and the other is nearly pure \(ss \). This is known as ideal mixing and occurs when \(\tan \theta = \frac{1}{\sqrt{2}} \). In Table 1 are listed our current picture of the ground state mesons for several different \(L \)'s. The last two columns list the linear (equation 9) and quadratic (equation 10) calculations of the mixing angle for the nonets.

\[
\begin{align*}
\tan \theta &= \frac{4m_K - m_a - 3m_f}{2\sqrt{2}(m_a - m_K)} \\
\tan^2 \theta &= \frac{4m_K - m_a - 3m_f}{-4m_K + m_a + 3m_f} \\
\end{align*}
\]

(9)

(10)

The mixing angle \(\theta \) can also be used to compute relative decay rates to final states such as pairs of pseudoscalar mesons, or two-photon widths, for the \(f \) and \(f' \) in a given nonet. Examples of this can be found in reference [7] and reference there in. The key feature is that for a given nonet, the \(f \) and \(f' \) states can be identified by looking at the relative decay rates to pairs of particles.

As an example of a decay calculation, we consider the decay of the tensor \((J^{PC} = 2^{++}) \) mesons to pairs of pseudoscalar mesons \((\pi\pi, K\bar{K} \text{ and } \eta\eta)\). Following the work in references [7–9] and using the decay rates in reference [6], we can compute a decay constant
<table>
<thead>
<tr>
<th>$n^{2s+1}l_J$</th>
<th>J^{PC}</th>
<th>$I = 1$</th>
<th>$I = \frac{1}{2}$</th>
<th>$I = 0$</th>
<th>$I = 0$</th>
<th>θ_q</th>
<th>θ_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^1S_0</td>
<td>0^{--}</td>
<td>π</td>
<td>K</td>
<td>η</td>
<td>η'</td>
<td>-11.5°</td>
<td>-24.6°</td>
</tr>
<tr>
<td>1^3S_1</td>
<td>1^{--}</td>
<td>ρ</td>
<td>K^*</td>
<td>ω</td>
<td>ϕ</td>
<td>38.7°</td>
<td>36.0°</td>
</tr>
<tr>
<td>1^3P_1</td>
<td>1^{++}</td>
<td>$b_1(1235)$</td>
<td>K_{1B}</td>
<td>$h_1(1170)$</td>
<td>$h_1(1380)$</td>
<td>29.6°</td>
<td>28.0°</td>
</tr>
<tr>
<td>1^3P_0</td>
<td>0^{++}</td>
<td>$a_0(1450)$</td>
<td>$K_0^*(1430)$</td>
<td>$f_0(1370)$</td>
<td>$f_0(1710)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3P_1</td>
<td>1^{++}</td>
<td>$a_1(1260)$</td>
<td>K_{1A}</td>
<td>$f_1(1285)$</td>
<td>$f_1(1420)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3P_2</td>
<td>2^{++}</td>
<td>$a_2(1320)$</td>
<td>$K_2^*(1430)$</td>
<td>$f_2(1270)$</td>
<td>$f_2(1525)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3D_2</td>
<td>2^{--}</td>
<td>$\pi_2(1670)$</td>
<td>$K_2(1770)$</td>
<td>$\eta_2(1645)$</td>
<td>$\eta_2(1870)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3D_1</td>
<td>1^{--}</td>
<td>$\rho(1700)$</td>
<td>$K^*(1680)$</td>
<td>$\omega(1650)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3D_2</td>
<td>2^{--}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3D_3</td>
<td>3^{--}</td>
<td>$\rho_3(16900)$</td>
<td>$K_3^*(1780)$</td>
<td>$\omega_3(1670)$</td>
<td>$\phi_3(1850)$</td>
<td>32.0°</td>
<td>31.0°</td>
</tr>
<tr>
<td>1^1F_4</td>
<td>4^{++}</td>
<td>$a_4(2040)$</td>
<td>$K_4^*(2045)$</td>
<td>$f_4(2050)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3G_5</td>
<td>5^{--}</td>
<td>$\rho_5(2350)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^3H_6</td>
<td>6^{++}</td>
<td>$a_6(2450)$</td>
<td></td>
<td>$f_6(2510)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^1S_0</td>
<td>0^{--}</td>
<td>$\pi(1300)$</td>
<td>$K(1460)$</td>
<td>$\eta(1295)$</td>
<td>$\eta(1475)$</td>
<td>-22.4°</td>
<td>-22.6°</td>
</tr>
<tr>
<td>2^3S_1</td>
<td>1^{--}</td>
<td>$\rho(1450)$</td>
<td>$K^*(1410)$</td>
<td>$\omega(1420)$</td>
<td>$\phi(1680)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: A modified reproduction of the table from the 2006 Particle Data Book [7] showing the current assignment of known mesons to quark-model states. When sufficient states are known, the nonet mixing angle is computed using both the quadratic and linear forms.

γ from the SU(3) algebra corresponding to the decays. This can then be turned into a decay rate, Γ as in equation 11

$$\Gamma = \gamma^2 \cdot f_L(q) \cdot q$$ \hspace{1cm} (11)$$

where q is the break-up momentum of the meson into the pair of daughter mesons. Amplitude γ depends on the nonet mixing angle and the pseudoscalar mixing angle, θ_P. A typical example is shown in Figure 1 which is shown in terms of an arbitrary scale factor. The quantity f_L is a form factor that depends on the angular momentum, L, between the pair of daughter mesons. A typical form is given as in equation 12

$$f_L(2) = q^2 e^{-\beta^2}$$ \hspace{1cm} (12)$$

4
where \(\beta \) is a constant that is in the range of 0.4 to 0.5 GeV/c. One can fit the ratio of decay rates to pairs of mesons for both the \(f_2(1270) \) and the \(f_2'(1525) \) and fit to the best value of the nonet mixing angle. We can compute a \(\chi^2 \) between the measured and predicted decay rates to determine what the optimal choice of the mixing angle is. This is shown in Figure 2, where the optimal value is at about 32.5°. The location of the optimum does not depend strongly on either \(\theta_P \) or \(\beta \) and is in good agreement with the values from the mass formulas for the tensors in Table 1.

Measuring the masses and decay rates of mesons can be used to identify the quark contents of a particular meson. The lightest glueballs have \(J^{PC} \) quantum numbers of normal mesons and would appear as an SU(3) singlet state. If they are near a nonet of the same \(J^{PC} \) quantum numbers, than they will appear as an extra \(f \)-like state. While the fact that there is an extra state is suggestive, the decay rates and production mechanisms are also needed to unravel the quark content of the observed mesons.

\section{Theoretical Expectations for Glueballs}

\subsection{Historical}

One of the earliest models in which glueball masses were computed is the bag model \cite{10}. In these early calculations, boundary conditions were placed on gluons confined inside the
Figure 2: (color online) The χ^2 computed between the measured and predicted decay rates for the isoscalar tensor mesons. The open red circles are for the $f_2(1270)$ alone. The open purple squares are for the $f_2'(1525)$ alone and the solid blue circles are for the combined fit. The former two are for one degree of freedom, while the latter is for three.

The gluon fields could be in transverse electric (TE) or transverse magnetic modes (TM). For a total angular momentum (J), the TE modes had parity of $(-1)^{(J+1)}$, while the TM modes had parity $(-1)^J$. The gluons then had to populate the bag to yield a color singlet state. This led to predictions for two- and three-gluon glueballs as given in Table 2.

<table>
<thead>
<tr>
<th>Gluons</th>
<th>J^{PC} Quantum Numbers</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TE)2</td>
<td>0^{++}, 2^{++}</td>
<td>0.96 GeV/c2</td>
</tr>
<tr>
<td>(TE)(TM)</td>
<td>0^{-+}, 1^{-+}, 2^{-+}</td>
<td>1.29 GeV/c2</td>
</tr>
<tr>
<td>(TE)3</td>
<td>0^{+-}, 1^{++}, 2^{-+}, 3^{++}</td>
<td>1.46 GeV/c2</td>
</tr>
<tr>
<td>(TM)2</td>
<td>0^{++}, 2^{++}</td>
<td>1.59 GeV/c2</td>
</tr>
</tbody>
</table>

Table 2: Masses of glue balls in the bag model [11].

Because glueballs contain no quarks, the expectation is that they would couple to all flavors of quarks equally. In a simple SU(3) calculation, the γ^2 from equation 11 are given in Table 3. In addition to the decay predictions, there are reactions which are expected to be glue rich. The first of these is radiative decays of the J/ψ. Because the $c\bar{c}$ quarks have to decay via annihilation, the intermediate state must have gluons in it. This same argument can be applied to other $q\bar{q}$ reactions such as proton-antiproton annihilation and Υ decays. In the J/ψ decays, Chanowitz [12] proposed a variable known as stickiness which is the
relative rate of production of some hadron h in radiative J/ψ decays to its two-photon width (photons only couple to electric charge, hence to quarks). The stickiness, S can be defined as in equation 13 for a hadron h of mass $M(h)$. l is the lowest orbital angular momentum needed to couple to two vector particles and the photon energy k_γ is that from the radiative decay in the ψ rest frame. The overall constant C is chosen such that $S[f_2(1270)] = 1$.

$$S = C \left(\frac{M(h)}{k_\gamma} \right)^{2l+1} \frac{\Gamma(\psi \to \gamma h)}{\Gamma(h \to \gamma\gamma)}$$

(13)

While this quantity has been computed for many of the glueball candidates, it appears to be most limited by our detailed knowledge of the two-photon width of the states [13]. A recent analysis by Pennington [14] has looked closely at the world data for this and still finds sizeable uncertainties in these widths.

Related to stickiness, Farrar [15] proposed a method of extracting decay rate of hadrons to gluons based on the radiative decay rate of vector quarkonium to the state. This was later applied to several mesons by Close [16] to try and distinguish glueball candidates.

There has also been questions raised about the validity of the flavor-blind decay assumption of glueballs. Lee and Weingarten [17] looked at decays of glueballs and proposed that the decay rates should scale with the mass of the mesons, thus favoring the heaviest possible meson pairs. Close, Farrar and Li [16] discuss and expand on this idea, introducing the r factor that is used later.

In the pseudoscalar sector, particular excitement was raised over the very large production of a state (now known as the η_{1405}) in radiative J/ψ decays [18], [19], [20]. This led to speculation that this was a glueball, or at least a state with sizable gluball content. Later analysis by MARK III [21] indicated that there are actually two pseudoscalar states in this mass region. A good discussion of the history of this and the current state of these two states can be found in the PDG mini-review [22] on this topic.

3.2 Model Calculations

The first glueball mass calculation within the flux-tube model was carried out by Isgur and Paton [24, 25]. In this model, the glueball is treated as a closed flux tube. Isgur and Paton found that the lightest glueball has $J^{PC} = 0^{++}$ and a mass of 1.52 GeV/c2. In later flux-tube calculations [26], predictions were made for lightest three glueball masses. These were found to be consistent with the lattice calculations in reference [27]. Table 4 summarizes several flux-tube calculations of the scalar, tensor and pseudoscalar glueball. Finally, a recent article
Table 4: Flux-tube predictions for masses of the lowest lying glueballs.

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>J^{PC}</th>
<th>J^{PC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^{++}</td>
<td>2^{++}</td>
<td>0^{-+}</td>
</tr>
<tr>
<td>1.68 GeV/c² [26]</td>
<td>2.69 GeV/c² [26]</td>
<td>2.57 GeV/c² [26]</td>
</tr>
<tr>
<td>1.6 GeV/c² [29]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

speculates that within the flux tube model, the scalar and pseudoscalar glueball should be degenerate in mass [28].

Another tool that has been used to predict glueball masses are QCD sum rules. This method looks at a two-point correlator of appropriate field operators form QCD and produces a sum rule by equating a dispersion relation for the correlator to an operator product expansion. One of the first such calculation for glueballs was carried out by Novikov [30], and since then by many other authors, with a more recent result by Kisslinger [31] pointing out that most of these calculations find the lightest scalar glueball with a mass in the range of 0.3 to 0.6 GeV/c². A more recent article by Narison [32] looks at all the known scalar mesons and finds a scalar meson state at about 1 GeV/c² and the scalar glueball at 1.5 ± 0.2 GeV/c².

Swanson and Szczepaniak compute the glueball spectrum in Hamiltonian QCD in the Coulomb Gauge [33] by constructing a quasiparticle gluon basis. They also find results which are in good agreement with lattice calculations. The lightest glueball is a scalar with mass of 1.98 GeV/c², followed by a pseudoscalar at 2.22 GeV/c² and then a tensor at 2.42 GeV/c².

3.3 Lattice Calculations

Lattice QCD discretizes space and time on a four-dimensional Euclidean lattice, and use this to solve QCD numerically. This is done by looking at path integrals of the action on the discrete lattice. Quarks and antiquarks live on the discrete points of the lattice, while gluons span the links between the points. Depending on the problem being solved, and the availability of computing resources, the size of the lattice may vary. In addition, there are many different choices for the action, each of which has its own advantages and disadvantages. In specifying the calculation, the grid and action are specified and a damping factor, β, is chosen. After the calculation has been completed, the physical quantities of interest as well as the lattice spacing can be determined. For a give choice of action, a larger β maps into a smaller lattice spacing. However, the same β with different actions can lead to quite different lattice spacings.

To date, most lattice calculations have been carried out in the quenched approximations, where the fluctuation of a gluon into a quark-antiquark pair is left out. As computer power continues to increase, and more efficient ways of carrying out calculations evolve, this is starting to change.
There is also a lattice artifact that can affect the mass calculations of the scalar glueball [34]. A singularity not related to QCD can cause the mass of the scalar glueball to be artificially small. This effect is particularly apparent when Wilson fermions are used with a too-large lattice spacing. Other choices are less sensitive to this, and when the lattice spacing is small enough, the effect does go away. However, for Wilson fermions, the critical value of β is 5.7, which is very close to the values used in many glueball calculations.

Some of the earliest lattice calculations of the glueball spectrum were carried out in the quenched approximation on relatively small lattices [35], [36]. These calculations indicated that the mass of the lightest glueball spectrum started at about 1.5 GeV/c2. As the both computational resources increased and the lattice actions and methods improved, calculations on larger were carried out, and the spectrum of the states began to emerge [37]. After extrapolating to the continuum limit, the lightest three states emerge as the scalar ($J^{PC} = 0^{++}$), tensor ($J^{PC} = 2^{++}$) and the pseudoscalar ($J^{PC} = 0^{-+}$), with the scalar around 1.55 ± 0.05 GeV/c2, the tensor at 2.27 ± 0.1 GeV/c2 and the pseudoscalar at about the same mass. It was also possible to identify a number of other states with the first exotic (non-$q\bar{q}$) quantum number state above 3 GeV/c2.

A later calculation using a larger lattice and smaller lattice parameters yielded a mass for the scalar glueball 1.625 ± 0.094 GeV/c2 [38, 39]. The authors also calculated the decay of the scalar glueball to pairs of pseudoscalar mesons and estimated that the total width of the glueball would be under 0.2 GeV/c2. They also found that the decay width of the scalar glueball depended on the mass of the daughter mesons, with coupling increasing with mass. This was in contradiction to the lore that glueballs should decay in a flavor-blind fashion with the coupling to pairs of pseudoscalar mesons being independent of flavor or mass. Other work has followed this in discussions of violations of flavor-blind decays [40, 41]. This breaking is (effectively) accomplished by introducing a parameter r in the matrix that mixes quarkonium with glueballs. For flavor blind decays, $r = 1$. Values that are close to 1 are typically found. On the lattice [38, 39], it is found that $r = 1.2 ± 0.07$, while a fit to data [40] finds $r = 1 ± 0.3$. Finally, in a microscopic quark/gluon model [41], $r = 1.1 - 1.2$. Taken together, one should probably expect small violations of flavor-blind decays for glueballs, but not large.

Using an improved action, detailed calculations for the spectrum of glueballs was carried out Morningstar and colleagues [42], [43]. This is shown in Figure 3 and the corresponding masses reported in Figure 5. These calculations are cuurently the state of the art in lattice glueball mass predictions.

Hart and Tepper [44] carried out an unquenched calculation of the scalar and tensor glueballs using Wilson fermions. They found that the tensor mass did not move, while the scalar mass came out at about 85% of the unquenched mass. McNeile [45] speculates that this may be a result of the lattice artifact mentioned above. In another unquenched calculation, Gregory [46]. find that unquenching the lattice calculations for glueballs appears not to significantly alter the results from unquenched calculations.
Figure 3: (color online) The mass spectrum of glueballs. The height of each box indicates the statistical uncertainty. Figure used with permission from reference [43].

4 The Known Mesons

4.1 Experimental Methods and Major Experiments

Results on meson spectroscopy have come from a large variety of experiments using different experimental techniques. Production of glueballs has mainly been predicted for glue-rich environments[]. The most promising examples are proton-antiproton annihilation or radiative decays of quarkonia, where one of the three gluons arising from the quark-antiquark annihilation is replaced by a photon leaving two gluons to form bound states. The following sections describe the main experimental methods and major experiments devoted to the study of meson resonances and the search for glueballs.

Proton-Antiproton Annihilation

In \(p \bar{p} \) annihilations, glueballs may be formed when quark-antiquark pairs annihilate into gluons. Though not very likely, this may proceed via formation (as opposed to production) without a recoil particle; in this case, exotic quantum numbers are forbidden and the properties of the glueball candidate can be determined from the initial state. Instead, production of a heavier resonance recoiling against another meson is normally expected, but interaction of gluons forming glueballs sounds likely. However, the usually observed final states consisting of light \(u \)- and \(d \)-quarks can be just as effectively produced by quark rearrangements, i.e.
Table 5: The glueball mass spectrum in physical units. For the mass of the glueballs (M_G), the first error comes from the combined uncertainty of $r_0 M_G$, the second from the uncertainty of $r_0^{-1} = 410(20)$ MeV. Data are taken from [43].

without glueballs in the intermediate state. In $p\bar{p}$ annihilations at rest, mesons with masses up to 1.7 GeV/c^2 can be produced. Feynman Graphs of $p\bar{p}$ formation, production, etc.?

The $p\bar{p}$ annihilation at rest offers a natural way of limiting the number of partial waves involved in the process facilitating spin-parity analyses. At the Low-Energy Antiproton Ring (LEAR) at CERN, slow antiprotons of about 200 MeV/c were decelerated in liquid or gaseous hydrogen (or deuterium) by ionizing hydrogen molecules and eventually stopped and captured by protons forming hydrogen-like atoms called protonium. A highly excited $p\bar{p}$ state is formed by ejecting an electron via Auger effect:

$$\bar{p} + H_2 \rightarrow p\bar{p} + H + e^-$$

Annihilation takes place from atomic orbits. The capture of the \bar{p} typically occurs at a principal quantum number of $n \approx 30$ and at a high angular momentum between the proton and the antiproton of $L \approx n/2$. For $n \approx 30$, the radius of the protonium atom matches the size of hydrogen atoms in their ground state. For lower n values, the protonium radius becomes much smaller; the first Bohr radius of the $p\bar{p}$ atom is 57 fm. Due to this small size and due to the fact that protonium carries no charge, it can diffuse through hydrogen molecules. The \bar{p} reaches an atomic state with angular momentum $L = 0$ or $L = 1$ when annihilation takes place. In media of high density like liquid H$_2$, the protonium is exposed to extremely large electromagnetic fields so that rotation invariance is broken. Transitions between different nearly mass-degenerate angular momentum states at the same high principal quantum number n occur (Stark mixing). The effect is proportional to the target density and for liquid targets the rate is very high, such that about 90% of all annihilations appear
to be S-wave annihilations. For gaseous hydrogen targets, the P-wave contribution is much larger. The incoherent superposition of the $L = 0$ or $L = 1$ angular momentum eigenstates of the $p\bar{p}$ atom corresponds to six different partial waves: $^1S_0, ^3S_1, ^1P_1, ^3P_0, ^3P_1, ^3P_2$.

Proton and antiproton both carry isospin $|I, I_3⟩ = |\frac{1}{2}, ±\frac{1}{2}\rangle$ and can couple to either $|I = 0, I_3 = 0⟩$ or $|I = 1, I_3 = 0⟩$. Given that initial state interactions due to $p\bar{p} → n\bar{n}$ are small [47], we have

$$p\bar{p} = \sqrt{\frac{1}{2}}(|I = 1, I_3 = 0⟩ + |I = 0, I_3 = 0⟩).$$

A large number of meson resonances was studied in $\bar{p}N$ annihilations at rest and in flight. The most recent experiments were carried out at LEAR at CERN; the accelerator was turned off in 1996. The OBELIX Collaboration at LEAR had a dedicated program on light-meson spectroscopy. The detector system allowed operation of a variety of hydrogen targets: liquid H_2, gaseous H_2 at normal temperature and pressure, and also a target at very low pressures. A special feature of the detector was the possibility to study antineutron interactions, where the \bar{n} beam was produced by charge exchange in a liquid H_2 target. The Open Axial-Field Magnet of the experimental setup provided a magnetic field of 0.5 T. Particle detection proceeded via a Spiral Projection Chamber acting as vertex detector, a time-of-flight (TOF) system, a Jet Drift Chamber (JDC) for tracking and identification of charged particles by means of dE/dx, and a High-Angular Resolution Gamma Detector (HARGD), a system of four supermodules for the identification and measurement of neutral annihilation products. A detailed description of the experimental setup is given in [48]. The resolution of pions in the reaction $p\bar{p} → \pi^+\pi^-$ was determined to 3.5% at 928 MeV/c and the mass resolution of π^0 mesons given by $\sigma = 10 \text{MeV}/c^2$. Results are summarized in [48–55].

Adjacent to OBELIX in the experimental hall, the Crystal Barrel spectrometer was operational from 1989-1996. The apparatus is described in [56] and shown in Fig. 4. It could measure multi-meson final states including charged particles and photons from the decay of neutral mesons. From the inside target to the outside magnet surrounding all components of the experiment, the detector consisted of two concentric cylindrical multi-wire proportional chambers (PWC), a jet drift chamber (JDC), and a barrel-shaped, modular electromagnetic CsI(Tl) calorimeter giving the detector system its name. The PWC was replaced by a silicon vertex detector in September 1995. The JDC had 30 sectors with each sector having 23 sense wires and allowed the detection and identification of charged particles with a momentum resolution for pions of less than 2% at 200 MeV/c. Separation of π/K below 500 MeV/c proceeded via ionisation sampling. The magnetic field of up to 1.5 T with a relative homogeneity of 2% in the region of the drift chamber was created by a conventional solenoid ($B_r ≈ B_φ \approx 0, B_z ≠ 0$) which was encased in a box-shaped flux return yoke. Data were taken on hydrogen and deuterium at rest [57–75] and at different incident beam momenta [76–80].
Figure 4: Cross section of the Crystal-Barrel Detector at LEAR. From the outside: (1) magnet yoke, (2) magnet coils, (3) CsI(Tl) barrel calorimeter, (4) jet drift chamber, (5) proportional wire chamber, (6) target, (7) one half of the endplate.

e⁺e⁻ Annihilation Experiments and Radiative Decays of Quarkonia

The study of radiative decays of quarkonia is considered most suggestive in the glueball search. Most of the information in this field has centered on J/ψ decays; after photon emission, the $c\bar{c}$ annihilation can go through C-even gg states, and hence may have a strong coupling to the low-lying glueballs. Study of J/ψ decays facilitates the search because the $D\bar{D}$ threshold is above the J/ψ mass of 3097 MeV/c^2 and the OZI rule\(^1\) suppresses decays of the $c\bar{c}$ system into light quarks. Radiative $\Upsilon(1S)$ decays are also supposed to be glue-rich and a corresponding list of two-body decay branching ratios for $\Upsilon(1S)$ is desirable. Results have been recently reported by the CLEO Collaboration [81,82]. The search for glueballs in $\Upsilon(1S)$ decays is however challenging because the ratio:

$$\frac{\Gamma_{\Upsilon\rightarrow e^+e^-}}{\Gamma_{\Upsilon\rightarrow e^+e^-}} = \left(\frac{\alpha_s(\Upsilon)}{\alpha_s(J/\psi)}\right)^4 \left(\frac{\Gamma_{\Upsilon\rightarrow e^+e^-}}{\Gamma_{\Upsilon\rightarrow e^+e^-}}\right) \cdot \frac{\Gamma_{J/\psi\rightarrow e^+e^-}}{\Gamma_{\Upsilon\rightarrow e^+e^-}} \cdot \frac{\Gamma_{\Upsilon\rightarrow e^+e^-}}{\Gamma_{J/\psi\rightarrow e^+e^-}} \approx 0.013$$ \hspace{1cm} (15)

is much smaller than for J/ψ mesons and a naive suppression factor of ~ 6 is expected. Moreover, information on any possible χ_{cJ} hadronic decays provides valuable insight into possible glueball dynamics.

\(^1\)The OZI rule states that decays corresponding to disconnected quark diagrams are forbidden.
J/ψ decays can also be used to study the flavor content of mesons in the so-called flavor-tagging approach. The reaction $J/\psi \rightarrow V X$ may serve as an example, where V is one of the light vector mesons (ω, ϕ, ρ^0) and X is the exclusive final state of interest. The flavor of X can now be tagged as the structure of the light vector is known. If the $\phi(1020)$ is produced, for instance, then the reaction $J/\psi \rightarrow \phi X$ indicates those recoiling mesons X, which are produced through their $s\bar{s}$ component. For this reason, J/ψ decays to $\omega f_2(1270)$ and $\phi f_2^0(1525)$ are clearly observed, but decays to $\omega f_2'(1525)$ and $\phi f_2(1270)$ are missing. High-statistics flavor-tagging is a promising tool and has helped determine mixing angles as discussed in section 2. Similar decays of the $\psi'(3770)$, the first radial excitation of the J/ψ, provides access to mesons with even higher masses.

Radiative decays of $c\bar{c}$ states can best be studied in formation at e^+e^- colliders via a virtual photon in the process:

$$e^+e^- \rightarrow \gamma \rightarrow c\bar{c}. \quad (16)$$

Only states with the quantum numbers of the photon ($J^P = 1^-$) can be created and the lowest-mass candidate is the 1^3S_1 J/ψ state.

Several reactions have been studied in the BES experiment at the e^+e^- collider BEPC at IHEP, Beijing. Operation started in 1989 with a maximum collider energy of $2E = 4.4$ GeV and a luminosity of up to $10^{31}/\text{cm}^2/\text{s}$. A layout of the BES-II detector is shown in Fig. 5. The detector is a large solid-angle magnetic spectrometer based on a conventional 0.4 T solenoidal magnet [83]. It identifies charged particles using dE/dx measurements in the drift chambers and time-of-flight measurements in a barrel-like array of 48 scintillation counters. The barrel shower counter measures the energy of photons with a resolution of $\sigma_E/E = 28\%/\sqrt{E}$ (E in GeV). More than $10^7 J/\psi$ events and more than $10^6 \psi'(3770)$ events

Figure 5: End view (left) and side view (right) of the BES-II detector at IHEP, Beijing
have been accumulated. The BES-III detector is a major upgrade aiming at \(L = 10^{33}/\text{cm}^2/\text{s} \) luminosity and recorded its first hadronic event in July 2008. Results relevant to this review are summarized in [84–90].

Radiative decays of \(\bar{c}c \) and \(\Upsilon (b\bar{b}) \) states have been studied with the CLEO detector at the \(e^+e^- \) collider CESR at Cornell University. Based on the CLEO-II detector, the CLEO-III detector started operation in 1999 [91]. CLEO consisted of drift chambers for tracking and \(dE/dx \) measurements and a CsI electromagnetic calorimeter based on 7800 modules inside a 1.5 T magnetic field. For CLEO-III, a silicon-strip vertex detector and a ring-imaging Čerenkov detector for particle identification were added. The integrated luminosity accumulated by the CLEO-III detector in 1999-2003 was 16 fb\(^{-1}\). In 2003, CLEO was upgraded to CLEO-c in order to study charm physics at high luminosities. The CLEO-c operations finally ended in Spring 2008. The anticipated program of collecting data at \(\sqrt{s} \sim 3.10 \) GeV for the \(J/\psi \) was given up due to technical difficulties in favor of a total of 572 pb\(^{-1}\) on the \(\psi' (3770) \). Selected results of the CLEO Collaboration can be found in [81,82,92–94].

The KLOE Collaboration has studied radiative \(\phi (1020) \) decays to \(f_0(980) \) and \(a_0(980) \) at the Frascati \(\phi \) factory DAPHNE. These decays play an important role in the study of the controversial structure of the light scalar mesons. In particular, the ratio \(B(\phi \to f_0(980)\gamma)/B(\phi \to a_0(980)\gamma) \) depends strongly on the structure of the scalars [95]. The KLOE detector consists of a cylindrical drift chamber, which is surrounded by an electromagnetic calorimeter and a superconducting solenoid providing a 0.52 T magnetic field. The energy resolution of the calorimeter is \(\sigma_E/E = 5.7 \%/\sqrt{E} \) (\(E \) in GeV). The detector accumulated \(1.4 \times 10^9 \) \(\phi \) decays in 2 years (2001-2002) with a maximum luminosity of up to \(7.5 \times 10^{32}/\text{cm}^2/\text{s} \). KLOE resumed data taking in 2004 with an upgraded machine.

Production Experiments: Central Production and Two-Photon Fusion

In contrast to formation experiments like \(e^+e^- \) and \(p\bar{p} \) annihilation discussed in the previous sections, the total energy in production experiments is shared among the recoiling particle(s) and the multi-meson final state. The mass and quantum numbers of the final state cannot be determined from the initial state and thus, many resonant waves with different angular momenta can contribute.

In central production, glueballs were suggested long time ago to be produced copiously in the process [96]:

\[
\text{hadron}_{\text{beam}} p \to \text{hadron}_f X p_s, \tag{17}
\]

where the final-state hadrons carry large fractions of the initial-state hadron momenta and are scattered diffractionally into the forward direction. To fulfill this requirement in a (proton) fixed-target experiment, a slow proton and a fast hadron needs to be observed in the final state. Mostly proton beams were used for these kinds of experiments, but some also involved pions or even kaons. The triggers in these experiments enhanced double-exchange processes – Reggeon-Reggeon, Reggeon-Pomeron, or Pomeron-Pomeron – relative to single-exchange and elastic processes. Early theoretical predictions suggested that the cross section for
double-Pomeron exchange is constant with center-of-mass energy \sqrt{s}, whereas a falling cross section is expected for the other exchange mechanisms [\[18\]]:

\[
\sigma \text{ (Reggeon - Reggeon)} \sim 1/s \quad \text{(18)}
\]

\[
\sigma \text{ (Reggeon - Pomeron)} \sim 1/\sqrt{s} \quad \text{(19)}
\]

\[
\sigma \text{ (Pomeron - Pomeron)} \sim \text{constant} \quad \text{(20)}
\]

At sufficiently high center-of-mass energies, reaction (17) is expected to be dominated by double-Pomeron exchange. The pomeron carries no charges – neither electric nor color charges – and is expected to have positive parity and charge conjugation. Thus, double-Pomeron exchange should favor production of isoscalar particles with positive G-parity in a glue-rich environment as no valence quarks are exchanged.

The observation in central production of a significant enhancement of glueball candidates over the production of conventional $q\bar{q}$ mesons at small transverse momenta led to the idea of a glueball filter [97]. No dynamical explanation has been given for this empirical finding, yet. In fact, the data show a strong kinematical dependence at small transverse momenta for all mesons. Just a momentum filter?

Several experiments, especially at CERN, made remarkable contributions. The WA76 Collaboration recorded data, mainly at 300 GeV/c, using a 60 cm long H_2 target. Multi-
wire proportional chambers triggered on exactly one “fast” particle in the forward direction. Some results from WA76 can be found in [98].

The electromagnetic multiphoton spectrometer GAMS-2000 originally took data at the IHEP proton synchrotron, Protvino, in a 38 GeV/c negative-pion beam [99]. The detector was later upgraded for experiments at the CERN SPS [100]. GAMS-4000 used a 50 cm long liquid H\(_2\) target and comprised a matrix of 64 \(\times\) 64 lead glass cells covering almost 6 m\(^2\).

Both the WA91 and WA102 Collaborations reported strong kinematical dependences of central meson production. The layout of the WA102 experiment is shown in Fig. 6. The experiment was a continuation of the WA76, WA91 and NA12/2 experiments at CERN aiming at a more complete study of the mass region from 1.2 to 2.5 GeV/c\(^2\). The experimental setup was a combination of the WA76 setup serving as a charged-particle tracker and the GAMS-4000 detector in the forward region providing the opportunity to detect and study events with charged and neutral particles. Results from WA102 are summarized in [101–118].

In contrast to direct glueball signals, the corresponding absence of states or glueball candidates in certain reactions can be as informative. Models predict for example that the \(\gamma\gamma\) coupling of non-\(q\bar{q}\) mesons is small and thus, glueball production should be suppressed in two-photon fusion. In addition to the stickiness (as defined in Eq. 13), a further quantitative test was proposed whether a meson state is a glueball or a conventional \(q\bar{q}\) meson. In [16], the normalized quantity gluiness denotes the ratio of the two-gluon to the two-photon coupling of a particle and is expected to be near unity for a \(q\bar{q}\) meson within the accuracy of the approximations made in [16]:

\[
G = \frac{9e_Q^4}{2} \left(\frac{\alpha}{\alpha_s} \right)^2 \frac{\Gamma_{R\rightarrow gg}}{\Gamma_{R\rightarrow \gamma\gamma}}
\]

Two-photon fusion has been studied in production with the CLEO II and upgraded CLEO II.V detectors at CESR using 13.3 fb\(^{-1}\) of \(e^+e^-\) data. The hadron is produced in the fusion of two space-like photons emitted by the beam electron and positron. Results of two-photon fusion studies from CLEO can be found in [94,119].

Further results on the \(\gamma\gamma\)-width of mesons have been reported by the LEP program at CERN. Though mainly focussing on electroweak physics, significant results on meson spectroscopy were achieved. The 4\(\tau\) detector ALEPH was designed to give as much detailed information as possible about complex events in high-energy \(e^+e^-\) collisions [120]. A superconducting coil produced a uniform 1.5-T field in the beam direction. Inside the coil, in order of increasing radius, there was a microstrip solid-state device, an Inner Tracking Chamber (ITC) using drift wires, a 3.6 \(\times\) 4.4 m Time Projection Chamber (TPC), and an electromagnetic calorimeter of 2 mm lead sheets with proportional wire sampling. A hadron calorimeter and a double layer of drift tubes aiding in good electron/muon identification were located outside the magnet coil. ALEPH data-taking ended on November 2000. The L3 detector was designed to measure the energy and position of leptons with the highest obtainable precision allowing a mass resolution of \(\delta m/m\) smaller than 2\% in dilepton final states [121]. Hadronic energy flux was detected by a fine-grained calorimeter, which also served as a muon filter and a tracking device. The outer boundary of the detector was
given by the iron return-yoke of a conventional magnet. The field was 0.5 T over a length of 12 m. Radially inwards was a combined hadron calorimeter and muon absorber. The electromagnetic energy flow was determined by approximately 11,000 BGO crystals. Full electromagnetic shower containment over nearly 4π solid angle coverage was achieved. L3 data-taking ended on November 2000. Important ALEPH and L3 results on the $\gamma\gamma$-width of mesons are given in [122–124].

Other Experiments

Many more experiments have significantly contributed to meson spectroscopy though these were not particularly devoted to the glueball search. Pion- and kaon beams were exploited in charge-exchange reactions:

$$\pi^- (K^-) + \text{proton} \rightarrow \text{neutron} + \text{meson}$$ \hspace{1cm} (22)

In case of an kaon-induced reaction, the baryon in the final state can also be a Λ baryon.

The LASS facility at SLAC was developed for strangeonium spectroscopy [125]. This spectrometer was designed for charged-particle final states and based on a superconducting solenoid producing a 2.24 T field along the beam axis and a subsequent 3 Tm dipole magnet with a vertical field. Particles under large scattering angles at low momenta and high-energy secondaries could be detected, respectively, with very good angular and momentum resolution. The LASS Collaboration recorded over $135 \cdot 10^6$ kaon-induced events.

The VErtex Spectrometer (VES) setup at Protvino was a large-aperture magnetic spectrometer including systems of proportional and drift chambers, a multi-channel threshold Čerenkov counter, beam-line Čerenkov counters, a lead-glass γ-detector (LGD) and a trigger hodoscope. This arrangement permits full identification of multi-particle final states. A negative particle beam (π^-, K^-) with momenta between 20-40 GeV/c was provided by the 70 GeV/c proton synchrotron. A description of the setup can be found in [126].

Experiment E852 at the Brookhaven Alternating Gradient Synchrotron had a dedicated program to study mainly mesons with exotic quantum numbers. The experimental setup was based on the Multi-Particle Spectrometer (MPS) and used a 30-cm liquid hydrogen target. It was surrounded by a cylindrical drift chamber to track charged particles downstream of the target and an array of barrel-shaped thallium-doped CsI crystals, all located inside the MPS dipole magnet [127]. Photons were detected in a 3000-element lead glass detector (LGD) matching the downstream aperture of the MPS magnet [128]. All reactions were induced by a 18 GeV/c π^- beam.

Heavy-Flavor Experiments

4.2 The scalar, pseudoscalar and tensor mesons

If we focus on the expected three lightest mass glueballs, $J^{PC} = 0^{++}, 2^{++},$ and 0^{-+}, we note that these are all quantum numbers of normal $q\bar{q}$ mesons. As such, it is important to understand what the known spectra and multiplet assignments of these states are. As
a starting point, we take the point of view of the Particle Data Group (PDG) [129]. The $I = 0$ mesons are listed for $J^{PC} = 0^{++}$ in Table 6, $J^{PC} = 2^{++}$ in Table 7 and $J^{PC} = 0^{-+}$ in Table 8. The following sections describe the main experimental findings in the search for the lightest-mass glueballs.
Results from $p\bar{p}$ Annihilation: The Crystal Barrel Experiment

The Crystal Barrel experiment [56] studied $p\bar{p}$ annihilation both at rest and in flight and observed final states with multiple charged particles and photons. In particular, many all-neutral final states were observed for the first time. The experiment accumulated about 10^8 $p\bar{p}$ annihilation at rest in liquid hydrogen and thus, exceeded statistics collected in bubble-chamber experiments by about three orders of magnitude. At the beginning of the Crystal-Barrel data taking in late 1989, only three scalar states were well established: $a_0(980)$, $f_0(980)$, and the $K_0^*(1430)$. The high-statistics data sets collected at rest provided firm evidence for new states, among others the $f_0(1500)$ scalar state.

Crystal Barrel studied proton-antiproton annihilations at rest into three pseudoscalar mesons: $p\bar{p} \rightarrow \pi^0\pi^0\pi^0$ [57,58], $p\bar{p} \rightarrow \pi^0\eta\eta$ [57], $p\bar{p} \rightarrow \pi^0\eta\eta'$ [61], $p\bar{p} \rightarrow K^0_LK^0_S\pi^0$ [62], $p\bar{p} \rightarrow K^0_LK^0_S\eta$ [62], $p\bar{p} \rightarrow K^+K^-\pi^0$ [63], $p\bar{p} \rightarrow K_LK_L\pi^0$ [64], $p\bar{p} \rightarrow \pi^0\pi^0\eta'$ [65], $p\bar{p} \rightarrow \eta\pi\pi$ [66], $n\bar{p} \rightarrow \pi^+\pi^-\pi^0$ [72], $n\bar{p} \rightarrow \pi^+\pi^-\pi^-$ [73], into four pseudoscalar mesons: $p\bar{p} \rightarrow \eta\pi^0\pi^0\pi^0$ [67], and into five pions: $p\bar{p} \rightarrow 5\pi$ [68–71]. In addition, the reactions $p\bar{p} \rightarrow \omega\pi^0\pi^0$ [74], $n\bar{p} \rightarrow \omega\pi^-\pi^0$ [75], were analyzed.

There were also measurements made in flight at several different incident \bar{p} momenta: $p\bar{p} \rightarrow K\bar{K}\pi^0$ [76], $p\bar{p} \rightarrow \eta\pi^0\pi^0$ [77], $p\bar{p} \rightarrow \eta\pi^0\pi^0\pi^0$ [78], $p\bar{p} \rightarrow \omega\pi^0$ [79], $p\bar{p} \rightarrow \omega\eta$ [79], $p\bar{p} \rightarrow \omega\eta'$ [79], $p\bar{p} \rightarrow \pi^0\pi^0\pi^0$ [80], $p\bar{p} \rightarrow \pi^0\pi^0\eta$ [80], $p\bar{p} \rightarrow \pi^0\eta\eta$ [80], $p\bar{p} \rightarrow K^+K^-\pi^0$ [80].

The first experimental hint for an isoscalar state around 1500 MeV/c^2 came in 1973 from a low-statistics analysis of $p\bar{p}$ annihilations at rest into three pions [130]. The state was later confirmed with a mass of 1527 MeV/c^2 suggesting a spin-0 assignment and also reporting a missing $K\bar{K}$ decay mode [131]. A very broad, somewhat higher-mass S-wave state called G(1590) was reported in 38 GeV/c pion-induced reactions by the GAMS-2000 Collaboration decaying to $\eta\gamma$ [132] and $\eta\gamma'$ [133]. The group reported that the decay rate into two neutral pions is at least three times lower than the rate into $\eta\eta$.

Crystal Barrel provided high-statistics for final states with three light pseudoscalar mesons. In summary, a consistent description of all these data was achieved in a coupled-channel analysis by using four (isoscalar) scalar $\pi^0\pi^0$ waves: $f_0(980)$, $f_0(1370)$, $f_0(1500)$, and a broad

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta(548)$ *</td>
<td>547.51 ± 0.18</td>
<td>1.30 ± 0.07 keV</td>
<td>$\gamma\gamma$, 3π</td>
</tr>
<tr>
<td>$\eta'(958)$ *</td>
<td>957.78 ± 0.14</td>
<td>0.203 ± 0.016</td>
<td>$\eta\pi\pi$, $\rho\gamma$, $\omega\gamma$, $\gamma\gamma$</td>
</tr>
<tr>
<td>$\eta(1295)$ *</td>
<td>1294 ± 4</td>
<td>55 ± 5</td>
<td>$\eta\pi\pi$, $a_0\pi$, $\gamma\gamma$, $\eta\sigma$, $K\bar{K}\pi$</td>
</tr>
<tr>
<td>$\eta(1405)$ *</td>
<td>1409.8 ± 2.5</td>
<td>51.1 ± 3.4</td>
<td>$KK\pi$, $K\bar{K}\pi$ + cc, $a_0\pi$, $\gamma\gamma$</td>
</tr>
<tr>
<td>$\eta(1475)$ *</td>
<td>1476 ± 4</td>
<td>87 ± 9</td>
<td>$KK\pi$, $KK\pi$ + cc</td>
</tr>
<tr>
<td>$\eta(1760)$</td>
<td>1760 ± 11</td>
<td>60 ± 16</td>
<td>$\omega\omega$, 4π</td>
</tr>
<tr>
<td>$\eta(2225)$</td>
<td>2220 ± 18</td>
<td>150+300−60 ± 60</td>
<td>$K\bar{K}K\bar{K}$</td>
</tr>
</tbody>
</table>

Table 8: The $I = 0$, $J^{PC} = 0^{+-}$ mesons as listed by the particle data group [6]. Resonances marked with * are listed in the Meson Summary Table.
structure $f_0(400 - 1200)$ – listed as $f_0(600)$ by the PDG. In particular, the $3\pi^0$ and $\pi^0\eta\eta$ channels need the two scalar states, $f_0(1370)$ and $f_0(1500)$, decaying to $\pi^0\pi^0$ and $\eta\eta$. Consistency in the description of the data sets further requires two poles for the $\eta\pi^0$ S-wave in annihilation into $\pi^0\pi^0\eta$, $a_0(980)$ and $a_0(1450)$, in addition to a tensor meson in the $\pi\pi$ P-wave, $f_2(1565)$ [57].

Dalitz plots from various Crystal Barrel analyses are shown in Fig. 7 for $p\bar{p}$ annihilation into $\pi^0\eta\eta$ (a), $\pi^0\pi^0\eta$ (b), $3\pi^0$ (c), and $\pi^0K_LK_L$ (d). The most prominent features are labeled
Barrel in the coupled-channel analysis with a K-matrix mass and width of M.

It is now widely accepted that the f with three clusters in the barrel were used for the analysis [64]. The contributions from K in the analysis and the other \(\pi \) no strange decay was reported by a previous bubble-chamber experiment [131], which had to clarify the internal structure of the \(f \) provided the first evidence for the \(\eta \eta \) decaying to \(\pi \eta \) states decaying to \(\pi \eta \) and \(\eta \eta \pi \pi \) (Fig. 7 (a)). The data also demand two isoscalar states, labeled by the crossing vertical and horizontal bands for the isovector state \(\eta \) in the figure. The Dalitz plot for proton-antiproton annihilation into \(\pi \pi \) is identical to the G(1590) observed by the GAMS Collaboration [132]. In fact, an earlier analysis based on a reduced \(\pi \eta \) data set provided the first evidence for the \(f_0(1370) \) [59]. The observation of two necessary scalar states decaying to \(\eta \eta \) is confirmed in an analysis of the \(\pi \eta \eta \) \(\rightarrow \) 1\(\gamma \) final state, which exhibits entirely different systematics. It is now widely accepted that the \(f_0(1500) \) observed by Crystal Barrel in the coupled-channel analysis with a K-matrix mass and width of \(M \sim 1569 \text{ MeV}/c^2 \) and \(\Gamma \sim 191 \text{ MeV}/c^2 \) is identical to the G(1590) observed by the GAMS Collaboration [132].

A narrow band of about constant intensity is observed in the \(3\pi \) Dalitz plot (Fig. 7 (c)) indicating the presence of the \(f_0(1500) \). Further visible features include an increased population at the edges of the Dalitz plot along the \(\pi \pi \) band marked \(f_2(1270) \). This indicates that one decay \(\pi \) is preferentially emitted along the flight direction of the resonance, which is typical of a spin-2 resonance decaying with an angular distribution of \((3 \cos^2 \theta - 1)^2 \) from the \(^1S_0 \) initial state. Striking are the corner blobs, which follow a \(\sin^2 \theta \) angular distribution and correspond to the \(f_2'(1525) \) interfering constructively with the two \(\pi \pi \) S-waves. The fit also requires a small contribution from the \(f_2(1565) \). An important piece of information to clarify the internal structure of the \(f_0(1500) \) is to study its \(K\bar{K} \) decay mode. In fact, no strange decay was reported by a previous bubble-chamber experiment [131], which had very limited statistics and no partial wave analysis was performed. The Dalitz plot for the \(\pi^0K_L\bar{K}_L \) channel at rest from Crystal Barrel is shown in Fig. 7 (d). One \(K_L \) was missing in the analysis and the other \(K_L \) interacted hadronically in the CsI calorimeter. Events with three clusters in the barrel were used for the analysis [64]. The contributions from the \(f_0(1370) \) and \(f_0(1500) \) were found to be small. The precise determination is however

<table>
<thead>
<tr>
<th>Ratio</th>
<th>(f_0(1370))</th>
<th>(f_0(1500))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma(K\bar{K})/\Gamma(\pi\pi))</td>
<td>((0.37 \pm 0.16)) to ((0.98 \pm 0.42)) [71]</td>
<td>(^a 0.186 \pm 0.066) [58,64]</td>
</tr>
<tr>
<td>(\Gamma(\eta\eta)/\Gamma(\pi\pi))</td>
<td>(0.020 \pm 0.010) [71]</td>
<td>(^b 0.119 \pm 0.032) [57]</td>
</tr>
<tr>
<td>(\Gamma(\eta\eta')/\Gamma(\pi\pi))</td>
<td>(0.226 \pm 0.095) [58,60]</td>
<td>(^b 0.157 \pm 0.062) [57]</td>
</tr>
<tr>
<td>(\Gamma(\rho\rho)/\Gamma(4\pi))</td>
<td>(0.260 \pm 0.070) [70]</td>
<td>(0.130 \pm 0.080) [70,71]</td>
</tr>
<tr>
<td>(\Gamma(\sigma\sigma)/\Gamma(4\pi))</td>
<td>(0.510 \pm 0.090) [70]</td>
<td>(0.260 \pm 0.070) [70]</td>
</tr>
<tr>
<td>(\Gamma(\rho\rho)/\Gamma(2[\pi\pi]_S))</td>
<td>(0.800 \pm 0.050) [134]</td>
<td>(0.760 \pm 0.080) [70]</td>
</tr>
</tbody>
</table>

Table 9: A summary of Crystal-Barrel results on the decay of scalar mesons. Branching ratios for decays into \(4\pi \) are determined from \(\bar{p}n \) annihilation. Results labeled \(^a\) are from single channel analyses and \(^b\) from a coupled channel analysis including \(3\pi^0 \), \(2\pi^0\eta \), and \(\pi^0\eta\eta \).
Figure 8: Dalitz plot for $p\bar{p} \rightarrow \pi^0\eta\eta$ in flight at 900 MeV/c (left). The arrows indicate $a_0(980)$ (A), $a_2(1320)$ (B), $f_0(1500)/f_2'(1525)$ (C), whereas (D) shows the expected location of the $f_0(1710)$. The $\eta\eta$ mass projection (right) is dominated by the $f_0(1500)/f_2'(1525)$ peak; the shaded area represents the fit [80]. Figure taken from [4].

challenging because the isovector state $a_0(1450)$ also decays to K_LK_L, which can form both an $I = 0$ and $I = 1$ system. Contributions from $a_0(1450)$ were thus determined from the $K_LK_L^{\pm}\pi^\mp$ final state by using isospin conservation and the fact that no isoscalar S-wave contributes.

The 4π decay modes of scalar mesons were studied at rest in proton-antiproton annihilation into $5\pi^0$ [69] and $3\pi^0\pi^+\pi^-$ [68] as well as in antiproton-neutron annihilation into $4\pi^0\pi^-$ [70,71] and $2\pi^02\pi^-\pi^+$ [71]. All data sets are dominated by 4π scalar isoscalar interactions and at least the two states, $f_0(1370)$ and $f_0(1500)$, are required in the analysis. It is observed that the 4π-decay width of the $f_0(1370)$ is more than 6 times larger than the sum of all observed partial decay widths to two pseudoscalar mesons. This may indicate a dominant $n\bar{n}$ component over a $s\bar{s}$ structure. The 4π-decays of the $f_0(1500)$ represent about half of its total width. The analyses also yield important couplings to $(\pi\pi)_S(\pi\pi)_S$ and to $\rho\rho$ (Table 9). It was pointed out in [135] that the $\rho\rho$ decay should dominate $2[\pi\pi]_S$ if the $f_0(1500)$ was a mixture of the ground state glueball with nearby $q\bar{q}$ states, at least in the framework of the 3P_0 $Q\bar{Q}$ pair creation model. In leading order of this scheme, the decay mechanism of the $f_0(1500)$ proceeds dominantly via its quarkonia components. Unfortunately, results from Crystal Barrel and WA102 entirely disagree leaving the experimental situation unsettled (Tables 9 and 10).

In the limit of no s-quark admixture in the proton wave function, the OZI rule does not support production of pure $s\bar{s}$ states in $p\bar{p}$ annihilation. For this reason, observation of the $f_0(1710)$ scalar state should be strongly suppressed, which is assumed to have a dominant $s\bar{s}$ component. The state was discovered by the Crystal-Ball Collaboration in radiative
J/ψ decays into $\eta\eta$ [136], but the spin ($J = 0$ or 2) remained controversial for a long time. The WA102 Collaboration later determined the spin in favor of 0^{++} in central production at 450 GeV/c. Crystal Barrel data for the reactions $p\bar{p} \rightarrow \pi^0\pi^0\pi^0$, $p\bar{p} \rightarrow \pi^0\pi^0\eta$, and $p\bar{p} \rightarrow \pi^0\eta\eta$ in flight at 900 MeV/c were used to search for isoscalar 0^{++} and 2^{++} states in the 1000-2000 MeV/c^2 mass range, in particular for the $f_0(1710)$ [80]. A satisfactory signal around 1700 MeV/c^2 was neither observed for a scalar nor for a tensor state in the partial wave analyses of both the $\pi^0\pi^0\pi^0$ and $\pi^0\eta\eta$ channels. The $\pi^0\eta\eta$ Dalitz plot and the corresponding $\eta\eta$ mass projection are shown in Fig. 8. The (D) arrow indicates the expected location of the $f_0(1710)$. None of the fits using the PDG mass and width for the $f_0(1710)$ had a stable solution and the log-likelihood improvement was not significant even in the best fit. The state does not seem to be produced in proton-antiproton annihilations in flight at 900 MeV/c and upper limits at the 90% confidence level were derived using PDG mass and width of $M = 1715$ MeV/c^2 and $\Gamma = 125$ MeV/c^2 [137]:

$$\frac{B(p\bar{p} \rightarrow \pi^0f_0(1710) \rightarrow \pi^0\pi^0\pi^0)}{B(p\bar{p} \rightarrow \pi^0f_0(1500) \rightarrow \pi^0\pi^0\pi^0)} < 0.31$$

(23)

$$\frac{B(p\bar{p} \rightarrow \pi^0f_0(1710) \rightarrow \pi^0\eta\eta)}{B(p\bar{p} \rightarrow \pi^0f_0(1500) \rightarrow \pi^0\eta\eta)} < 0.25$$

(24)

For this reason, the non-observation of the $f_0(1710)$ scalar state in $p\bar{p}$ reactions is consistent with a dominant $s\bar{s}$ assignment to this state assuming it has a $q\bar{q}$ structure. Though the WA102 Collaboration supported this conclusion by reporting a much stronger $K\bar{K}$ coupling of the $f_0(1710)$ than $\pi\pi$ coupling, it was not directly observed in the amplitude analysis of the reaction $K^-p \rightarrow K_SK_S\Lambda$. As mentioned before, the spin assignment was controversial for a long time and much later settled in favor of 0^{++}. In fact, the assumption in the analysis of K^--induced data was $J = 2$ and may explain the absence.

In addition to the familiar η and η' mesons, Crystal Barrel observed a pseudoscalar state with a mass of 1409 MeV/c^2 and a width of 86 MeV [66]. The state, $\eta(1405)$, was observed in the $p\bar{p} \rightarrow \eta\pi^+\pi^-\pi^0\pi^0$ reaction, with the $\eta(1405)$ decaying to both $\eta\pi^0\pi^0$ and $\eta\pi^+\pi^-$. Partial wave analysis indicated that the decays were via two reactions, $\eta(1405) \rightarrow a_0(980)\pi$ and $\eta(\pi\pi)_S$ with

$$\frac{B(\eta \rightarrow \eta(\pi\pi)_S)}{B(\eta \rightarrow a_0\pi)} = 0.78 \pm 0.12 \pm 0.10.$$

It was reported by MarkIII [21] that in the mass region of the 1400, there were actually two pseudoscalar states. The lighter decaying via $a_0\pi$ and the heavier via $K^*\bar{K}$. This is not inconsistent with the Crystal Barrel observation of a single state which is likely the lighter of the two MarkIII states.

Oddly, the expected lighter pseudoscalar state, the $\eta(1295)$, was not observed by Crystal Barrel, even though its dominant decays are expected to be the same final states as the $\eta(1405)$.

24
Results from the OBELIX Experiment

The OBELIX detector system was operated at LEAR with a liquid H$_2$ (D$_2$) target, a gaseous H$_2$ target at room temperature and pressure, and a target at low pressures (down to 30 mbar). Among other things, the wide range of target densities provided detailed information about the influence of the atomic cascade on the annihilation process.

The collaboration has performed several studies looking at the η(1405) and η(1460) in the $K\bar{K}\pi$ final states. The first study looked at $p\bar{p} \rightarrow K^+K^0_{miss}\pi^+\pi^-$ at rest [50] where they confirmed two pseudoscalar states. The lighter decayed mainly to $K\bar{K}\pi$ (via $a_0(980)\pi$) while the heavier to $K^*\bar{K}$. Further evidence for the two states is provided in references [51] and [52]. A study of the reaction $\pi_1(1400)$ from $p\bar{p} \rightarrow K^+K^-\pi^-\pi^0$ [53] at rest in a gaseous hydrogen target provides information on the η(1405) and η(1460). Also hints of the $f_0(1710)$ decaying to $f_0(1370)(\pi\pi)_S$ were found.

OBELIX also observed an isovector scalar state with a mass of about 1.3 GeV/c2 in its $K\bar{K}$ decay mode [54,55]; the state is relatively narrow, with a 80 MeV width. In formation, the collaboration reported on the 3π decays of the π(1300) as well as suggested a 3π decay of the π$_1$(1400) from $p\bar{p} \rightarrow 2\pi^+2\pi^-$ [49] at rest and in flight.

The OBELIX Collaboration recently studied the $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, and $K^\pm K^0\pi^\mp$ final states in proton-antiproton annihilation at rest at three different hydrogen target densities in the framework of a coupled-channel analysis together with $\pi\pi$, πK, and $K\bar{K}$ scattering data [55]. One of the main goals of the analysis was to determine branching ratios as well as $\pi\pi$ and $K\bar{K}$ partial widths of all the involved ($J^P = 0^+$, 1^-, 2^+) resonances. Dalitz-plot projections of the three annihilation reaction are shown in Fig. 9. The scattering data, in particular the $\theta_0(\pi\pi \rightarrow \pi\pi)$ phase shift, clearly require contributions from the $f_0(980)$ pole. The authors further report on two additional poles required by annihilation data, a broad $f_0(1370)$ and a relatively narrow $f_0(1500)$. The introduction of a fourth scalar state improves the data and splits the initially broad $f_0(1370)$ into a broad $f_0(400 - 1200)$ and a relatively narrow $f_0(1370)$. The $f_0(1710)$ does not seem to be needed by the data. In addition, a good description requires the $f_2(1270)$ and $f_2'(1525)$ tensor states. The $f_2(1565)$ pole is needed for the $\pi^+\pi^-\pi^0$ and $K^+K^-\pi^0$ data at low pressure and in hydrogen gas at normal temperature and pressure. The following $\Gamma_{K\bar{K}}/\Gamma_{\pi\pi}$ ratios of branching fractions for $f_0(1370)$, $f_0(1500)$, and $f_2(1270)$ were determined:

$$
\frac{B(p\bar{p} \rightarrow f_0(1370)\pi^0, \ f_0 \rightarrow K\bar{K})}{B(p\bar{p} \rightarrow f_0(1370)\pi^0, \ f_0 \rightarrow \pi\pi)} = \left\{ \begin{array}{ll}
1.000 \pm 0.200 & ^1S_0 \\
0.940 \pm 0.200 & ^3P_1
\end{array} \right. \quad (25)
$$

$$
\frac{B(p\bar{p} \rightarrow f_0(1500)\pi^0, \ f_0 \rightarrow K\bar{K})}{B(p\bar{p} \rightarrow f_0(1500)\pi^0, \ f_0 \rightarrow \pi\pi)} = \left\{ \begin{array}{ll}
0.240 \pm 0.040 & ^1S_0 \\
0.300 \pm 0.040 & ^3P_1
\end{array} \right. \quad (26)
$$

$$
\frac{B(p\bar{p} \rightarrow f_2(1270)\pi^0, \ f_2 \rightarrow K\bar{K})}{B(p\bar{p} \rightarrow f_2(1270)\pi^0, \ f_2 \rightarrow \pi\pi)} = \left\{ \begin{array}{ll}
0.043 \pm 0.010 & ^1S_0 \\
0.045 \pm 0.010 & ^3P_1 \\
0.048 \pm 0.010 & ^3P_2
\end{array} \right. \quad (27)
$$

25
Figure 9: Theoretical (shaded histograms) and experimental (background subtracted) Dalitz-plot projections from the OBELIX experiment of the three annihilation reactions $p\bar{p} \rightarrow \pi^+\pi^-\pi^0$, $p\bar{p} \rightarrow K^+K^-\pi^0$, and $p\bar{p} \rightarrow K^\pm K^0_S\pi^\pm$ in liquid (LH) hydrogen, H$_2$ gas at normal pressure and temperature (NP), and low pressure (LP) hydrogen gas. Theoretical and experimental errors are summed. Figure is taken from [55].
Table 10: A summary of WA102 results on the decay of scalar mesons [101–107, 109, 118]. The result for the decay of the $f_0(1500)$ into 4π is derived \(^1\) from $2\pi^+2\pi^-$ and \(^2\) from $\pi^+\pi^-2\pi^0$.

The values for $f_0(1500)$ from OBELIX obtained in a coupled-channel framework are somewhat greater than earlier coupled-channel results from Crystal-Barrel (Table 9) and agree well with results from WA102 [108] (Table 10). The $f_2(1270)$ ratios agree with the PDG values within the experimental errors.

Results from Central Production: The WA102 Experiment

The WA102 experiment looked at 450 GeV/c protons incident on a proton target to study the reaction $pp \rightarrow p(f)_{\text{nat}} X p(s)_{\text{low}}$ – so-called central production. Such reactions are believed to have a significant contribution from double-pomeron exchange – a reaction that is supposed to be glue-rich. Relevant to the search for scalar glueballs, the collaboration carried out partial wave analysis on a large number of final states, $pp \rightarrow pp4\pi$ [101–104], $pp \rightarrow pp\pi^0\pi^0$ [105], $pp \rightarrow pp\pi^+\pi^-$ [101, 106, 108], $pp \rightarrow ppK^+K^-$ [107, 108], $pp \rightarrow ppK_S^0K_S^0$ [107], $pp \rightarrow pp\eta\eta$ [110], $pp \rightarrow pp\eta'$ [109], $pp \rightarrow pp\eta''$ [109], $pp \rightarrow pp\eta'\eta'$ [110], $pp \rightarrow pp\phi\phi$ [111], $pp \rightarrow pp\omega\omega$ [112], $pp \rightarrow pp\phi\omega$ [113] and $pp \rightarrow ppK^*(892)\bar{K}^*(892)$ [113].

In addition, a number of studies that bear on the search from pseudoscalar states were also performed: $pp \rightarrow pp\pi^0\pi^0\pi^0$ [114], $pp \rightarrow pp\pi^+\pi^-\pi^0$ [115], $pp \rightarrow pp\eta\pi^0$ [116], $pp \rightarrow pp\eta\pi^+\pi^-$ [117], and $pp \rightarrow ppK\bar{K}$ [118].

Results of measured decay branching ratios into two pseudoscalar mesons are listed in Table 10 [101–107, 109, 118]. Further selected PWA results from the WA102 experiment on central production are presented in Fig. 10 [5, 108–110]. The K^+K^- S-wave from a coupled-channel analysis of $\pi^+\pi^-$ and K^+K^- data is shown in (a). The long tail beyond the dominant threshold enhancement for the $f_0(980)$ includes signals for the three scalar resonances of Table 10. Only the two higher-mass states are observed as peaks [108]. The corresponding K^+K^- D-wave (b) shows resonant peaks for the two established tensor mesons $f_2(1270)$ and $f_2'(1525)$. A structure at 2.15 GeV/\(c^2\) is also observed in the mass distribution. The pole positions for the $f_0(1370)$ and $f_0(1500)$ are in excellent agreement with results from the Crystal-Barrel experiment. Fig. 10 (c) and (d) present the $\eta\eta$ S- and D-wave [110]. The $f_0(1500)$ is clearly seen in the S-wave $\eta\eta$ mass distribution (c). In addition to a weak $f_2(1270)$ signal, the resonant structure at 2.15 GeV/\(c^2\) is also observed in the $\eta\eta$ D-wave (d). The $f_0(1500)$ was also observed in studies of the $\eta\eta'$ decay mode [109], shown in Fig. 10 (e), and in the 4π final state [103].

The small $\Gamma(\pi\pi)/\Gamma(K\bar{K})$ value for the $f_0(1710)$ in Table 10 clearly indicates that this
resonance must have a large $s\bar{s}$ component. By contrast, the same ratio is much greater than one for the $f_0(1500)$. If interpreted as $q\bar{q}$ state, the $f_0(1500)$ cannot have a large $s\bar{s}$ component since pure $s\bar{s}$ mesons do not decay to pions. Moreover, we recall that an enhancement of gluonic states is expected in Pomeron-Pomeron fusion (Close-Kirk glueball filter) [97]. Though the $f_0(1710)$ couples more strongly to $K\bar{K}$, the K^+K^- S-wave signal for the $f_0(1500)$ shown in Fig. 10 (a) is larger in agreement with predictions of the glueball filter.

Comment on the $\rho\rho/2\pi\pi$ disagreement with CB

Table 11 also shows that production of isovector states is strong, e.g. the $a_1(1260)$, which
Table 11: A summary of WA102 results on resonance production at \(\sqrt{s} = 29.1 \) GeV [138]. The quoted errors are statistical and systematic errors summed in quadrature. Numbers given for resonance production as a function of \(dP_T \) are percentages of the total contribution.

<table>
<thead>
<tr>
<th>(J^{PC})</th>
<th>Res.</th>
<th>(\sigma) [ab]</th>
<th>(dP_T \leq 0.2) GeV</th>
<th>(0.2 \leq dP_T \leq 0.5) GeV</th>
<th>(dP_T \geq 0.5) GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(^{++})</td>
<td>(\pi^0)</td>
<td>22011 ± 3267</td>
<td>12 ± 2</td>
<td>45 ± 2</td>
<td>43 ± 2</td>
</tr>
<tr>
<td></td>
<td>(\eta)</td>
<td>3859 ± 368</td>
<td>6 ± 2</td>
<td>34 ± 2</td>
<td>60 ± 3</td>
</tr>
<tr>
<td></td>
<td>(\eta')</td>
<td>1717 ± 184</td>
<td>3 ± 2</td>
<td>32 ± 2</td>
<td>64 ± 3</td>
</tr>
<tr>
<td>0(^{++})</td>
<td>(a_0(980))</td>
<td>638 ± 60</td>
<td>25 ± 4</td>
<td>33 ± 5</td>
<td>42 ± 6</td>
</tr>
<tr>
<td></td>
<td>(f_0(980))</td>
<td>5711 ± 450</td>
<td>23 ± 2</td>
<td>51 ± 3</td>
<td>26 ± 3</td>
</tr>
<tr>
<td></td>
<td>(f_0(1370))</td>
<td>1753 ± 580</td>
<td>18 ± 4</td>
<td>32 ± 2</td>
<td>50 ± 3</td>
</tr>
<tr>
<td></td>
<td>(f_0(1500))</td>
<td>2914 ± 301</td>
<td>24 ± 2</td>
<td>54 ± 3</td>
<td>22 ± 4</td>
</tr>
<tr>
<td></td>
<td>(f_0(1710))</td>
<td>245 ± 65</td>
<td>26 ± 2</td>
<td>46 ± 2</td>
<td>28 ± 2</td>
</tr>
<tr>
<td></td>
<td>(f_0(2000))</td>
<td>3139 ± 480</td>
<td>12 ± 2</td>
<td>38 ± 3</td>
<td>50 ± 4</td>
</tr>
<tr>
<td>1(^{++})</td>
<td>(a_1(1260))</td>
<td>10011 ± 900</td>
<td>13 ± 3</td>
<td>51 ± 4</td>
<td>36 ± 3</td>
</tr>
<tr>
<td></td>
<td>(f_1(1285))</td>
<td>6857 ± 1306</td>
<td>3 ± 1</td>
<td>35 ± 2</td>
<td>61 ± 4</td>
</tr>
<tr>
<td></td>
<td>(f_1(1420))</td>
<td>1080 ± 385</td>
<td>2 ± 2</td>
<td>38 ± 2</td>
<td>60 ± 4</td>
</tr>
<tr>
<td>2(^{++})</td>
<td>(a_2(1320))</td>
<td>1684 ± 134</td>
<td>10 ± 2</td>
<td>38 ± 5</td>
<td>52 ± 6</td>
</tr>
<tr>
<td></td>
<td>(f_2(1270))</td>
<td>3275 ± 422</td>
<td>8 ± 1</td>
<td>29 ± 1</td>
<td>63 ± 2</td>
</tr>
<tr>
<td></td>
<td>(f_2'(1520))</td>
<td>68 ± 9</td>
<td>4 ± 3</td>
<td>36 ± 3</td>
<td>60 ± 4</td>
</tr>
<tr>
<td></td>
<td>(f_2(1910))</td>
<td>528 ± 40</td>
<td>20 ± 4</td>
<td>62 ± 7</td>
<td>18 ± 4</td>
</tr>
<tr>
<td></td>
<td>(f_2(1950))</td>
<td>2788 ± 175</td>
<td>27 ± 2</td>
<td>46 ± 5</td>
<td>27 ± 2</td>
</tr>
<tr>
<td></td>
<td>(f_2(2150))</td>
<td>121 ± 12</td>
<td>3 ± 3</td>
<td>53 ± 4</td>
<td>44 ± 3</td>
</tr>
</tbody>
</table>

requirements Reggeon exchange.

Scalar resonances are consistent with Pomeron-Pomeron fusion. Production of \(a_0(980) \) is suppressed by almost a factor of 10 with respect to the \(f_0(980) \). The \(a_0(1450) \) is not even seen, whereas a large \(f_0(1500) \) yield is observed. Interestingly, production of the \(f_0(1710) \) is very weak.

Though, scalar meson production indicates dominant (glue-rich) Pomeron-Pomeron exchange, the situation for other resonances is less clear. Elaborate more on validity of double-pomeron exchange

Light Mesons from \(e^+e^- \) Experiments: The BES Experiment

Several reactions have been studied in the BES experiment. Partial wave analysis has been performed on several radiative decays of the \(J/\psi \) and are reported for the following reactions: \(J/\psi \rightarrow \gamma \pi^+\pi^-\pi^+\pi^- \) [84], \(J/\psi \rightarrow \gamma \pi^+\pi^- \) [85], \(J/\psi \rightarrow \gamma \pi^0\pi^0 \) [85], \(J/\psi \rightarrow \gamma K^+K^- \) [86], \(J/\psi \rightarrow \gamma K_S^0K_S^0 \) [86], and \(J/\psi \rightarrow \gamma \phi \omega \) [87]. In addition to the radiative decays, BES has also examined decays to associated vector meson decays. Here, analysis has been performed...
Figure 11: The $\pi^+\pi^-$ invariant mass distribution (a) and the $\pi^0\pi^0$ mass distribution (b) from the reaction $J/\psi \to \gamma\pi\pi$ from BES [85]. The crosses are data, the full histogram shows the maximum likelihood fit, and the shaded area corresponds to the background.

on the reactions: $J/\psi \to \omega\pi^+\pi^-$ [88], $J/\psi \to \phi\pi^+\pi^-$ [89], $J/\psi \to \omega K^+K^-$ [90], and $J/\psi \to \phi K^+K^-$ [89].

BES II results on J/ψ radiative decays to $\pi^+\pi^-$ and $\pi^0\pi^0$ are shown in Fig. 11. A sample of 58 M J/ψ events was used for the PWA [85]. Similar structures are visible in both mass spectra. Three clear peaks are observed in both distributions in the 1.0 to 2.3 GeV/c^2 mass range: a strong $f_2(1270)$ signal exhibiting a shoulder on the high-mass side, an enhancement at ~ 1.7 GeV/c^2 associated with the $f_0(1710)$, and a peak at ~ 2.1 GeV/c^2. The shaded histogram in Fig. 11 (a) corresponds to dominant background from $J/\psi \to \pi^+\pi^-\pi^0$. The estimated background in (b) stems from various reactions; PDG branching ratios have been used in the studies. Three scalar mesons are observed with approximately consistent results from both fits. The lowest 0^{++} state is consistent with the $f_0(1500)$ and associated with the shoulder in Fig. 11. The collaboration reports that spin 0 is strongly preferred over spin 2 in the analysis. Though not favored in the PWA, the presence of the $f_0(1370)$ is not excluded.

The fitted masses and widths from $J/\psi \to \gamma\pi^+\pi^-$ for the two lowest-mass states are given by:

\[
M_{f_0(1500)} = 1466 \pm 6 \pm 20 \text{ MeV}/c^2 \quad \Gamma = 108^{+14}_{-11} \pm 25 \text{ MeV}/c^2 \\
M_{f_0(1710)} = 1765^{+4}_{-3} \pm 13 \text{ MeV}/c^2 \quad \Gamma = 145 \pm 8 \pm 69 \text{ MeV}/c^2,
\]

whereas PDG values for the $f_0(2020)$ are used for the structure at ~ 2.1 GeV/c^2.

The two established scalar mesons, $f_0(1500)$ and $f_0(1710)$, are also significantly produced in $J/\psi \to 2\pi^+2\pi^-$ with masses of $M_{f_0(1500)} = 1505^{+15}_{-20}$ and $M_{f_0(1710)} = 1740^{+30}_{-25}$, respectively [84]. In addition, the likelihood fit requires a tensor state $f_2(1950)$ around 2 GeV/c^2.

30
Figure 12: Invariant mass distributions of pseudoscalar meson pairs recoiling against ω, ϕ or γ in J/ψ decays measured at BES II. The dots with error bars are data, the solid histograms are the scalar contributions from PWA, and the dashed lines in (a) through (c) are contributions of $\sigma(485)$ from the fits, while the dashed line in (d) is the $f_0(980)$. Notice that not the full mass spectra are analyzed in (e), (f), and (g). The figure is taken from [140].

confirming earlier WA91 and WA102 results [102,139]. Branching fractions determined from $J/\psi \rightarrow 2\pi^+ 2\pi^-$ are listed in Table 12. The $f_0(1710)$ scalar state also dominates the reaction $J/\psi \rightarrow \gamma K\bar{K}$. Evidence for the $f_0(1500) \rightarrow K\bar{K}$ is however insignificant, but included in the partial wave analysis interfering with the $f_0(1710)$. For a description of the 1500 MeV/c^2 mass range, the $f_0'(1525)$ tensor state is required in the analysis [86].

In section 4.1, we have discussed the flavor-tagging approach to study the flavor content of
Table 12: BES results on radiative J/ψ decays. The rates are shown for $J/\psi \rightarrow \gamma f_0$ with the subsequent decay of the f_0 to the listed final state. All rates are multiplied by 10^{-4}. The quoted errors are statistical and systematic errors summed in quadrature.

<table>
<thead>
<tr>
<th>Scalar</th>
<th>$\pi^+\pi^-$ [85]</th>
<th>$\pi^0\pi^0$ [85]</th>
<th>KK [86]</th>
<th>$\pi^+\pi^-\pi^+\pi^-$ [84]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_0(1500)$</td>
<td>0.67 ± 0.30</td>
<td>0.34 ± 0.15</td>
<td>3.1 ± 1.12</td>
<td></td>
</tr>
<tr>
<td>$f_0(1710)$</td>
<td>2.64 ± 0.75</td>
<td>1.33 ± 0.88</td>
<td>$9.62 \pm 0.29_{\text{stat}}$</td>
<td>3.1 ± 1.12</td>
</tr>
<tr>
<td>$f_0(2100)$</td>
<td></td>
<td></td>
<td></td>
<td>5.1 ± 1.82</td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>9.14 ± 1.48</td>
<td>4.00 ± 0.59</td>
<td>1.8 ± 0.63</td>
<td></td>
</tr>
<tr>
<td>$f_2'(1525)$</td>
<td></td>
<td>$3.42 \pm 0.15_{\text{stat}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_2(1565)$</td>
<td></td>
<td></td>
<td></td>
<td>3.2 ± 1.12</td>
</tr>
<tr>
<td>$f_2(1950)$</td>
<td></td>
<td></td>
<td></td>
<td>5.5 ± 1.92</td>
</tr>
</tbody>
</table>

Mesons in J/ψ decays. Due to the OZI rule, $J/\psi \rightarrow \omega X$ couples to the $n\bar{n}$ component of X, while $J/\psi \rightarrow \phi X$ couples to $s\bar{s}$. Fig. 12 shows invariant mass distributions of pseudoscalar meson pairs recoiling against ω, ϕ or γ [140]. The K^+K^- mass distribution from ωK^+K^- (b) shows a clear scalar peak at 1710 MeV/c^2 which is not observed in the corresponding spectrum recoiling against the ϕ meson (d). By contrast, the $\pi^+\pi^-$ mass distribution from $\phi\pi^+\pi^-$ (c) indicates an enhancement at ~ 1790 MeV/c^2, which is absent in ϕK^+K^- (d). This observation is puzzling and does not seem to be compatible with a single $f_0(1710)$ state, which is known to decay dominantly to KK. The BES collaboration suggested two distinct scalar states around 1.75 GeV/c^2: the known $f_0(1710)$ with ($M \sim 1740$ MeV/c^2, $\Gamma \sim 150$ MeV/c^2) decaying strongly to KK and a broad $f_0(1790)$ with ($M \sim 1790$ MeV/c^2, $\Gamma \sim 270$ MeV/c^2) which couples more strongly to $\pi\pi$ [89]. This new state is not confirmed by any other experiment and not listed in the 2008 edition of the “Review of Particle Physics” by the Particle Data Group [6]. The BES collaboration emphasizes that the $\phi f_0(1790)$ signal is very close to edge of the available phase space, where the reconstruction efficiency of the ϕ decreases significantly as the momentum of the ϕ decreases. Tails of broad higher-mass states could also interfere with the $f_0(1710)$ generating a structure near the end of the phase space [140]. If both states really exist, it remains a mystery why the $f_0(1710)$ mainly $s\bar{s}$-state is produced recoiling against an ω, and the new $f_0(1790)$ mainly $n\bar{n}$-state is observed recoiling against a ϕ. In fact, it’s worth noting that many strong signals due to non-strange states are seen in the $\phi\pi\pi$ data from BES: $f_2(1270)$, $f_0(1370)$, $f_0(1500)$, and $f_0(1790)$. The collaboration makes a strong argument for the existence of a $f_0(1370)$ resonance, which has been doubted previously by several authors. In the analysis, the state interferes with the $f_0(1500)$ and $f_2(1270)$ making it more noticeable, but a determination of its mass and width is challenging for the same reason.

A recent BES observation has increased the scalar puzzle even more. The group observes a state at $M \sim 1812$ MeV/c^2 and $\Gamma \sim 105$ MeV/c^2 in the doubly OZI suppressed process $J/\psi \rightarrow \gamma\omega\phi$ [87]. The PWA favors a 0^+ scalar assignment. The state is listed as $X(1835)$ by the PDG, but has not been seen by another experiment. The production ratio should be
Figure 13: Fitted invariant mass spectra of a) $\pi^+\pi^-$, b) K^+K^-, c) $K^0_SK^0_S$, and d) $p\bar{p}$ from BES suggesting the existence of the $f_J(2220)$. An unbinned maximum-likelihood method was applied using a smooth background plus one or several Breit-Wigners resonances convoluted with Gaussian resolution functions [141].

suppressed by at least an order of magnitude. A value of $B(J/\psi \to \gamma X) \cdot B(X \to \omega\phi) = (2.61 \pm 0.27 \text{ (stat)} \pm 0.65 \text{ (syst)}) \times 10^{-4}$ is reported. Decay rates for the discussed mesons are listed in Table 12. Moreover, BES reports the ratios of branching fractions into $\pi\pi$ and $K\bar{K}$ for the $f_0(1370)$ [89] and $f_0(1710)$ [90]:

$$\frac{B(f_0(1370) \to K\bar{K})}{B(f_0(1370) \to \pi\pi)} = 0.08 \pm 0.08$$

(28)

$$\frac{B(f_0(1710) \to \pi\pi)}{B(f_0(1710) \to K\bar{K})} < 0.11 \text{ (@95\% C.L.)}$$

(29)

Evidence for the 2^{++} and 0^{-+} glueballs are weak. The BES Collaboration observed signals in radiative J/ψ decays for the $f_J(2220)$, also known as $\xi(2230)$, in a sample of more than 5×10^6 J/ψ decays in final states including $K\bar{K}$, $\pi^+\pi^-$, and $p\bar{p}$ [141, 142]. Fig. 13 shows the fitted invariant mass spectra. The signal was first observed by the MARK-III Collaboration and published in 1985 in the reactions $J/\psi \to \gamma K^0_SK^0_S$ and $J/\psi \to \gamma K^+K^-$ based on a sample of 5.8×10^6 J/ψ decays [143]. However, limits on the product branching fraction, $B(J/\psi \to \gamma f_J(2220)) \cdot B(f_J(2220) \to K^+K^-)$, reported by the DM2 Collaboration were in disagreement with the MARK-III findings [144]. The first indication for a spin-2 particle came from the GAMS Collaboration in 1986. They observed a signal at 2220 MeV/c^2 decaying to $\eta\eta'$ in the $\eta\eta'n$ final state from pion-induced reaction on the proton [145]. This finding was in agreement with the original result from radiative J/ψ decays. Many other experiments carefully searched for the $f_J(2220)$ in proton-antiproton annihilation in-flight, but no evidence was found of this state [146–151]. A high-statistics search in 2000 by the
Crystal-Barrel Collaboration also showed no narrow state [152]. If the state really exists, it has a very large branching fraction in radiative J/ψ decays. Future experimental efforts with the BES-III detector may shed some light on the possible existence of this state.

Light Mesons from the CLEO Experiment

Radiative $\Upsilon(1S)$ decays also provide a glue-rich environment for producing exotic states. The CLEO Collaboration has reported on results from $\Upsilon(1S)$ decays to pairs of pseudoscalar mesons [81, 82]. Considering the fact that the quark-photon coupling is proportional to the electric charge and assuming that the quark propagator is roughly proportional to $1/m$ for low-momentum quarks, radiative decays from $\Upsilon(1S)$ should be suppressed by a factor of

$$(q_b/q_c)^2 \cdot (m_c/m_b)^2 \cdot \Gamma_{\Upsilon}/\Gamma_{J/\psi} \approx 0.04$$ \hspace{1cm} (30)$$

relative to the corresponding J/ψ decay. Table 13 summarizes the results. In particular, the decay rates of $f_0(1500)$ and $f_0(1710)$ to $\pi^0\pi^0$ are much smaller – by more than an order of magnitude – than predicted based on the scalar-glueball mixing matrix in [40].

The two listed tensor states dominate the di-gluon spectrum in $\Upsilon(1S)$ decays and fair agreement with the naive scaling argument is observed (to the same order of magnitude) for the suppression factor of these states relative to J/ψ decays.

Three-body decays of D-mesons may provide a test of the microscopic structure of scalar mesons. CLEO published the results of Dalitz-plot analyses for $D^0 \to \pi^+\pi^-\pi^0$ and $D^+ \to f_0(980)\pi^0$. Though the suppression itself is in good agreement with predictions inserting rescattering effects and considering the $f_0(980)$ as $s\bar{s} + a$ light $q\bar{q}$ pair [153], the calculated ratio $B(D^+ \to f_0(980)\pi^+)/B(D^0 \to f_0(980)\pi^0)$ of 46.7 is almost an order of magnitude smaller than the experimentally determined lower limit of $> 340 \text{ @ } 95\%$ confidence level.

Further results on D decays from Belle, BaBar, etc.

<table>
<thead>
<tr>
<th>Scalar</th>
<th>$\Upsilon(1S) \to \gamma + \text{meson}$</th>
<th>$\pi^+\pi^-$</th>
<th>$\pi^0\pi^0$</th>
<th>K^+K^-</th>
<th>$\pi^+\pi^-\pi^+\pi^-$</th>
<th>$\eta\eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_0(980)$</td>
<td>< 1.5</td>
<td>< 3</td>
<td>< 1.5</td>
<td>< 0.14</td>
<td>< 0.7</td>
<td>< 0.18</td>
</tr>
<tr>
<td>$f_0(1500)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_0(1710)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>10.2 ± 0.8 [81]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_2(1525)$</td>
<td>$3.7^{+0.9}_{-0.7}$ [81]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13: CLEO results on radiative $\Upsilon(1S)$ decays. The rates for the scalar mesons are upper-limit branching fractions at the 90\% confidence level for $\Upsilon \to \gamma f_0$ with the subsequent decay of the f_0 to the listed final state. All rates are multiplied by 10^{-5}.

34
Scalar | $\mathcal{B}(\phi \to \gamma + \text{meson})$ | Number of Events |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_0(980) \to \pi^0\pi^0$</td>
<td>$(1.49 \pm 0.07) \times 10^{-4}$ [154]</td>
<td>2438 ± 61 [155]</td>
</tr>
<tr>
<td>$f_0(980) \to \pi^+\pi^-$</td>
<td>$(2.1 - 2.4) \times 10^{-4}$ [156]</td>
<td></td>
</tr>
<tr>
<td>$a_0(980) \to \pi^0\eta$</td>
<td>$(7.4 \pm 0.7) \times 10^{-5}$ [154]</td>
<td>802 [154]</td>
</tr>
</tbody>
</table>

Table 14: KLOE results on radiative ϕ decays.

Radiative ϕ Decays from the KLOE Experiment

The KLOE Collaboration reported on radiative ϕ decays into $f_0(980)$ and $a_0(980)$ [154, 154]. As pointed out in [95], these decays have long been recognized as a potential route towards disentangling the nature of these states. The magnitudes of the decay widths are rather sensitive to the fundamental structures of the $f_0(980)$ and $a_0(980)$, and can possibly discriminate amongst models. According to different interpretations, the $\phi \to a_0\gamma$ branching fraction can range from 10^{-5} for a mostly $q\bar{q}$ and $K\bar{K}$ structure to 10^{-4} for $q\bar{q}q\bar{q}$. The ratio $\mathcal{B}(\phi \to f_0(980)\gamma)/\mathcal{B}(\phi \to a_0(980)\gamma)$ is also highly dependent on the structure of the scalars [95]. The $K\bar{K}$ and $\eta\eta$ thresholds produce sharp cusps in the energy dependence of the resonant amplitude and pose further challenges in the models. Table 14 shows the branching fractions for the decays into two pions and $\pi^0\eta$, respectively. They determined the ratio of the two branching fractions and the ratio of the two couplings to the KK system to be:

$$\frac{\mathcal{B}(\phi \to f_0(980)\gamma)}{\mathcal{B}(\phi \to a_0(980)\gamma)} = 6.1 \pm 0.6$$

(31)

$$\frac{g_{f_0KK}^2}{g_{a_0KK}^2} = 7.0 \pm 0.7$$

(32)

These results are in good agreement with predictions made for four-quark states.

Further Results from Photon-Photon Fusion

Apart from proving the existence of particular states, crucial to establishing the glueball nature of any glueball candidate is an anti-search in two-photon collisions since gluonic states do not couple directly to photons. Results from $\gamma\gamma$ collisions were reported by the LEP collaborations. Fig. 14 (left side) shows three peaks below 2 GeV in the invariant $K_S^0K_S^0$ mass distribution observed by the L3 collaboration [122]. The background is fitted by a second-order polynomial and the three peaks by Breit-Wigner functions. The mass spectrum is dominated by the formation of tensor mesons, the $f_2^+(1525)$ and the $f_2(1270)$ interfering with the $a_0^+(1320)$. A clear signal for the $f_2(1710)$ is observed and found to be dominated by the spin-two helicity-two state. No resonance is observed in the 2.2 GeV/c^2 mass region. The $f_0(1500)$ scalar meson is not seen in its decay to $K_S^0K_S^0$ in agreement with central-production data indicating a small $s\bar{s}$ component if this state is interpreted as $q\bar{q}$ meson. Fig. 14 (right side) shows the fitted $\pi^+\pi^-$ spectrum measured by the ALEPH
collaboration in $\gamma\gamma$ collisions. Only the $f_2(1270)$ is observed and no signals for the $f_0(1500)$ and $f_J(1710)$. Upper limits for the decay into $\pi^+\pi^-$ have been determined at the 95% confidence level:

$$\Gamma(\gamma\gamma \to f_0(1500)) \cdot B(f_0(1500) \to \pi^+\pi^-) < 0.31 \text{ keV}$$

$$\Gamma(\gamma\gamma \to f_J(1710)) \cdot B(f_J(1710) \to \pi^+\pi^-) < 0.55 \text{ keV}$$

The CLEO collaboration has reported on the possible glueball candidate $f_J(2220)$. An upper limit of $\Gamma(\gamma\gamma \to f_J \to K_S^0 K_S^0) \leq 1.1$ eV at 95% C.L. was derived from two-photon interactions, $\gamma\gamma \to f_J \to K_S^0 K_S^0$, using the CLEO II detector [94]. The same approach for the $f_2'(1525)$ leads to consistent results with PDG values. The CLEO observation is in agreement with the published result from the L3 Collaboration (Fig. 14) of $\Gamma(\gamma\gamma \to f_J \to K_S^0 K_S^0) \leq 1.4$ eV at 95% C.L. [122]. The non-observation of a signal in the 2.2 GeV/c^2 mass region in two-photon fusion is certainly expected for a true glueball, but the non-existence of this narrow state is also not excluded. The CLEO authors determine a large lower limit for the “stickiness” of > 109 at the 95% C.L.

Two pseudoscalar mesons are reported in the 1400-1500 MeV/c^2 mass region and have been listed as two separate states by the Particle Data Group since [119], the $\eta(1405)$ and $\eta(1475)$. Long time considered only one resonance, the $\eta(1475)$ was first observed in two-photon collisions in 2001 decaying to $K\bar{K}\pi$ by the L3 Collaboration [123]. The reported two-photon partial width is 212 ± 50 (stat.) ± 23 (sys.) eV. The second η state is neither observed in $K\bar{K}\pi$ nor in $\eta\pi\pi$ by L3, suggesting a large gluonic content of the $\eta(1405)$. In 2005, CLEO published the non-observation of any pseudoscalar meson below 1700 MeV/c^2 based on 5 times more statistics with an upper limit of $\Gamma(\gamma\gamma(1440)B(K\bar{K}\pi) < 89$ eV in disagreement with the L3 results. Only two-ground state axial vector mesons were reported in this mass range consistent with quark model expectations [119].

5 Gluonic Excitations

5.1 The Pseudoscalar Mesons

Within the pseudoscalar sector, the ground states are the well established $\eta(548)$ and $\eta'(958)$. Only radial excitations of these states are expected in the framework of the quark model. Beyond the simple quark model, a nonet of hybrid pseudoscalar mesons is expected in the 1.8 to 2.2 GeV/c^2 mass region, and a glueball is expected in the ~ 2 GeV/c^2 region. Table 8 shows the current known pseudoscalar states. The $\eta(1295)$ and the $\eta(1405)$ are often considered as the radial excitations. The $\eta(1760)$ is often taken as the partner of the $\pi(1800)$ which leaves the $\eta(1475)$ as the odd state out. The higher mass $\eta(2225)$ has mass that is not inconsistent with a glueball interpretation, but the single measurement of this state needs confirmation, and more of its decay modes need to be measured.

There is also some speculation [5] that the $\eta(1295)$ may not exist. In its clearest observations, it is always seen in conjunction with the $f_1(1285)$ and it could possibly be explained as feed through from the 1^{++} state. In such an interpretation, the $\eta(1405)$ and $\eta(1475)$ become
the radial excitations of the ground states. This is consistent with the observations in $\bar{p}p$ annihilation, where the $\eta(1405)$ is strongly produced. However, in both of these scenarios, one is no closer to identifying the pseudoscalar glueball.

5.2 The Tensor Mesons

Within the quark model, there are two quark configurations which yield 2^{++} quantum numbers, the 3P_2 ($L = 1, S = 1, J = 2$) and the 3F_2 ($L = 3, S = 1, J = 2$) nonets. Members of the former are the well established isoscalar states $f_2(1270)$ and $f_2'(1525)$, while the latter is expected in mass similar to the 4^{++} states of the same orbital angular momentum. These are observed near 2 GeV/c^2. For both of these nonets, radial excitations are also expected.

Evidence for a tensor glueball is essentially non-existent. Below 2 GeV/c^2, only one further resonance is listed in the Meson Summary Table, the $f_2(1550)$. Additional four reported resonances require confirmation. For this reason, none of the reported isoscalars above the $f_2'(1525)$ can be definitely assigned to one of the nonets 2P_2, 3P_2, or 1F_2, and the identification of a glueball as a resonance that has no place in the $q\bar{q}$ nonets is premature.

The latest mini-review published by the Particle Data Group in 2004 considers evidence for the $f_2(1565)$ observed in $p\bar{p}$ annihilation at rest as more solid. It could be a member of the 2P_2 nonet and is perhaps the same state as the $f_2(1640)$, seen in its decay to $\omega\omega$ and 4π.

37
Above 2 GeV/c², the BES Collaboration has reported on the $f_J(2220)$, likely $J = 2$, and has considered it a glueball candidate since it is produced strongly in radiative J/ψ decays and seems to be non-existent in $\gamma\gamma$ collisions. However, careful searches by other experiments could not confirm this resonance. It has neither been observed in radiative Υ decays, nor in formation in $p\bar{p}$ annihilation into K^+K^-, K_SK_S, $\phi\phi$, $\eta\eta$, or $\pi\pi$. The evidence is thus very weak and more data is needed to clarify the situation. BES-III can possibly shed some light on this, but a confirmation in $p\bar{p}$ would certainly be desirable.

Moving beyond the the quark-model picture, a nonet of hybrid states is expected in the 1.8 to 2.2 GeV/c² mass region, and a 2$^{++}$ glueball is expected in the 2 GeV/c² mass region. Needless to say, the tensors are expected to be an extremly busy sector, and this is clearly born out by the large number of states in the PDG (see Table 7).

5.3 The Scalar Sector

The $J^{PC} = 0^{++}$ ($L = 1, S = 1$) scalar sector is without doubt the most complex one and the interpretation of the states’ nature and nonet assignments are still very controversial. In particular, the number of observed $I = 0$ isosinglet states with masses below 1.9 GeV/c² is under debate. According to the PDG mini-review on non-$q\bar{q}$ candidates [6], five isoscalar resonances are well established: the very broad $f_0(600)$ or so-called σ state, the $f_0(980)$, the broad $f_0(1370)$, and the rather narrow $f_0(1500)$ and $f_0(1710)$ resonances. Naive arguments without chiral symmetry constraints and the close proximity of states in other J^{PC} nonets suggest that the $f_0(600)$, $f_0(980)$, and $a_0(980)$ are members of the same nonet. The missing $I = 1/2$ state – usually called $K^*_0(800)$ or κ – is not listed by the Particle Data Group in its latest 2008 edition. The nature of this nonet is not necessarily $q\bar{q}$. Very often, $f_0(980)$ and $a_0(980)$ are interpreted as multi-quark states or $K\bar{K}$ molecules [157,158].

Using the same naive arguments, the $a_0(1450)$, $K^*(1430)$, and two states out of the $I = 0$ group, $f_0(1370)$, $f_0(1500)$, and $f_0(1710)$, would form an SU(3) flavor nonet. These nonet assignments however pose some serious challenges. While almost all models agree on the $K^*(1430)$ to be the quark model $s\bar{u}$ or $s\bar{d}$ state, the situation is very ambiguous for the isoscalar resonances. The most striking observation is that one f_0 state appears supernumerary, thus leaving a non-$q\bar{q}$ (most likely) glueball candidate. Both the $f_0(1370)$ and $f_0(1500)$ decay mostly into pions. In fact, all analyses agree that the 4π decay mode accounts for at least half of the $f_0(1500)$ decay width and dominates the $f_0(1370)$ decay pointing to a mostly $n\bar{n}$ content of these states. On the other hand, the LEP experiments indicate that the $f_0(1500)$ is essentially absent in $\gamma\gamma \rightarrow K\bar{K}$ (L3 Collaboration [122]) and $\gamma\gamma \rightarrow \pi^+\pi^-$ (ALEPH Collaboration [124]). If the state were of $q\bar{q}$ nature, the extremely small upper limit for the branching fraction into $\pi^+\pi^-$ (33) would suggest a mainly $s\bar{s}$ content. This contradiction emphasizes the non-$q\bar{q}$ nature of the $f_0(1500)$ resonance. On the other hand, the observed decays into $\pi\pi$, $\eta\eta$, $\eta\eta'$, and $K\bar{K}$ are not in agreement with predictions for a pure glueball. For this reason, a large variety of mixing scenarios of the pure glueball with the nearby $n\bar{n}$ and $s\bar{s}$ isoscalar mesons has been described. These are discussed in section 5.4.

Challenges in the interpretation of the scalar sector involve both experimental and the-
idential efforts. The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

- What is the nature of the $f_0(980)$ and $a_0(980)$? Do they have mainly a quarkonium structure or are these additional non-$q\bar{q}$ states? Though very often interpreted as a $K\bar{K}$ molecule, the decay $\phi \rightarrow \gamma f_0$ (a_0) $\rightarrow \gamma K\bar{K}$ is kinematically suppressed and has not been observed, yet. Data from DAPHNE [154,155] on $\phi \rightarrow \eta\pi\pi\gamma$ and $\phi \rightarrow \pi^0\pi^0\gamma$ favor these states to be four-quark ($q^2\bar{q}^2$) states [159,160]. In a more sophisticated picture [159], the two mesons are mostly $(q\bar{q})_3$ near the center, but further out they rearrange as $(qq)(q\bar{q})$ and finally as meson-meson states. A Dalitz plot analysis of $D^+_s \rightarrow \pi^-\pi^+\pi^+$ by the E791 Collaboration finds a dominant contribution from $f_0(980)\pi^+$ pointing to a large $s\bar{s}$ component in the wave function [161]. The charm meson decay $D^+_s \rightarrow \pi^-\pi^+\pi^+$ is Cabibbo-favored, but has no strange meson in the final state.

- Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics as suggested in [5]. The latter is supported by the huge $\Gamma_{\eta\eta}$ and $\Gamma_{\sigma\sigma}$ partial widths observed in central production (Table 10). However, these results completely disagree with Crystal-Barrel results on the decay width of this state (Table 9). The experimental situation is unclear. The Particle Data Group has however accepted the $f_0(1370)$ as an established resonance. In the red dragon interpretation [162], the $f_0(1370)$ is also not considered a genuine resonance, but part of the broad background amplitude, which itself is associated with the expected glueball. In contrast, a recent study of $f_0(1370)$ shows a highly significant improvement of χ^2 with the state included as resonance in fits to the five primary sets of data requiring its existence. These sets include Crystal-Barrel data on $p\bar{p} \rightarrow 3\pi^0$ at rest, data on $p\bar{p} \rightarrow \pi^0\pi^0\eta$, BES-II data on $J/\psi \rightarrow \phi\pi^+\pi^-$, and the CERN-Munich data for $\pi\pi$ elastic scattering.

- Though the $f_0(1500)$ cannot be accommodated easily in $q\bar{q}$ nonets and exhibits reduced $\gamma\gamma$ couplings – all signatures expected for glueballs –, data on $J/\psi \rightarrow \gamma f_0(1500)$ is still statistically limited. More data from the BES-III Experiment is certainly required to show its enhanced production in gluon-rich radiative J/ψ decays.

- Are the two resonances listed in Table 6, $f_0(1710)$ and $f_0(1790)$, distinct states? Experimental evidence is claimed only by the BES Collaboration and has not been confirmed by others. The Particle Data Group does not list the $f_0(1790)$ as resonance and also does not include it in averages, fits, limits, etc.

Other pictures have emerged for the assignment of scalar mesons to SU(3) flavor nonets based on different approaches to the questions above. Minkowski and Ochs have classified the isoscalar resonances $f_0(980)$ and $f_0(1500)$ together with $a_0(980)$ and $K^*_0(1430)$ as members of the 0^{++} nonet [162]. They claim a mixing of the isoscalar states, which is similar to that of the pseudoscalar η and η'. In this scenario, the $(\eta', f_0(980))$ pair forms a parity
doublet, which is approximately degenerate in mass. Moreover, the \(f_0(600) \) and \(f_0(1370) \) are interpreted as different signals of the same broad resonance, which is associated with the lowest-lying \(0^{++} \) glueball. Very similar nonet assignments are discussed in a quark model which is based on short-range instanton effects [163], also not considering the \(f_0(1370) \) as \(q\bar{q} \) resonance.

Moreover, the Gatchina group performed a \(K \)-matrix analysis of the isoscalar \(0^{++} \) waves in the invariant mass range \(280-1900 \) MeV/c\(^2\) based on a large variety of different data sets including data from GAMS, BNL on \(\pi^-p \), Crystal Barrel, and CERN-Munich on \(\pi^+\pi^- \rightarrow \pi^+\pi^\pm \). The ground-state \(q\bar{q} \) scalar nonet is suggested to consist of \(a_0(980) \), \(f_0(1300) \), \(f_0(980) \), \(f_0(1760) \), \(f_0(1500) \), and \(K^*_0(1430) \) form the nonet of the first radial excitation [164].

If we adopt the point of view of the Particle Data Group, then five isoscalar resonances are well established: \(f_0(600) \), \(f_0(980) \), \(f_0(1370) \), \(f_0(1500) \), and \(f_0(1710) \). The following section discusses possible mixing scenarios of the \(J^{PC} = 0^{++} \) quarkonium nonet with the lowest-mass \(0^{++} \) glueball resulting in the three established \(I = 0 \) resonances above 1 GeV/c\(^2\).

5.4 Mixing in the scalar sector

There have been many authors who have considered that the \(f_0(1370) \), the \(f_0(1500) \) and the \(f_0(1710) \) are the physical manifestations of the underlying \(0^{++} \) quarkonium nonet and the lowest mass glueball. It is generally assumed that the three bare states mix to yield the three physical states. Inputs to such calculations include the masses of the physical states as well as their decay rates into pairs of pseudoscalar mesons. The masses of the bare states and the mixing of the physical states then result. In addition to the choice of physical states, there appears to also be some dependence on whether one assumes the bare glueball is more or less massive than the mostly \(s\bar{s} \) state.

In the literature, the mixing is typically written in terms of equation 35, where the physical states, \(f_{1,2,3} \) are identified with the \(f_0(1370) \), \(f_0(1500) \) and \(f_0(1710) \) respectively, and the bare states are parametrized in terms of the ideally mixed \(q\bar{q} \) states:

\[
\begin{align*}
n\bar{n} & = \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d}) \\
s\bar{s} & = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s})
\end{align*}
\]

However, it is also useful to look at these in terms of the SU(3) symmetric states as well

\[
\begin{align*}
|1\rangle & = \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s}) \\
|1\rangle & = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s})
\end{align*}
\]

\[
\left(\begin{array}{c} |f_1\rangle \\ |f_2\rangle \\ |f_3\rangle \end{array} \right) = \begin{pmatrix} M_{1n} & M_{1s} & M_{1g} \\ M_{2n} & M_{2s} & M_{2g} \\ M_{3n} & M_{3s} & M_{3g} \end{pmatrix} \cdot \left(\begin{array}{c} |n\bar{n}\rangle \\ |s\bar{s}\rangle \\ |G\rangle \end{array} \right)
\] (35)

40
There is also some model dependence included in the analysis.

Broadly speaking, the results divide into two categories. The first in which the bare glueball comes out lighter than the \(ss\) state, and the second in which the bare glueball comes out heavier than the \(s\bar{s}\) state. We summarize these by first looking that the case where the bare glueball is lighter. One of the earliest of these came from Close and Amsler [8,9]. They allowed for the rate of \(s\bar{s}\) quark production from the vacuum to be different from the \(u\) and \(d\) quarks. They also allowed for the bare glueball to have a different coupling to \(s\bar{s}\) than from \(u\bar{u}\) and \(d\bar{d}\). However, in their work, the resulting couplings were generally consistent with the flavor-blind assumption. Based mostly on results from the Crystal Barrel experiment, they found a mixing as given equation 36.

\[
\begin{align*}
| f_0(1370) > &= \begin{pmatrix} -0.91 & -0.07 & 0.40 \end{pmatrix} \cdot | n\bar{n} > \\
| f_0(1500) > &= \begin{pmatrix} -0.41 & 0.35 & -0.84 \end{pmatrix} \cdot | s\bar{s} > \\
| f_0(1710) > &= \begin{pmatrix} 0.09 & 0.93 & 0.36 \end{pmatrix} \cdot | G > \\
| f_0(1370) > &= \begin{pmatrix} -0.78 & -0.47 & 0.40 \end{pmatrix} \cdot | 1 > \\
| f_0(1500) > &= \begin{pmatrix} -0.13 & -0.52 & -0.84 \end{pmatrix} \cdot | 8 > \tag{36} \\
| f_0(1710) > &= \begin{pmatrix} 0.61 & -0.71 & 0.36 \end{pmatrix} \cdot | G >
\end{align*}
\]

Close and colleagues [16] later extended this by including additional data and found a mixing scheme as given in equation 37.

\[
\begin{align*}
| f_0(1370) > &= \begin{pmatrix} 0.86 & 0.13 & -0.50 \end{pmatrix} \cdot | n\bar{n} > \\
| f_0(1500) > &= \begin{pmatrix} 0.43 & -0.61 & -0.61 \end{pmatrix} \cdot | s\bar{s} > \\
| f_0(1710) > &= \begin{pmatrix} 0.22 & 0.76 & 0.60 \end{pmatrix} \cdot | G > \\
| f_0(1370) > &= \begin{pmatrix} 0.78 & 0.39 & -0.50 \end{pmatrix} \cdot | 1 > \\
| f_0(1500) > &= \begin{pmatrix} 0.00 & 0.75 & 0.61 \end{pmatrix} \cdot | 8 > \tag{37} \\
| f_0(1710) > &= \begin{pmatrix} 0.62 & -0.49 & 0.60 \end{pmatrix} \cdot | G >
\end{align*}
\]

Giacosa [165] looked at mixing in an effective chiral approach. They took the couplings to be flavor blind, and carried out their analysis both with and without a direct decay of the glueball. In the case without direct decay, the decays proceed via the \(q\bar{q}\) content of the states. For the case of the mass of the bare glueball lighter than the \(s\bar{s}\) state, they found the solution in equation 38 for the case without a direct glueball decay and that in equation 39 for the case with a direct glueball decay.

\[
\begin{align*}
| f_0(1370) > &= \begin{pmatrix} 0.86 & 0.24 & 0.45 \end{pmatrix} \cdot | n\bar{n} > \\
| f_0(1500) > &= \begin{pmatrix} -0.45 & -0.06 & 0.89 \end{pmatrix} \cdot | s\bar{s} > \\
| f_0(1710) > &= \begin{pmatrix} -0.24 & 0.97 & -0.06 \end{pmatrix} \cdot | G > \\
| f_0(1370) > &= \begin{pmatrix} 0.84 & 0.30 & 0.45 \end{pmatrix} \cdot | 1 > \\
| f_0(1500) > &= \begin{pmatrix} -0.40 & -0.21 & 0.89 \end{pmatrix} \cdot | 8 > \tag{38} \\
| f_0(1710) > &= \begin{pmatrix} 0.36 & -0.93 & -0.06 \end{pmatrix} \cdot | G >
\end{align*}
\]

41
SU(3) singlet component.

The case of the direct glueball decay included, the nixing is given in equation 42.

S Giacosa [165] also have two solutions in which the bare glueball mass is heavier than the coupling to the lattice. In their model, they had a decay rate that favored heavier quarks, thus enhancing the masses of the bare states as well as information on the decay of these states on the state. The first of these was carried out by Weingarten and Lee [17]. The computed both split over at least two of the three states. One also sees that the \(f_0(1370) \) has the largest SU(3) singlet component.

The other situation is in which the bare glueball comes out heavier than the bare \(s\bar{s} \) state. The first of these was carried out by Weingarten and Lee [17]. The computed both the masses of the bare states as well as information on the decay of these states on the lattice. In their model, they had a decay rate that favored heavier quarks, thus enhancing the coupling to the \(s\bar{s} \) states. They found the mixing scheme as in equation 40.

\[
\begin{align*}
| f_0(1370) > & = \begin{pmatrix} 0.819 & 0.290 & -0.495 \end{pmatrix} \cdot | n\bar{n} > \\
| f_0(1500) > & = \begin{pmatrix} -0.399 & 0.908 & -0.128 \end{pmatrix} \cdot | s\bar{s} > \\
| f_0(1710) > & = \begin{pmatrix} 0.413 & 0.302 & 0.859 \end{pmatrix} \cdot | G > \\
| f_0(1370) > & = \begin{pmatrix} 0.836 & 0.236 & -0.495 \end{pmatrix} \cdot | 1 > \\
| f_0(1500) > & = \begin{pmatrix} 0.198 & -0.972 & 0.128 \end{pmatrix} \cdot | 8 > \\
| f_0(1710) > & = \begin{pmatrix} 0.512 & -0.008 & 0.859 \end{pmatrix} \cdot | G >
\end{align*}
\]

Equation 39

Giacosa [165] also have two solutions in which the bare glueball mass is heavier than the \(s\bar{s} \) mass. For the case of no direct glueball decay, the mixing is given in equation 41, while for the case of the direct glueball decay included, the mixing is given in equation 42.

\[
\begin{align*}
| f_0(1370) > & = \begin{pmatrix} 0.81 & 0.19 & 0.54 \end{pmatrix} \cdot | n\bar{n} > \\
| f_0(1500) > & = \begin{pmatrix} -0.49 & 0.72 & 0.49 \end{pmatrix} \cdot | s\bar{s} > \\
| f_0(1710) > & = \begin{pmatrix} -0.30 & 0.67 & -0.68 \end{pmatrix} \cdot | G > \\
| f_0(1370) > & = \begin{pmatrix} 0.77 & 0.31 & 0.54 \end{pmatrix} \cdot | 1 > \\
| f_0(1500) > & = \begin{pmatrix} 0.02 & -0.87 & 0.49 \end{pmatrix} \cdot | 8 > \\
| f_0(1710) > & = \begin{pmatrix} 0.14 & -0.72 & -0.68 \end{pmatrix} \cdot | G >
\end{align*}
\]

Equation 40

\[
\begin{align*}
| f_0(1370) > & = \begin{pmatrix} 0.82 & 0.57 & -0.07 \end{pmatrix} \cdot | n\bar{n} > \\
| f_0(1500) > & = \begin{pmatrix} -0.57 & 0.82 & 0.00 \end{pmatrix} \cdot | s\bar{s} > \\
| f_0(1710) > & = \begin{pmatrix} -0.06 & 0.04 & -0.99 \end{pmatrix} \cdot | G > \\
| f_0(1370) > & = \begin{pmatrix} 1.00 & 0.01 & -0.07 \end{pmatrix} \cdot | 1 > \\
| f_0(1500) > & = \begin{pmatrix} 0.01 & -1.00 & 0.00 \end{pmatrix} \cdot | 8 > \\
| f_0(1710) > & = \begin{pmatrix} -0.03 & -0.07 & -0.99 \end{pmatrix} \cdot | G >
\end{align*}
\]

Equation 41

\[
\begin{align*}
| f_0(1370) > & = \begin{pmatrix} 0.82 & 0.57 & -0.07 \end{pmatrix} \cdot | n\bar{n} > \\
| f_0(1500) > & = \begin{pmatrix} -0.57 & 0.82 & 0.00 \end{pmatrix} \cdot | s\bar{s} > \\
| f_0(1710) > & = \begin{pmatrix} -0.06 & 0.04 & -0.99 \end{pmatrix} \cdot | G > \\
| f_0(1370) > & = \begin{pmatrix} 1.00 & 0.01 & -0.07 \end{pmatrix} \cdot | 1 > \\
| f_0(1500) > & = \begin{pmatrix} 0.01 & -1.00 & 0.00 \end{pmatrix} \cdot | 8 > \\
| f_0(1710) > & = \begin{pmatrix} -0.03 & -0.07 & -0.99 \end{pmatrix} \cdot | G >
\end{align*}
\]

Equation 42
Finally, Cheng [166] used lattice calculations for the mass of the a_0 the scalar glueball to set the starting values for their fit to the exiting data. They also limited the input data on decay rates. In particular, they did not use the strong coupling of the $f_0(1500)$ to $\eta \eta'$ due to the complications of the threshold opening. They find the mixing scheme as given in equation 43.

$$
| f_0(1370) > = \begin{pmatrix}
0.78 & 0.51 & -0.36 \\
-0.54 & 0.84 & 0.03 \\
0.32 & 0.18 & 0.93
\end{pmatrix} \cdot | n\bar{n} >
$$

$$
| f_0(1500) > = \begin{pmatrix}
0.93 & 0.03 & -0.36 \\
0.04 & -0.99 & 0.03 \\
0.37 & 0.04 & 0.93
\end{pmatrix} \cdot | G >
$$

A common feature of these latter mixing schemes is that the glueball component ends up mostly in the highest mass state ($f_0(1710)$), while the $f_0(1500)$ comes out being mostly an SU(3) octet and the $f_0(1370)$ is mostly an SU(3) singlet state.

6 Planned Experiments

The GlueX Experiment at Jefferson Laboratory

The GlueX experiment is part of the Jefferson Lab 12-GeV upgrade—and energy doubling upgrade of the CEBAF accelerator. GlueX will be housed in a new photon-only experimental building (Hall D). Electrons of energy 12 GeV will impinge in thin diamond target and via coherent bremsstrahlung, produce a linearly-polarized, 8.4 - 9.0 GeV photon beam that interacts in the experimental target.

The main physics program of GlueX will be to search for light-quark hybrid mesons and to map out the spectrum of the exotic-quantum-number states. In order to do this, it will be necessary to reconstruct final states with several charged particles and photons. The GlueX experiment has been designed to have nearly full solid angle coverage for these particles with sufficient energy and momentum resolution to exclusively identify the desired final states.

The base-line detector is shown in 15. The detectors are in a 2.2 T solenoidal magnet which was originally used for the LASS experiment at SLAC. The all solenoidal design is well matched to the 9 GeV photon energy and the final states with 4-6 particles.

The 12 GeV upgrade received U.S. Department of Energy approval and construction is expected to commence in 2009. First beam on target GlueX is expected in 2014.

The PANDA Experiment at GSI

The PANDA research program will be conducted at the Facility for Antiproton and Ion Research (FAIR), localized near Frankfurt in Germany. The heart of the new facility is a superconducting synchrotron double-ring facility with a circumference of about 1,100 meters.
A system of cooler-storage rings for effective beam cooling at high energies and various experimental halls will be connected to the facility.

At the new FAIR facility, antiproton beams will allow high-precision hadron physics in the upcoming years. A dedicated high-energy storage ring, HESR, will deliver antiproton beams in the momentum range between 1.5 and 15 GeV/c with unprecedented beam qualities. The energy range has been chosen to allow detailed studies of hadronic systems up to charmonium states. The physics will be done with the PANDA multipurpose detector located inside the HESR. Fig. 16 shows the general layout of the detector. The PANDA collaboration consists
of ~ 400 physicists from 48 institutions worldwide.

The general-purpose detector PANDA allows the detection and identification of neutral and charged particles over the relevant angular and energy range. The inner part of the detector can be modified for the needs of individual physics programs. To achieve the physics aims, the detector needs to cover the full solid angle. Good particle identification and excellent energy and angular resolution for charged particles and photons is provided by the following components:

BES III

The BESIII experiment at BEPCII in Beijing started operation in summer of 2008. It will ultimately accumulate data samples on the order of $10 \times 10^9 J/\psi$, $3 \times 10^9 \psi(2S)$ and 30 million $D\bar{D}$ per year of running year. Such large data sets will make it possible to study hadron spectroscopy in the decays of the charmonium states and the charmed mesons. Of particular interest for glueball searches is the fact that $J\Psi$ decays have always been viewed as one of the best places to look for these states.

The BESIII detector is shown schematically in Figure 17. In capability, it will be very similar to the CLEO-c detector—being able to accurately reconstruct both charged particles and photons.
7 Summary

To be written
References

[51] A. Bertin et al. Measurement of the $\eta(1440) \rightarrow K^{\pm}K_L^0\pi^\mp$ production rates from $\bar{p}p$ annihilation at rest at three different hydrogen target densities. *Phys. Lett.*, B385:493–499, 1996.

[57] C. Amsler et al. Coupled channel analysis of $\bar{p}p$ annihilation into $\pi^0\pi^0\pi^0$, $\pi^0\eta\pi$ and $\pi^0\pi^0\eta$. *Phys. Lett.*, B355:425–432, 1995.

[61] C. Amsler et al. $\eta\eta\pi$ threshold enhancement in $\bar{p}p$ annihilations into $\pi^0\eta\eta\pi$ at rest. *Phys. Lett.*, B340:259–263, 1994.

[67] A. Abele et al. Study of \(\bar{p}p \rightarrow \eta\pi^0\pi^0\pi^0\) at rest. *Nucl. Phys.*, B514:45–59, 1998.

[69] A. Abele et al. A Study of \(f_0(1500)\) decays into \(4\pi^0\) in \(\bar{p}p \rightarrow 5\pi^0\) at rest. *Phys. Lett.*, B380:453–460, 1996.

[73] A. Abele et al. \(\bar{p}d\) annihilation at rest into \(\pi^+\pi^-\pi^-p^{\text{spectator}}\). *Phys. Lett.*, B450:275–280, 1999.

C. Amsler et al. Proton anti-proton annihilation at 900-MeV/c into $\pi^0 \pi^0 \pi^0$, $\pi^0 \pi^0 \eta$ and $\pi^0 \eta \eta$. *Eur. Phys. J.*, C23:29–41, 2002.

D. Besson et al. Radiative Decays of the $\Upsilon(1S)$ to $\gamma \pi^0 \pi^0$, and $\gamma \eta \eta$ and $\gamma \pi^0 \eta$. *Phys. Rev.*, D75:072001, 2007.

M. Ablikim et al. Partial Wave Analysis of $J/\psi \rightarrow \gamma \pi^+ \pi^-$ and $\gamma \pi^0 \pi^0$. *Phys. Lett. B*, 642:441, 2006.

D. Cronin-Hennessy et al. Searches for CP violation and pi pi S-wave in the Dalitz-plot of $D_0 \rightarrow \pi^+ \pi^- \pi^0$. *Phys. Rev.*, D72:031102, 2005.

[119] R. Ahohe et al. The search for $\eta(1440)\rightarrow K(0(S)) K^0(0)\pi^+\pi^-$ in two-photon fusion at CLEO. *Phys. Rev.*, D71:072001, 2005.

[123] M. Acciarri et al. Light resonances in $K_SK_S^0\pi^+\pi^-$ and $\eta\pi^+\pi^-$ final states in $\gamma\gamma$ collisions at LEP. *Phys. Lett.*, B501:1–11, 2001.

55

