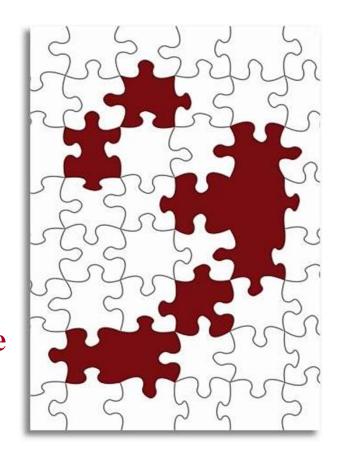
First data with FROST

Michael Dugger* *Arizona State University*

M. Dugger, Jlab User Meeting, June 2012

Outline


- General motivations
- Polarization observables to be discussed
- Experimental details
- Preliminary results for several polarization observables
- Conclusions

Motivation: Baryon resonances

- Masses, widths, and coupling constants not well known for many resonances
- Many models: relativised quark model, Goldstone-boson exchange, diquark and collective models, instanton-induced interactions, flux-tube models, lattice QCD...
- Big Puzzle: Most models predict more resonance states than observed

Observables to be shown

$$\begin{array}{lll} \bullet \ \gamma \ p \rightarrow p \ \pi^0 & E \\ \bullet \ \gamma \ p \rightarrow n \ \pi^+ & E, \ G \\ \bullet \ \gamma \ p \rightarrow p \ \eta & E \\ \bullet \ \gamma \ p \rightarrow K^+ \ \Lambda & E, \ \Sigma, \ G \\ \bullet \ \gamma \ p \rightarrow K^+ \ \Sigma^0 & E \\ \bullet \ \gamma \ p \rightarrow p \ \pi^+ \ \pi^- & I_{s'} \ P_{z'} \ P^{\circ}_{z} \end{array}$$

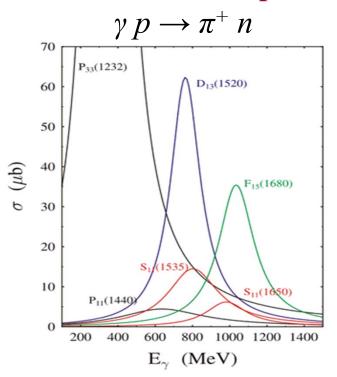
Single pseudoscalar photoproduction

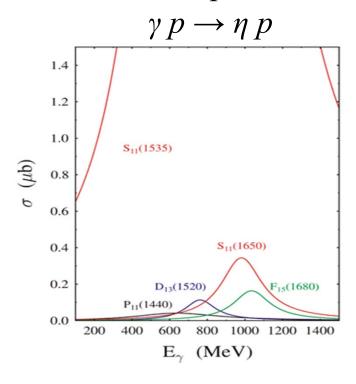
Photon		Target			Recoil			Target + Recoil			
	_	-	_	-	x'	y'	z'	x'	x'	z'	z'
	_	\boldsymbol{x}	y	z	_	_	_	\boldsymbol{x}	z	\boldsymbol{x}	z
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	${}^{\text{-}}\mathrm{L}_{x'}$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$\left(\text{-L}_{z'} \right)$	$(\mathrm{T}_{z'})$	$(\text{-L}_{x'})$	$(\text{-}\mathrm{T}_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

Isospin overlaps for reactions involving π^{θ} and π^{+}

- Differing isospin overlaps of N^* and Δ^+ for the $\pi^0 p$ and $\pi^+ n$ final states
- The $\pi^0 p$ and $\pi^+ n$ final states can help distinguish between the Δ and N^*

$$\int_{1}^{4} N^{*}$$


$$\int_{1}^{4} \pi^{0} + p : \sqrt{2/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle - \sqrt{1/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle$$


$$\pi^{+} + n : \sqrt{1/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle + \sqrt{2/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle$$

"Isospin filters"

- Resonance spectrum has many broad overlapping states
- The ηp and $K^+\Lambda$ systems have isospin ½ and limit one-step excited states of the proton to be isospin ½. The final states ηp and $K^+\Lambda$ act as **isospin filters** to the resonance spectrum.

Self-analyzing reaction $K^+ Y$ (hyperon)

• The weak decay of the hyperon allows the extraction of the hyperon polarization by looking at the proton decay distribution in the hyperon center of mass system:

$$I_i(\cos\theta_i) = \frac{1}{2} \left(1 + \alpha P_{Yi} \cos\theta_i \right)$$

where I_i is the decay distribution of the proton, α is the weak decay asymmetry (α_{Λ} = 0.642 and $\alpha_{\Sigma 0}$ = -½ α_{Λ}), and P_{Yi} is the hyperon polarization.

• We can obtain recoil polarization information without a recoil polarimeter and the reaction is said to be "self-analyzing"

Helicity amplitudes for $\gamma + p \rightarrow p + pseudoscalar$

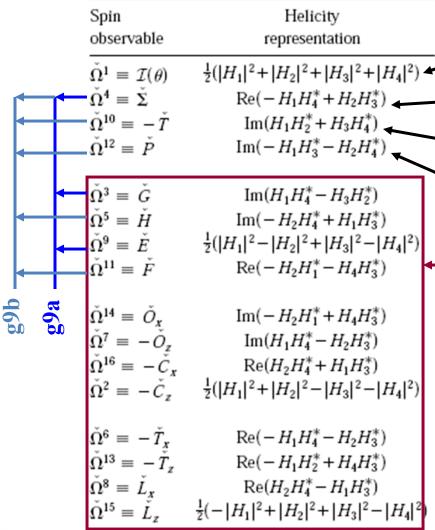
- 8 helicity states: 4 initial, 2 final $\rightarrow 4.2 = 8$
- •Amplitudes are complex, but overall phase unobservable \rightarrow 7 independent numbers
- **HOWEVER**, not all possible observables are linearly independent and it turns out that there must be a minimum of 8 observables / experiments

Initial helicity

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 Final helicity

helicity +1 photons (ε_+):

$$A_{\varepsilon_{+}} = \frac{\frac{1}{2}}{\frac{-1}{2}} \begin{bmatrix} H_{1} & H_{2} \\ H_{3} & H_{4} \end{bmatrix}$$


$$\left(A_{-\mu,-\lambda} = -e^{(\lambda-\mu)\pi} A_{\mu,\lambda}\right)$$

helicity -1 photons (ε):

$$A_{\varepsilon_{+}} = \frac{\frac{1}{2}}{\frac{-1}{2}} \begin{bmatrix} H_{1} & H_{2} \\ H_{3} & H_{4} \end{bmatrix} \begin{bmatrix} A_{-\mu,-\lambda} = -e^{(\lambda-\mu)\pi} A_{\mu,\lambda} \\ Parity symmetry \rightarrow \end{bmatrix} A_{\varepsilon_{-}} = \frac{\frac{1}{2}}{\frac{-1}{2}} \begin{bmatrix} H_{4} & -H_{3} \\ -H_{2} & H_{1} \end{bmatrix}$$

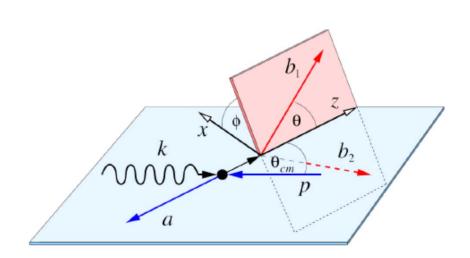
Helicity amplitudes and observables for single pseudoscalar photoproduction

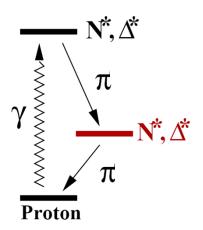
Differential cross section

Beam polarization

Target asymmetry

Recoil polarization


Double polarization observables

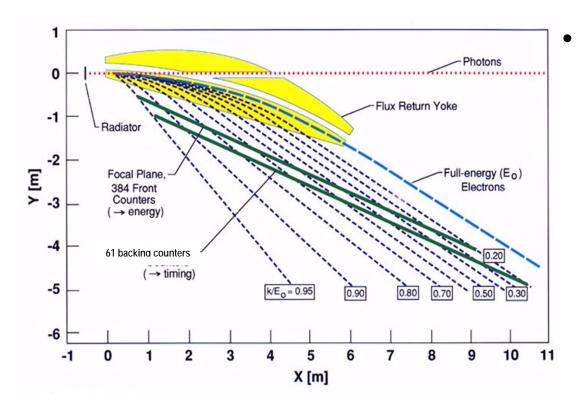

- Need at least 4 of the double observables from at least 2 groups for a "complete experiment"
- $\pi^0 p$, $\pi^+ n$, and ηp will be nearly complete
- $K^+ \Lambda$ will be complete!

Photoproduction of $\pi^+ \pi^- p$ states

- 64 observables
- 28 independent relations related to helicity amplitude magnitudes
- 21 independent relations related to helicity amplitude phases
- Results in 15 independent numbers

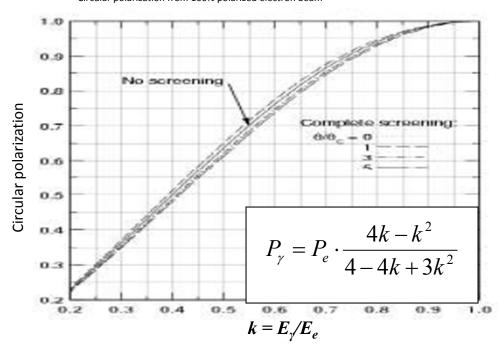
Good for discovering resonances that decay into other resonances!

Finding missing resonances requires lots of different observables. Cross sections are not enough.

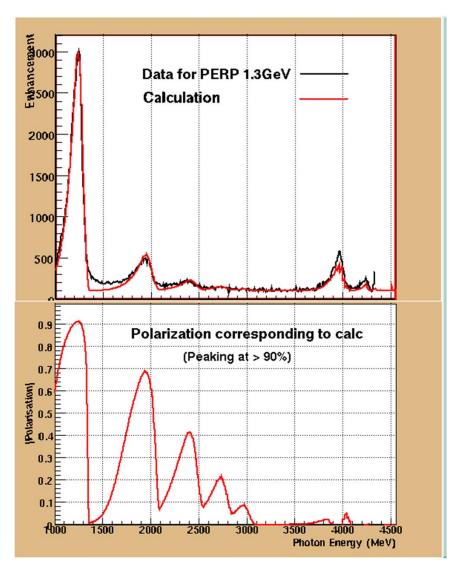

Outline

- General motivations
- Polarization observables to be discussed
- Experimental details
- Preliminary results for several polarization observables
- Conclusions

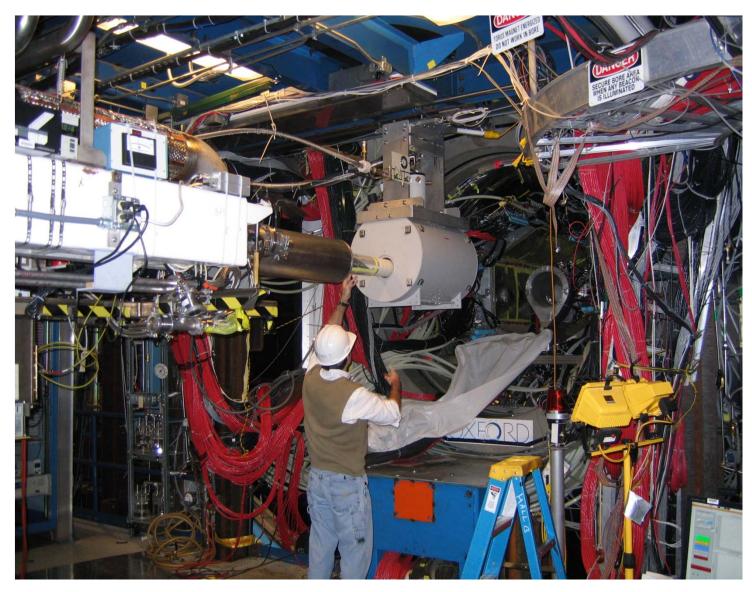
Bremsstrahlung photon tagger


- Jefferson Lab Hall B bremsstrahlung photon tagger
 - $E_{\gamma} = 20-95\% \text{ of } E_0$
 - E_{γ} up to ~5.5 GeV
 - Circular polarized photons with longitudinally polarized electrons
 - Oriented diamond crystal for linearly polarized photons

Circular beam polarization


• Circular photon beam from longitudinally polarized electrons

• Electron beam polarization > 85%


Linearly polarized photons

- Coherent bremsstrahlung from
 50 μ oriented diamond
- Two linear polarization states (vertical & horizontal)
- •Analytical QED coherent bremsstrahlung calculation fit to actual spectrum (Livingston/Glasgow)
- Vertical 1.3 GeV edge shown
- Currently, only very preliminary values of P_{γ}

FROST in Hall B

FROST target

The FroST target and its components:

A: Primary heat exchanger

B: 1 K heat shield

C: Holding coil

D: 20 K heat shield

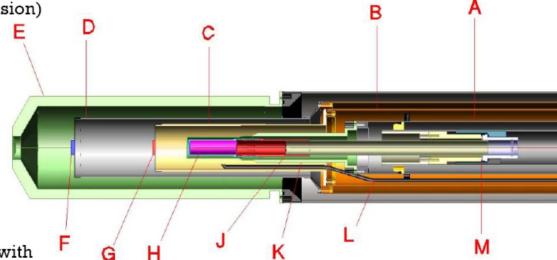
E: Outer vacuum can (Rohacell extension)

F: CH2 target

G: Carbon target

H: Butanol target

J: Target insert


K: Mixing chamber

L: Microwave waveguide

M: Kapton coldseal

• Butanol composition: C₄H₉OH

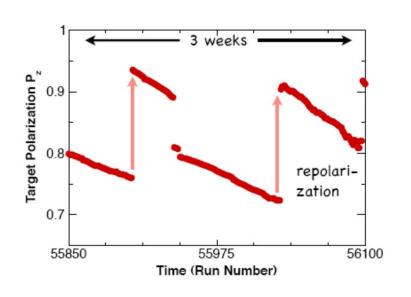
• Each bound proton is paired with a bound neutron \rightarrow No polarization of the bound nucleons

Performance Specs:

Base Temp: 28 mK w/o beam, 30 mK with

Cooling Power: 800 μ W @ 50 mK, 10 mW @ 100 mK, and 60 mW @ 300 mK

Polarization: +82%, -90%


1/e Relaxation Time: 2800 hours (+Pol), 1600 hours (-Pol)

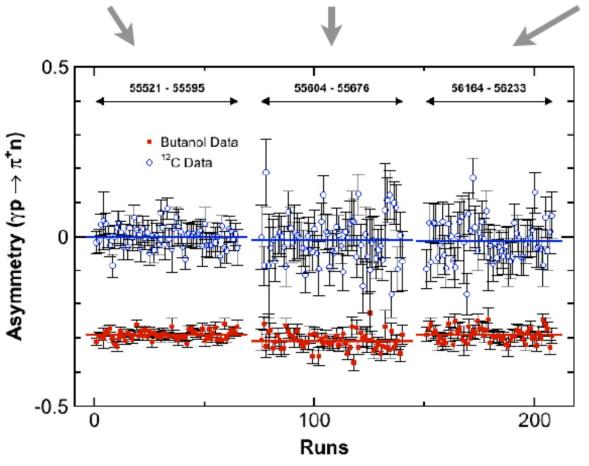
Roughly 1% polarization loss per day.

• Carbon target used to represent bound nucleon contribution of butanol

Target polarization

- Frozen spin butanol (C₄H₉OH)
- $P_z \approx 80\%$
- Target depolarization: $\tau \approx 100$ days

- For g9a (longitudinal orientation) 10% of allocated time was used polarizing target
- For g9b (transverse orientation) 5% of allocated time was used polarizing target



Stability of Beam/Target Polarization

$$E_e = 1.65 \text{ GeV}$$

$$1^{st} E_e = 2.48 \text{ GeV}$$

$$2^{nd}$$
 E_e = 2.48 GeV

- Per-run sign of P_zP_⊙ is understood
- Asymmetry of butanol data stepwise constant
- Target de- and re-polarizations under control
- Systematic uncertainty of σ(P_zP_⊙) ≈ 5%.
 S. Strauch

M. Dugger, Jlab User Meeting, June 2012

FROST running conditions

g9a: First running of FROST g9b: Second running of FROST • Transversely polarized target Longitudinally polarized target • Circular and linear photon • Circular and linear photon polarization polarization

Outline

- General motivations
- Polarization observables to be discussed
- Experimental details
- Preliminary results for several polarization observables
- Conclusions

Dilution factor and helicity asymmetry E

Theoretically:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left(1 - P_z P_C E \right) \longrightarrow E = \frac{\sigma_{1/2} - \sigma_{3/2}}{P_z P_C \left(\sigma_{1/2} + \sigma_{3/2} \right)}$$

Experimentally:

$$E = \frac{1}{P_Z P_C d} \left[\frac{Y_{1/2} - Y_{3/2}}{Y_{1/2} + Y_{3/2}} \right]$$

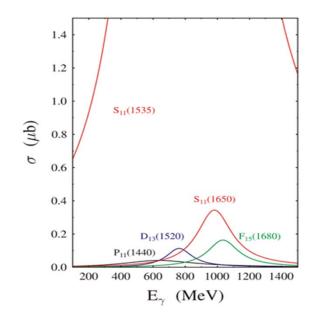
where Y represents yield and d is the dilution, which is the ratio of hydrogen events to total events:

$$d = \frac{Y_H}{Y_{bound} + Y_H}$$

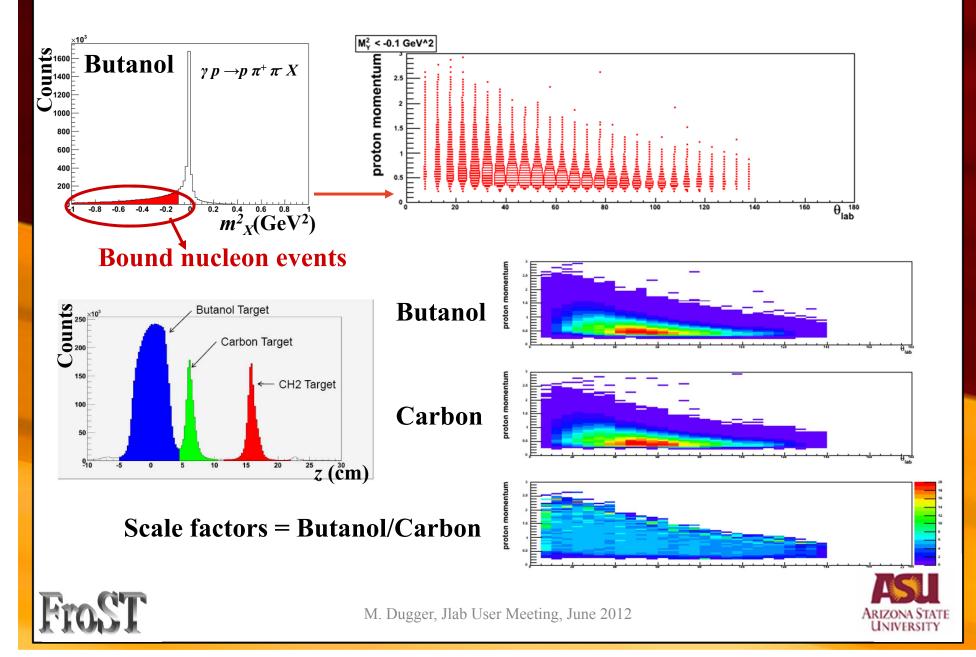
Note: Bound nucleons have no polarization $\rightarrow E_{bound} = 0$

$\gamma p \rightarrow p \eta$

• Arizona State University

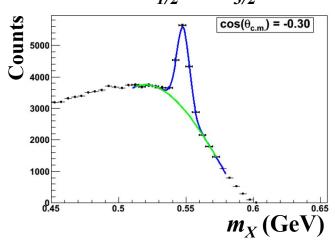

• Brian Morrison, Michael Dugger, and Barry Ritchie

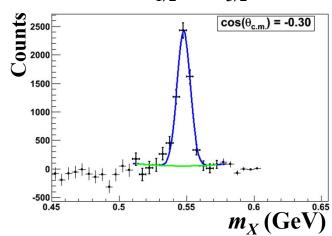
Helicity asymmetry for η photoproduction at threshold


- $S_{II}(1535)$ dominates at threshold
- Since the $S_{II}(1535)$ is an L=0, $s=\frac{1}{2}$, resonance, this resonance can only couple to helicity = $\frac{1}{2}$ initial state.
- S_{II} dominance forces $E \approx 1.0$ at, and near, threshold for all scattering angles
- Provides an analytic check

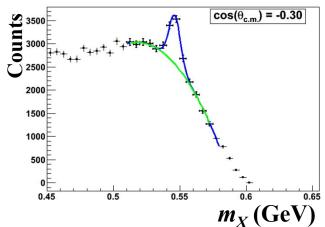
$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{P_z P_C (\sigma_{1/2} + \sigma_{3/2})}$$

Scale factors


Sample η fits from $\gamma p \rightarrow p X$

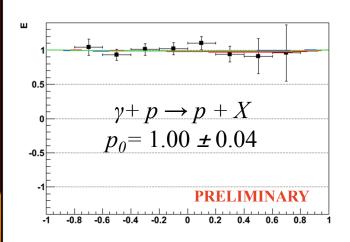

•
$$W = 1525 \text{ MeV}$$

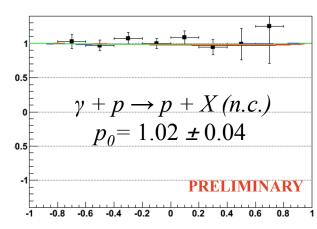
$$N_{1/2} + N_{3/2}$$

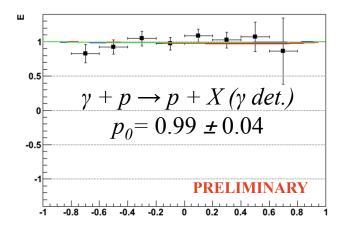

• $\cos(\theta_{c.m.}) = -0.3$

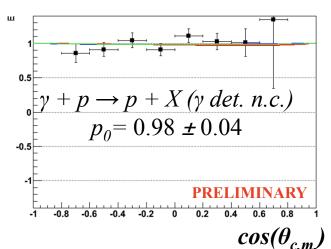
$$N_{1/2}$$
 - $N_{3/2}$

Scaled carbon



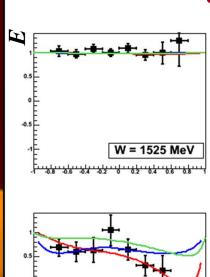


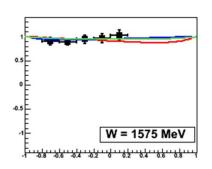


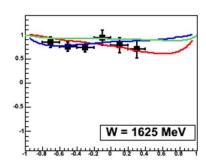

E at threshold for $p \eta$

SAID
MAID
Bonn-Gatchina

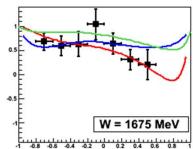
- W = 1525 MeV
- All have *E*=1, within statistical uncertainties

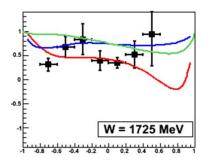


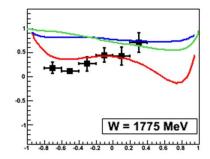

*n.c. implies no charged particles other than the proton.

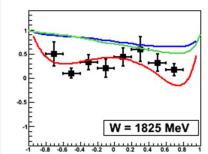


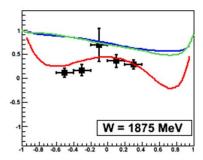
ARIZONA STATE

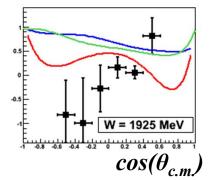

Helicity asymmetry at fixed energies







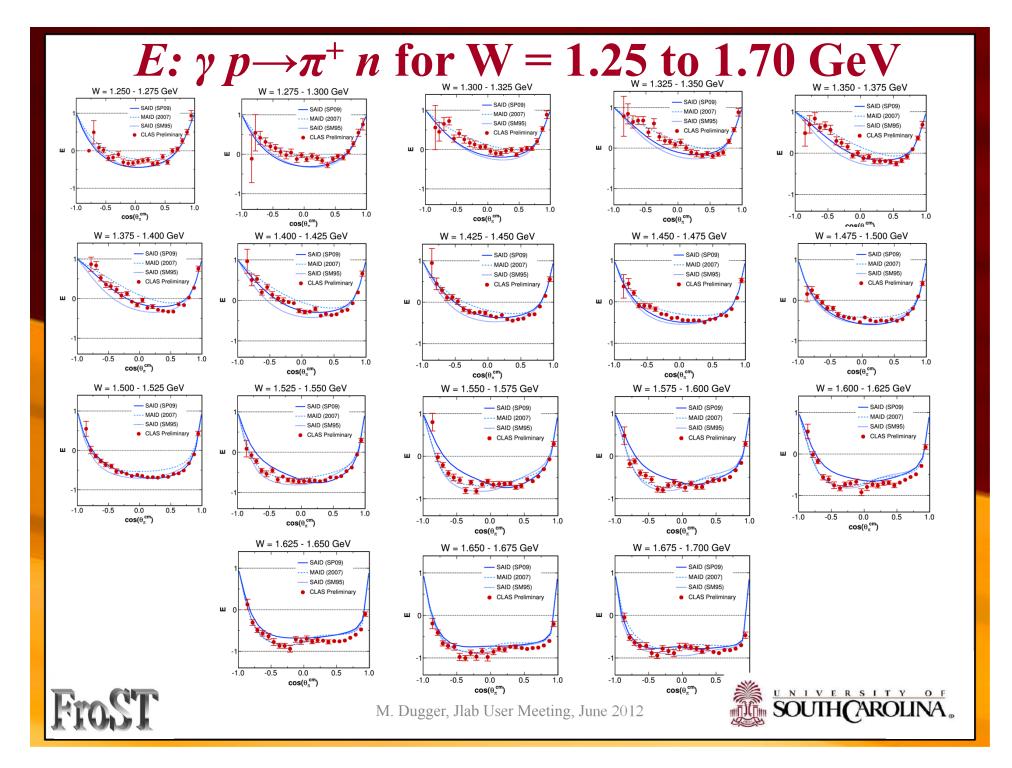


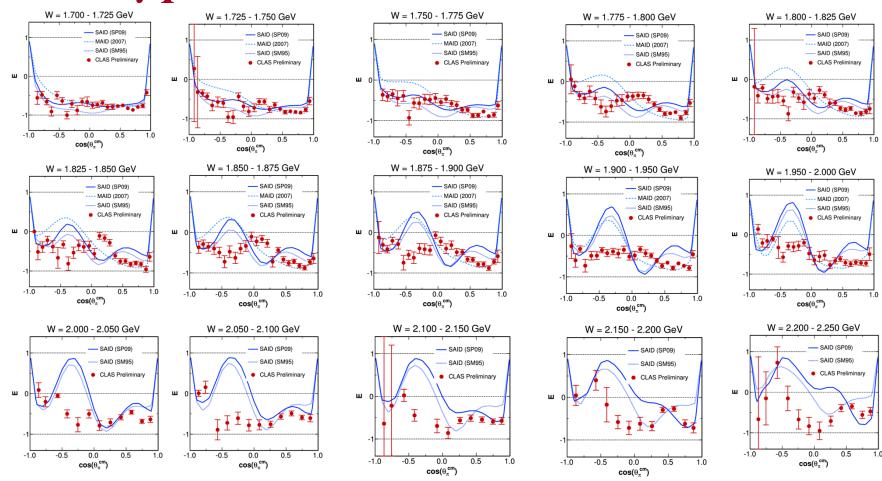


Preliminary data prefers SAID for *W* >1.75 GeV

ARIZONA STATE UNIVERSITY

$\gamma p \rightarrow \pi^+ n$


• University of South Carolina South Carolina


• Steffen Strauch

E: $\gamma p \rightarrow \pi^+ n$ for W = 1.70 to 2.25 GeV

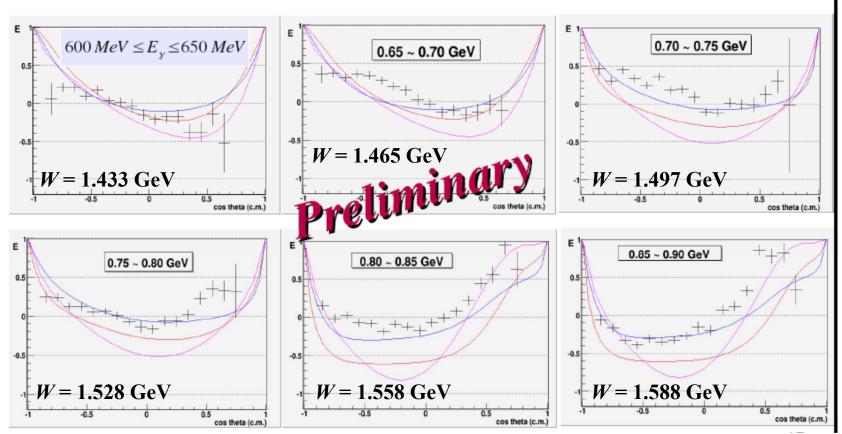
For W< 1.75 GeV all of the models represent the data fairly well. For W> 1.75 GeV none of the models represents the data well.

$\gamma p \rightarrow p \pi^0$

• The George Washington University

Hideko Iwamoto and Bill Briscoe

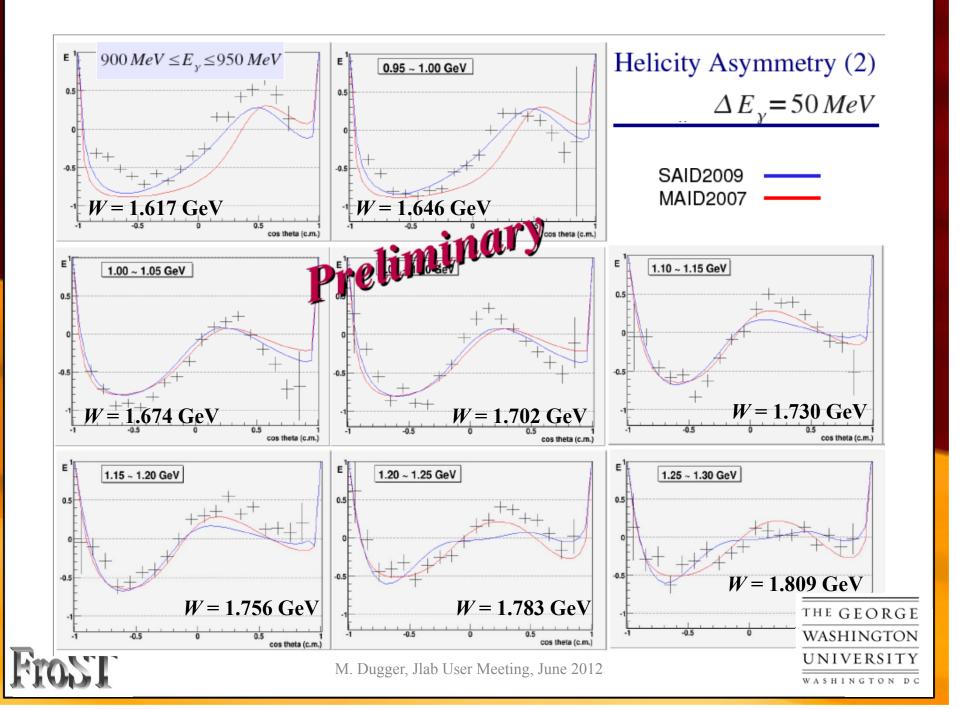
Helicity asymmetry E for $\gamma p \rightarrow \pi^0 p$

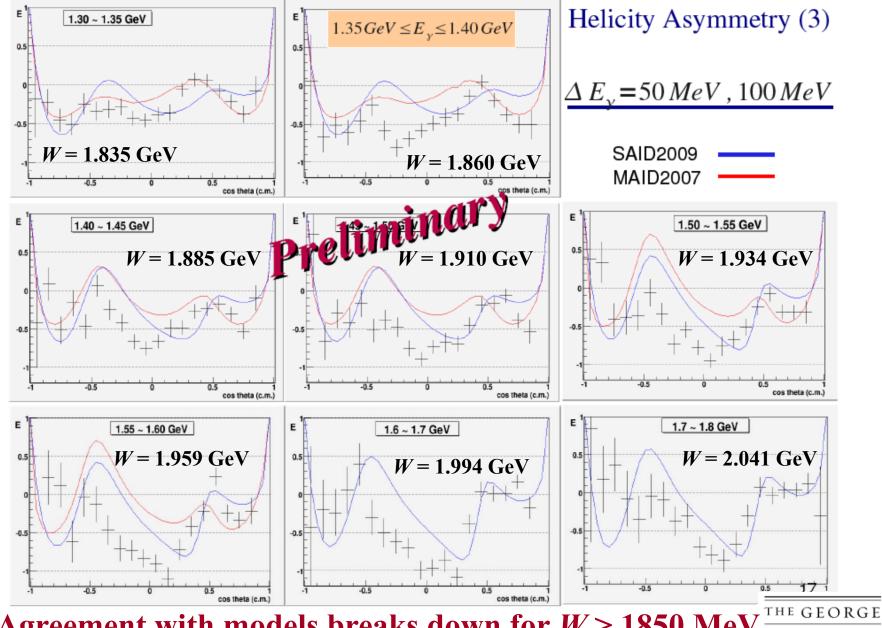

 $\Delta E_{\gamma} = 50 \, MeV$

SAID2009 — D_f:
MAID2007 — P_T
EBAC Pe

 D_f : max ~ 0.35

P_T 0.78 ~ 0.92


Pe 0.79 ~ 0.87



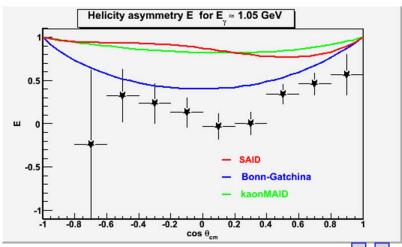
Only statistical uncertainty of asymmetry is shown

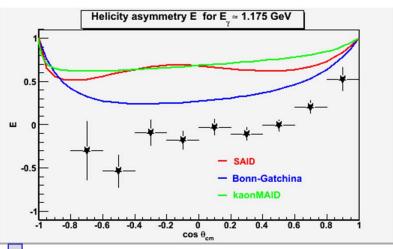
WASHINGTON
UNIVERSITY

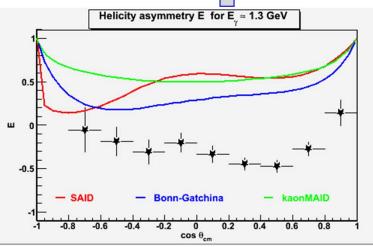
Agreement with models breaks down for W > 1850 MeV

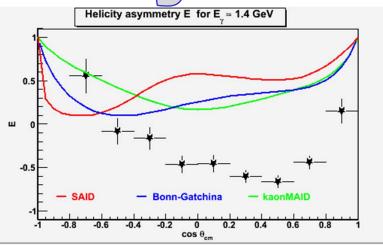
$\gamma p \rightarrow K^+ \Lambda \text{ and } \gamma p \rightarrow K^+ \Sigma^0$

• Catholic University of America

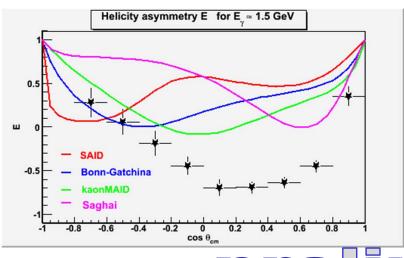


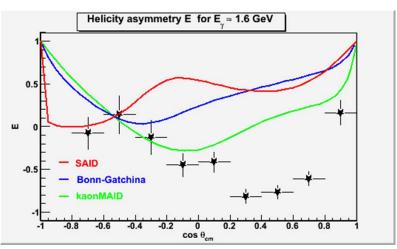

• Liam Casey and Franz Klein

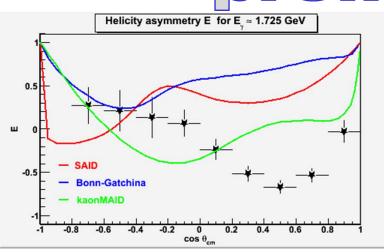


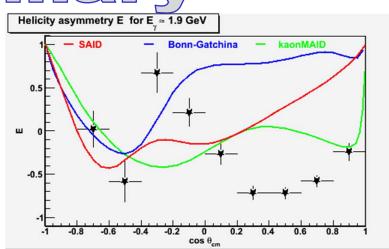

Helicity asymmetry E for $K^+ \Lambda$

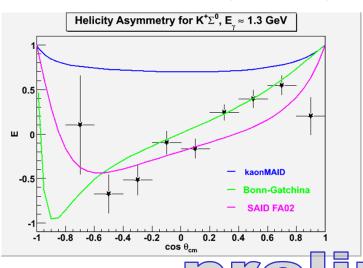
preliminary

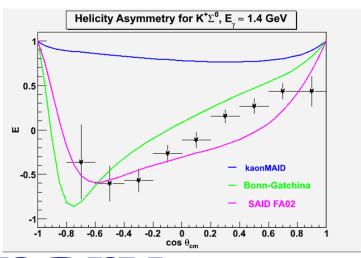




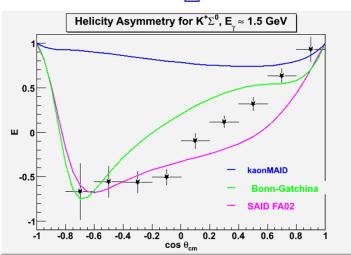


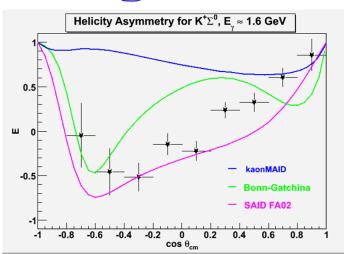

Helicity asymmetry for $K^+ \Lambda$





None of the models represents the data well




Helicity asymmetry for $K^+ \Sigma^0$

preliminary

• Models represents the data better than for $K^+ \Lambda$

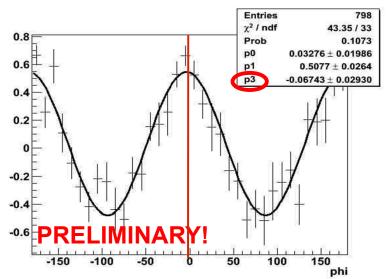
Σ and G observables

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left(1 - P_T \Sigma \cos(2\varphi) + P_T P_z G \sin(2\varphi) \right)$$

- Σ is a single polarization observable (beam asymmetry)
- G is a double polarization observable

$\gamma p \rightarrow \pi^+ n$

• The University of Edinburgh


Jo McAndrews and Dan Watts

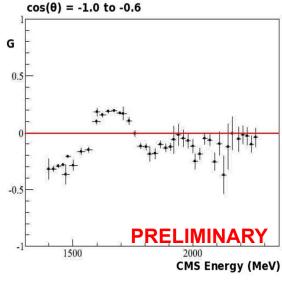


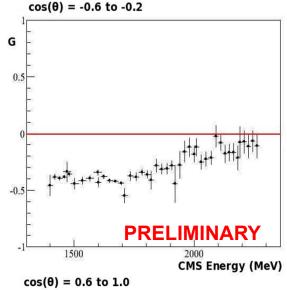
Example of extraction for G for π^+ n

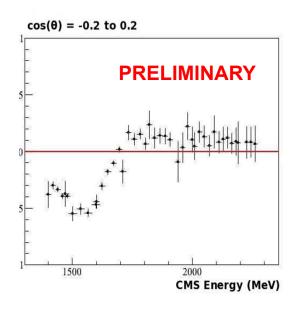
$$f(\phi)_{||\perp} = P0 + P1\cos(2(\phi - P2)) + P3\sin(2(\phi - P2))$$

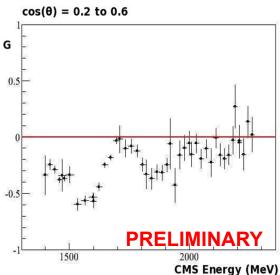
$$\mathbf{p3} = \mathbf{p_vp_zfG}$$

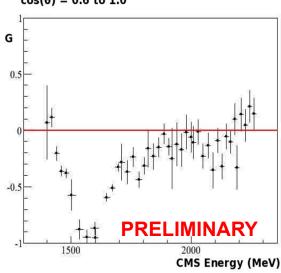
Asymmetry -ve polarised target




Asymmetry +ve polarised target






Preliminary results of G for π^+ n

• Early stage results with very preliminary linear beam polarization values

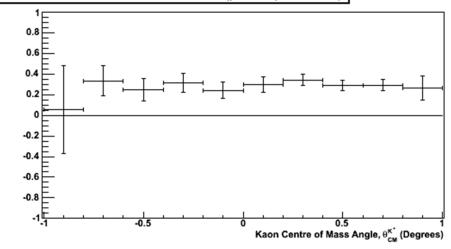
M. Dugger, Jlab User Meeting, June 2012

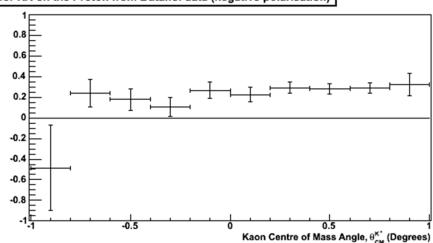
$\gamma p \rightarrow K^+ \Lambda$

• University of Glasgow

University

of Glasgow

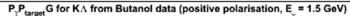

• Stuart Fegan and Ken Livingston

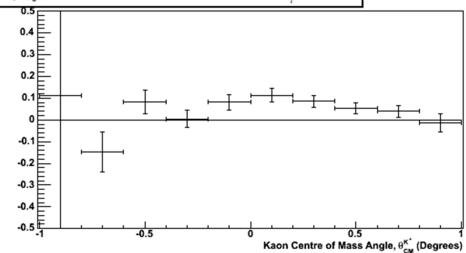


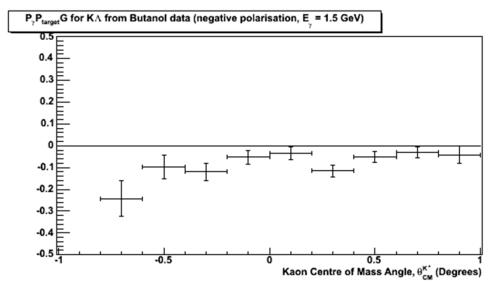
Σ for $K^+\Lambda$

Σ for KA on the Proton from Butanol data (positive polarisation)

Σ for KA on the Proton from Butanol data (negative polarisation)

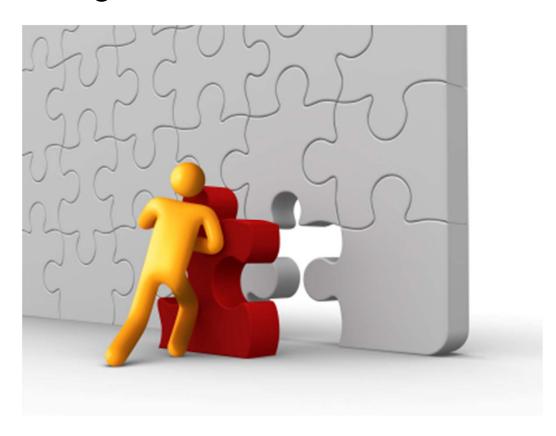



- Since the beam asymmetry Σ does not rely upon target polarization, bound nucleons can have $\Sigma \neq 0$
- Dilution must be carefully determined
- The beam asymmetry is used only for purposes of checking data consistency



$P_{\gamma}P_{z}G$ for $K^{+}\Lambda$

- $E_{\gamma} = 1.5 \text{ GeV}$
- Can clearly see sign change between +z and -z target polarization data



$\gamma p \rightarrow p \pi^+ \pi^-$

• Florida State University

• Sung Park and Volker Crede

$$\gamma p \rightarrow p \pi^+ \pi^-$$

The differential cross section for $\gamma p \rightarrow p \pi^+ \pi^-$

(without measuring the polarization of the recoiling nucleon)

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\mathrm{x_i}} = \sigma_0 \left\{ \left(\mathbf{1} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}} \right) + \delta_{\odot} \left(\mathbf{I}^{\odot} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}^{\odot} \right) \right\}$$

$$+ \frac{\delta_{l}}{\sin 2\beta} \left(\mathbf{I}^{s} + \vec{\Lambda}_{i} \cdot \vec{\mathbf{P}}^{s} \right) + \cos 2\beta \left(\mathbf{I}^{c} + \vec{\Lambda}_{i} \cdot \vec{\mathbf{P}}^{c} \right) \right]$$

- σ_0 : The unpolarized cross section
- \bullet β : The angle between the direction of polarization and the x-axis
- $\delta_{\odot,I}$: The degree of polarizaton of the photon beam $\Rightarrow \delta_{\odot}$, and δ_{I}
- $\vec{\Lambda}_i$: The polarization of the initial nucleon $\Rightarrow (\Lambda_X, \Lambda_Y, \Lambda_Z)$
- I^{⊙, s, c}: The observable arising from use of polarized photons ⇒ I[⊙], I^s, I^c
- \vec{P} : The polarization observable \Rightarrow (P_x , P_y , P_z) (P_x^{\odot} , P_y^{\odot} , P_z^{\odot}) (P_x^s , P_y^s , P_z^s) (P_x^c , P_y^c , P_z^c) 15 Observables

$$\gamma p \rightarrow p \pi^+ \pi^-$$

The circularly-polarized beam $\rightarrow \delta_I = 0$

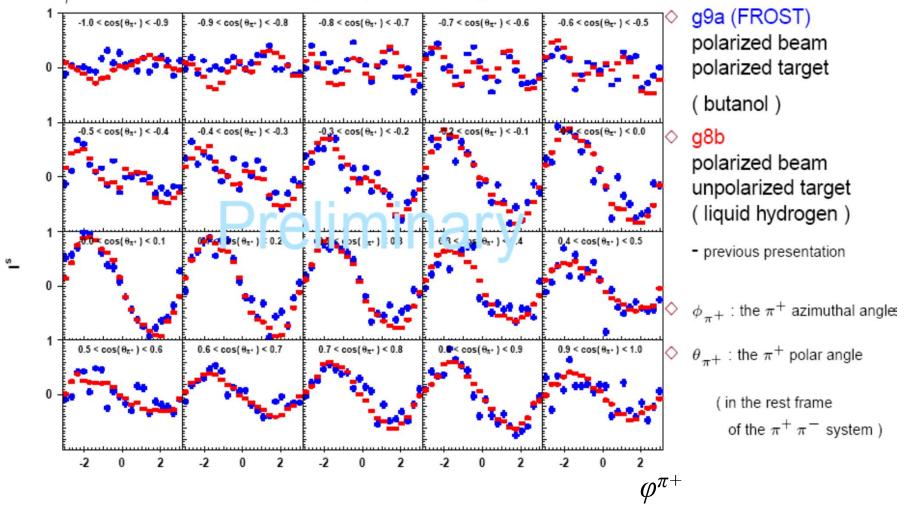
The longitudinally-polarized target $\rightarrow \Lambda_x = \Lambda_y = 0$

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\mathrm{x_i}} = \sigma_0\,\{\,(\mathbf{1} + \Lambda_z\, (\mathbf{P_z}) + \delta_\odot\, (\mathbf{I}^\odot\, + \Lambda_z\, (\mathbf{P_z}^\odot))\} \qquad \text{3 Observables}$$

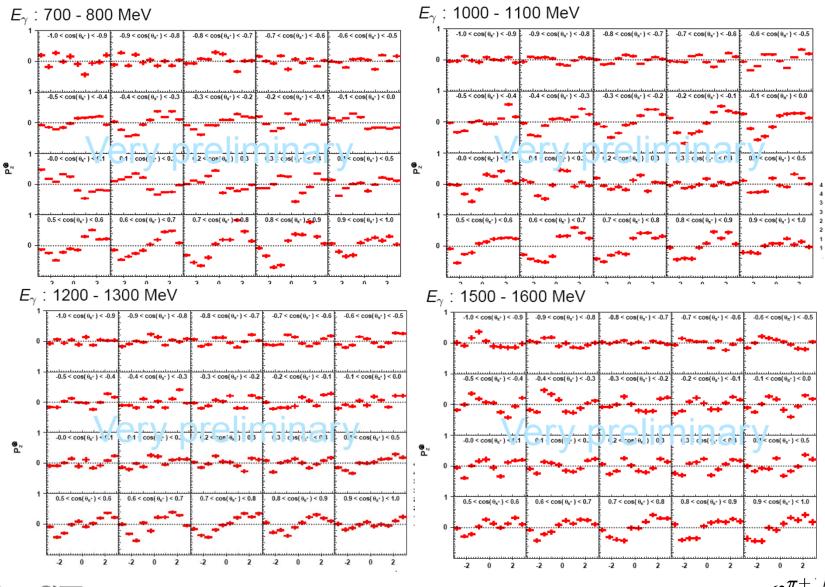
$$\mathbf{I}^\odot \text{ only is published and small and sensitive}$$

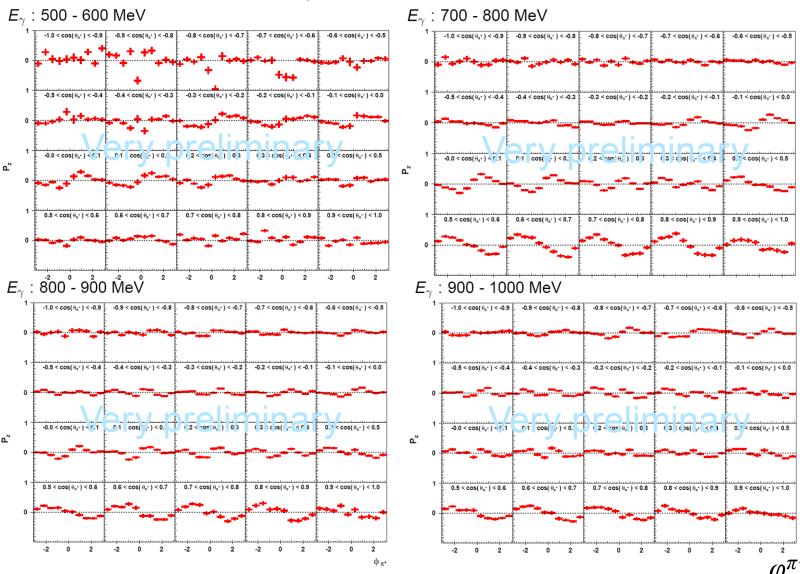
The linearly-polarized beam ightarrow $\delta_{\,\odot}=0$

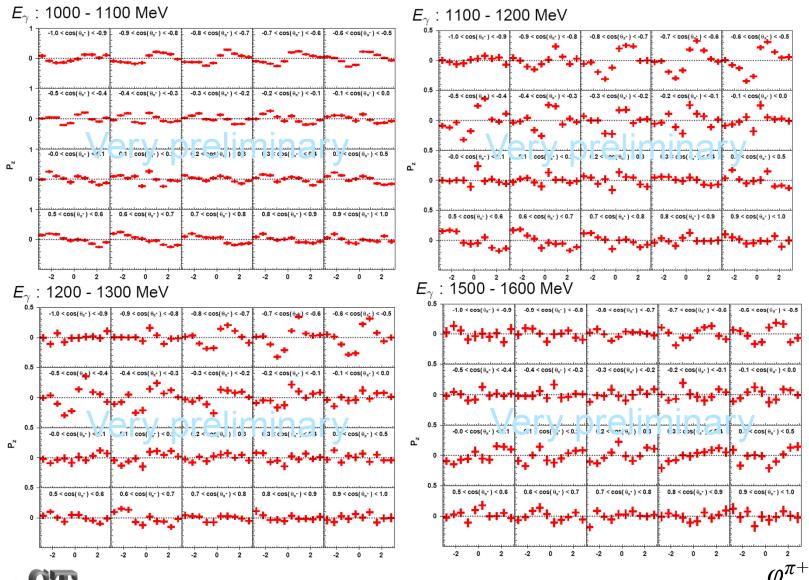
The longitudinally-polarized target $\rightarrow \Lambda_x = \Lambda_y = 0$


$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\mathrm{x_i}} = \sigma_0 \left\{ \left(\mathbf{1} + \vec{\Lambda}_{\mathbf{z}} \cdot \vec{\mathbf{P}}_{\mathbf{z}}^{\mathbf{z}} \right) + \delta_{\mathbf{I}} \left[\sin 2\beta \left(\mathbf{I}^{\mathbf{s}} + \vec{\Lambda}_{\mathbf{z}} \cdot \vec{\mathbf{P}}_{\mathbf{z}}^{\mathbf{s}} \right) + \cos 2\beta \left(\mathbf{I}^{\mathbf{c}} + \vec{\Lambda}_{\mathbf{z}} \cdot \vec{\mathbf{P}}_{\mathbf{z}}^{\mathbf{c}} \right) \right] \right\}$$

Is for $p \pi^+ \pi^-$


 E_{γ} : 1250 - 1300 MeV (comparison with g8b data)


P°_{z} for $p \pi^{+} \pi^{-}$


M. Dugger, Jlab User Meeting, June 2012

P_z for $p \pi^+ \pi^-$

P_z for $p \pi^+ \pi^-$

FROzen Spin Target "FROST" (g9b)

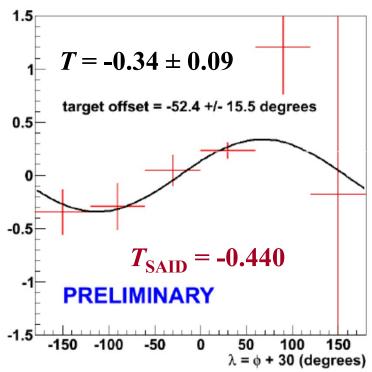
- > Transversely polarized target
- Beam: Circular polarization; Linear polarization; Un-polarized
- Data obtained for Σ , F, H, P and T (for pseudoscalars)
- Data is in calibration phase right now

Beam	Target	Observable
Circular	Transverse	$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left[1 - P_{xy}^{lab} P_{\circ} F \cos(\beta - \varphi) + P_{xy}^{lab} T \sin(\beta - \varphi) \right]$
Linear	Transverse	$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left[1 - P_T \Sigma \cos(2\varphi) + P_{xy}^{lab} P_T H \cos(\beta - \varphi) \sin(2\varphi) \right]$
		$+ P_{xy}^{lat} T \sin(\beta - \varphi) - P_{xy}^{lab} P_T P \sin(\beta - \varphi) \cos(2\varphi) $

 σ_{θ} = unpolarized cross section, P_T = transverse beam polarization P_{θ} = circular polarization, P_z = longitudinal target polarization

A very early look at T for $\gamma p \rightarrow \pi^+ n$

• Arizona State University


• Michael Dugger and Barry Ritchie

A quick attempt at T from uncalibrated CLAS data

Target asymmetry for γ p -> π ⁺ n

- Used only 2 uncalibrated runs
- E_{γ} from 0.65 to 1.2 GeV
- $cos(\theta^{\pi}_{c.m}) = 0.95$
- Target offset (in φ) is within one standard deviation of the set value (-60 degrees)
- The measured value of *T* is within 1.14 standard deviations of SAID

Conclusion

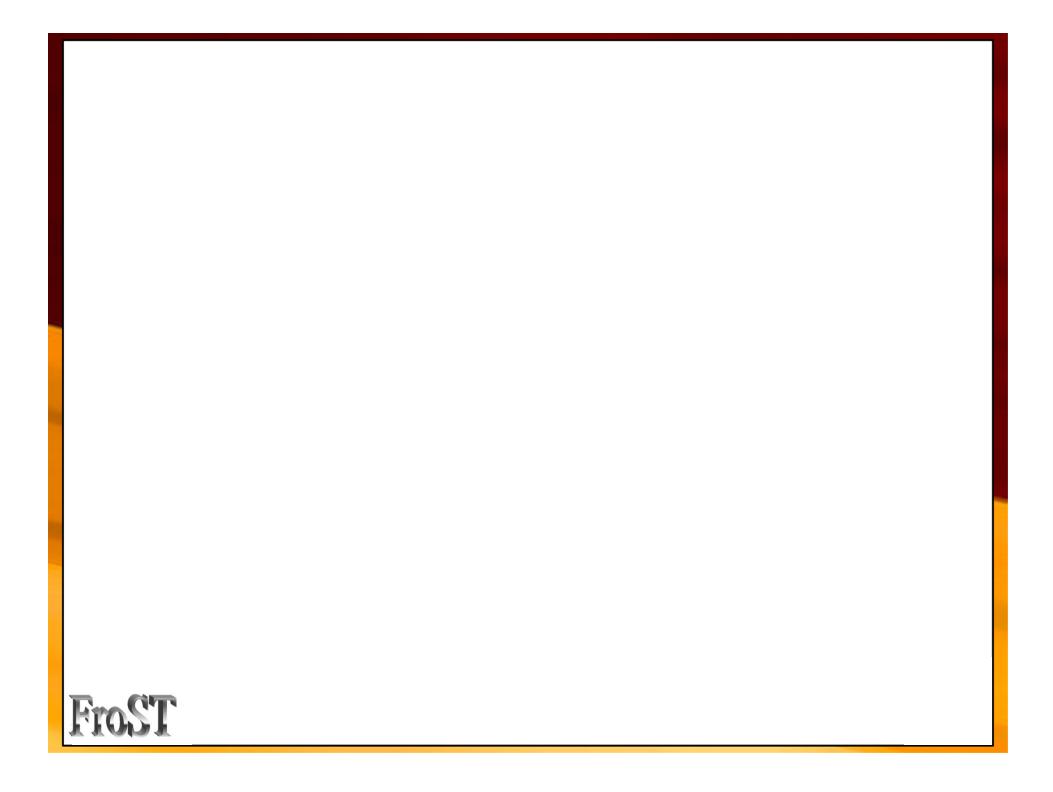
- Models fit preliminary FROST pion helicity asymmetry data best when W < 1.75 GeV
- Preliminary FROST helicity asymmetry data for ηp favors SAID for W > 1.75 GeV
- None of the models shown represents the $K^+ \Lambda$ data well but do much better for $K^+ \Sigma^0$
- Σ and G measurements are at an early stage of analysis and use very preliminary linear beam polarization values, but are progressing nicely
- There is **lots** of data for the $\pi^+\pi^-p$ channel, and the preliminary I^S observable from FROST compares well with g8b
- Very preliminary looks at data from the second running of FROST (transverse target) are promising

Acknowledgements

♦ NSF

♦ DOE

♦ CLAS Collaboration


M. Dugger, Jlab User Meeting, June 2012

Status of meson photoproduction

	The state of		-								\smile			\sim		
	σ	Σ	Т	Р	Ε	F	G	Н	T _x	T _z	L _x	Lz	O x	0	C	C
Proton target																
$p\pi^0$	✓	√	1	1	✓	1	1	√								
nπ ⁺	✓	1	1	1	√	1	1	√								
pη	✓	1	1	1	√	1	1	√								
pη'	✓	1	1	1	√	1	1	√								
ρω	✓	1	1	1	1	1	1	1								
K ⁺ Λ		1	1	•	1	1	1	√	1	1	1	1	√	1	/	•
$K^+\Sigma^0$		1	1	•	1	1	1	√	1	1	1	1	√	1	/	•
$K^{0*}\Sigma^+$	/	1									1	1				
Neutron target																
pπ ⁻	✓	√	1		1	1	1	1								
pρ⁻	1	1	1		1	1	1	1								
Κ-Σ+	✓	1	1		1	1	1	1								
K_0V	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$K^0\Sigma^0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$K^{0*}\Sigma^0$	√	1													de	

✓ - published, ✓ - acquired, ✓ - planned

