Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Computational Physics Lab

Numerical Differentiation & Simple Differential Equations

03/05/2009

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Homework Assignment

Computational Physics Lab

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

1 Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

- **4** Differential Equations
- 5 This Week's Project Euler Method

Homework Assignment

- Basic Function Properties Default Function Parameters Inline Functions
- Numerical Differentiation Derivatives & Errors
- Differential Equations
- This Week's Project Euler Method

Homework Assignment

Read Chapter 9, 12 (7 pages), and 15 (5 pages)

- 9 "Basic function properties"
- 12 "Numerical error analysis derivatives"
- 15 "Differential equations"

Assignments of Section 9.14: (1) - (13)

- Due next Tuesday, March 17
 - → Hand in a paper copy or a piece of paper stating that you have posted the homework to your comphy web site!

・ロット (雪) (日) (日) (日)

Computational Physics Lab

Homework Assignment

Basic Function Properties

Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Homework Assignment

2 Basic Function Properties

Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

- **4** Differential Equations
- 5 This Week's Project Euler Method

Homework Assignment

Basic Function Properties

Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Default Function Parameters

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Default parameters must be placed last in the function.

include <iostream.h>

void myFunction(int a, int b);

main() { myFunction(2,3);

...

}

Homework Assignment

Basic Function Properties

Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Default Function Parameters

Default parameters must be placed last in the function.

include <iostream.h>

void myFunction(int a, int b = 1);

```
Okay
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

main() { myFunction(2,3); myFunction(2);

...

}

Homework Assignment

Basic Function Properties

Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Default Function Parameters

Default parameters must be placed last in the function.

include <iostream.h>

```
void myFunction(int a = 1, int b);
```

Compiler error

▲□▶▲□▶▲□▶▲□▶ □ のQ@

main() { myFunction(2,3); myFunction(2);

...

}

Homework Assignment

Basic Function Properties Default Function Parameters

Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Inline Functions

The body of a function that is declared *inline* is automatically substituted into each function call before compilation.

- · Faster executable code, but increased compile times
- Functions defined within a class definition are inline functions

```
inline int myFunction(int a, int b) { ... };
```

```
main() {
myFunction(2,3);
```

...

Does not allocate and deallocate memory upon each call to it!

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

・ロット (雪) (日) (日) (日)

Computational Physics Lab

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation

Differential Equations

This Week's Project Euler Method

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

3 Numerical Differentiation

Derivatives & Errors

- 4 Differential Equations
- 5 This Week's Project Euler Method

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Numerical Differentiation

- It is often possible to find derivatives given an analytic expression for a function.
- Not always the case! Sometimes numerical determination of the derivative is the only alternative:
 - Functions available only as a set of discrete data points
 - Determination of a function from non-linear differential equation and some initial conditions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

The Derivative Operator

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Limit-Based Determination

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \right)$$

Numerical approximation to the derivative generated from its original definition as the limit of a discrete expression

• Can be used to formulate numerical techniques

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

The Derivative Operator

Limit-Based Determination

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \right)$$

Two methods of computing differences

1 Discrete Forward Finite Difference

$$D^+_{\Delta x}(f(x)) = \left(\frac{f(x + \Delta x) - f(x)}{\Delta x}\right)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

The Derivative Operator

Limit-Based Determination

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \right) = \lim_{\Delta x \to 0} D^+_{\Delta x}(f(x))$$

Two methods of computing differences

1 Discrete Forward Finite Difference

$$D^+_{\Delta x}(f(x)) = \left(rac{f(x + \Delta x) - f(x)}{\Delta x}
ight)$$

2 Centered Finite Difference

$$D^{c}_{\Delta x}(f(x)) = \left(\frac{f(x + \Delta x/2) - f(x - \Delta x/2)}{\Delta x}\right)$$

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへぐ

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation

Differential Equations

This Week's Project Euler Method

Derivatives & Errors

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation

Differential Equations

This Week's Project Euler Method

Derivatives & Errors

Improved Approximation:

$$\begin{split} f(x + \Delta x/2) &= f(x) + (\Delta x/2) f'(x) + \frac{(\Delta x/2)^2}{2} f''(x) + \frac{(\Delta x/2)^3}{6} f'''(x) + \dots \\ f(x - \Delta x/2) &= f(x) + (-\Delta x/2) f'(x) + \frac{(\Delta x/2)^2}{2} f''(x) + \frac{(-\Delta x/2)^3}{6} f'''(x) + \dots \\ f(x + \Delta x/2) - f(x - \Delta x/2) &= -\Delta x f'(x) + \frac{\Delta x^3}{24} f'''(x) + \dots \end{split}$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= nar

・ロット (雪) (日) (日) (日)

Computational Physics Lab

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

4 Differential Equations

5 This Week's Project Euler Method

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project Euler Method

Euler's Method

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

An *n*th-order ordinary differential equation can always be replaced by a system of *n* first-order equations that require *n* independent initial or boundary conditions to specify a unique solution.

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project

Euler's Method

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

An *n*th-order ordinary differential equation can always be replaced by a system of *n* first-order equations that require *n* independent initial or boundary conditions to specify a unique solution.

Example:

Single massive particle with mass *m* attached to a spring with force constant *k*:

$$a=\frac{d^2x}{dt^2}=-\frac{k}{m}x$$

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project

Euler's Method

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

An *n*th-order ordinary differential equation can always be replaced by a system of *n* first-order equations that require *n* independent initial or boundary conditions to specify a unique solution.

Example:

Single massive particle with mass *m* attached to a spring with force constant *k*:

$$a = \frac{d^2 x}{dt^2} = -\frac{k}{m} x$$
$$a = \frac{dv}{dt} = -\frac{k}{m} x$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Computational Physics Lab

This Week's Project Euler Method

Derivatives & Errors

- 5 This Week's Project Euler Method

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project

This Week's Project

Radioactive Decays
$$\frac{dN(t)}{dt} = \frac{-N(t)}{\tau}$$

Set
$$\frac{dN(t)}{dt} = D^+_{\Delta t}(N(t))$$

and solve for the incremental equation of state

$$N(t + \Delta) =$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project

Euler Method

Example: Euler Method for Motion of Point Particle

Equations of Motion

$$\frac{dv}{dt} = a(r, v) \qquad \frac{dr}{dt} = v$$

Using the forward difference:

$$\frac{v(t+\Delta t)-v(t)}{\Delta t}+O(t)=a(r(t),v(t))\qquad \frac{r(t+\Delta t)-r(t)}{\Delta t}+O(t)=v(t)$$

 $v(t+\Delta t) = v(t) + \Delta t a(t) + O(\Delta t)^{2} \qquad r(t+\Delta t) = r(t) + \Delta t v(t) + O(\Delta t)^{2}$

Dropping the error term

$$v_{n+1} = v_n + \Delta t a_n$$
 $r_{n+1} = r_n + \Delta t v_n$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homework Assignment

Basic Function Properties Default Function Parameters Inline Functions

Numerical Differentiation Derivatives & Errors

Differential Equations

This Week's Project

Euler Method

Example: Euler Method Procedure

Calculation of Trajectory (the incremental equation)

- **1** Specify the initial conditions: $r_1 \& v_1$.
- **2** Choose a time step Δt .
- **3** Calculate the acceleration given the current r and v.
- **4** Use $v_{n+1} = v_n + \Delta t a_n$ and $r_{n+1} = r_n + \Delta t v_n$ to compute new *r* and *v*.
- **6** Go to step 3 until enough trajectory points have been computed.

Euler-Cromer Method

 $v_{n+1} = v_n + \Delta t a_n$ $r_{n+1} = r_n + \Delta t v_n$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@