Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Range Errors

Computational Physics

Numerical Accuracy

01/29/2009

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

(日)

Homework Assignment

Computational Physics

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

1 Homework Assignment

Computing Numerics

Representing Numbers Fixed Points (int or long) Floating Points (float or double)

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Homework Assignment

Read Chapter 6

• "An Introduction to object-oriented analysis"

Assignments (6) and (7) of Section 5.15

- See handout!
- For assignment 7, do not use the DISLIN package, instead save data for x, y, and the field to a file and plot in 3D using Gnuplot "splot"!

(日)

• Due next Tuesday, February 3

Outline

(日)

Computational Physics

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Homework Assignment

2 Computing Numerics

Representing Number

Fixed Points (int or long) Floating Points (float or double)

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Computing Numerics

(日)

Representing Numbers

- Bits and Bytes
- Fixed Points (int or long)
- Floating Points (float or double)
- Floating Point Arithmetic
- Computational Errors
 - Range Errors
 - Round-Off Errors

Outline

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= nac

Computational Physics

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Homework Assignment

Computing Numerics

3 Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Range Errors

Representing Numbers

Binary Bits

- Units of Memory
- All numbers eventually are represented in Binary Form
 - → Finite precision: Limits & Approximation

Word Length

Number of bits to store a number (often given in Bytes)

(日)

- 1 byte = 1 B = 8 bits = 8 b
- 1 kB = 2¹⁰ bytes = 1024 bytes
- 1 MB = 1024 * 1024 bytes

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float

Computational Errors

Fixed Points (int or long)

(日)

Exact Representation

- $2^N 1$ integers represented by N bits
 - 1st bit gives the sign
 - Remaining N 1 bits give the value
 - 32-bit integers:
 - $-2\,147\,483\,648 \leq \mathrm{int}_{32} \leq 2\,147\,483\,648$
- Integer Arithmetic is exact!
 - Except for overflows and underflows

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

```
Computational
Errors
```

```
# include <iostream.h>
main() {
    int thirdBit = (1 < < 2);
    int i = 8;
    if ( (i & thirdBit) != 0 ) {
       cerr << endl << "Third bit true!":
    }
    else if ( (i & thirdBit) == 0 ) {
       cerr << endl << "Third Bit false!":
    }
```

Bit Manipulation


```
2 Bitwise Logical AND &
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float

or double)

Computational Errors

Floating Points (float or double)

- Scientific work mainly uses floating-point numbers
- Floating-Point Notation

sign exp + bias mantissa float₃₂ 0 01111111 100000000000000000000000 $x = (-1)^{sign} \cdot mantissa \cdot 2^{exponent}$ 1 mantissa: $1.m_1 2^{-1} + m_2 2^{-2} + ...$ 2 bias = 0111 1111₂ = 127₁₀ Example: true exponent = 127 - 127 = 0 $\rightarrow (-1)^0 \cdot 2^0 \cdot 1.5 = 1.5$

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float

or double)

Computational Errors

Floating Points (float or double)

- Scientific work mainly uses floating-point numbers
- Floating-Point Notation

sign exp + bias mantissa float 32 0 1000000 $x = (-1)^{\text{sign}} \cdot \text{mantissa} \cdot 2^{\text{exponent}}$ 1 mantissa: $1.m_1 2^{-1} + m_2 2^{-2} + ...$ **2** bias = 0111 1111₂ = 127_{10} **Example:** true exponent = 128 - 127 = 1 \rightarrow $(-1)^{0} \cdot 2^{1} \cdot 1.0 = 2.0$

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float

or double)

Computational Errors

Floating Points (float or double)

- Scientific work mainly uses floating-point numbers
- Floating-Point Notation

sign exp + bias mantissa 1 1000000 float 32 $x = (-1)^{\text{sign}} \cdot \text{mantissa} \cdot 2^{\text{exponent}}$ 1 mantissa: $1.m_1 2^{-1} + m_2 2^{-2} + ...$ **2** bias = 0111 1111₂ = 127_{10} **Example:** true exponent = 128 - 127 = 1 \rightarrow $(-1)^1 \cdot 2^1 \cdot 1.0 = -2.0$

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float

or double)

Computational Errors

Floating Points (float or double)

- Scientific work mainly uses floating-point numbers
- Floating-Point Notation

sign exp + bias mantissa float 32 0 1000001 $x = (-1)^{\text{sign}} \cdot \text{mantissa} \cdot 2^{\text{exponent}}$ 1 mantissa: $1.m_1 2^{-1} + m_2 2^{-2} + ...$ **2** bias = 0111 1111₂ = 127_{10} **Example:** true exponent = 129 - 127 = 2 \rightarrow $(-1)^{0} \cdot 2^{2} \cdot 1.5 = 6.0$

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float

or double)

Computational Errors

Floating Points (float or double)

- Scientific work mainly uses floating-point numbers
- Floating-Point Notation

sign exp + bias mantissa $x = (-1)^{\text{sign}} \cdot \text{mantissa} \cdot 2^{\text{exponent}}$ 1 mantissa: $1.m_1 2^{-1} + m_2 2^{-2} + ...$ **2** bias = 0111 1111₂ = 127_{10} **Example:** true exponent = 126 - 127 = -1 \rightarrow $(-1)^{0} \cdot 2^{-1} \cdot 1.5 = 0.75$

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float

or double)

Computational Errors

Floating Points (float or double)

- Scientific work mainly uses floating-point numbers
- Floating-Point Notation

sign exp + bias mantissa float₃₂ 0 01111011 1001100110011001101101 $x = (-1)^{\text{sign}} \cdot \text{mantissa} \cdot 2^{\text{exponent}}$ 1 mantissa: $1.m_1 2^{-1} + m_2 2^{-2} + ...$ 2 bias = 0111 1111₂ = 127₁₀ Example: true exponent = 123 - 127 = -4 $\Rightarrow (-1)^0 \cdot 2^{-4} \cdot 1.6 = 0.1$

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float

or double)

Computational Errors

Floating Points (float or double)

- Scientific work mainly uses floating-point numbers
- Floating-Point Notation

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $x = (-1)^{\text{sign}} \cdot \text{mantissa} \cdot 2^{\text{exponent}}$

- Floating-Point Arithmetic is not exact!
 - Range $2.9 \cdot 10^{-39} \leq {\rm float}_{32} \leq 3.4 \cdot 10^{38}$
 - $10^{-322}\ \le\ double_{\,64}\ \le\ 10^{308}$

Outline

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Computational Physics

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Range Errors

Homework Assignment

Computing Numerics

Representing Numbers Fixed Points (int or long) Floating Points (float or double)

Range Errors

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Range Errors

Human Errors

- Blunders
- Random Errors
 - Acts of Nature
- Approximation Errors

6

$$e^{x} \approx \sum_{n}^{N} (-x)^{n}/n!$$

- Range Errors
- Round-Off Errors

Computational Errors

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Range Errors

- Human Errors
 - Blunders
- Random Errors
 - Acts of Nature
- Approximation Errors

6

$$e^{x} \approx \sum_{n}^{N} (-x)^{n}/n!$$

- Range Errors
- Round-Off Errors

Computational Errors

(日)

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Range Errors

Range Errors

32 bit words

 $\begin{array}{l} -2\,147\,483\,648 \leq \operatorname{int}_{32} \leq 2\,147\,483\,648 \\ \\ 2.9\,\cdot\,10^{-39}\,<\,\operatorname{float}_{32}\,<\,3.4\,\cdot\,10^{38} \end{array}$

If a number x is larger than the MAXVAL, an overflow occurs. If a number x is smaller than the MINVAL, an underflow occurs.

The resulting value may be a NaN (not a number), a machine dependent value, or unpredictable.

Homework Assignment

Computing Numerics

Representing Numbers

Fixed Points (int or long) Floating Points (float or double)

Computational Errors

Range Errors

Round-Off Errors

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Machine Accuracy ϵ

The largest number such that

 $1.0 + \epsilon = 1.0$

Computer Representation x_c :

 $\mathbf{x}_{c} = \mathbf{x} (\mathbf{1} + \epsilon_{x}) |\epsilon_{x}| \leq \epsilon$