Mass Spectra The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files

Computational Physics Lab Analysis of Large Data Sets: NTuples

03/31/2009

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Physics Lab

Computational

Mass Spectra

The Physics Behind Files

The Physics Behind

Mass Spectra

The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files

Photoproduction of Mesons

$$\gamma p \rightarrow X \rightarrow \Delta^+ \pi^0 \rightarrow p \pi^0 \pi^0 \rightarrow p \gamma \gamma \gamma \gamma$$

Example: We want to study $\gamma p \rightarrow N^* \rightarrow p \pi^0 \pi^0$

- Measure p, π^0 's
- Use inv. mass:

$$m^2 = E^2 - p^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ の々で

Experimental Setup

Tagged Photons ($E_{e^-} = 3.2 \text{ GeV}$):

• $0.25 \cdot E_{
m e^-} \le E_{\gamma} \le 0.95 \cdot E_{
m e^-}$

→ 800 MeV $\leq E_{\gamma} \leq$ 3000 MeV

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Computational Physics Lab

Mass Spectra The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files

Mass Spectra The Experiment

2 This Week's Project

The Physics Behind Units Reading Ascii Data Files

Mass Spectra The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files

Photoproduction of Mesons

Example: We want to study $\gamma p \to N^* \to p \pi^0 \pi^0$

Mass Spectra The Experiment

This Week' Project

The Physics Behind Units Reading Ascii Data Files

Photoproduction of Mesons

$$\gamma p \rightarrow X \rightarrow \Delta^+ \pi^0 \rightarrow p \pi^0 \pi^0$$

Example: We want to study $\gamma p \rightarrow N^* \rightarrow p \pi^0 \pi^0$ • Measure p, π^0 's • Use inv. mass: $m^2 = E^2 - p^2$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Mass Spectra The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files

$\gamma p ightarrow p \pi^0 \pi^0$ and $\gamma p ightarrow p \pi^+ \pi^-$ from CB-ELSA and CLAS

▲□▶▲□▶▲□▶▲□▶ □ のへで

Mass Spectra The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files The electronvolt (symbol eV) is a unit of energy. It is the amount of energy equivalent to that gained by a single unbound electron when it is accelerated through an electrostatic potential difference of one volt, in vacuum. In other words, it is equal to one volt (1 volt = 1 joule per coulomb) multiplied by the (unsigned) charge of a single electron.

One electronvolt is a very small amount of energy: 1 eV = $1.602 \ 176 \ 53(14) \cdot 10^{-19}$ J (or approximately 0.160 aJ)

The proton has a mass of 0.938 GeV/ c^2 , making a GeV/ c^2 a very convenient unit of mass for particle physics:

- $1 \text{ eV}/c^2 = 1.783 \cdot 10^{-36} \text{ kg}$
- 1 GeV/ c^2 = 1.783 · 10⁻²⁷ kg

Units

Mass Spectra The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files

In a recorded lecture from 1961 Richard Feynman apologized to his students for this failure by atomic physicists to use the appropriate SI unit (which would be the attojoule):

A single atom is such a small thing that to talk about its energy in joules would be inconvenient. But instead of taking a definite unit in the same system, like 10^{-20} J, [physicists] have unfortunately chosen, arbitrarily, a funny unit called an electronvolt (eV) ... I am sorry that we do that, but that's the way it is for the physicists.

Units

Opening Input Files

$$\gamma p \rightarrow N^* \rightarrow p \pi^0 \pi^0$$

....

pion²

The Experiment

21400.000	49.000	1900.610	2.000
282.366	-59.729	294.642	1024.923
-7.397	-243.317	1163.580	1196.409
-274.982	303.030	442.388	617.550
21400.000	1810.000	936.093	0.000
-115.682	120.330	762.354	1220.410
-215.029	-81.591	112.839	289.561
330.688	-38.740	60.900	364.394
21400.000	1812.000	1270.843	0.000
309.611	24.443	885.796	1327.194
-392.629	220.538	354.049	588.527
83.016	-244.967	30.999	293.394
run number	event number	E_{γ}	(float)
proton P_x	P_V	Pz	Ê
pion ¹ P_x	P _v	Pz	E
pion ² P_x	, Pv	P _z	E
	$\begin{array}{c} 21400.000\\ 282.366\\ -7.397\\ -274.982\\ \\ 21400.000\\ -115.682\\ -215.029\\ 330.688\\ \\ 21400.000\\ 309.611\\ -392.629\\ 83.016\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{cccccc} 21400.000 & 49.000 \\ 282.366 & -59.729 \\ -7.397 & -243.317 \\ -274.982 & 303.030 \\ \\ 21400.000 & 1810.000 \\ -115.682 & 120.330 \\ -215.029 & -81.591 \\ 330.688 & -38.740 \\ \\ 21400.000 & 1812.000 \\ 309.611 & 24.443 \\ -392.629 & 220.538 \\ 83.016 & -244.967 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

P_{Y}	Pz
$\dot{P_V}$	P_z
P _y	Pz

Mass Spectra The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files # include <iostream.h>
include <fstream.h>

ifstream fin ("input.dat"); ofstream fout ("output.dat");

main() {

...

float P_x , P_y , P_z , E

Some kind of loop

. . .

fin $\gg P_x \gg P_y \gg P_z \gg E$; fout $\ll P_x \ll P_y \ll P_z \ll E$;

File Streams

- 1 The disc file input.dat in the directory from which the program is beeing run is associated with a stream called fin.
- In a similar way, the disc file output.dat is associated with a stream called fout.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Mass Spectra The Experiment

This Week's Project

The Physics Behind Units Reading Ascii Data Files

Using Class TLorentzVector

include <TLorentzVector.h>

- Declare
 - TLorentzVector photon, pip[2], pim, neutron;
 - TLorentzVector proton(0,0,0,0.938);
 - TLorentzVector *vec4;
- Set Components
 - vec4->SetPx(...);
 - vec4->SetPy(...);
 - vec4->SetE(...);
- 4-Vec Arithmetic
 - proton^f = photon + protonⁱ piz[0] piz[1];
 - mass of proton = proton.M() or proton.Mag();