Reading Asci Data Files Units

Analyzing Data with NTuples

Particle Data Booklet

Computational Physics Lab Analysis of Large Data Sets: NTuples

04/02/2009

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Reading Ascii Data Files

Computational Physics Lab

Units

Analyzing Data with NTuples

Particle Data Booklet

1 Reading Ascii Data Files Units

2 Analyzing Data with NTuples

Opening Input Files

$$\gamma p \rightarrow N^* \rightarrow p \pi^0 \pi^0$$

Reading Ascii Data Files

Units

Analyzing Data with NTuples

Particle Data Booklet

21400.000	49.000	1900.610	2.000
282.366	-59.729	294.642	1024.923
-7.397	-243.317	1163.580	1196.409
-274.982	303.030	442.388	617.550
21400.000	1810.000	936.093	0.000
-115.682	120.330	762.354	1220.410
-215.029	-81.591	112.839	289.561
330.688	-38.740	60.900	364.394
21400.000	1812.000	1270.843	0.000
309.611	24.443	885.796	1327.194
-392.629	220.538	354.049	588.527
83.016	-244.967	30.999	293.394
run number	event number	E_{γ}	(float)
proton P_x	P_y	Pz	E
pion ¹ P _x	P_{y}	P_z	E
pion ² P_x	$\dot{P_y}$	Pz	E

Reading Ascii Data Files

Analyzing Data with NTuples

Particle Data Booklet # include <iostream.h>
include <fstream.h>

ifstream fin ("input.dat");
ofstream fout ("output.dat");

main() { float P_x, P_y, P_z, E

Some kind of loop

. . .

...

}

fin $\gg P_x \gg P_y \gg P_z \gg E$; fout $\ll P_x \ll P_y \ll P_z \ll E$;

File Streams

- The disc file input.dat in the directory from which the program is beeing run is associated with a stream called fin.
- In a similar way, the disc file output.dat is associated with a stream called fout.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Reading Ascii Data Files

Analyzing Data with NTuples

Particle Data Booklet # include <iostream.h>
include <fstream.h>

ifstream fin ("input.dat");

```
main() {
float P_x, P_y, P_z, E
```

...

File Streams

- 1 for loop is convenient if the number of events is known.
- Remember for Project 10: 4 lines (and 16 values) must be read in for each iteration.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

```
for (int i=1; i<NEvents; i++) {
fin \gg P_x \gg P_y \gg P_z \gg E;
...}
```

Reading Ascii Data Files

Analyzing Data with NTuples

Particle Data Booklet # include <iostream.h>
include <fstream.h>

ifstream fin ("input.dat");

main() {

...

float P_x , P_y , P_z , E

```
File Streams
```

- while loop is convenient if the number of events is NOT known.
- Remember for Project 10: 4 lines (and 16 values) must be read in for each iteration.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

```
while (! fin.eof()) {
fin \gg P_x \gg P_y \gg P_z \gg E;
...
}
```

Reading Ascii Data Files Units

Analyzing Data with NTuples

Particle Data Booklet The electronvolt (symbol eV) is a unit of energy. It is the amount of energy equivalent to that gained by a single unbound electron when it is accelerated through an electrostatic potential difference of one volt, in vacuum. In other words, it is equal to one volt (1 volt = 1 joule per coulomb) multiplied by the (unsigned) charge of a single electron.

One electronvolt is a very small amount of energy: 1 eV = $1.602 \ 176 \ 53(14) \cdot 10^{-19}$ J (or approximately 0.160 aJ)

The proton has a mass of 0.938 GeV/ c^2 , making a GeV/ c^2 a very convenient unit of mass for particle physics:

- $1 \text{ eV}/c^2 = 1.783 \cdot 10^{-36} \text{ kg}$
- 1 GeV/ c^2 = 1.783 · 10⁻²⁷ kg

Units

Outline

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Computational Physics Lab

Reading Ascii Data Files Units

Analyzing Data with NTuples

Particle Data Booklet

1 Reading Ascii Data Files Units

2 Analyzing Data with NTuples

3 Particle Data Booklet

Reading Asci Data Files Units

Analyzing Data with NTuples

Particle Data Booklet

Start ROOT!

In the ROOT shell, type:

- TFile file ("basic.root"); (Opens NTuple file)
- ntp1->Print();

(Shows the tree structure: the number of entries, ...)

• ntp1->Scan();

(Shows all values of the list)

- ntp1->Draw("y:x");
 (Draws x versus y)
- ntp1->Draw("y:x", "x < 5.0 && x > 2.0"); (Draws x versus y for 2.0 ≤ x ≤ 5.0)

NTuples

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Computational Physics Lab

Reading Ascii Data Files Units

Analyzing Data with NTuples

Particle Data Booklet

1 Reading Ascii Data Files Units

2 Analyzing Data with NTuples

Reading Ascii Data Files Units

Analyzing Data with NTuples

Particle Data Booklet

Particle Data Booklet

Baryon Summary Tables in the 2006 Review of Particle Physics

http://pdg.lbl.gov/2006/tables/contents_tables_baryons.html