Computational Physics Lab

Root-Finding Procedures

02/26/2009

Outline

Solution of Nonlinear Equations Bisection Search False Position Method
(1) Solution of Nonlinear Equations

Bisection Search False Position Method Newton-Raphson Methoc

Root-Finding Procedures

Solution of

Chapter 14
(1) Bisection Search
(Section 14.1: 191-193)
(2) False Position Method
(3) Newton-Raphson Method (Section 14.2: 193-194)

Finding Zeros of Functions

One of the most basic tasks:
Solving equations numerically
(1) $\mathrm{F}(\mathrm{x})=0 \quad \mathrm{~N}$-dimensional case
(1) Generic

- N equations - N solutions
- Distinct, Point-like, Separated
(2) Non-Generic
- Degenerate (Continuous family of solutions)
- Nonlinear (May have no real solution.)
(2) $F(x)=0 \quad$ 1-dimensional case
- Possible to trap a root between bracketing values, and then hunt it down like a rabbit.

Bracketing \& Bisection

If in $[a, b], f(x)$ is a continuous function and $f(a) \& f(b)$ have opposite signs then (at least) one root must exist.

Basic Approach

(1) Calculate the midpoint between x_{a} and x_{b}.
(2) Calculate the value of $f\left(x_{\text {mid }}\right)$.
(3) If then
(1) $f\left(x_{\text {mid }}\right)=0$ stop
(2) $\mathrm{f}\left(x_{\text {mid }}\right)<0 \quad$ replace x_{a} with $x_{\text {mid }}$
(3) $\mathrm{f}\left(x_{\text {mid }}\right)>0$ replace x_{b} with $x_{\text {mid }}$
(4) Repeat steps 1-3 as needed.

False Position Method

Improve rate of convergence by using information about the values of the function.

- Assume the function is linear between x_{a} and x_{b}
- Use the linear zero intersection $\mathrm{L}\left(x_{\text {zero }}\right)=0$ to estimate $\mathrm{f}\left(X_{\text {zero }}\right)$.

Basic Approach

(1) Calculate the slope $m=\left(\mathrm{f}\left(x_{b}\right)-\mathrm{f}\left(x_{a}\right)\right) /\left(x_{b}-x_{a}\right)$
(2) Calculate the intercept $b=\mathrm{f}\left(x_{a}\right)-m x_{a}$
(3) Determine linear $x_{\text {zero }}=-b / m$
(1) $f\left(x_{\text {zero }}\right)=0$ stop
(2) $\mathrm{f}\left(x_{\text {zero }}\right)<0$ replace x_{a} with $x_{\text {zero }}$
(3) $\mathrm{f}\left(x_{\text {zero }}\right)>0$ replace x_{b} with $x_{\text {zero }}$
4) Repeat steps 1-3 as needed.

Newton-Raphson Method

- Most Commonly Used Root-Finding Routine
- Uses only one starting point
- Calculates $f\left(x_{\text {start }}\right)$ \& $f^{\prime}\left(x_{\text {start }}\right)$
- Uses the tangent line's zero crossing $\mathrm{L}_{\mathrm{T}}\left(\mathrm{X}_{\text {zero }}\right)=0$ to estimate $f\left(X_{\text {zero }}\right)=0$

Newton-Raphson Method

Solution of

Nonlinear

Equations

Drawbacks of the method

Newton-Raphson Method

Solution of

Nonlinear Equations

Bisection Search

False Position

 MethodNewton-Raphson Method

Also works for
Complex Functions

$$
f(z)=0
$$

$$
f(z)=z^{3}-1=0
$$

Roots:

$$
\mathrm{z}=1, \mathrm{z}=\mathrm{e}^{ \pm 2 \pi \mathrm{i} / 3}
$$

This Week's Project

Finding the Zero of a function

(1) Example given for Bisection Method

2 Solve for False Position Method
(3) Solve for Newton-Raphson Method

