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Abstract

The study of baryon resonances provides a deeper understanding of the strong interaction
because the dynamics and relevant degrees of freedom hidden within them are reflected by the
properties of the excited states of baryons. Higher-lying excited states at and above 1.7 GeV/c2

are generally predicted to have strong couplings to the ππN final states via π∆ or ρN interme-
diate states. Double-pion photoproduction is therefore important to search for and investigate
the properties of high-mass resonances. The excited states of the nucleon are usually found
as broadly overlapping resonances which may decay into a multitude of final states involving
mesons and baryons. Polarization observables make it possible to isolate single-resonance con-
tributions from other interference terms. The CLAS g9a (FROST) experiment, as part of the
N∗ spectroscopy program at Jefferson Laboratory, has accumulated photoproduction data using
circularly-polarized photons incident on a longitudinally-polarized butanol target in the photon
energy range 0.3 to 2.4 GeV. This document summarizes how the beam-helicity asymmetry I⊙,
the target asymmetry Pz, and the helicity difference P⊙

z
for the reaction ~γ~p → pπ+π− have

been extracted from the g9a dataset.
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1 Introduction

Effective theories and models have been developed to better understand the properties of baryon
resonances. Various constituent quark models (CQMs) are currently the best approach to make
predictions for the properties of the baryon ground states and excited states. However, the predic-
tions for the hadron spectrum made by these models do not match accurately the states measured
by experiment, especially at high energies. These models predict many more resonances than have
been observed, leading to the so-called “missing resonance” problem. The latest results in baryon
spectroscopy suggest that 3-body final states are very likely key for the discovery of the higher-lying
unobserved resonances. Especially, the photoproduction of double-pion final states [1] may give us
very useful data to investigate many high-mass resonances because their cross sections dominate
above W ≈ 1.9 GeV (Eγ ≈ 1.46 GeV). Quark models predict γN → N⋆ → ∆π → Nπ+π− and
γN → N⋆ → Nρ→ Nπ+π− as dominant resonant decay modes leading to γp→ pπ+π−. However,
these modes are difficult to observe because detectors with a large angular acceptance are needed
and a large non-resonant background contributes to the final state.

2 FROST Experiment at JLab

The experimental Hall B at JLab provides a unique set of experimental devices for the FROST
experiment. The CEBAF Large Acceptance Spectrometer (CLAS) [2] housed in Hall B is a nearly-
4π spectrometer. The bremsstrahlung tagging technique, which is used by the broad-range photon
tagging facility at Hall B [3], can tag photon energies over a range from 20% to 95% of the in-
cident electron energy and is capable of operation with CEBAF beam energies up to 5.5 GeV.
The remaining element which is indispensable for double-polarization experiments is a frozen-spin
target [4]. The FROST target uses butanol as the ideal target material with a theoretical dilution
factor of approximately 13.5%. This material is dynamically polarized outside the CLAS spectrom-
eter using a homogeneous magnetic field of about 5.0 T and cooled to approximately 0.5 K. Once
polarized, the target is then cooled to a low temperature of 30 mK, enough to preserve the nucleon
polarization in a more moderate holding field of about 0.5 T. The target is then moved back into
the CLAS spectrometer, and data acquisition with a tagged photon beam can commence. In this
FROST-g9a experiment, the target polarization was longitudinal in combination with linearly- and
circularly-polarized photons. The circularly-polarized photons covered the energy range 0.5 - 2.3
GeV. In addition to the polarized butanol target, the experiment also used carbon and polyethylene
targets at approximately 6 cm and 16 cm further downstream, respectively. They are useful for
various systematics checks and for the determination of the contribution of bound nucleons in the
butanol data. This analysis is organized as follows. In Section 3, we shall discuss the identification
of the photon and final-state particles, kinematic fitting, corrections, and additional cuts used to
tune the g9a dataset. At the same time, the beam and target polarization will be introduced. The
next sections summarize how the asymmetries for the reaction γp → pπ+π− have been extracted
from the g9a data. In Section 4.2, the beam asymmetry is discussed and Section 4.3 presents the
target asymmetry. Finally, in Section 4.4, the helicity difference will be described. The results and
conclusions of this analysis are discussed in Section 5.
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3 Event Selection

3.1 The g9a Dataset

The data for the g9a experiment (FROST-g9a) were taken between November 3th, 2007, and Febru-
ary 12th, 2008. The g9a data are divided into two major parts according to the polarization type
of the incident photon beam: circular and linear polarization. In this analysis, the data with a
circularly-polarized photon beam and a longitudinally-polarized target were used. The circularly-
polarized dataset is organized in two parts according to the electron beam energy: one is the data
from Ee− = 1.645 GeV and another is from Ee− = 2.478 GeV. All these data are broken up into
seven different periods. 1 Table 1 shows the different experimental conditions of the g9a data.

Target Beam Electron Beam
Dates Run Range Period

Polarization Polarization Energy (GeV)

Longitudinal

Circular

1.645
11/10/07 - 11/10/07 55521 - 55536 1
11/11/07 - 11/13/07 55537 - 55555 2
11/14/07 - 11/20/07 55556 - 55595 3

2.478

11/27/07 - 11/30/07 55604 - 55625 4
11/30/07 - 12/07/07 55630 - 55678 5
02/04/08 - 02/07/08 56164 - 56193 6
02/07/08 - 02/11/08 56196 - 56233 7

Linear
3.539 12/07/07 - 12/20/07 55678 - 55844
2.751 01/05/08 - 01/11/08 55854 - 55938
4.599 01/17/08 - 02/03/08 55945 - 56152

Table 1: The datasets of the g9a experiment classified according to a wide variety of characteristics,
such as the target polarization, the beam polarization, the electron beam energy, dates, and run
numbers. The data using a circularly-polarized beam are grouped in periods with similar run
conditions.

The information included in the raw data of the g9a experiment consists of QDC (Charge to
Digital Convertor) and TDC (Time to Digital Converter) channel IDs and values. The data must
then undergo reconstruction, or be cooked (converting these data into physical quantities like par-
ticle IDs, positions, angles, energies, and momenta) in order to be ready for a physics analysis.
The data calibration is carried out for each detector component of CLAS independently. After
the detectors have been calibrated and the particle tracks have been reconstructed, the cooking of
the data is complete and the data are made available for analysis. Each event has its information
organized in data banks. These data banks hold not only the properties of the particles involved
in the reaction but also information about detector hits.

1A period is defined as a group of runs with similar conditions like the same target polarization or 1/2-wave plate
status in the data using a circularly-polarized photon beam and longitudinally-polarized target.
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3.2 Reaction Channel and General Event Selection

The reaction channel of interest in this analysis is γp→ pπ+π− using a circularly-polarized photon
beam and this channel is broken up into different topologies as shown in Table 2. A topology is
defined according to the detected particles in the final state: the two-particle final states (Topologies
1-3) and the three-particle final state (Topology 4). A particle which is not detected in a given
topology can be identified through the missing-mass technique. For this method, the Lorentz vectors
of the incoming beam and the target are used. The four-momentum of an identified particle in the
reaction γp→ pπ+π− is determined from the measured three momentum and the particle energy.
The missing four-momentum is given by:

xµ = kµ + Pµ −

2,3
∑

i=1

pµi , (1)

where kµ and Pµ are the photon and proton-target four-momenta, and pµi are the four-momenta
of the two or three detected particles. The missing mass mX is defined as:

m2
X = xµxµ . (2)

The missing-mass distribution is used to check the condition of the data after applying cor-
rections and cuts. The four-momentum vector xµ of Equation 1 is used to complete the set of
four-momentum vectors for events of Topologies 1, 2, and 3 (Table 2).

Topology Reconstructed particles Missing mass of interest
total p π+ π− mX

1 2 1 1 0 mπ−

2 2 1 0 1 mπ+

3 2 0 1 1 mp

4 3 1 1 1 0

Table 2: Identification of the γp → pπ+π− channel using different topologies. Reconstructed
particles are identified by the PID information from the GPID bank.

Since the g9a experiment has used a trigger which required at least one charged particle in
CLAS, the trigger file used during data-taking allowed for the recording of a large variety of events.
In order to analyze only the specific topologies of the reaction γp→ pπ+π−, events possessing the
final-state particles of interest should be filtered using the particle’s identification number (PID),
which is determined during the cooking process. Events that do not meet this requirement are
ignored and subsequently omitted from the analysis. The calculation of the detected particles’ mass,
which is necessary to determine the PIDs of the final particles, uses two independently measured
quantities, momentum (p) and velocity as fraction of the speed of light (β). The magnitude of the
particle’s momentum (p) is determined with an error of < 1% using the measurements made by
the CLAS Drift Chambers (DC) [2]. The β of the detected final-state particle is determined using
a combination of the Start Counter (SC), the Time of Flight (TOF), and the particle’s detected
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trajectory through CLAS with an error of up to 5% [2]. A detected particle’s mass can then be
calculated by:

m2
particleX =

p2(1− β2)

β2
. (3)

After the particle’s mass has been calculated, it is compared to the masses of known particles
(hadrons and leptons). If this calculated mass matches that of a known particle (within resolution),
the PID associated with that mass is assigned to the final-state particle. This value can then be
used to select certain final-state particles for analysis. Therefore, to select events that match one
of the four topologies, the PID value is used and the necessary final-state particles are detected.
In this analysis, information regarding the properties of these final-state particles (their 4-vectors,
vertex information, etc.) has been extracted from the GPID [5] data banks and used for kinematic
fitting and application of cuts and systematic corrections, and the extraction of the polarization
observables.

3.3 Photon and Particle Identification

3.3.1 Photon Selection

The electrons, which are used to produce the beam of polarized photons, are delivered from the
accelerator into Hall B. They are carried in the form of 2 ns bunches. The circularly-polarized
photon beam is also produced in the form of 2 ns bunches by directing the bunch of longitudinally-
polarized electrons to the amorphous radiator. It is very important to determine the correct photon
in each event because the photon energy is key to understanding the initial state of the event. To
determine the exact photon corresponding to a physics event, a timing window can be used which
satifies the consistency check between the Tagger and Start Counter times.

TGPB_dt_all

Entries  243948

Mean   -0.002125

RMS     3.257

 t [ ns ]∆Coincidence time 
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raw data

- selectionπ+ π p -> p γ
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Figure 1: Coincidence-time distribution of tagged photons for the raw data (dotted histogram) and
after applying all γp→ pπ+π− selection cuts (solid histogram). Events of the center bins filled in
black indicate the candidates for the final selection.
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The event start-time difference between the Tagger and the Start Counter at the interaction
point, ∆tTGPB, is defined as the coincidence time between the Tagger and the CLAS spectrometer.
Figure 1 shows the distribution of tagged photons as a function of the coincidence time, ∆tTGPB, on
a logarithmic scale. In the central peak, there are events with the “true” tagger-CLAS coincidence
time. Accidental coincidences can be seen as a series of other peaks associated with different beam
buckets. Only true coincident events determined by:

|∆tTGPB | < 1.2 ns (4)

are selected. The tagged energy of that photon will be used as the photon energy for the event. The
fraction of accidental coincidences remaining in the central peak is < 3% and is calculated from
the comparison in the yields between the central peak and neighboring beam buckets. When events
with only one photon are selected, the fraction of accidental coincidences in the data is reduced
strongly. In this analysis, events with one “true” photon are selected using ngrf = 1 and tagrid

the same for all detected particles. These variables are from the GPID bank and introduced and
described in more detail in Section 3.6.2.

3.3.2 Proton and Pion Selection

The reaction channel of interest in this analysis is γp→ pπ+π− and the photon energy for each event
is selected according to the procedure outlined in Section 3.3.1. In the next step, the identification
of the proton, π+, and π− as the final-state particles of γp → pπ+π− is needed. The GPID bank
contains the CLAS-measured momentum of a particle and a theoretical βc value for that particle
can be calculated from the measured momentum. This theoretically calculated βc value for all

β - measured β (proton) = calculated β ∆
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
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(a) ∆β (proton)

β - measured β (pion) = calculated β ∆
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Sigma : 0.015
3*Sigma : 0.044

(b) ∆β (pions)

Figure 2: Distribution of ∆β = βc − βm made from protons (a) and pions (plus and minus) (b),
where βc is calculated based on the particle’s assumed mass. Events of the center peak filled in red
are selected after applying the |βc − βm| ≤ 3σ cut.
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possible hadron particle types is compared to the CLAS-measured empirical βm value. Particle
identification then proceeds by matching the calculated βc closest to the empirical measured βm.
Figure 2 shows the difference, ∆β, between the calculated βc and the measured βm. Assuming
mass m for the particle, ∆β is given by:

∆β = βc − βm =

√

p2

m2 + p2
− βm . (5)

The peak around ∆β = 0 shown in Figure 2 corresponds to the particles of interest. ∆β for
the pions in Figure 2 (b) is broader than for the proton in Figure 2 (a) and there is a long tail
to negative values of ∆β for the pions. When the GPID bank is made during the reconstruction,
electrons are not separated from pions within the data. The long tail in the ∆β distribution for the
pions represents electrons that need to be filtered out. To identify the proton and pions, a |βc−βm|
cut has been applied. This cut can be determined by fitting the main peak near ∆β = 0 with a
gaussian, discarding all events outside 3σ, where σ is the width of the fitted gaussian. Thus, any
events with a value of ∆β greater than 0.032 for the proton and 0.044 for the pions are filtered out
of the dataset. Figure 3 shows the measured momentum (p) versus the empirical measured βm for
protons and pions before (a) and after (b) applying the |βc − βm| cut. Due to the different rest
masses, bands for pions and protons are clearly visible, especially after applying the |βc − βm| cut,
and protons and pions are well identified.
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(a) Before applying the ∆β cut
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(b) After applying the ∆β cut

Figure 3: (a) Measured βm versus the measured momentum for the double-pion photoproduction
events read from GPID on a logarithmic color scale. Notice the stripes for pions at the top, followed
by protons. (b) Measured βm versus the measured momentum after applying the cut based on the
difference ∆β = βc − βm. Clean pion and proton bands are clearly visible after applying the cut.
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3.4 Kinematic Fitting

The reconstruction process determines the 4-vectors of the final-state particles. Kinematic fit-
ting [6] modifies these 4-vectors by imposing energy-momentum conservation on the event as a
physical constraint. All components of the Lorentz 4-vectors and the photon energy are modified
until the event satisfies energy-momentum conservation exactly, and then the kinematically fitted
event has several quantities to inspect the quality of the kinematic fitting: a confidence level and
pull values for each measured quantity. The confidence level is used to estimate the goodness-of-
fit. The pull distributions are used to evaluate the quality of the error estimation and check for
systematics.

3.4.1 Confidence Level

After performing the fit, we need a way to check the agreement between the data and the hypothesis.
The confidence level used as the primary method of the goodness-of-fit of an event is defined as:

CL =

∫ ∞

χ2

f(z;n)dz , (6)

where f(z;n) is the χ2 probability density function with n degrees of freedom. It denotes the
probability that a given event fullfills the constraint imposed on the event kinematics, e.g. energy-
momentum conservation. In the ideal case of independent variables and gaussian errors, the
confidence-level distributions of the events (without background) is flat and ranges from 0 to 1.
However, the real data produce confidence level distributions which have a sharp rise nero zero.
The large number of events with low confidence level values represents events that do not satisfy
well the imposed constraints. These events include background events, poorly reconstructed events,
or events with misidentified particles. Cutting out events with low confidence levels provides a rea-
sonable way to eliminate the majority of the background while losing a relatively small amount of
good events.

3.4.2 Pulls

To effectively use the confidence level to cut out background events, a good understanding of each
fit quantity’s error is needed. The quality of the error estimation can be obtained by examining the
pull distributions. All fit parameters for every detected final-state particle have pull distributions.
A pull is a measure of how much and in what direction the kinematic fitter has to alter the measured
parameters. The pull value for the ith fit quantity is given by:

zi =
ǫi

σ(ǫi)
, (7)

where ǫi = ηi − yi is the difference between the fit value of the ith parameter, ηi, and the measured
value of the ith parameter, yi. The quantity σ represents the standard deviation of the parameter ǫi.
Therefore, the ith pull can be written as:

zi =
ηi − yi

√

σ2(ηi)− σ2(yi)
. (8)
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Figure 4: Example of fit results coming from a fit to a fully reconstructed γp→ pπ+π− final state.
(a) Shows an example of a confidence level distribution. A confidence level distribution (working
with real data) peaks toward zero but flattens out toward one. (b) Shows an example of a pull
distribution (the photon energy pull). Ideally, a pull distribution is gaussian in shape around the
origin with a mean (µ) of zero and a sigma (σ) of one.

The reaction channel γp → pπ+π− has three final-state particles: proton, π+, and π−. There
are three fit parameters for each particle in the kinematic fitting: a momentum and two angles,
λ and φ. Thus, this analysis has ten pull distributions including a pull for the photon energy
if all particles in the final state are detected. Assuming that the errors of the parameters used
for kinematic fitting are properly determined and all systematic errors have been corrected, the
distribution of the pull values (zi values) will be gaussian in shape with a width of one (σ = 1)
and a mean value of zero (µ = 0); an example is shown in Figure 4. A systematic error in the
quantity ηi can be seen as an overall shift in the distribution of the corresponding zi away from
zero. Similarly, if the error of ηi has been consistently (overestimated) underestimated, then the
corresponding pull distribution will be too (narrow) broad. The error of the measured value ηi
can be corrected from the pull distribution in an iterative procedure. Kinematic fitting provides
an effective tool also to determine corrections to the particles’ energies and momenta. This will be
discribed in the following sections.

3.5 Corrections

3.5.1 Enery Loss (ELoss) Correction

As charged particles from the decay of a resonance travel from the target cell to the Drift Chambers
of CLAS, they lose energy through atomic excitations or ionizations when interacting with the
three kinds of targets, target walls, support structures, beam pipe, Start Counter, and the air
gap between the Start Counter and the Region 1 Drift Chambers. Therefore, the reconstructed
momentum seen in the Drift Chambers is actually less than the momentum of the particle at the
production vertex. To account and correct for this, the 4-vectors of the final-state particles taken
from the data were corrected event-by-event using the ELoss package developed for charged particles

10
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Figure 5: Missing-mass distributions before (dotted blue histogram) and after (solid red histogram)
applying energy-loss corrections in the Topology γp → pπ+(π−) from the butanol target (a) and
carbon target (b). The vertical lines denote the mass of the π−. The energy-loss corrections make
the peak shape noticeably narrower and the peak position is also corrected. However, the peak is
not positioned exactly at the π− mass, so further corrections are needed.

moving through CLAS [7]. This ELoss package calculates the lost momentum of each particle in
several materials which the charged particle has interacted with. To perform this calculation,
the particle’s 4-momentum measured by the Region 1 of the Drift Chamber is used to track the
particle back to the reaction vertex in the target cell. As the particle is tracked back to the reaction
vertex, the materials and distances it traverses are taken into account and the energy loss of the
detected particle is also calculated. The 4-vector of the particle is corrected by multiplying an
ELoss correction factor to the momentum of this vector:

P( p ,ELoss ) = ηp · P( p ,CLAS )

P(π+ ,ELoss ) = ηπ+ · P(π+ ,CLAS )

P(π− ,ELoss ) = ηπ− · P(π− ,CLAS ) ,

(9)

where P(x ,ELoss ) is the momentum of the particle x after applying the energy loss correction,
P(x ,CLAS ) is the raw momentum measured in CLAS and x is either the proton, π+, or π−. The
parameters ηp, ηπ+ , and ηπ− are the correction factors of the energy loss correction. The energy-
loss corrected 4-vectors are then used in the analysis with the corrections being of the order of a
few MeV. The energy loss correction produces a shift in mass as can be seen for the missing-mass
calculations in Figure 5.

3.5.2 Photon Beam Correction

The energy of the photons that are incident on the target is determined in the Hall B tagging system.
The photon energy measured in this tagging system should be also checked for consistency with
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the final state after applying the energy loss correction described in Section 3.5.1. It has been seen
in past experiments that a physical sagging of the support structures of the E-counter scintillator
bars in the tagger hodoscope could be attributed to gravitational forces [8]. The consequence of
this sagging is a misalignment of the scintillator bars which leads to a mis-measurement of the
scattered electron’s energy [9]. In the g9a experiment, this sagging problem has been already
partially corrected when the data were reconstructed. However, whether the sagging problem still
persists in the g9a dataset should be checked and minor corrections need to be applied to the
photon beam if necessary.

(a) Ee− = 1.645 GeV dataset (b) Ee− = 2.478 GeV dataset

Figure 6: Initial photon-beam correction developed at ASU for the Ee− = 1.645 GeV dataset (a) and
Ee− = 2.478 GeV dataset (b). Eγ measured is the measured photon energy from the data [10], whereas
Eγ TRUE is the assumed correct photon energy applying the simple ansatz Eγ TRUE = αγ Eγ Tagger.

The photon beam energy can be calculated from the particles’ information in the reaction
γp→ pπ+π− using energy and momentum conservation:

E( cal.γ ) =
√

m2
p + P 2

( p ,ELoss ) +
√

m2
π+ + P 2

(π+ ,ELoss )
+
√

m2
π− + P 2

(π− ,ELoss )
−mp , (10)

where P( p ,ELoss ), P(π+ ,ELoss ) and P(π− ,ELoss ) are the ELoss-corrected momenta of the final par-
ticles (Equation 9). The status of the photon beam energy can be checked by comparing the
calculated photon energy, Ecal. γ , from Equation 10 with the measured photon energy, Emea. γ ,
from the g9a dataset.

The initial photon beam correction was developed by Michael Dugger (Arizona State Univer-
sity) [10] and was given by:

Eout = Ein + a1 · Ein + a0 · Ee− , with
a0 = 0.00456797

a1 = -0.00630536 ,
(11)

where Ein is the photon energy before the correction and Eout is the photon energy after the ASU
correction (Figure 6). Ee− is the electron beam energy used in this analysis. Figure 7 shows the
comparison of the calculated photon energy, Ecal. γ , to the measured photon energy, Emea. γ , after
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Figure 7: The difference between the calculated photon energy Ecal. γ and measured photon energy
Emea. γ after applying the ASU photon beam correction.

applying the ASU photon correction. At low energies, there is an overall shift in the distribution
of the corresponding energy difference away from zero: the measured photon energy is bigger than
the calculated photon energy. The ASU photon energy correction needs to be supplemented and
was improved by Sungkyun Park (Florida State University) in this analysis by using the fit shown
in Figure 7. The additional FSU photon energy correction is given by:

Eout =

(

a1 · Ein + a0 · Ee

)

·

(

1 +
p1
Ee

)

+ p0 . (12)

Target p0 p1

butanol -0.02299 0.0237

carbon -0.01533 0.02012

polyethylene -0.01539 0.02413

Table 3: The parameters used in the FSU photon beam correction.

The three kinds of targets have different values for the parameters, p0, p1, and p2, shown in
Table 3. The parameters a1 and a2 are from Equation 11. Eout is the photon energy after applying
the final photon energy correction. After the photon beam correction has been applied to the
photon energy measured in the CLAS spectrometer, we can compare the difference between the
calculated and measured photon energy. This is shown in Figure 8. After applying energy-loss and
the photon beam correction, 4-vectors of the final-state particles and the photon beam energy are
corrected very well except for the regions of very high and low energies.
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Figure 8: The difference between the calculated photon energy, Ecal. γ , and measured photon energy,
Emea. γ , after applying energy-loss correction and all photon-beam corrections. This figure is made
from the Topology γp → pπ+π− with no missing mass and data from the butanol target. On the
x-axis, Ee− is the electron beam energy used in the g9a experiment. As the tagging system of the
Hall-B can tag photon energies from 20% to 95% of the incident electron beam energy, the data
on the x-axis cover a range from 0.2 to 0.95.

3.5.3 Momentum Correction

Since the CLAS spectrometer used in the g9a experiment is not a perfect detector, corrections must
be determined also for the particles’ momenta. The reason is mainly a result of unknown variations
in the magnetic field provided by the Torus Magnet as well as inefficiencies and misalignments of
the Drift Chambers. The momentum corrections in the g9a experiment were determined using the
kinematic fitter.
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Figure 9: Examples of momentum distributions of final-state particles in the g9a dataset.
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To properly determine correction factors for the momentum, pull distributions must be eval-
uated for different momentum bins. The binning of the momentum was determined based upon
the observed distributions of the proton and pion momenta shown in Figure 9. The momentum
binning utilized five momentum bins, which are shown in Table 4.

particle momentum bin range [GeV] correction factor

proton

1 0.2 - 0.5 1.012011
2 0.5 - 0.6 1.002014
3 0.6 - 0.7 0.999716
4 0.7 - 0.9 1.000439
5 0.9 - 1.7 0.999975

π+

1 0.05 - 0.2 1.005510
2 0.20 - 0.27 0.998049
3 0.27 - 0.35 0.998151
4 0.35 - 0.53 1.000716
5 0.53 - 1.40 1.001858

π−

1 0.05 - 0.2 1.018893
2 0.20 - 0.27 0.987956
3 0.27 - 0.35 0.986561
4 0.35 - 0.53 1.010072
5 0.53 - 1.40 0.992872

Table 4: The momentum binning of the proton and pions for the momentum corrections and the
correction factors applied in this analysis.

The final goal of the momentum corrections is to obtain pull distributions, which are gaussian
in shape with σ = 1 and mean = 0. Only small correction factors are applied to the momenta to
adjust the positions of the pull distributions. This iterative process is repeated until the pull dis-
tributions for proton, π+, and π− are centered at zero with a symmetric shape. Pull distributions
and the confidence-level distribution after applying the energy-loss correction, the photon-beam
correction, and the momentum corrections are shown in Figure 10. Means and sigmas of these pull
distributions are acquired by fitting pull distributions with all corrections to a gaussian curve and
are shown in Table 5.

proton π+ π− photon
mom λ φ mom λ φ mom λ φ

mean −0.012 +0.205 −0.050 −0.086 +0.099 −0.098 −0.090 −0.371 −0.085 +0.088

σ 1.029 0.983 0.991 1.002 1.004 0.990 1.023 0.976 0.987 1.035

Table 5: Means and σ’s of pull distributions integrated over all momentum bins used for momentum
corrections (Table 4) after applying all corrections.
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Figure 10: Pull and confidence-level distributions after applying all corrections to the data from the
butanol target. The green dotted line is made from the raw data. After the energy-loss correction is
applied to the raw data, the red dashed line is obtained. One after another, photon-beam correction
and momentum corrections are applied on the dataset and the blue solid histograms are obtained.
These pull and the confidence-level distributions are from Topology 4, γp → pπ+π−, with a 5%
confidence-level cut applied. The lines represent gaussian fits to the data; the mean and σ of the
fits can be found in Table 5.
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3.6 Basic Cuts

The events of all four topologies were kinematically fitted after applying all corrections. In the next
step, it is necessary to impose a series of cuts before extracting polarization observables. These
cuts will serve to further refine the data sample and help remove events with accidental particles
and other things that corrupt the dataset.

3.6.1 Vertex Cut

The g9a experiment has three kinds of targets such as a butanol, carbon, and polyethylene target.
The butanol target is 5 cm long and 3 cm in diameter with its center located at the center of the
CLAS spectrometer. The carbon target is located at 6 cm from the CLAS center downstream with
0.15 cm in length. The polyethylene target is located at 16 cm from the CLAS center downstream
with 0.35 cm in length. The applied vertex cuts therefore are: −3 cm < zall particles < +3 cm for the
butanol target, +5 cm < zall particles < +7.5 cm for the carbon target, and +15 cm < zall particles <
+18 cm for the polyethylene target. The vertex cut involving the x- and y-components selects those
events, which originated no more than 2 cm from the z axis (beam line).
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Figure 11: (a) The vertex z-position (axis along the beam line) of all reconstructed particles showing
the positions of the three kinds of targets. The red line denotes the data with all pπ+π− events.
The blue line denotes events after applying basic cuts. The carbon data with all pπ+π− events
is fitted with a Breit-Wigner to check the distribution of carbon events. (b) A comparison of the
z-vertex reconstruction from the MVRT and TBTR bank is shown on a log-z color scale. Lines
indicating the target cut regions are shown in the dashed red boxes.

Since the vertex distributions of the butanol and carbon targets are very close as shown in
Figure 11 (a), the overlap between both targets needs to be checked. To study the contamination
of the butanol events with carbon events, the total distribution of the carbon data with all pπ+π−
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events has been fitted with a Breit-Wigner function. We observe very little interference of the
carbon events with the butanol data. After applying basic cuts, the butanol and carbon events are
clearly distinguished and the contamination due to carbon events in the butanol target is negligible.

The vertex information in this analysis can be taken from either of the two banks, TBTR or
MVRT. The difference of the vertex information between the TBTR and MVRT bank comes from
the number of particles used to reconstruct the vertex. The reconstruction from the TBTR bank
uses the vertex position for a particle based solely on CLAS information for the particle, whereas
the MVRT bank assigns a single vertex from the tracking information of all available charged
particles in the event to calculate the best estimate for the vertex location. The MVRT vertex re-
construction is usually more accurate than the TBTR vertex when there are multiple tracks like in
double-pion photoproduction since more tracks included in the reconstruction of the vertex location
will determine the vertex with a higher degree of accuracy. In an ideal situation, both TBTR and
MVRT vertex would give identical results, which seems to be a good approximation when looking
at the vertex information for the entire dataset, shown in Figure 11 (b). This plot shows single thin
straight lines with Vz(TBTR) = Vz(MVRT ) as expected in the ideal situation. This analysis uses
the vertex information from the MVRT bank.

3.6.2 Accidental Cuts

Accidental events can occur as a result of a number of factors, such as human error, detector error,
natural events (e.g. cosmic ray), or a combination of these. Cuts imposed on the g9a dataset during
this analysis to remove the accidental events use specific bank variables. These variables can be
found in the GPID bank [5] with the names ngrf and tagrid and corresponding distributions are
shown in Figure 12.
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Figure 12: The distributions of the variables ngrf and tagrid used in the g9a experiment.

The ngrf variable indicates how many candidate photons were found in the reconstruction,
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which passed the reconstruction timing cut to find the incident photon. The tagrid provides an
index to the location of the photon related to a particle in the TAGR bank. The ngrf cut imposed
on all final-state particles requires that they all have a value of one (ngrf=1). This means that for
every final-state particle, there was only one photon found which meets the timing requirements.
For the tagrid cut, the requirement is that values of this variable for all final-state particles are
the same and this guarantees that the reconstruction code found the same photon for all final-state
particles. These accidental cuts ensure that the analyzed events have been subject to a successful
determination of the incident photon and that this photon is the same for all final-state particles,
thus leading to a well-defined initial state.

3.6.3 Confidence-Level Cut

By performing a cut on the confidence level, the background events, poorly reconstructed events as
well as events with misidentified particles can be significantly removed from the g9a dataset. Fig-
ure 13 (a) shows the confidence-level distribution for the Topology γp→ pπ+(π−) before and after
applying the confidence-level cut of 5% and Figure 13 (b) presents the missing-mass distribution
before and after applying the confidence-level cut of 5%. This confidence-level cut removes much
of the background events while ideally only cutting out 5% of the good events.
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Figure 13: (a) The distribution of confidence-level values for the Topology γp→ pπ+(π−) generated
from the butanol target. The confidence-level cut selects the events whose confidence level is greater
than 0.05 as shown in the colored region. (b) The missing-mass distribution made from the same
topology and target as in Figure 13 (a). The black dashed line is made after applying all cuts and
corrections without the confidence-level cut and the blue solid histogram indicates the good events
after applying the confidence-level cut of 5% on the black dashed histogram. The colored area
includes events whose confidence level is less than 0.05.
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3.6.4 Removing Bad Time-of-Flight Paddles

Since some TOF paddles of the CLAS spectrometer are dead or malfunctioning, the information
from these bad TOF paddles should be removed from the g9a dataset. The number of counts for
each scintillator paddle is plotted in Figure 14. The bad paddles are identified by comparing the
TOF paddle with very low counts to the average value of the sectors. The identified bad TOF
paddles are listed in Table 6.
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Figure 14: The TOF paddle hit distributions in the six sectors. The red dashed line is the average
of the six sectors’ counts in the paddle distribution.

3.6.5 Event Distributions after Applying all Cuts and Corrections

The process of developing and applying energy and momentum corrections during the course of an
analysis serves the purpose of correcting for the effects of the experimental setup, therefore result-
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sector number bad TOF paddles

1 17, 24
2 45
3 23, 35
4 23, 49
5 23, 55
6 54

Table 6: The information of the bad time-of-flight paddles.

ing in a dataset that is as nature intended it. Additionally, determining and enforcing cuts used
in an analysis serves not only to remove the remaining effects of the experimental setup but also
to remove the contribution to the dataset from physics events not of interest to the analysis (the
hadronic background). Figure 15 shows missing-mass distributions and a squared missing-mass
distribution for the four kinds of topologies in the reaction γp → pπ+π−, respectively. In this fig-
ure, missing-mass distributions after applying energy and momentum corrections to the 4-vectors
are presented as well as the changes after applying all cuts with and without the confidence-level cut.

The remaining background may be comprised of accidental events where a detected particle
was attributed to an event to which it does not belong, events with an incorrect initial state like a
misidentification of a photon and events originating from interactions with matter other than the
target materials. A typical method of observing the background is to choose a final-state topology
and construct the missing mass of that topology, as shown in Figure 13 (b). A single cut on the
confidence level greatly reduces this background but does not entirely remove it. Through the appli-
cation of the proper vertex position, photon and particles identification variables, this background
may be reduced even further. Because the g9a experiment uses a “dirty” polarized target (about
86.5% of the nucleons in butanol are from carbon and oxygen), the free-proton events from the
butanol – after removing some of the background – still have contributions from bound nucleons.
These bound-nucleon contributions still need to be taken care of.

21



Missing-Mass [ GeV ]
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

1000

2000

3000

4000

5000

(a) Topology 1: γ p→ p π+(π−)

Missing-Mass [ GeV ]
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

500

1000

1500

2000

2500

3000

3500

(b) Topology 2: γ p→ p π−(π+)

Missing-Mass [ GeV ]
0.6 0.7 0.8 0.9 1 1.1 1.2
0

2000

4000

6000

8000

10000

(c) Topology 3: γ p→ π+π−(p)

 ]2Squared-Missing-Mass [ GeV
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

10000

20000

30000

40000

50000
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Figure 15: Missing-mass distributions for the four different topologies. The π− particle is missing
in all events (a), the π+ particle is missing (b), the proton is missing (c), and no particle is
missing (d). The black solid line is made from the butanol target after applying all corrections.
The histogram filled in light blue indicates the good events after applying all basic and accidental
cuts and corrections without the confidence-level cut. The red dashed histogram includes events
whose confidence level is greater than 0.05. The distribution in (d) is made as a function of the
squared missing mass.
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3.7 Beam and Target Polarization

3.7.1 Photon Beam Polarization

Circularly-polarized photons are produced via bremsstrahlung of longitudinally-polarized electrons
from an amorphous radiator. The degree of circular polarization of the bremsstrahlung photons,
δ⊙, can be calculated from the longitudinal polarization of the electron beam, δ e− , multiplied
by a numerical factor. In particular, with x = Eγ/Ee, the degree of circular polarization of
bremsstrahlung photons from longitudinally-polarized electrons is given by [11]:

δ⊙ = δ e ·
4x− x2

4− 4x+ 3x2
. (13)

Figure 16, made from Equation 13, shows that the circular polarization of the photon beam and
the photon beam energy are roughly proportional to each other. In the figure, the photon energy,
Eγ , is given as a fraction of the electron-beam energy, Ee− . The data using a circularly-polarized
photon beam in the g9a experiment have two kinds of electron beam energies, 1.645 GeV and
2.478 GeV, shown in Table 1. Runs with different electron beam energies have different circular
polarizations for the same photon energy Eγ . Thus, the circular polarization of the photon beam
should be calculated separately in runs with different electron beam energies, as shown in Figure 17.
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Figure 16: Circular polarization of the photon beam as a function of photon energy.

As the first step in calculating the degree of circular polarization of the photon beam, the longi-
tudinal polarization of the electron beam, δ e− , must be found in runs with different electron beam
energies. Table 7 summarizes the Møller measurements of the electron-beam polarization, δ e− , in
the g9a experiment and their average values in runs with different electron beam energies. An aver-
age value of 84.798% and 83.016% with an uncertainty of 0.470% and 0.789%, respectively, is used
for the degree of the electron-beam polarization, δ e− . Since the center-of-mass energy is used as an
independent kinematic variable, the degree of circular polarization cannot be a continuous function.
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Electron-beam Date Run number Electrom-beam polarization δ e−
energy Ee− Average

1.645 GeV

Nov. 12, 2007 55544

+85.228 ± 1.420

84.789 ± 0.470

−78.523 ± 1.350
−79.150 ± 1.26
+88.700 ± 1.480

Nov. 13, 2007 55552
+84.167 ± 1.330
−84.725 ± 1.530

Nov. 19, 2007 55588
−86.531 ± 1.380
+88.409 ± 1.440
+87.753 ± 1.480

2.478 GeV

Nov. 28, 2007 55608 −82.534 ± 1.400

83.016 ± 0.789
Nov. 28, 2007 55608

−79.450 ± 1.410
+80.060 ± 1.400

Jan. 07, 2008 56194 −83.267 ± 1.380
Feb. 08, 2008 56202 −83.248 ± 1.320

Table 7: Møller measurements of the electron-beam polarization.
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Figure 17: The average degree of circular polarization of the photon beam as a function of the
center-of-mass energy for electron beam energies 1.645 GeV (a) and 2.427 GeV (b).

The average values of the circular polarization for a specific phase-space volume ∆τ in each
center-of-mass bin are given by:

δ̄⊙ =
1

N+ +N−

∑

i∈∆τ

δ⊙(W ) , (14)

where N± are the total number of γp → pπ+π− events for the two helicity states and W is the

24



center-of-mass energy; δ⊙(W ) is calculated from Equation 13. These average values are derived for
each center-of-mass bin, shown in Table 8. Figure 17 shows the degree of circular polarization and
their averages for the two electron beam energies, 1.645 GeV and 2.478 GeV.

The center of mass energy The average circular polarization, δ̄⊙
[GeV] Ee− = 1.645 GeV Ee− = 2.427 GeV

1.25 0.22172 ± 0.00007

1.30 0.26349 ± 0.00006

1.35 0.31319 ± 0.00007 0.20442 ± 0.00019

1.40 0.36416 ± 0.00008 0.22325 ± 0.00007

1.45 0.41810 ± 0.00008 0.25841 ± 0.00008

1.50 0.47551 ± 0.00009 0.29194 ± 0.00010

1.55 0.53077 ± 0.00010 0.32929 ± 0.00010

1.60 0.58695 ± 0.00013 0.36861 ± 0.00012

1.65 0.64083 ± 0.00015 0.40909 ± 0.00014

1.70 0.69159 ± 0.00017 0.44555 ± 0.00021

1.75 0.73866 ± 0.00019 0.49416 ± 0.00020

1.80 0.77739 ± 0.00022 0.53564 ± 0.00022

1.85 0.80903 ± 0.00024 0.57837 ± 0.00031

1.90 0.83162 ± 0.00025 0.61849 ± 0.00029

1.95 0.84239 ± 0.00034 0.65746 ± 0.00031

2.00 0.69530 ± 0.00035

2.05 0.72835 ± 0.00037

2.10 0.75822 ± 0.00040

2.15 0.78291 ± 0.00045

2.20 0.80441 ± 0.00051

2.25 0.81792 ± 0.00059

2.30 0.82581 ± 0.00065

Table 8: The average degrees of circular polarization in FROST g9a.

3.7.2 Beam Charge Asymmetry

The electron beam polarization is toggled between the h+ helicity state and the h− helicity state
at a 30 Hz rate. Therefore, the photon-beam flux for both helicity states should be identical on
average. Small beam-charge asymmetries of the electron beam, however, can cause instrumental
asymmetries in the observed γp → pπ+π− asymmetries, and need to be taken into account. This
beam-charge asymmetry can be calculated by considering the luminosities for helicity-plus and
helicity-minus events:

Γ± = α±Γ =
1

2
(1± āc)Γ , (15)

where Γ is the total luminosity. The parameter α± is used to find the helicity-plus and helicity-
minus luminosities, Γ±, from the total luminosity. This parameter depends on the mean value of
the electron-beam charge asymmetry, āc. Figure 18 shows the beam-charge asymmetry, ac, for the
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g9a runs used in this analysis. Their averages and errors calculated for different periods are shown
in Table 9. These beam-charge asymmetries do not affect the final result of this analysis since these
asymmetries are very small (see Appendix B).

Figure 18: Distribution of beam-charge asymmetries for the analyzed runs.

Period Average beam-charge asymmetry, āc σ

1, 2, and 3 7 × 10−4 1 × 10−3

4 and 5 3 × 10−5 3 × 10−3

6 and 7 1 × 10−3 4 × 10−3

Table 9: The mean and error of the beam-charge asymmetries, āc, calculated in each period.

3.7.3 Target Polarization

The target polarization was determined by Josephine McAndrew (University of Edinburgh). The
target polarization has the magnitude and the direction shown in Figure 19. The polarization
direction is defined by two quantities: the direction of the holding magnetic field with respect to
the beam and the direction of the proton polarization with respect to the holding field. Table 10
shows how the direction of the target polarization is defined in the FROST g9a experiment. The
plus (minus) sign in the direction of the holding field indicates the field is parallel (anti-parallel)
to the beam direction. The plus (minus) sign in the direction of the proton polarization indi-
cates the protons are polarized parallel (anti-parallel) to the holding field. It turned out later that
the directions of the target polarization between the NMR data and the run table are not consistent.
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Figure 19: Target polarization versus run number measured in the g9a experiment.

L++ : Positive target polarization
L+− : Negative target polarization
L−+ : Negative target polarization
L−− : Positive target polarization

Table 10: The definition of the direction of the target polarization used in the g9a experiment. The
first plus sign in L++ denotes the direction of the holding magnet and the second indicates the
direction of the proton polarization.

The exact directions of the target polarization are determined from the target asymmetry in
the reaction γp→ pπ+π− based on the information in the run tables (see Appendix A). Table 11
shows the information of the direction of the target polarization before and after correcting the
inconsistency using the target asymmetry. Each run has a different value of the target polarization
and in order to be used in the asymmetry equation, average values per period must be calculated.
Defining Λ̄z as the mean value of the longitudinal target polarization, then:

Λ̄±z =
1

N±

∑

run

Λ±z (run) , (16)

where ± denotes the target polarization is parallel/anti-parallel to the beam and N± is the total
numbers of observed counts for the different target polarizations. Figure 20 shows the distribution
of target polarizations used in the dataset for the circularly-polarized beam and longitudinally-
polarized target. The average values are calculated by using Equation 16 and their mean values
are listed in Table 12 with the statistical and systematic errors calculated using standard error
propagation.
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Period The target polarization
Before the correction After the correction

1 L+−(⇐) ⇐

2 L+−(⇐) ⇐

3 L++(⇒) ⇒

4 L−+(⇐) ⇒

5 L−−(⇒) ⇐

6 L++(⇒) ⇒

7 L+−(⇐) ⇐

Table 11: The direction of the target polarization before and after correcting initial inconsistencies.
After the correction, the direction of the target polarization in Periods 4 and 5 is reversed. The
arrow ⇒ (⇐) denotes the target polarization is parallel (anti-parallel) to the beam direction.
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Figure 20: Values of target polarization versus run number measured in the g9a experiment and
their averages (the blue line) calculated per period.

Period Average target polarization Ratio of target polarization
Λz error Λz(=>)/Λz(<=) error

statistical systematic statistical systematic

2 0.793444 4.50259e-05 0.00168486 1.10204 000359152 00235036
3 0.874406 0.000280614 0.000173592

4 0.843431 5.16487e-05 0.000257478 1.01294 7.40223e-05 0.000363123
5 0.832656 3.32051e-05 0.000156484

6 0.79606 3.0786e-05 0.000213638 0.995357 5.77651e-05 0.000378123
7 0.799774 3.46073e-05 0.000215037

Table 12: Average values for the degree of target polarization including the statistical and system-
atic errors for each period and the ratio between the different target polarizations. This ratio of
the different target polarization is later used in Equation 35.
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3.7.4 Confirming the Orientation of the Beam and Target Polarization

In the next step, we should assure that the directions of the determined beam and target polar-
izations are credible. The direction of the target polarization is given in Table 11. The direction
of the beam polarization depends on the condition of the half-wave plate (HWP): IN or OUT.
The longitudinal polarization of the electron beam is flipped pseudo-randomly with 30 sequences
of helicity (+,−) or (−,+) signals per second. Occasionally the HWP is inserted in the circularly-
polarized laser beam of the electron gun to reverse helicities and the beam polarization phase should
be changed by 180◦. The HWP is inserted and removed at semi-regular intervals throughout the
experimental run to ensure that no polarity-dependent bias is manifested in the measured asym-
metries.

TGBI latch1 Beam helicity

Bit 16 λ/2 (OUT) λ/2 (IN)

1 + −
0 − +

Table 13: Helicity signal from the TGBI-bank latch1 for the two half-wave-plate positions. In the
table, the sign +(−) means the beam polarization is parallel (anti-parallel) to the beam direction.

The electron-beam helicity information is stored in the level1-trigger-latch word of the TGBI
bank. Bit 16 in the level1-trigger-latch word is the helicity-state bit. It indicates the sign of the
electron-beam polarization as shown in Table 13. When the half-wave plate is OUT, the number 1
in Bit 16 of the level1-trigger latch means the beam polarization is parallel to the beam direction
and the number 0 means the beam polarization is antiparallel to the beam. When the plate is IN,
the directions of the beam polarization related to the numbers 1 and 0 are switched. Table 14 shows
the information of the condition of the half-wave plate and the direction of the target polarization
used in this analysis. The reliability of the information shown in Table 14 is confirmed by the beam
and target asymmetries (see Appendix A).

Beam polarization
Period Run range The condition of Target polarization

the half-wave plate

1 55521 - 55536 IN ⇐

2 55537 - 55555 OUT ⇐

3 55556 - 55595 IN ⇒

4 55604 - 55625 IN ⇒

5 55630 - 55678 IN ⇐

6 56164 - 56193 OUT ⇒

7 56196 - 56233 OUT ⇐

Table 14: The condition of the beam and target polarization of each period used in this analysis.
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3.8 Normalization

As mentioned earlier, the g9a experimental data using the circularly-polarized beam can be divided
into seven groups of runs with similar conditions called periods and each period has a different
direction of the target polarization as shown in Table 14.
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Figure 21: The distribution of the number of incoming photons as a function of photon energy. In
this figure, all seven periods are shown and each period has 100 and 25-MeV wide bins in the range
from 0.4875 to 2.9875 GeV, respectively. Period 5 has the largest number of photons.

Datasets with different target polarizations should be combined to calculate the asymmetries
in the reaction γp→ pπ+π−. Since, however, the number of runs included in each period is differ-
ent and each run has a different number of events, a normalization factor is needed to adjust the
imbalance of the number of events between periods. The events included in the data are roughly
proportional to the initial number of photons. The normalization factors can be found from com-
paring the number of photons between periods. The information about the number of photons in
Hall-B is saved in “gflux” files. The gflux files contain the number of photons and their uncertain-
ties in a given bin as shown in Figure 21. The g9a data using the circularly-polarized beam can be
divided into two datasets according to the electron beam energy Ee− . One dataset includes Periods
1, 2, and 3 with Ee− = 1.645 GeV and the other dataset contains Periods 4, 5, 6, and 7 with Ee−

= 2.427 GeV. In the first dataset, Period 1 and Period 2 have very similar conditions except for
the condition of the half-wave plate. Owing to limited statistics, the data of Period 1 and Period 2
will be combined after taking into account the difference of the half-wave plate between the two
periods and the combined data will then be defined as Period 2.
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Figure 22: The ratio of the number of photons between periods with the target polarizations
parallel (⇒) and anti-parallel (⇐) to the beam.

As mentioned before, the normalization factor is defined as the ratio of the number of photons
between datasets with different directions of the target polarization, as shown in Figure 22. The
Periods 3, 4, and 6 have the target polarization direction parallel to the beam direction (Table 14)
and the other periods have the opposite direction of the target polarization. Therefore, three kinds
of period combinations have been used to calculate the polarization observables in this analysis:
combination-32 of Periods 3 and 2, combination-45 of Periods 4 and 5, and combination-67 of
Periods 6 and 7. The normalization factors used for the different center-of-mass bins in this analysis
are listed in Table 15.
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The center of mass energy ratio, F(⇒)/F(⇐)
[GeV] per-3/per-2 per-4/per-5 per-6/per-7

1.35 1.160 0.359 0.840

1.40 1.163 0.368 0.836

1.45 1.190 0.373 0.830

1.50 1.131 0.370 0.840

1.55 1.168 0.370 0.830

1.60 1.157 0.371 0.828

1.65 1.164 0.372 0.834

1.70 1.174 0.371 0.831

1.75 1.158 0.371 0.835

1.80 1.171 0.371 0.828

1.85 1.177 0.380 0.851

1.90 1.157 0.370 0.837

1.95 1.166 0.371 0.828

2.00 0.371 0.830

2.05 0.371 0.828

2.10 0.371 0.829

2.15 0.371 0.827

2.20 0.372 0.826

Table 15: The normalization factors used in combination-32, combination-45, and combination-67.
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3.9 Dilution Factor

The g9a experiment utilizes butanol (C4H9OH) as the main target material. When this main target
is polarized, only the 10 hydrogen nucleons of the butanol can be polarized. For the polarization
observables, contributions from polarized free-proton events can be separated from contributions of
bound-nucleon events, which are unpolarized and subject to Fermi motion, and other background
events by using a dilution factor. This is illustrated in Figure 23. The dilution factor is generally
defined as the ratio between the free proton and the full butanol contribution to the cross section.
A simple calculation based on the chemical formula of butanol (C4H9OH) yields 10/74 = 0.135
as the ideal dilution factor. In practice, dilution factors are reaction dependent and are generally
larger than the ideal factor after the application of the selection cuts.

Figure 23: The signal and background events in the butanol data of the g9a experiment.

To determine the dilution factor in this analysis, it was necessary to evaluate the contribution
of the bound-nucleon events to the reaction γp→ pπ+π−. In the g9a experiment, the carbon target
is used as a known source of bound nucleons to estimate the contribution of bound-nucleon and
background events in the butanol data, as shown in Figure 23. It is assumed that bound-nucleon
events from 12C and 16O nuclei in the butanol behave similarly, and can be appropriately sub-
tracted using the data from the carbon target.

Figure 24 (a) illustrates an example of the missing π− mass distribution using butanol (in black)
and carbon (in red) data for the Topology γp → pπ+(π−). Since the carbon data from the g9a
experiment suffer from a hydrogen contamination of unknown origin [12], the carbon events from the
g9b experiment have been used in this analysis. Figure 24 (b) shows the same butanol distribution
where the bound-nucleon and background events are described with a Chebyshev polynomial. To
isolate the free-proton events in the butanol data more accurately – the description using Chebyshev
polynomials gives only a first estimate of the background shape – the pure carbon distribution from
the carbon target must be scaled and then subtracted from the butanol distribution. The equation
to calculate the dilution factor is then given by:

D(W ) = 1−
s ·NC(W )

NC4H9OH(W )
, (17)
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where NC is the number of events from the carbon target and NC4H9OH is the number of events from
the butanol target. In Equation 17, s is the parameter to scale the measured carbon distribution and
s·Nc is the number of events from this scaled carbon distribution, i.e. the assumed true contribution
of bound-nucleon and background events in the butanol data. In Section 3.9.1, the method to
determine the scale parameters referred to as “phase space scale factors” will be described [13].
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Figure 24: (a) The missing-mass distributions for the Topology γp → pπ+(π−) from the butanol
and carbon target. The black line describes the butanol events from the g9a experiment and the red
line denotes the carbon events from the g9b experiment. (b) The fitted missing-mass distributions
using a mixed function of a gaussian and a Chebyshev polynomial (blue line). The green dotted
line denotes the Chebyshev polynomial in the mixed fitting function. The colored area includes
events whose confidence level is less than 0.05. The data are selected from W ∈ [1.575, 1.625] GeV;
the beam polarization is anti-parallel to the beam and the target polarization is anti-parallel to the
beam direction.

3.9.1 Phase Space Scale Factors

The scale factors or the “phase space scale factors” are used to produce the scaled carbon distribu-
tions from the carbon data. They are determined by comparing the bound-nucleon events from the
butanol target with the events from the carbon target. In order to accomplish this, it is necessary
to isolate the bound-nucleon events from the butanol data. The free proton events in the butanol
data are from protons “at rest”, that is, these events are not subject to Fermi motion. Energy
conservation for the Topology γp→ p ′π+(π−) requires:

Eπ− =
(

Eγ + Ep

)

−
(

Ep′ + Eπ+

)

, (18)

where
(

Eγ + Ep

)

is the energy of the initial state, and
(

Ep ′ + Eπ+

)

is the energy of the final
state. The free proton events obey the relation Ep = mp and are distributed near the missing-pion
peak, as shown in Figure 25 (a). Since the bound-nucleon events are subject to additional Fermi

motion, they obey the relation Ep =
√

m2
p + p2F , where pF is the Fermi momentum, and can be
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distributed far from the missing-pion peak. In the squared missing-mass distribution of the butanol
data, free-proton events in the butanol data cannot have negative mass values, but the squared
missing-masses of bound-nucleon events can have such negative mass values. In Figure 25, a loose
cut at MM2 < −0.2 GeV2 can isolate bound-nucleon events in the butanol data.
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Figure 25: The missing squared-mass distribution for Topology γp → pπ+(π−) from the butanol
target (a) and from the carbon target (b). The blue-shaded regions denote MM2 < −0.2 GeV2

and should contain only events from bound nucleons.

Figure 26 shows the two dimensional distributions of two kinematic variables: center-of-mass
energy, W , versus the azimuthal angle 2, φ∗π+ , after applying the loose cut at MM2 < −0.2 GeV2

in the squared missing-mass.
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Figure 26: The comparison of the W versus φ∗π+ from (a) the butanol (g9a) and (b) the carbon
(g9b) data in the reaction γp→ pπ+(π−).

2See Section 4.1.1 for an accurate definition of φ∗

π+
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The phase space scale factors are calculated by simply dividing the two histograms in Figure 26.
Figure 27 (a) shows that the resulting phase space scale factors exhibit a very flat distribution and
are independent of the azimuthal angle φ∗π+ . The enhancement at very low energies is due to sta-
tistical limitations. Figure 27 (b) shows the free-proton distribution and scaled carbon distribution
calculated by the method described in this section.
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Figure 27: (a) The phase space scale factors in the two-dimensional distribution of W versus φ∗π+ .
(b) The missing-mass including the free-proton and bound-nucleon distributions calculated using
the phase space scale factors given in (a). The black line describes the butanol events for Topology
γp → pπ+(π−) and the center-of-mass energy W ∈ [1.575, 1.625] GeV from the g9a experiment,
and the red line denotes the carbon events from the g9b experiment. The dark-yellow line is the
scaled carbon distribution, and the blue dashed line is the free-proton distribution made from the
phase space scale factors.

3.9.2 Q-Factor Method

Another approach, called the Q-factor method, has been used to separate the signal events from
the background events. The Q-factor method assigns each event in the butanol data an event-based
quality factor which denotes the probability that an event is a signal event [14]. The contribution of
the bound-nucleon and background events can then be removed from the butanol data by weighting
each event with this Q-factor. Such event-based dilution factors serve two important purposes.
On the one hand, the database of four-vectors for the two-pion channel can easily be analyzed
in an event-based partial-wave analysis. On the other hand, since the photoproduction of two
pseudoscalar mesons requires five independent kinematic variables, the Q-factors will allow us to
quickly re-display the asymmetries for a different choice of kinematic variables without repeating
the analysis and finding new dilution factors each time.

To determine the Q-factors, the following five kinematic variables have been chosen which define
the five-dimensional kinematic phase space of the reaction γp→ pπ+π−: cosΘproton

c.m. , a mass (m pπ+ ,
m pπ− , or mπ+π−), the center-of-mass energy, W , and the polar and azimuthal angle θ∗π+ and φ∗π+

in the rest frame of the π+π− system. 3 For each event (seed event), events closest in the kinematic

3See Section 4.1.1 for a proper definition of the γp→ pπ+π− kinematics.
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phase space defined by 4 of the 5 independent variables have been selected to perform event-based
unbinned maximum likelihood fits [15] in the remaining fifth variable. In this analysis, we have
performed fits on the missing pion mass in Topology 1 or 2. To locate the nearest neighbor events,
the following equation describing the distance between event a and b, Da, b, has been used:

D2
a, b =

4
∑

i=1

(

Γa
i − Γb

i

∆i

)2

, (19)

where Γ is a kinematic variable and ∆i is the maximum range of the kinematic variable Γ. Table 16
shows the specific kinematic variables and their maximum ranges used in the Q-factor method.

Table 16: The kinematic variables Γi and their ranges ∆i used in the Q-factor method.

Γi Kinematic variable Their maximum ranges, ∆i

Γ0 center-of-mass energy, W 50 [MeV]

Γ1 cosΘproton
c.m. 2

Γ2 φ∗π+ 2π [radian]

Γ3 cos θ∗π+ 2

The distances of all other events from a seed event are computed using Equation 19, and then the
300 nearest neighbors are selected to form a missing-mass distribution for the maximum-likelihood
fitting. The missing-mass distributions made from the carbon data are used for the background
function. The total fit function utilizes a signal function for the missing-pion peak and the carbon
distribution from the g9b experiment for the description of the background. For the latter, a seed
event in the carbon sample was chosen which is kinematically closest to the butanol seed event and
the 300 nearest neighbors for the carbon seed events have been selected. Figure 28 (a) shows an
example of the missing-mass distribution for a particular pair of a butanol and carbon seed event.
These distributions will be used as the input for the Q-factor method.

In the missing π− mass distribution from the butanol target for Topology γp → pπ+(π−), a
clear peak near 139.5 MeV for the π− can be seen. Since the peak is much broader than the
natural width of the π−, a gaussian resolution function should be used to describe the shape of
the peak. Unfortunately, a gaussian could not describe very well the high-mass tail of the signal;
for this reason, a Voigt function with a very small Breit-Wigner component has been used for the
signal. The true carbon distribution of the g9b experiment is used for the background shape which
describes a smooth non-peaking distribution underneath the peak. For this analysis, the total
function is then defined as:

f(x) = N · [fs · S(x)− (1− fs) ·B(x)] . (20)

where S(x) denotes the signal and B(x) the background function. N is a normalization constant
and fs is the signal fraction with a value between 0 and 1. The Roofit package of the CERN ROOT
software [15] is used for the fit procedure. The Q-factor itself is then given by:

Q =
s(x)

s(x) + b(x)
, (21)
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Figure 28: (a) An example of a missing-mass distribution made from the 300 nearest events
selected from butanol (black dots) and carbon (green line) data in Topology γp → pπ+(π−),
W ∈ [1.575, 1.625] GeV, and Period 7. (b) Fitted missing-mass distribution (black dots) using a
combination of the signal (red line) and carbon background (blue dashed line) functions.

where x is the missing mass of the seed event and s(x) = fs · S(x) and b(x) = (1− fs) ·B(s). The
total fitting function f(x) in Equation 20 has four parameters: Γ, mean, and σ of the Voigt function
and fs (the signal fraction). The mean of the Voigt function has been be fixed to 139.5 MeV; the σ
of the Voigt function has no limitation. The Γ parameter of the Voigt function has been fixed to a
very small value, which was derived from a similar fit to the fully integrated distribution (summed
over all events, as shown in Figure 29).

The signal fraction fs is the most important parameter and is related to the event-based scale
factor.

The event-based scale factor, s, is given by (similar to Equation 20):

s =
(1− fs) · (# of nearest butanol events)

(# of nearest carbon events)
= 1− fs , (22)

where the number of nearest butanol events is equal to the number of nearest carbon events. The
event-based scale factors are assumed to be the same for all butanol seed events in a particular
W bin. The peak of the reduced-χ2 distribution derived from the all Q-factor fits has a value
near one, as shown in the example in Figure 30 (a), and this guarantees good quality fitting.
Similar phase space scale factor, as discussed in Section 3.9.1, can be derived from the Q-factor
method. Figure 30 (b) shows the ratio of the phase space scale factors derived from kinematics
(Section 3.9.1) to the phase space scale factors derived from the Q-factor method. Figure 30 (b)
shows a fairly flat distribution, close to one. Figure 31 shows the free-proton distribution and scaled
carbon distribution calculated by the Q-factor method for W ∈ [1.575, 1.625] GeV. The results of
the Q-factor method applied in the whole energy range W ∈ [1.375, 2.125] GeV are shown in
Figures 32-35. We have applied the Q-factor method to the missing-π− peak in Topology 1 and
to the missing-π+ peak in Topology 2. For Topology 4 with all final-state particles detected, we
decided to artificially remove the π− and then to fit the corresponding missing-π− peak.
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Figure 29: The fitted integrated missing-mass distribution from the butanol data in Topology 1,
γp → pπ+(π−), W ∈ [1.575, 1.625] GeV, and Period 7 using a Voigt function. The Γ parameter
from this fit was used as a fixed value in the Q-factor method.
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Figure 30: (a) An example of the normalized χ2 distribution from the Q-factor method applied
to Topology γp → pπ+(π−) and W ∈ [1.575, 1.625] GeV. (b) The ratio of the scaled carbon
distributions using the phase space scale factors (Section 3.9.1) and the Q-factor method.
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Figure 31: The missing-mass distribution with the free-proton and bound-nucleon distribution
calculated by the Q-factor method. The black and red line denote the butanol (g9a) and carbon
(g9b) data for Topology γp → pπ+(π−) and W ∈ [1.575, 1.625] GeV, also used in Figure 27,
respectively. The dark-yellow line and the green line denote the scaled carbon distributions using
the method described in Section 3.9.1 and the Q-factor method, respectively.
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(b) W = 1.55 GeV
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(c) W = 1.60 GeV (same as Figure 31)

Figure 32: Missing-mass distributions with the free-proton and bound-nucleon distributions calcu-
lated using the method described in Section 3.9.1 (dark yellow) and the Q-factor method (green)
for Topology γp → pπ+(π−), center-of-mass energy range W ∈ [1.475, 1.625] GeV, and Period 7,
and their corresponding reduced-χ2 distributions.
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(b) W = 1.70 GeV
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(c) W = 1.75 GeV

Figure 33: Missing-mass distributions with the free-proton and bound-nucleon distributions calcu-
lated using the method described in Section 3.9.1 (dark yellow) and the Q-factor method (green)
for Topology γp → pπ+(π−), center-of-mass energy range W ∈ [1.625, 1.775] GeV, and Period 7,
and their corresponding reduced-χ2 distributions.
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(b) W = 1.85 GeV
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Figure 34: Missing-mass distributions with the free-proton and bound-nucleon distributions calcu-
lated using the method described in Section 3.9.1 (dark yellow) and the Q-factor method (green)
for Topology γp → pπ+(π−), center-of-mass energy range W ∈ [1.775, 1.925] GeV, and Period 7,
and their corresponding reduced-χ2 distributions.
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(b) W = 2.00 GeV
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Figure 35: Missing-mass distributions with the free-proton and bound-nucleon distributions calcu-
lated using the method described in Section 3.9.1 (dark yellow) and the Q-factor method (green)
for Topology γp → pπ+(π−), center-of-mass energy range W ∈ [1.925, 2.075] GeV, and Period 7,
and their corresponding reduced-χ2 distributions.
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4 Data Analysis and Extraction of Polarization Observables

After all corrections, cuts and kinematic fitting were applied, the different possible final-state
topologies for the reaction γp → pπ+π− have been selected and the extraction of polarization
observable commenced. The polarization observables I⊙, Pz, and P⊙z have been extracted from
the double-pion photoproduction data utilizing circular beam and longitudinal target polarization.
This chapter presents the methodology utilized in the extraction of these polarization observables
from the experimental data.

4.1 General Data Analysis

4.1.1 Binning and Angles

In order for an analysis to be conducted, the kinematics of the reaction of interest must be un-
derstood. First, the kinematics of γp → pπ+π− requires a selection of five independent kinematic
variables. The kinematic variables chosen for this analysis are cosΘc.m., a mass (m pπ+ , m pπ− , or
mπ+π−), the center-of-mass energy, W , as well as θ∗π+ and φ∗π+ , where the latter two angles denote
the polar and azimuthal angles of the π+ in the rest frame of the π+π− system. A diagram showing
the kinematics of the reaction γp → pπ+π− can be seen in Figure 36. The blue plane represents
the center-of-mass production plane composed of the initial photon and recoiling proton, whereas
the red plane represents the decay plane formed by two of the final-state particles.

The angle φ∗π+ is a kinematic variable unique to a final state containing two pseudoscalar
mesons. It describes the orientation of the decay plane containing the two pions (or another pair
of the particles) with respect to the production plane, which is defined by the incident photon and
recoiling proton. It is also given by the azimuthal angle of the π+ meson in the rest frame of the
π+π− system. This azimuthal angle, φ∗π+ , is calculated via two boosts, the first being a boost
along the beam line into the overall center-of-mass frame. The second boost occurs along the axis
that is antiparallel to the recoiling proton and results in the rest frame wherein the two final-state
pions occur back-to-back. Mathematically, the angle φ∗π+ is uniquely determined by the following
expression:

cosφ∗ =
(~p× ~a) · (~b2 ×~b1)

|~p× ~a| |~b2 ×~b1|
, (23)

where ~p is the initial-state proton and ~a, ~b1, and ~b2 are the final-state particles.
In this analysis the data are then binned in two of the five independent kinematical variables.

These binning variables are the center-of-mass energy, W , and the azimuthal angle, φ∗π+ . In order
to compare the polarization observable I⊙ with the results from the CLAS g1c analysis [17], the
center-of-mass energy W is divided into 50-MeV wide bins. This results in a total of 20 bins in the
center-of-mass energy, covering an energy range from 1.225 GeV to 2.225 GeV. For the azimuthal
angle, φ∗π+ , 20 bins are used, covering a range from 0 ≤ φ∗π+ ≤ 2π, to describe the structure of the
observable more clearly than in the CLAS g1c analysis, which used 11 bins in the same angular
range. This choice of binning using two variables results in a total of 400 bin combinations per
final-state topology.
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Figure 36: A diagram describing the kinematics of the reaction γp → pπ+π−. The blue plane
represents the center-of-mass production plane composed of the initial photon and proton, whereas
the red plane represents the decay plane formed by two of the final-state particles. In the diagram,
k is the initial photon and the particle p denotes the polarized target proton. a, b1, and b2 are the
three particles of the final state. If we assume that particle a is the recoiling proton, b1 and b2 are
the two pions, π+ and π−. Θc.m. denotes the angle between the initial proton and the particle a in
the center-of-mass system. φ∗ and θ∗ indicate the azimuthal and polar angles of the particle b1 in
the rest frame of b1 and b2.

4.1.2 Observables with Circular Beam and Longitudinal Target Polarization

For γp → p ππ, without measuring the polarization of the recoiling nucleon, the differential cross
section, dσ/dxi, is given by [16]:

dσ

dxi
= σ0 { ( 1 + ~Λi · ~P )

+ δ⊙ (I
⊙ + ~Λi · ~P

⊙ )

+ δ l [ sin 2β ( I s + ~Λi · ~P
s )

+ cos 2β ( I c + ~Λi · ~P
c ) ] } ,

(24)

where xi are kinematic variables and σ0 is the unpolarized cross section. ~Λi denotes the polarization
of the initial nucleon and δ⊙ is the degree of circular polarization of the photon beam, while δ l is
the degree of linear polarization. The two-meson final state equation, as referenced in Equation 24,
contains 15 polarization observables. I⊙, I s, and I c are observables which arise from the beam
polarization. The observable I⊙ describes the beam asymmetry for an unpolarized target and a
circularly-polarized photon beam. The observables ~P represent the target asymmetry that arise
if only the target nucleon is polarized, and ~P⊙ as well as ~P s,c represent the double-polarization
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observables if, in addition to the target nucleon, the incoming photon is also polarized, either cir-
cularly or linearly, respectively. The observable I⊙, in the photoproduction of two charged pions,
has been published previously by the CLAS collaboration. It has been analyzed from CLAS g1c
data [17] and, for other isospin-related channels, from data obtained by the MAMI, TAPS, and A2
collaborations [18]. The observable P⊙z has been published at low energies (below g9a energies) in
photoproduction using GDH and A2 collaboration data [19].

The reaction rate for γp→ p ππ, in the case of a circularly-polarized beam on a longitudinally-
polarized target, can be written as:

dσ

dxi
= σ0 { ( 1 + Λz ·Pz ) + δ⊙ (I

⊙ + Λz ·P
⊙
z )} , (25)

and results in the polarization observables I⊙, the beam-helicity asymmetry, the observable Pz,
the target asymmetry, and the observable P⊙z , the helicity difference, which can be determined
from the dataset in this analysis.

4.2 Polarization Observable I⊙

4.2.1 Beam Helicity Asymmetry

The differential cross section for γp→ p ππ (Equation 25) is experimentally given by :

dσ

dxi
=

Ndata

A · F · ρ · ∆xi
, (26)

where Ndata is the number of data events measured in the g9a experiment, A is the acceptance, F
is the photon flux, ρ is the target area density parameter, and ∆xi is the width of the kinematic
bin. Therefore, the number of measured data events, Ndata, can be also defined as (using polarized
data and combining Equations 25 and 26):

Ndata = σ0 · (A · F · ρ · ∆xi){ ( 1 + Λ̄z ·Pz ) + δ̄⊙ (I
⊙ + Λ̄z ·P

⊙
z )} . (27)

Since the beam and target polarization of Ndata in the g9a dataset have a certain direction, a
definition of this direction is required. In the following, → and ← indicate that the circular beam
polarization is parallel or antiparallel to the beam axis; ⇒ and ⇐ indicate that the longitudinal
target polarization is parallel or antiparallel to the beam axis. In this analysis, we have used four
different datasets with the following beam and target polarizations:

N(→⇒), N(←⇒), N(→⇐), and N(←⇐) . (28)

In the process of calculating the asymmetries, the product σ0 · A · ρ · ∆xi will cancel out.
Moreover, each term in Equation 28 has a different photon flux F , average beam polarization δ̄⊙,
and average target polarization Λ̄z:

Ncombination ∼ F{ ( 1 + Λ̄z ·Pz ) + δ̄⊙ (I
⊙ + Λ̄z ·P

⊙
z )} . (29)
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The distributions of events with these four different polarization settings, as a function of φ∗,
have the form:

N(φ∗, σ(→⇒)) ∼ F (→⇒)
{

1 + Λ̄z(⇒)Pz + δ̄⊙(→)
(

I⊙ + Λ̄z(⇒)P⊙z

)}

N(φ∗, σ(←⇒)) ∼ F (←⇒)
{

1 + Λ̄z(⇒)Pz − δ̄⊙(←)
(

I⊙ + Λ̄z(⇒)P⊙z

)}

N(φ∗, σ(→⇐)) ∼ F (→⇐)
{

1− Λ̄z(⇐)Pz + δ̄⊙(→)
(

I⊙ − Λ̄z(⇐)P⊙z

)}

N(φ∗, σ(←⇐)) ∼ F (←⇐)
{

1− Λ̄z(⇐)Pz − δ̄⊙(←)
(

I⊙ − Λ̄z(⇐)P⊙z

)}

.

(30)

In the ideal case, the photon flux will be well known, and flux parameters from the four different
data combinations will have the same value: F (→⇒)) = F (←⇒) = F (→⇐) = F (←⇐) = F .
Similarly, the ideal experimental setup makes it possible to use Λ̄z(⇒) = Λ̄z(⇐) = Λ̄z and δ̄⊙(→)
= δ̄⊙(←) = δ̄⊙, and the datasets can be reliably scaled. Since the polarization observable I⊙ refers
to unpolarized target data, a dataset with unpolarized target nucleons and a circularly-polarized
beam is needed. We can produce unpolarized target data by adding the data with different target
polarizations:

N(φ∗, σ(→)) ∼ N(φ∗, σ(→⇒)) +N(φ∗, σ(→⇐)) ∼ F
(

2 + 2 · δ̄⊙I
⊙
)

N(φ∗, σ(←)) ∼ N(φ∗, σ(←⇒)) +N(φ∗, σ(←⇐)) ∼ F
(

2− 2 · δ̄⊙I
⊙
)

,
(31)

and the beam asymmetry derived from the unpolarized target data can be expressed as:

N(φ∗, σ(→))−N(φ∗, σ(←))

N(φ∗, σ(→)) +N(φ∗, σ(←))
= δ̄⊙I

⊙ . (32)

However, in the more general situation [20], Λ̄z(⇒) 6= Λ̄z(⇐). As the polarization of the JLab
electron beam in each period is flipped 30 times per second, we can assume that the flux parameters
between the different beam polarizations are the same, F (→) = F (←), and the beam polarization
between the different beam directions is also the same, δ̄⊙(→) = δ̄⊙(←) = δ̄⊙. Unfortunately, the
flux parameters between the different target polarizations are different, and we have F (⇒) 6= F (⇐).
In this analysis, the four different datasets (Equation 28) were scaled with the proper target polar-
ization and photon flux, as shown in Figure 37:

N(φ∗, σ(→⇒))

Λz(⇒)F (⇒)
∼
{( 1

Λz(⇒)
+Pz

)

+
δ̄⊙

Λz(⇒)
I⊙ + δ̄⊙P

⊙
z

}

N(φ∗, σ(←⇒))

Λz(⇒)F (⇒)
∼
{( 1

Λz(⇒)
+Pz

)

−
δ̄⊙

Λz(⇒)
I⊙ − δ̄⊙P

⊙
z

}

N(φ∗, σ(→⇐))

Λz(⇐)F (⇐)
∼
{( 1

Λz(⇐)
−Pz

)

+
δ̄⊙

Λz(⇐)
I⊙ − δ̄⊙P

⊙
z

}

N(φ∗, σ(←⇐))

Λz(⇐)F (⇐)
∼
{( 1

Λz(⇐)
−Pz

)

−
δ̄⊙

Λz(⇐)
I⊙ + δ̄⊙P

⊙
z

}

.

(33)

Figure 37 shows examples of these angular distributions for the four different polarization combi-
nations (Equation 28). In the next step, the distributions in Figure 37 (a) and (b) have been added,
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Figure 37: Examples of φ∗ angular distributions in the helicity frame of the beam polarization par-
allel (a) and anti-parallel (b) to the beam axis for the center-of-mass energy W ∈ [1.675, 1.725] GeV
and for the Topology γp→ pπ+(π−). The data using the target polarization parallel (antiparallel)
to the beam axis are from Period 6 (Period 7).

respectively, to produce an unpolarized target. Figure 38 shows examples of these distributions:

N(φ∗, σ(→)) ∼
N(φ∗, σ(→⇒))

Λz(⇒)F (⇒)
+

N(φ∗, σ(→⇐))

Λz(⇐)F (⇐)
∼
( 1

Λz(⇒)
+

1

Λz(⇐)

)(

1 + δ̄⊙I
⊙
)

,

N(φ∗, σ(←)) ∼
N(φ∗, σ(←⇒))

Λz(⇒)F (⇒)
+

N(φ∗, σ(←⇐))

Λz(⇐)F (⇐)
∼
( 1

Λz(⇒)
+

1

Λz(⇐)

)(

1− δ̄⊙I
⊙
)

.

(34)

The beam asymmetry can be calculated using the number of events for the helicity plus and
minus from Equation 34. Since the effect for the electron beam charge asymmetry in the g9a
dataset is negligible, it is not applied to the beam asymmetry (see Appendix B). An example of the
polarization observable I⊙ is shown in Figure 38 (right) using the normalization factor F (⇒)/F (⇐)
from Table 15. In summary, the observable is given by:

I⊙ =
1

δ̄⊙

(

N(φ∗,σ(→⇒))
Λz(⇒)·F (⇒)/F (⇐) +

N(φ∗,σ(→⇐))
Λz(⇐)

)

−

(

N(φ∗,σ(←⇒))
Λz(⇒)·F (⇒)/F (⇐) +

N(φ∗,σ(←⇐))
Λz(⇐)

)

(

N(φ∗,σ(→⇒))
Λz(⇒)·F (⇒)/F (⇐) +

N(φ∗,σ(→⇐))
Λz(⇐)

)

+

(

N(φ∗,σ(←⇒))
Λz(⇒)·F (⇒)/F (⇐) +

N(φ∗,σ(←⇐))
Λz(⇐)

) . (35)

4.2.2 Average Beam Asymmetry

Since the g9a dataset is broken up into different periods (Table 14), we have used three kinds of
period combinations to calculate the beam asymmetry: Periods 3 and 2 (called combination-32),
Periods 4 and 5 (called combination-45), and Periods 6 and 7 (called combination-67). Double-pion
photoproduction is also based on four kinds of topologies:

• Topology 1: γ̄p̄→ pπ+(π−) (π− not detected)
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Figure 38: Left: CLAS-integrated azimuthal angular distributions for helicity-plus events N(φ∗, →)
and helicity-minus events N(φ∗, ←) for the center-of-mass energy W ∈ [1.675, 1.725] GeV and the
Topology γp → pπ+(π−). Right: The polarization observable I⊙ calculated from Equation 35. It
is compared to the same observable published from the CLAS-g1c experiment. The dataset is the
same as in Figure 37; Periods 6 and 7 have been used.

• Topology 2: γ̄p̄→ pπ−(π+) (π+ not detected)

• Topology 3: γ̄p̄→ π+π−(p) (proton not detected)

• Topology 4: γ̄p̄→ pπ+π− (all particles detected)

Since the CLAS spectrometer is designed to detect charged particles, we cannot distinguish
between the reactionS γp → oπ+π− and γn → nπ+π− using the butanol target. The missing-
mass distribution for the Topology γp → π+π−(p), shown in Figure 15, includes the data from
the reaction γp → π+π− (p) and from the reaction γn → π+π− (n) together, and this analysis
cannot distinguish between the datasets for the reactions γp and γn. For this reason, the Topology
γp→ π+π− (p) has been excluded in this analysis. The beam asymmetries from the three kinds of
period combinations and the three kinds of topologies (Table 17) have been determined.

combination-32
Topology 1: γp→ pπ+(π−) combination-45

combination-67

combination-32
Topology 2: γp→ pπ−(π+) combination-45

combination-67

combination-32
Topology 4: γp→ pπ+π− combination-45

combination-67

Table 17: The datasets used to calculate the average observable I⊙.
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(a) Topology 1: γp→ pπ+(π−)
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(b) Topology 2: γp→ pπ−(π+)

Figure 39: Polarization observables I⊙ from the three kinds of period-combinations in the Topology
γp → pπ+(π−) (a) and the Topology γp → pπ−(π+) (b) for the center-of-mass energy W ∈
[1.675, 1.725] GeV and their average in each topology. The polarization observable I⊙ in each
period combination and each topology is derived from Equation 35.

Figure 38 (right) shows the comparison of the observable I⊙ from the g9a and g1c experiments.
In the figure, the polarization observable I⊙ from the g9a dataset is made from combination-67
and Topology γp → pπ+(π−). In the next step, the average of the observables from the three
different period combinations for each topology has been calculated to improve statistics. This is
shown in Figure 39. The observables of the combination-32, combination-45, and combination-67
have statistical errors of different magnitudes. These statistical errors have been used as squared
weights when the observables were averaged:

x̄ =

∑

i xi ·
1
σ2
i

∑

i
1
σ2
i

, (36)

where xi is the observable and σi is its error.

To further improve the statistics and also to obtain better kinematic coverage, the results from
Topologies 1, 2, and 4 have been averaged using Equation 36. This final observable from the
butanol data is shown in Figure 40, together with the data published from the g1c experiment.
Results of this analysis are in general very good agreement with the data published in [17] (see also
Appendix C).
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Figure 40: The beam asymmetries from the Topologies 1, 2, and 4 and the average of the three
topologies, called FROST-average, for the center-of-mass energy W ∈ [1.675, 1.725] GeV. The
polarization observable I⊙ from this analysis is also compared to the results published in [17].

Comparisons

For different period combinations and topologies, we have compared the results to check consistency.
Figure 41 (a)-(c) shows the differences (I⊙combinationX−I⊙combinationY) for the three kinds of period
combinations. Figure 42 (a)-(c) shows the differences (I⊙TopologyX − I⊙TopologyY) for the different
topologies integrated over all kinematic bins. Figure 42 (d) shows the differences (I⊙g9a − I⊙g1c)
of the polarization observable I⊙ from this analysis and previous published CLAS data. The
distributions are all centered at zero and show very good agreement.
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(b) Comparison of combination-32 and 67
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(c) Comparison of combination-45 and 67

Figure 41: Comparisons (differences) of results for the polarization observables I⊙ from different
period combinations integrated over all energies for Topology γp → pπ+(π−). The distributions
are all centered at zero, suggesting very good consistency among the results from different period
combinations.
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(a) Comparison of Topologies 1 and 2
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(b) Comparison of Topologies 1 and 4
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(c) Comparison of Topologies 2 and 4
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(d) Comparison of g9a and g1c

Figure 42: (a)-(c) Comparisons (differences) of results for the polarization observables I⊙ from dif-
ferent topologies integrated over all energies. The distributions are all fairly narrow and centered
at zero, suggesting very good consistency among the results from different topologies. (d) Compar-
ison (difference) of results for the polarization observables I⊙ from this analysis and from the g1c
experiment, integrated over all energies. The results are in excellent agreement.
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4.3 Polarization Observable P z

4.3.1 Target Asymmetry

The target asymmetry as a function of φ∗ is given by:

T.Asy. =
N(φ∗, σ(⇒))−N(φ∗, σ(⇐))

N(φ∗, σ(⇒)) +N(φ∗, σ(⇐))
. (37)

To calculate the target asymmetry, the polarized free-proton events of the full butanol data
must be extracted. In the numerator of Equation 37, unpolarized events will cancel out. However,
there are still unpolarized events in the denominator of Equation 37 (normalization). Since the
Q-factor is defined as an event-based dilution factor, the number of Q-factor weighted butanol
events, N(φ∗, σ(→⇒))Q, denotes the number of the free-proton events. The event distributions of
the four different data combinations, shown in Figure 43, are given by (equivalent to Equation 30):

N(φ∗, σ(→⇒))Q

F (⇒)
∼
(

1 + Λ̄z(⇒) ·Pz

)

+ δ̄⊙ · I
⊙ + δ⊙ · Λ̄z(⇒) ·P⊙z

N(φ∗, σ(←⇒))Q

F (⇒)
∼
(

1 + Λ̄z(⇒) ·Pz

)

− δ̄⊙ · I
⊙ − δ⊙ · Λ̄z(⇒) ·P⊙z

N(φ∗, σ(→⇐))Q

F (⇐)
∼
(

1− Λ̄z(⇐) ·Pz

)

+ δ̄⊙ · I
⊙ − δ⊙ · Λ̄z(⇐) ·P⊙z

N(φ∗, σ(←⇐))Q

F (⇐)
∼
(

1− Λ̄z(⇐) ·Pz

)

− δ̄⊙ · I
⊙ + δ⊙ · Λ̄z(⇐) ·P⊙z .

(38)

Since the polarization observablePz refers to unpolarized beam data, a dataset with a longitudinally-
polarized target and an unpolarized beam is required. We can easily produce an unpolarized-beam
dataset by adding the data with different beam polarizations from Equation 38. Figure 44 shows
examples of these distributions given by N(φ∗, σ(⇒))Q and N(φ∗, σ(⇐))Q:

N(φ∗, σ(⇒))Q ∼
N(φ∗, σ(→⇒))Q

F (⇒)
+

N(φ∗, σ(←⇒))Q

F (⇒)
∼ 2 + 2 · Λ̄z(⇒) ·Pz ,

N(φ∗, σ(⇐))Q ∼
N(φ∗, σ(→⇐))Q

F (⇐)
+

N(φ∗, σ(←⇐))Q

F (⇐)
∼ 2− 2 · Λ̄z(⇐) ·Pz .

(39)

The target asymmetry derived from these unpolarized-beam datasets is given by:

T.Asy. =

(

N(φ∗,σ(→⇒))
F (⇒)/F (⇐) + N(φ∗,σ(←⇒))

F (⇒)/F (⇐)

)

−

(

N(φ∗,σ(→⇐))
1 + N(φ∗,σ(←⇐))

1

)

(

N(φ∗,σ(→⇒))Q

F (⇒)/F (⇐) + N(φ∗,σ(←⇒))Q

F (⇒)/F (⇐)

)

+

(

N(φ∗,σ(→⇐))Q

1 + N(φ∗,σ(←⇐))Q

1

)

=
Λ̄z(⇒) + Λ̄z(⇐)

2
·Pz .

(40)

and the polarization observable Pz is shown in Figure 45 for combination-67 and Topology 1,
γp→ pπ+ (π−).
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Figure 43: Examples of φ∗π+ angular distributions for the target polarization parallel (a) and an-
tiparallel (b) to the beam axis. The data are selected for W ∈ [1.725, 1.775] GeV, combination-67,
and Topology γp→ pπ+(π−). This figure is similar to Figure 37; the distributions here are shown
for a different W bin and not corrected for the degree of the target polarization.
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Figure 44: Azimuthal angular distributions for N(φ∗, ⇒)Q and N(φ∗, ⇐)Q for the center-of-mass
energy W ∈ [1.725, 1.775] GeV and the Topology γp→ pπ+(π−) integrated over the beam-helicity
states. A normalization is not necessary.
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Figure 45: The polarization observable Pz calculated from Equation 40. The data used here are
the same as the ones used in Figure 44.

4.3.2 Average Target Asymmetry

The target asymmetry can be calculated from the three kinds of period combinations and the three
kinds of topologies, listed in Table 18, which is similar to calculating the average of the observ-
able I⊙ in Section 4.2.2. As a matter of fact, Table 18 is identical to Table 17 but we repeat it here
for a complete discussion of Pz.

combination-32
Topology 1: γp→ pπ+(π−) combination-45

combination-67

combination-32
Topology 2: γp→ pπ−(π+) combination-45

combination-67

combination-32
Topology 4: γp→ pπ+π− combination-45

combination-67

Table 18: The datasets used to calculate the average observable Pz.

Figure 45 shows the polarization observable Pz from combination-67 and Topology γp →
pπ+(π−). In Figure 46, each topology is based on the average of combination-32, combination-
45, and combination-67 using again Equation 36. Figure 47 shows the average value of the ob-
servable Pz calculated from Topology γp → pπ+(π−) and Topology γp → pπ−(π+), as shown in
Figure 46 for the center-of-mass energy W ∈ [1.725, 1.775] GeV.
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(a) Topology 1: γp→ pπ+(π−)
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(b) Topology 2: γp→ pπ−(π+)

Figure 46: Polarization observables Pz based on the three kinds of period combinations for
Topology γp → pπ+(π−) (a) and Topology γp → pπ−(π+) (b) for the center-of-mass energy
W ∈ [1.725, 1.775] GeV and their averages for each topology.
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Figure 47: The average target asymmetry for the Topologies 1 and 2 based on the three kinds of
period combinations, respectively, and their average, called FROST-average. The data are shown
for the center-of-mass energyW ∈ [1.725, 1.775] GeV and are the same as the ones used in Figure 46.
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Comparisons

For the different period combinations and topologies, we have compared the results to ensure good
consistency. Figure 48 shows the differences (Pz combinationX −Pz combinationY ) for the three kinds
of period combinations, and Figure 49 the differences (PzTopologyX −PzTopology Y ) for the different
topologies integrated over all kinematic bins. The distributions are all narrow and centered at zero.
They show very good agreement.
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Figure 48: Comparisons (differences) of results for the polarization observable Pz from different
period combinations integrated over all energies for Topology γp→ pπ+(π−).
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Figure 49: Comparison (difference) of results for the polarization observables I⊙ from different
topologies integrated over all energies.
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4.4 Polarization Observable P⊙z

4.4.1 Helicity Difference

In the calculation of the helicity difference, again the average target polarization was used. Table 12
shows the average degree of target polarization for all periods. The degree of target polarization of
Periods 4 and 5 is similar. Periods 6 and 7 also have similar values. However, the polarization for
Periods 2 and 3 is slightly different. When the average target polarization for Λz(⇒) and Λz(⇐)
is used in the calculation of the helicity difference, the target asymmetry, Pz, from combination-
32 has a negligible influence on the observable P⊙z . The event distributions of the four different
datasets are given by Equation 38.

The double polarization observable P⊙z refers to the dataset with a longitudinally-polarized tar-
get and circularly-polarized beam. The events with spin 3/2, N(φ∗, σ3/2), and spin 1/2, N(φ∗, σ1/2),
are given by:

N(φ∗, σ3/2) ∼
N(φ∗,→⇒)

F (⇒)
+

N(φ∗,←⇐)

F (⇐)
∼ 2 + 2 · δ̄⊙ · Λ̄z ·P

⊙
z ,

N(φ∗, σ1/2) ∼
N(φ∗,←⇒)

F (⇒)
+

N(φ∗,→⇐)

F (⇐)
∼ 2− 2 · δ̄⊙ · Λ̄z ·P

⊙
z .

(41)

Examples of these distributions are shown in Figure 50 for W ∈ [1.675, 1.725] GeV and the
Topology γp→ pπ+(π−).
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Figure 50: Azimuthal angular distributions for N(φ∗, 3/2) and N(φ∗, 1/2) for the center-of-mass
energy bin W ∈ [1.675, 1.725] GeV and the Topology γp→ pπ+(π−).
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The polarization observable P⊙z (Figure 51) is given by (similar to Equations 35 and 40):

P⊙z =
1

δ̄⊙ · Λ̄z

(

N(φ∗,→⇒)
F (⇒)/F (⇐) +

N(φ∗,←⇐)
1

)

−

(

N(φ∗,←⇒)
F (⇒)/F (⇐) +

N(φ∗,→⇐)
1

)

(

N(φ∗,→⇒)Q

F (⇒)/F (⇐) +
N(φ∗,←⇐)Q

1

)

+

(

N(φ∗,←⇒)Q

F (⇒)/F (⇐) +
N(φ∗,→⇐)Q

1

) . (42)

4.4.2 Average Helicity Difference

The helicity difference can also be calculated from the three kinds of period combinations and
the three kinds of topologies, listed in Tables 17 or 18, similar to calculating the averages of the
observables I⊙ and Pz in the previous sections.

Figure 51 shows an example of the polarization observable P⊙z from combination-67 and Topol-
ogy γp → pπ+(π−). In Figure 52, each topology is based on the average of combination-32,
combination-45, and combination-67 using again Equation 36. Figure 53 shows the average value
of the observable P⊙z calculated for Topology γp→ pπ+(π−) and Topology γp→ pπ−(π+) for the
center-of-mass energy W ∈ [1.675, 1.725] GeV. Figure 61 shows the average value of the observable
P⊙z for the whole energy range W ∈ [1.375, 2.125] GeV.
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Figure 51: The polarization observable P⊙z calculated from Equation 42. The data used here are
the same as the ones in Figure 50.
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(a) Topology 1: γp→ pπ+(π−)
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(b) Topology 2: γp→ pπ−(π+)

Figure 52: Polarization observable P⊙z from the three kinds of period combinations for Topology
γp → pπ+(π−) (a) and Topology γp → pπ−(π+) (b) for W ∈ [1.675, 1.725] GeV and the average
in each topology.
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Figure 53: The average helicity difference of the Topology 1 and Topology 2 and their average,
called FROST-average. The data are shown for the center-of-mass energy W ∈ [1.675, 1.725] GeV.
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Comparisons

For different period combinations and topologies, we have again compared the results to confirm the
good consistency. Figure 54 shows the differences (P⊙z combinationX −P⊙z combinationY ) for the three
kinds of period combinations, and Figure 55 shows the differences (P⊙z TopologyX −P⊙z Topology Y ) of
different topologies integrated over all kinematic bins. The distributions are all very narrow and
centered at zero and show good agreement.
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Figure 54: Comparisons (differences) of results for the polarization observable P⊙z from different
period combinations integrated over all energies for Topology γp→ pπ+(π−).
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Figure 55: Comparison (difference) of results for the polarization observables P⊙z from different
topologies integrated over all energies.
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4.5 Systematic Uncertainties

Systematic uncertainties define errors which do not originate from limited statistics but are in-
troduced by an inaccuracy in the measurement inherent to the system. Systematic errors of the
experimental observations in the g9a experiment are usually based on instrumental effects: e.g. the
beam polarization δ⊙, target polarization Λz, and normalization factor F from the photon beam
flux. The contributions to the total systematic error are listed in Table 19 and have been carefully
studied.

Contribution ∆Obs. ∆Obs./Obs.

Electron beam-charge asymmetry < 0.004
Circular polarization of photon beam < 0.2%
Target polarization

Period combination-32 < 1.0%
Period combination-45/67 < 0.1%

Normalization (photon flux) < 0.4%
Accidentals < 2.5%
Q-factor method < 2.0%
Kinematic fitting (different CL cuts) < 1.5%

Table 19: Contributions to the total systematic uncertainty of the polarization observables.

The electron-beam helicity is flipped in the injector of the electron accelerator. Small beam-
charge asymmetries of the electron beam can be one source of a systematic error. The contribution
of the beam-charge asymmetry can be calculated from the difference between the polarization
observable I⊙ before and after applying the effect of the electron beam charge asymmetry (see
Appendix B).

4.5.1 Degree of Beam and Target Polarization, Normalization

The effect of these uncertainties on the polarization observables is very small and almost negligible.
Table 19 gives upper limits but the associated systematic errors are even smaller on average.
The errors for the degree of circular-beam polarization itself are given in Table 17, for the target
polarization in Table 12. We have studied the influence on the beam-helicity difference, I⊙, by
applying standard error propagation (see Appendix D) and applied the systematic errors on a
kinematic bin-by-bin basis. Since these uncertainties are very small, we then applied the upper
limits given in Table 19 to the target asymmetry and the helicity difference.

4.5.2 Accidental Background

The coincidence-time distribution after applying all the γp → pπ+π− selection cuts is shown in
Figure 1 as black-filled histogram. The fraction of remaining accidental coincidences of at most
2.5% within |∆TGPB < 1.2 ns can be estimated from the comparison in the yields between the
central peak in Figure 1 with neighboring beam buckets.
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4.5.3 Kinematic Fitting

Since the asymmetries are normalized to the same data, the acceptance of the chosen kinematic
variables drops out. Therefore, the choice of the applied confidence-level cut has only a small
effect on the polarization observables. The effect is bigger for cross sections where the shape of
the confidence-level distributions must be reproduced correctly in the Monte Carlo. We have used
confidence-level cuts of 5%, 10%, and 15% but found that the systematic effect is less than 1%.

4.5.4 Q-Factor Method

Each fit used in the Q-factor method of background subtraction (Section 3.9.2) estimates an un-
certainty for each parameter in the fit. When these uncertainties are propagated to the Q-factor,
the resulting uncertainty will provide an estimate of how well determined the Q-factor itself is.
Since the error of each parameter is linked to how well the fitting function describes the data, the
uncertainty of the parameters is also an estimate of how well the fit does at modeling the invariant
mass distribution. The method of propagating the error of the parameters to the uncertainty of
each point in the polarization observable is taken from [14].

To propagate the error of the fit parameters to the Q-factor error (
√

σ2
Q), the formula:

σ2
Q =

∑

ij

δQ

δαi
(Cα) ij

δQ

δαj
(43)

has been used, where αi is a fit parameter with index i and Cα is the covariance matrix which
contains the errors of each fit parameter. The covariance matrix is calculated by and obtained from
the RooFit fit package [15] used for fitting.

The propagation of these Q-factor errors to an uncertainty in the polarization observable is
calculated by:

σ =
∑

lk

√

σ2
Ql

ρlk

√

σ2
Qk

, (44)

where
√

σ2
Ql

is the Q-factor error for an event with index l and ρlk is the correlation factor between

events with index l and k. The correlation factor is calculated by:

ρlk =
Ncommon

Nnn
, (45)

where Nnn is the number of nearest neighbors used in Q-factor fitting and Ncommon is the number
of those nearest neighbors which were used in both events l and k.

The Q-factor fitting uncertainties are mostly driven by statistics in some kinematic bins, in
particular the number of available carbon events, which affects both the ratio in the fraction
(Equation 21) but also the quality of the fit. If the fit covers too much phase space in the kine-
matic variables, the fit quality becomes poor. However, we observe relatively small systematic
uncertainties on average.

4.5.5 Systematic Check of the Symmetry of the Observables

In this analysis, the dataset has been binned in two independent kinematical variables: the center-
of-mass energy, W , and the azimuthal angle, φ∗π+ . As previously mentioned, the variable φ∗π+ is
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the angle between the production plane (blue plane in Figure 36) and the decay plane (red plane
in the same figure). Observables as function of φ∗π+ exhibit either an odd or an even symmetry.

Figure 56 shows the polarization observable I⊙ for the whole energy rangeW ∈ [1.375, 2.125] GeV.
To check the symmetry of the observable I⊙, the transition φ∗π+ → 2π − φ∗π+ is performed:
I⊙ = −I⊙(2π − φ∗π+). This is equivalent to applying a mirror operation with respect to the
production plane, and then changing the sign of the asymmetry (Figure 56). The observable I⊙

exhibits the expected odd-symmetry behavior; the differences between the observables I⊙(φ∗π+) and
−I⊙(2π − φ∗π+) show very small values.

Figure 57 and 58 present the polarization observables Pz and P⊙z for the whole energy range
W ∈ [1.375, 2.125] GeV, respectively. To also check the symmetries of the observables Pz and P⊙z ,
the transition φ∗π+ → 2π − φ∗π+ has been applied, as for the observable I⊙. The observable Pz

exhibits a similar odd symmetry. However, P⊙z is an even function of φ∗π+ , the mirror operation
with respect to the production plane does not require a sign change as in the case of I⊙ and Pz,
i.e. P⊙z = P⊙z (2π − φ∗π+) (Figure 58). The measured polarization observables Pz and P⊙z have
overall well-defined symmetries; the differences between the observable and the observable after the
transition φ∗π+ → 2π − φ∗π+ are all very small.
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Figure 56: Measured beam-helicity asymmetry I⊙ in the reaction ~γp → pπ+π− for the whole center-of-mass energy range W ∈
[1.375, 2.125] GeV. The filled symbols denote the average observable I⊙ from the butanol data and the open symbol the observable
−I⊙(2π − φ∗π+) from the same dataset. The distribution at the bottom of each energy is the difference between the observable I⊙

and the observable −I⊙(2π − φ∗π+).
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Figure 57: Measured target asymmetry Pz in the reaction γ~p → pπ+π− for the whole center-of-mass energy range W ∈
[1.375, 2.125] GeV. The filled symbols denote the average observable Pz from the butanol data weighted with the Q-factors
(Section 3.9.2) and the open symbol the observable −Pz(2π − φ∗π+) from the same dataset. The distribution at the bottom of
each energy is the difference between the observable Pz and the observable −Pz(2π − φ∗π+).
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Figure 58: Measured helicity diffeence P⊙z in the reaction ~γ~p → pπ+π− for the whole center-of-mass energy range W ∈
[1.375, 2.125] GeV. The filled symbols denote the average observable P⊙z from the butanol data weighted with the Q-factors
(Section 3.9.2) and the open symbol the observable P⊙z (2π − φ∗π+) from the same dataset. The distribution at the bottom of each
energy is the difference between the observable P⊙z and the observable P⊙z (2π − φ∗π+).
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5 Results and Comparison of the Polarization Observables with

Models

Figure 59 shows the comparison of the observable I⊙ from this analysis with the results from the
CLAS-g1c experiment for the entire center-of-mass energy range, W ∈ [1.375, 2.125] GeV. The
observable I⊙ from the g9a experiment (in red) is in overall very good agreement with the published
data (in light blue) [17] for the whole energy range. In addition, the observable from the CLAS-g9a
experiment (this analysis) with 20 bins in the azimuthal angle, φ∗π+ , has better resolution than the
results from the CLAS-g1c experiment, which used only 11 bins. Since the x-axis in this figure
denotes the angle between the center-of-mass production plane (blue plane in Figure 36) and the
decay plane (red plane in the same figure), the observable I⊙ must have a value of zero in this
representation for φ∗π+ = 0, π, and 2π due to the odd sysmmetry. This is nicely observed in the
data. Moreover, the results from the butanol data (in red, no background subtraction) and the
butanol data weighted with the Q-factors (in deep blue, background subtracted) coincide very well
for the whole φ∗π+ angle range. The small discrepancies between these two results are due to the
reduced statistics once the background is subtracted.

The measurements of the observable I⊙ are then compared to the results from the models
of A. Fix [21] and W. Roberts [16], which are available from the threshold of the double-pion
photoproduction reaction up to a center-of-mass energy of W = 1.775 GeV. The calculations by
A. Fix and W. Roberts show the expected odd sysmmetry. The overall agreement, however, is not
very good and there is even a big discrepancy between the two predictions themselves. Figure 60
shows the polarization observable Pz, target asymmetry, for the whole center-of-mass energy range
W ∈ [1.375, 2.125] GeV. For Pz, there are no experimentally published data available. All these
model predictions provide a good estimate of the magnitude of the observable. However, there
appears to be a sign issue in the representation versus φ∗π+ . Therefore, the results presented here
will serve to improve predictions. Figure 61 shows the polarization observable P⊙z for the whole
energy range W ∈ [1.375, 2.125] GeV. Since the observable P⊙z was not published directly in [19]
(only the helicity-dependent total cross-section difference, ∆σ = (σ3/2 − σ1/2), are available), these
results are not shown in Figure 61. The polarization observable P⊙z is in overall good agreement
with the model predictions by A. Fix [21] and W. Roberts [16] in shape, but not in amplitude.
It is worth noting though that A. Fix has been working with the results from the isospin-related
channels, nπ+π0 and pπ0π0, measured at MAMI.

In summary, we have given an overview of measurements of the beam-helicity asymmetry,
the target asymmetry, and the helicity difference for the photoproduction of two charged pions
off a longitudinally-polarized proton target using circularly-polarized photons. The comparison
between results using butanol events and butanol events weighted with the Q-factors (event-based
background subtraction) also shows that the Q-factor method is a very useful tool to extract
the polarization observables. The general lack of agreement between experiment and the theory
signals severe shortcomings in the models. This is not a big surprise because the observables
involving target polarization are first-time measurements. Thus, the comparison with the model
predictions provides the basis for significant improvements in the interpretation of the data. A
proper understanding of the π+π−N channel in the region of overlapping nucleon resonances will
provide an important contribution to solving the missing-resonance problem. We are planning
on publishing the results in a series of publications including at least one PRL for the first-time
measurements.
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Figure 59: Comparison of the polarization observable I⊙ analyzed in this analysis and the polarization observable I⊙ published
from the g1c experiment (light blue). The data are shown for the whole center-of-mass energy range W ∈ [1.375, 2.125] GeV. All
kinematic variables except for φ∗π+ and W are integrated over. The red data points denote the observable I⊙ from the butanol
data, and the blue data points denote the same observable from the butanol events weighted with the Q-factors (Section 3.9.2).
The green dots indicate model calculations provided by A. Fix [21], and the blue dots by W. Roberts [16].
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Figure 60: The polarization observable Pz from this analysis for the whole center-of-mass energy range W ∈ [1.375, 2.125] GeV.
All kinematic variables except for φ∗π+ and W are integrated over. The red data points denote the observable Pz from the butanol
events weighted with the Q-factors (Section 3.9.2). The green dots indicate model calculations provided by A. Fix [21], and the
blue dots by W. Roberts [16].
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Figure 61: The polarization observable P⊙z from this analysis for the whole center-of-mass energy range W ∈ [1.375, 2.125] GeV.
All kinematic variables except for φ∗π+ and W are integrated over. The red data points denote the observable P⊙z from butanol
events weighted with the Q-factors (Section 3.9.2). The green dots indicate model calculations provided by A. Fix [21], and the
blue dots by W. Roberts [16].
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A Beam and Target Polarization

Table 14 illustrates the condition of the half-wave plate and the direction of the target polarization
in the seven periods. The information in Table 14 should be confirmed. The condition of the
half-wave plate is used for the beam polarization, as referenced in Table 13. If the condition of
the half-wave plate in Table 14 per period is wrong, the beam asymmetries from three period
combinations will not coincide. In conclusion, beam asymmetries made from three different period
combinations show good agreement, as shown in Figure 62.
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Figure 62: The beam asymmetries from the three period combinations using Topology γp →
pπ+(π−) and the average beam asymmetry.

The direction of the target polarization in Table 14 can also be checked by using the target
asymmetry. Target asymmetries determined from different directions of the target polarization
will exhibit some structure and asymmetries using the same directions will be zero, as shown in
Figure 63.
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(a) Combinations of different target polarizations.
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(b) Combinations of the same target polarization.

Figure 63: The target asymmetry made from different target polarizations (a) and from the same
target polarization (b).
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B Beam Charge Asymmetry

Table 9 shows the electron beam charge asymmetry in the g9a dataset and the total number of
γp → pπ+π− events for the two helicity states. The electron beam charge asymmetry can be
defined by:

Y ± = N±/α± , (46)

Y + =
1

α+

(

N(φ,→⇒)

Λz(⇒)F (⇒)
+

N(φ,→⇐)

Λz(⇐)F (⇐)

)

∼
A(φ)

α+

( 1

Λz(⇒)
+

1

Λz(⇐)

)(

1 + δ⊙I
⊙
)

,

Y − =
1

α−

(

N(φ,←⇒)

Λz(⇒)F (⇒)
+

N(φ,←⇐)

Λz(⇐)F (⇐)
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A(φ)

α−

( 1

Λz(⇒)
+

1

Λz(⇐)

)(

1− δ⊙I
⊙
)

,

(47)

and the asymmetry can be calculated using the corrected number of events for helicity plus and
minus. The beam asymmetry Abeam, taking into account the effect of the electron beam charge
asymmetry, is given by:

Abeam =
Y + − Y−

Y + + Y −
=

1
α+

(

N(φ,→⇒)
Λz(⇒)F (⇒) +

N(φ,→⇐)
Λz(⇐)F (⇐)

)

− 1
α−

(

N(φ,←⇒)
Λz(⇒)F (⇒) +

N(φ,←⇐)
Λz(⇐)F (⇐)

)

1
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(

N(φ,→⇒)
Λz(⇒)F (⇒) +

N(φ,→⇐)
Λz(⇐)F (⇐)

)

+ 1
α−

(

N(φ,←⇒)
Λz(⇒)F (⇒) +
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)

=
1+ δ⊙I ⊙

α+ − 1− δ⊙I ⊙

α−
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α+ + 1− δ⊙I ⊙

α−

(48)

The polarization observable I⊙ is given by:

I ⊙ =
1

δ⊙

Abeam

(

1
α+ + 1

α−

)

−

(

1
α+ −

1
α−

)

(

1
α+ + 1

α−

)

−Abeam

(

1
α+ −

1
α−

) . (49)

Equation 35 shows the polarization observable I⊙ without the effect of the beam charge asym-
metry and equation 49 shows the polarization observable I⊙ with the effect of the beam charge
asymmetry. Figure 64 shows the difference. The electron beam charge asymmetry can be neglected
in this analysis.
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Figure 64: Comparison between the polarization observables I⊙ before and after applying the beam
charge asymmetry.

C Effect of Bound-Nucleon Events on I⊙

The butanol data are composed of free-proton, bound-nucleon, and additional background events.
However, we cannot easily distinguish between the free-proton events and the remaining events in
the butanol data.

Missing-Mass [ GeV ]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

100

200

300

400

500
Butanol-Data

CL-cut > 0.05

CL-cut < 0.05

(a)

 (GeV)ESm
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ (
 0

.0
01

 )

0

100

200

300

400

500

 0.0048±c0 = -0.46150 

 0.0014±c1 = -1.02065 

 0.0052±c2 =  0.4850 

 0.0037±fsig =  0.3043 

 0.00028±sigwidth =  0.02307 

 (GeV)ESm
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ (
 0

.0
01

 )

0

100

200

300

400

500

 (GeV)"ESA RooPlot of "m

(b)

Figure 65: (a) The missing-mass distribution for the butanol target with and without the confidence-
level cut. (b) The same missing-mass distribution fitted with a gaussian and a second-order
chebyshev polynomial. The data are selected according to W ∈ [1.575, 1.625] GeV and Topol-
ogy γp→ pπ+(π−). The hatched area includes events whose the confidence-level is less than 0.05.
The light blue line is located at the π+ mass ± 3σ of the fitted gaussian. The dashed green line is
the second-order chebyshev polynomial.
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Figure 65 (a) shows missing-mass distributions including the effects of different confidence-level
cuts. In Figure 65 (b), the free-proton data are described with a gaussian function. The bound-
nucleon and background data are described using a second-order chebyshev polynomial. Since the
CLAS missing-mass distributions from a liquid-hydrogen target (for the two-pion channel) are typ-
ically background free, we assume that the background events visible in Figure 65 (a) stem from the
carbon in the butanol target. We also assume that the beam asymmetry made from the free-proton
events is similar for bound nucleons and that g9a dataset is not sensitive to distinguish between
the beam asymmetries for free-proton and bound-nucleon events.
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Figure 66: The missing-mass distributions from the butanol target made with different CL cuts.
The data are selected according to W ∈ [1.575, 1.625] GeV and Topology γp→ pπ+(π−).

Figure 66 shows the missing-mass distributions of Topology γp→ pπ+(π−) for the confidence-
level cuts 1%, 5%, 10%, and 15%. When the confidence-level cut is increased, more and more
background events are cut out. The different amount of background events under the free-proton
peak in Figure 66 can have an effect on the amplitude of the beam asymmetry. Figure 67 shows
the comparison between the polarization observables I⊙ extracted with the confidence-level cuts
1%, 5%, 10%, and 15% to the published g1c data. Figure 67 shows that the beam asymmetry is
more or less independent of the confidence-level cut. The different amount of background events
under the free-proton peak has clearly no big effect on the structure of the beam asymmetry.
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Figure 67: The average beam asymmetries extracted with a 1%, 5%, 10%, and 15% CL-cut in
comparison with the polarization observable I⊙ published from the CLAS-g1c experiment.

Our conclusion is that after applying the confidence-level cut, the effect of background events
is almost negligible for the beam-helicity asymmetry. The polarization observables I⊙ from free-
proton and bound-nucleon events have similar values, i.e. the FROST experiment is not sensitive
to the effects of Fermi motion. Figure 68 (a) shows the differences (I⊙X %CLcut − I⊙5%CLcut) and
Figure 68 (b) describes the percent error between X% CL-cut and 5% CL-cut when X is a 1%
CL-cut, a 10% CL-cut, or a 15% CL-cut.
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Figure 68: Difference and percent error between the polarization observable I⊙ for a 5% CL-cut
and other CL cuts.
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D Error Propagation

The target polarization Λz, normalization factor F , and beam polarization δ⊙ in Equation 35 also
have systematic errors the effects of which on the polarization observable I⊙ must be taken into
account. The polarization observable I⊙ is given by:

I⊙ =
1

δ̄⊙

N(→)−N(←)

N(→) +N(←)
, (50)

where

N(→) =
N(→⇒)

{

Λ(⇒)/Λ(⇐)
}{

F (⇒)/F (⇐)
} +N(→⇐) , (51)

and

N(←) =
N(←⇒)

{

Λ(⇒)/Λ(⇐)
}{

F (⇒)/F (⇐)
} +N(←⇐) . (52)

In the following, we set A = Λ(⇒)/Λ(⇐) and B = F (⇒)/F (⇐). The errors of N(→) and
N(←) due to the target polarization and normalization factor can then be calculated using standard
error propagation:

∆N(→) =

√

(

N(→⇒) ·∆A

A2 ·B

)2

+

(

N(→⇒) ·∆B

A ·B2

)2

, (53)

and

∆N(←) =

√

(

N(←⇒) ·∆A

A2 ·B

)2

+

(

N(←⇒) ·∆B

A ·B2

)2

. (54)

The error of the polarization observable I⊙ is also given by standard error propagation:

∆I ⊙ =

√

(

∂I ⊙ ·∆N(→)

∂N(→)

)2

+

(

∂I ⊙ ·∆N(←)

∂N(←)

)2

+

(

∂I ⊙ ·∆δ̄⊙
∂δ̄⊙

)2

=

√

(2N(←))2 · (∆N(→))2

(δ̄⊙)2 · (N(→) +N(←))4
+

(2N(→))2 · (∆N(←))2

(δ̄⊙)2 · (N(→) +N(←))4
+

(N(→)−N(←))2 · (∆δ̄⊙)2

(δ̄⊙)4 · (N(→) +N(←))2

(55)

The error of the polarization observable I⊙ from Equation 55 consists of three parts: the error
due to the target polarization, the error due to the normalization factor, and the error due to the
beam polarization. Figure 69 shows the error distributions for I⊙ from the three parts.

The error from the target polarization is given by (Equations 55 and 53):

∆I ⊙Tar.Pol. =

√

2N(←)2 ·N(→⇒)2 + 2N(→)2 ·N(←⇒)2

(δ̄⊙)2 · (N(→) +N(←))4 · (A2 ·B)2
· (∆A)2 . (56)

The error from the normalization factor is given by:

∆I ⊙Nor.Fac. =

√

2N(←)2 ·N(→⇒)2 + 2N(→)2 ·N(←⇒)2

(δ̄⊙)2 · (N(→) +N(←))4 · (A ·B2)2
· (∆B)2 . (57)
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The error from the beam polarization is given by:

∆I ⊙BeamPol. =

√

1

(δ̄⊙)4
·

(

N(→)−N(←)

N(→) +N(←)

)2

· (∆δ̄⊙)2 , (58)

and the error of polarization observable I⊙ is given by:

∆I ⊙ =

√

(

∆I ⊙Tar.Pol.

)2

+

(

∆I ⊙Nor.Fac.

)2

+

(

∆I ⊙Beam.Pol.

)2

. (59)
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Figure 69: The statistical error contribution on observable I⊙ from the target polarization (b),
from the normalization factor (c), and the beam polarization (d). The sum of these errors is shown
in (a).
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