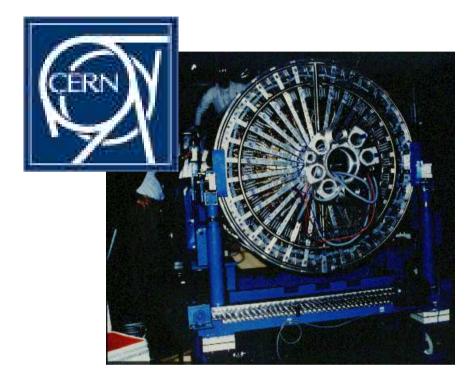
Test of $N\overline{N}$ – Potential Models:

Isospin relations in $\overline{p}d$ annihilations at rest and search for quasinuclear bound states with the Crystal–Barrel Detector

- Nucleon–Antinucleon Interaction
 - Atomic Cascade of the Protonium Atom
 - Meson-Exchange Potentials
- Predictions of NN Potential Models (Resurrection of Bound States?):
 - 1. Fine structure of the atomic $p\bar{p}$ spectrum
 - 2. Isospin decomposition of the $p\bar{p}$ wave function
 - 3. Observation of ρ - ω interference:
 - $-p\overline{p} \rightarrow \pi^{+}\pi^{-}\eta$, $p\overline{p} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ and $e^{+}e^{-}$ annihilation
 - 4. Search for quasinuclear $N\overline{N}$ bound states
- Summary and Outlook

Spectroscopy with the Crystal–Barrel Detector

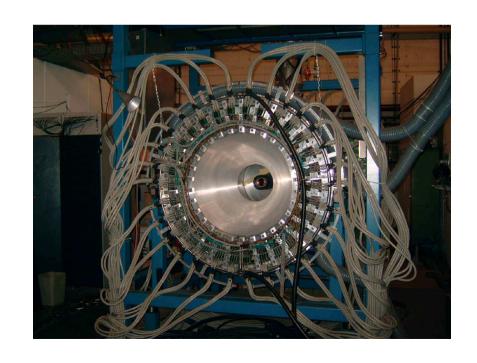


1989 - 1996 (at LEAR/CERN)

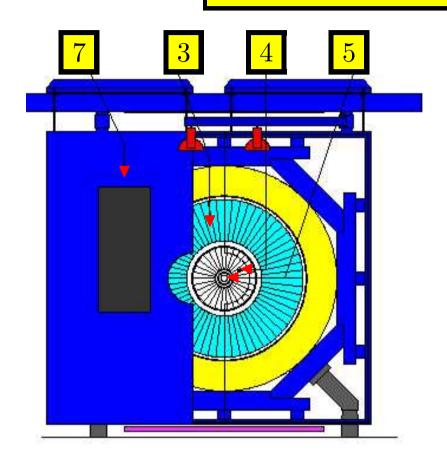
- Investigation of $\overline{p}p$ and $\overline{p}d$ annihilations
 - ⇒ Annihilation dynamics in the non-perturbative regime of QCD
 - \Rightarrow Search for baryonium ($\overline{p}p$ bound states)
- Spectroscopy of light mesons

2000 - present (University of Bonn)

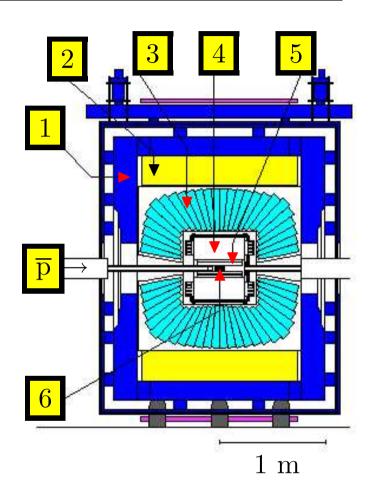
- Photoproduction experiments at ELSA
 - ⇒ Spectroscopy of light baryons(... and mesons)



The Crystal–Barrel Detector at LEAR



- (1) magnet yoke
- (2) magnet coils
- (3) CsI barrel calorimeter
- (4) jet drift chamber (JDC)



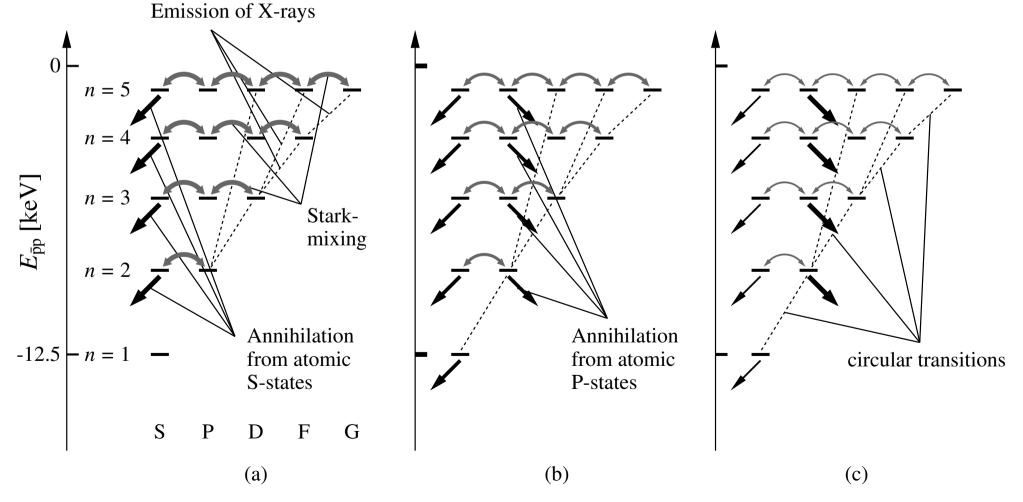
- (5) proportional wire chamber
- (6) target (liquid H_2 , deuterium)
- (7) one half of the endplate

The Atomic Cascade of the Protonium Atom

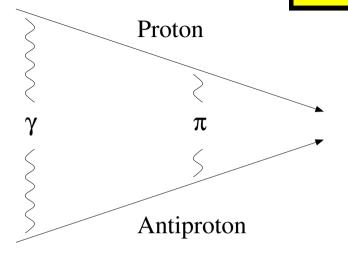
$$\overline{p} + H_2 \rightarrow \overline{p}p + H + e^-$$

Atomic Cascade $(n \approx 30, l \approx \frac{n}{2}) \rightarrow (n < 30, l \leq 2)$:

- Electromagnetic Transitions
- Auger Effect
- Chemical Effects



The $N\overline{N}$ Interaction



Description of wave function by potentials:

- Coulomb Potential
- OBEP

Extrapolation of OBEP to small distances:

(OBEP: One Boson Exchange Potential)

- π Exchange responsible for $|p\overline{p}\rangle \rightarrow |n\overline{n}\rangle$
 - \Rightarrow n \overline{n} contribution to the protonium wave function
- Formation of quasinuclearer bound states:
 - First predictions in 1949 before the discovery of the antiproton (Fermi/Yang)
 - Precise calculations in 1960/1970
 - Description of meson spectrum by $N\overline{N}$ bound states $(\pi, \rho, \text{ etc.})$

Concept of NN Potential Models

NN and $N\overline{N}$ Interaction:

- Exchange of the same mesons
- Sign change in potential (G Parity)

$$\Rightarrow$$
 $V(NN)(r) = \sum_{M} V_M(r) \rightarrow V(N\overline{N})(r) = \sum_{M} G_M V_M(r)$

NN interaction repulsive \rightarrow Pauli Principle

NN interaction dominated by annihilation

• NN Interaction:

No bound state (only loosely bound Deuteron)

• NN Interaction:

- Strongly attractive $(r \lesssim 0.5 \text{ fm})$
- Formation of bound states (M < 2m) and resonances (M > 2m)

Analogy: Positronium (e⁺e⁻)

C conjugation transforms $e^- - e^-$ and $e^- - e^+$ into each other

- Charge conjugation transforms a particle into the corresponding antiparticle \Rightarrow Only neutral particles can be eigenstates ...
- G parity is a mixture of charge conjugation and rotation of isospin
 - \Rightarrow Application to non-neutral systems ...

Protonium: Energy Spectrum

Schrödinger Equation:

$$(V = V^C, \mu = \frac{m_1 m_2}{m_1 + m_2})$$

- $E_n(\overline{pp}) = -12.491 \cdot \frac{1}{n^2} \text{ keV}$
- $E_n(\overline{p}d) = -16.653 \cdot \frac{1}{n^2} \text{ keV}$ + QED corrections

and relativistic effects

	DR1	DR2	KW	Experiment
$\Delta_{ m 1S}$	0.71	0.76	0.71	$0.73 \pm 0.03 \text{ keV}$
$\Gamma_{ m 1S}$	0.93	0.95	1.05	$1.06 \pm 0.08 \text{ meV}$
$\Gamma_{^3P_0}$	114	80	96	$120 \pm 25 \text{ meV}$
$\Gamma_{^{3}P_{2},^{3}P_{1},^{1}P_{1}}$	26	27	29.5	$30.5 \pm 2.0 \; \mathrm{meV}$
$\Gamma_{^3\mathrm{P}_1}$	26	28	26	$51 \pm 18 \text{ meV}$

Principle quantum number n small: $V = V^C + V^{p\overline{p}}$

$$V = V^C + V^{p\overline{p}}$$

- Broadening and shift of low–energy levels
 - Only very small descrepancies between models for $(\Delta E, \Gamma)$
 - Good agreement with data

Isospin Structure of the $p\bar{p}$ Wave Function (1)

Description in potential model by coupled Schrödinger Equation:

$$H\Psi = E\Psi$$
 mit $\Psi = \begin{pmatrix} \Psi_{\rm p} \\ \Psi_{\rm n} \end{pmatrix} \equiv \begin{pmatrix} \Psi(\overline{\rm p}p) \\ \Psi(\overline{\rm n}n) \end{pmatrix}$

$$H = T + V = \begin{pmatrix} \frac{p^2}{2m} & 0\\ 0 & \frac{p^2}{2m} \end{pmatrix} + \begin{pmatrix} V_c + V_0 & V_{pn}\\ V_{np} & 2\delta m + V_0 \end{pmatrix}$$

 \Rightarrow Mixture of I = 0 and I = 1 components of Isospin (ISI)

$$|p\overline{p}(r)\rangle = \frac{1}{\sqrt{2}} \cdot \left(a(r)|I=0, I_3=0\rangle + b(r)|I=1, I_3=0\rangle\right)$$

- a(r) = b(r) = 1 (without interaction in the initial state)
- $|a(r)|^2 + |b(r)|^2 = 2$

Isospin Structure of the pp Wave Function (2)

Determination of b^2 using branching ratios:

e. g.
$${}^{3}\mathrm{S}_{1}: BR(\overline{\mathrm{pd}} \to \pi^{-}\omega\,\mathrm{p}) = \frac{1}{2}\,T_{\pi\omega}^{2} \qquad (|\overline{\mathrm{pn}}\rangle = |I=1,I_{3}=-1\rangle)$$

$$BR(\overline{\mathrm{pd}} \to \pi^{0}\,\omega\,\mathrm{n}) = \frac{1}{4}\,b^{2}\,T_{\pi\omega}^{2} \qquad (|\overline{\mathrm{pp}}\rangle \text{ involves } I=0)$$

$$BR(\overline{\mathrm{pp}} \to \pi^{0}\,\omega) = \frac{1}{2}\,b^{2}\,T_{\pi\omega}^{2}$$

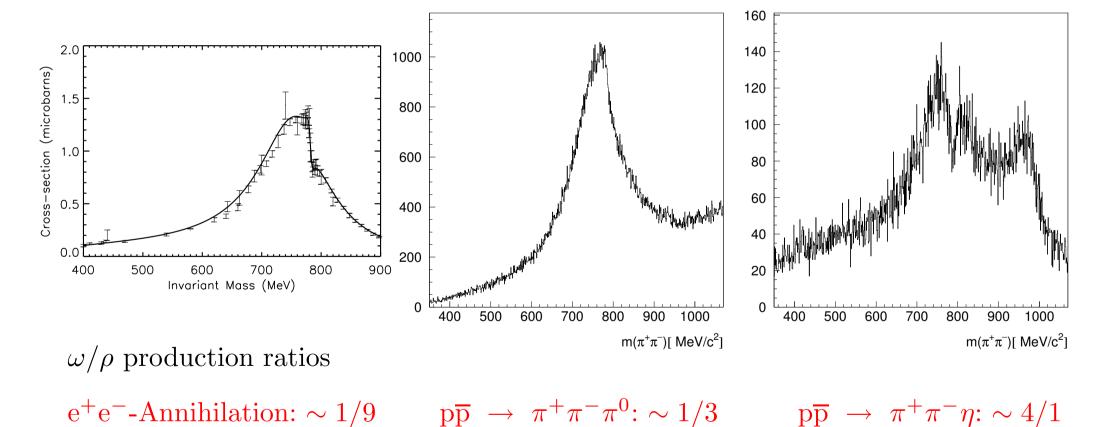
Results of different channels:

- ${}^{3}\mathrm{S}_{1}: \quad \pi\omega \text{ branching ratio}$
- ${}^{1}S_{0}: \pi \rho$ branching ratio
 - ⇒ ISI not necessary to describe data (but not excluded)
- ${}^{3}P_{0}: \pi \eta (\eta')$ branching ratios
 - \Rightarrow In contradiction with potential models $(b_{\rm exp}^2 \gg b_{\rm theo}^2)$

ρ - ω -Interference

Isospin invariance is broken

• ρ and ω are not isospin eigenstates $\Rightarrow \rho$ - ω interference



 \Rightarrow No additional phase in $\overline{p}p$ annihilation between isovector and isoscalar component!

$N\overline{N}$ bound states

Quantitative Calculation of energy levels:

 \Rightarrow Schrödinger Equation with $V(N\overline{N})(r)$ (e. g.: Paris - Potential) Large number of bound states at $N\overline{N}$ threshold:

- Exact prediction of energy levels difficult (model dependent)
- Order of levels only weakly model dependent

Experimentel evidences?

- $f_2(1565)$ interpreted as ${}^{13}P_2 {}^{13}F_2$
- $N\overline{N}(1870) \rightarrow 5\pi$ (Asterix Data) (Interpretation as $^{13}P_0$)
- Reports on $N\overline{N}$ (2020) resonance
- ⇒ Broadening of states due to annihilation (experimentally not observable?)

• $J/\psi \rightarrow \gamma p\overline{p}$ at BES II (HADRON 2003)

$$(m \approx 1859^{+3}_{-10}^{+3}_{-25} \text{ MeV}/c^2)$$

Volker Credé

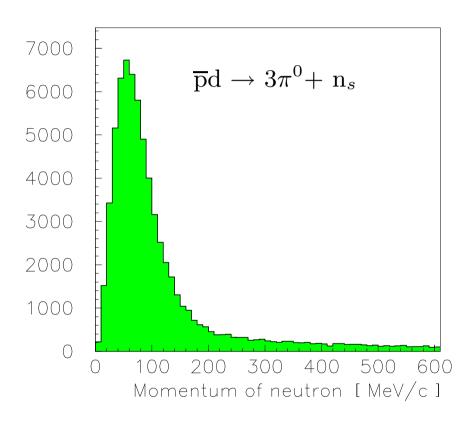
Experimental Method

Sensitive experimental method:

$$\overline{p}d \to X + N, \quad X = N\overline{N} \text{ bound state}$$
 $\overline{p}d \to (\overline{p}p \to X) n, (\overline{p}n \to X) p$

- N removes energy in the formation of X
- Main contribution: quasifree annihilation

Experimental Method



- → Characteristic shape due to Fermi motion in the deuteron
- → Position and width of maximum determined by angular momentum of a dominantly bound state [Dalkarov, Shapiro]

Search for NN bound states with the Crystal–Barrel Detector

 $N\overline{N}$ bound state has a well defined G parity

 \Rightarrow Determined by number of decay pions

a) Investigation of the reactions:

$$k\pi^0 + n, \quad k = 2, 3, 4, 5$$

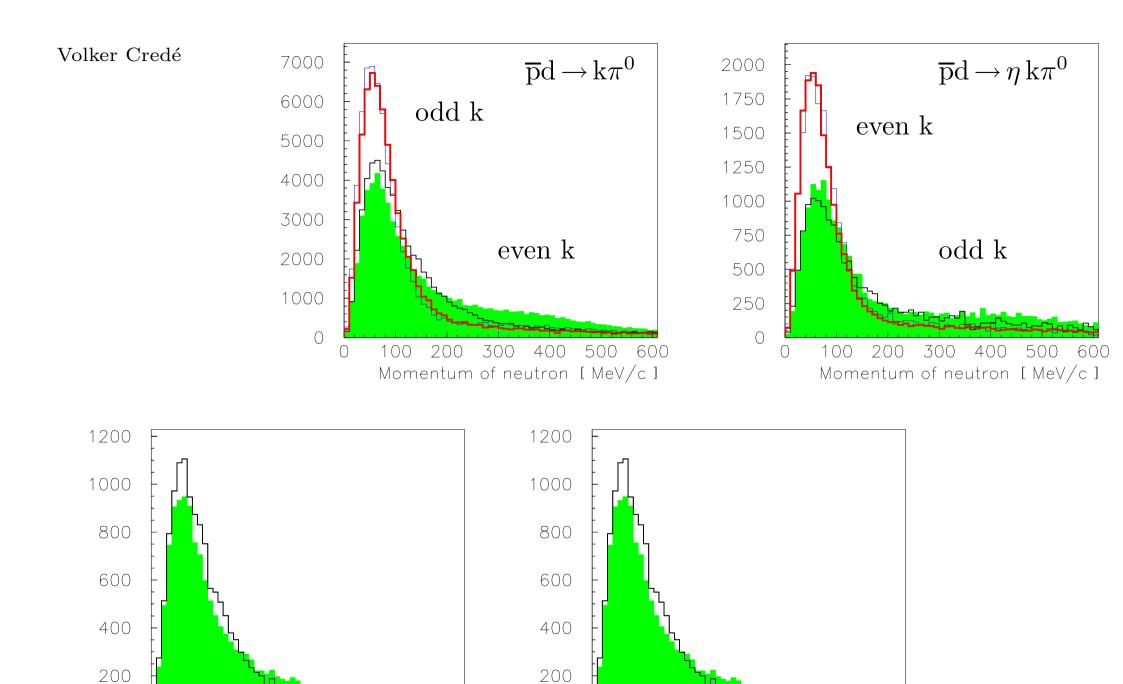
⇒ Striking agreement of channels with even and odd G parity

b) Investigation of the reactions:

$$\eta(k\pi^0) + n, \quad k = 1, 2, 3, 4$$

⇒ Same effect, however, interchanged G parity

No observation of quasinuclear bound states!



300 400

Momentum of neutron [MeV/c]

Momentum of neutron [MeV/c]

Interpretation of Distributions

Distributions with $2\pi^0$ and $4\pi^0$:

- Higher intensities at higher momenta
- $\overline{p}p$ (S wave) $\rightarrow 2\pi^0$ (not allowd)
- $\overline{p}p(S \text{ wave}) \longrightarrow 4\pi^0 \text{ (complex cascade)}$

$$\overline{p}p \to \pi^0 \quad a_2(1650)$$

$$a_2(1650) \to \pi^0 \quad f_2(1270)$$

$$f_2(1270) \to 2\pi^0$$

- $\overline{p}p$ (P state): allowed from S wave of $\overline{p}d$ atom
 - \Rightarrow Different probabilities for annihilation from S and P wave
- \Rightarrow Confirmed by distributions with η mesons
 - $-\overline{p}p(S \text{ state}) \longrightarrow \pi^0 \eta \text{ (forbidden)}$
 - $-\overline{p}p(S \text{ state}) \longrightarrow 3\pi^0 \eta \text{ (rare decay)}$

Summary

 $N\overline{N}$ potential models describe scattering processes at large distances and small momentum transfer

- Correct prediction of energy shifts
- Determination of NN π coupling constant from the reaction $p\overline{p} \to n\overline{n}$

One–Boson–Exchange models are not able to describe annihilation

- Predicted isospin decomposition of $p\overline{p}$ wave function not confirmed
- No observation of quasinuclear $N\overline{N}$ bound states
- No consistent description of measured branching ratios

Summary

- Potential models don't give insight into dynamics of annihilation process
- At large momentum transfer, quark–quark interaction plays the dominant role in strong interaction
- \Rightarrow Predictions for resonances from the same potentials
 - \Rightarrow There is a problem with these potentials ...
- \Rightarrow If states, why not in $\overline{p}N$ reactions?
- \Rightarrow Whatever there is in the BES data: no p \overline{p} state, I believe!
- \Rightarrow Annihilation width of NN resonances predicted to be much larger than Γ_{NN} \Rightarrow They have not been found in annihilation processes!