The Experimental Status of Glueballs

V. Credé

Florida State University, Tallahassee, Florida

CIPANP '09 San Diego, California 05/26/2009

Outline

- Introduction
 - Meson Spectroscopy
 - Theoretical Expectations for Glueballs
- Experimental Methods
 - Proton-Antiproton Annihilation
 - e⁺e⁻ Annihilation and Radiative Decays of Quarkonia
 - Central Production
 - Two-Photon Fusion at e⁺e⁻ Colliders
- The Known Mesons
 - The Quest for the Scalar Glueball
- Interpretation and Outlook

Outline

- Introduction
 - Meson Spectroscopy
 - Theoretical Expectations for Glueballs
- 2 Experimental Methods
 - Proton-Antiproton Annihilation
 - e⁺e⁻ Annihilation and Radiative Decays of Quarkonia
 - Central Production
 - Two-Photon Fusion at e⁺e⁻ Colliders
- The Known Mesons
 - The Quest for the Scalar Glueball
- Interpretation and Outlook

The Quark Model of Hadrons

• Mesons ($q\overline{q}$) $q \otimes \overline{q} = 3 \otimes \overline{3} = 8 \oplus 1$

• Baryons (qqq) $q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

Ordinary matter ...

The Quark Model of Hadrons

• Mesons ($q\overline{q}$) $q \otimes \overline{q} = 3 \otimes \overline{3} = 8 \oplus 1$

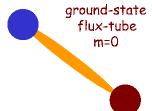
• Baryons (qqq) $q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

Ordinary matter, however, QCD also predicts so-called exotic states

→ simplest possibility: $q \otimes \overline{q} \otimes q = 15 \oplus 6 \oplus 3 \oplus 3$

Does not work: color singlets needed!

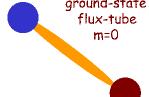
→ multiple of (qqq) and (qq̄) necessary


• Glueballs:
$$g \otimes g = 8 \otimes 8 = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 1$$

$$l+m \ge 1$$
 for $n=1$

Ordinary Mesons

$$J^{PC} \equiv {}^{2S+1}L_J$$


- Parity $P = (-1)^{L+1}$
- Charge conjugation (defined for neutral mesons) $C = (-1)^{L+S}$
- G parity $G = C(-1)^{I}$

$$\frac{L = 0, \ S = 1:}{\rho, \ \omega, \ \phi \ (J^{PC} = 1^{--})}$$

$$L = 0, S = 0:$$

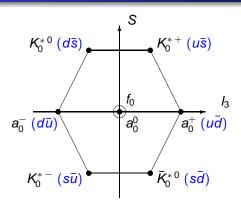
e.g. $\pi (J^{PC} = 0^{-+})$

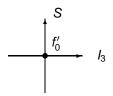
Mesons and their Quantum Numbers

		J PC	$^{2S+1}L_J$	<i>I</i> = 1	$I=0\ (n\bar{n})$	$I=0$ ($s\bar{s}$)	Strange
L = 0	S = 0	0-+	¹ S ₀	π	η	η'	K
	S = 1	1	${}^{3}S_{1}$	ρ	ω	ϕ	K*
L = 1	S = 0	1+-	¹ P ₁	<i>b</i> ₁	<i>h</i> ₁	h' ₁	K ₁
	S = 1	0++	${}^{3}P_{0}$	a_0	f_0	f_0'	K_0^*
	S = 1	1++	${}^{3}P_{1}$	a ₁	f_1	f' ₁	K_1
	S = 1	2++	$^{3}P_{2}$	a_2	f_2	f_2'	K_2^*

Notation

- J^{PC} s are measured quantities
- $^{2S+1}L_{J}$ s are internal quantum numbers in a non-relativistic quark model


Mesons and their Quantum Numbers


		J PC	$^{2S+1}L_J$	<i>l</i> = 1	$I=0\ (n\bar{n})$	$I=0$ ($s\bar{s}$)	Strange
<i>L</i> = 0	S = 0	0-+	¹ S ₀	π	η	η'	K
	S = 1	1	³ S ₁	ρ	ω	ϕ	K*
L = 1	S = 0	1+-	¹ <i>P</i> ₁	<i>b</i> ₁	<i>h</i> ₁	h' ₁	K ₁
	S = 1	0++	${}^{3}P_{0}$	a ₀	<i>f</i> ₀	f' ₀	K_0^*
	S = 1	1++	$^{3}P_{1}$	a ₁	<i>f</i> ₁	f' ₁	K ₁
	S = 1	2++	$^{3}P_{2}$	a ₂	f_2	f_2'	K_2^*

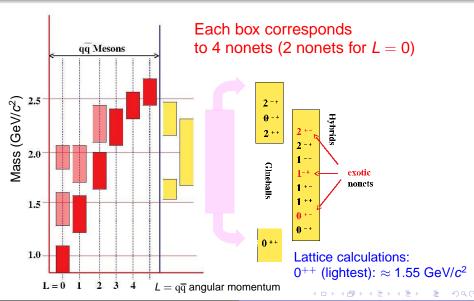
Notation

- J^{PC} s are measured quantities
- $^{2S+1}L_{J}$ s are internal quantum numbers in a non-relativistic quark model

The Nonet of Scalar Mesons with $J^{PC} = 0^{++}$

Properties of Quarks					
Classification	d	и	s		
Charge	-1/3	2/3	-1/3		
Isospin I	1/2	1/2	0		
I_3	-1/2	1/2	0		

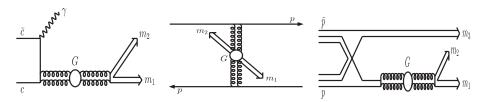
From large energies to large distances ...


Can we understand bound systems of hadrons within the QCD framework?

No!

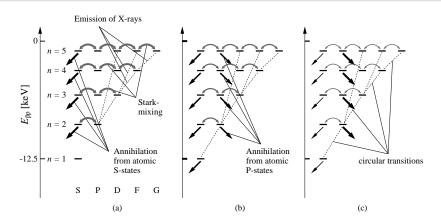
Solution: QCD-inspired models

- Bag models
- Flux-tube models
- Instanton interactions
- QCD sum rules
- Lattice QCD



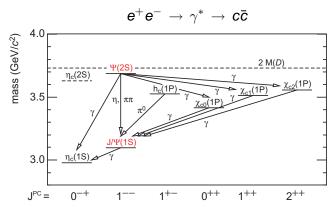
Outline

- Introduction
 - Meson Spectroscopy
 - Theoretical Expectations for Glueballs
- Experimental Methods
 - Proton-Antiproton Annihilation
 - e⁺e⁻ Annihilation and Radiative Decays of Quarkonia
 - Central Production
 - Two-Photon Fusion at e⁺e⁻ Colliders
- The Known Mesons
 - The Quest for the Scalar Glueball
- Interpretation and Outlook

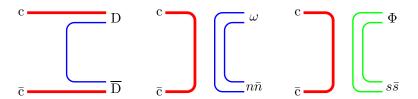

Glue-Rich Environments

Different Production Mechanisms

- **1** J/ψ may convert into two gluons and a photon.
- 2 In central production, two hadrons scatter diffractively; no valence quarks are exchanged.
- In $p\bar{p}$ annihilation, quark-antiquark pairs annihilate into gluons forming glueballs.


Formation of Protonium (annihilation likely in production with recoiling meson):

$$\bar{p} \, + \, \mathrm{H}_2 \rightarrow \boxed{p\bar{p}} + \, \mathrm{H} \, + \, e^- \qquad (^1S_0, \, ^3S_1, \, ^1P_1, \, ^3P_0, \, ^3P_1, \, ^3P_2)$$



Most Suggestive: Radiative J/ψ Decays

Radiative decays of $c\bar{c}$ states can best be studied *in formation* at e^+e^- colliders via a virtual photon in the process:

The OZI Rule and Flavor-Tagging Approach

The decay of J/ψ into mesons with open charm (left) is forbidden due to energy conservation.

The two right diagrams requires annihilation of $c\bar{c}$ into gluons:

- Recoiling against ω , mesons with $n\bar{n}$ quark structure are expected.
- If a ϕ is observed, we expect mesons with hidden strangeness $s\bar{s}$.
 - → OZI rule, e.g. ratio $\phi \eta'/\omega \eta'$ ~ ratio of $s\bar{s}/n\bar{n}$ in η' w.f.

Production Experiments

In central production, it was suggested that glueballs would be produced copiously in the process:

$$hadron_{beam} p \rightarrow hadron_f X p_s$$
,

where the final-state hadrons carry large fractions of the initial-state hadron momenta.

At sufficiently high energies:

- Process expected to be dominated by double-Pomeron exchange
- Pomeron: carries no (color) charge, positive parity/charge conjugation
 - → Double-Pomeron exchange should favor production of isoscalar particles with positive *G*-parity in a glue-rich environment (no valence quark are exchanged)

Production Experiments

In central production, it was suggested that glueballs would be produced copiously in the process:

$$hadron_{beam} p \rightarrow hadron_f X p_s$$
,

where the final-state hadrons carry large fractions of the initial-state hadron momenta.

Close-Kirk Glueball Filter:

- Observation: significant enhancement of glueball candidates over the production of conventional $q\bar{q}$ mesons at small transverse momenta
- No dynamical explanation, yet
 - → Just a momentum filter? (It may suppress angular momentum and enhance scalar mesons.)

Indirect Glueball Signals

Glueball production should be strongly suppressed in $\gamma\gamma$ fusion:

→ There is no valence charge to couple to photons.

The collision of two photons can best be studied in *inelastic Bhabha* scattering at e^+e^- colliders via the reaction:

$$e^+e^- \rightarrow e^+e^- \gamma\gamma \rightarrow e^+e^- X$$

Physicists are creative ...

Stickiness (in J/ψ decays)

$$S = C \left(\frac{M(h)}{k_{\gamma}}\right)^{2l+1} \frac{\Gamma(\psi \to \gamma h)}{\Gamma(h \to \gamma \gamma)}$$

Gluiness

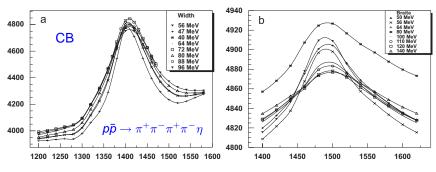
$$G = \frac{9e_Q^4}{2} \left(\frac{\alpha}{\alpha_s}\right)^2 \frac{\Gamma_{R \to gg}}{\Gamma_{R \to \gamma\gamma}}$$

Outline

- Introduction
 - Meson Spectroscopy
 - Theoretical Expectations for Glueballs
- Experimental Methods
 - Proton-Antiproton Annihilation
 - e⁺e⁻ Annihilation and Radiative Decays of Quarkonia
 - Central Production
 - Two-Photon Fusion at e⁺e⁻ Colliders
- The Known Mesons
 - The Quest for the Scalar Glueball
- Interpretation and Outlook

The I = 0, $J^{PC} = 0^{-+}$ (Pseudoscalar) Mesons

Name	Mass [MeV/c ²]	Width [MeV/c ²]	Decays
η (548) *	547.51 ± 0.18	$1.30\pm.07~\text{keV}$	$\gamma\gamma$, 3π
η' (958) *	957.78 ± 0.14	$\boldsymbol{0.203 \pm 0.016}$	$\eta\pi\pi$, $\rho\gamma$, $\omega\gamma$, $\gamma\gamma$
η(1295) *	1294 ± 4	55 ± 5	$ηππ$, $a_0π$, $γγ$, $ησ$, $K\bar{K}π$
η (1405) $*$	1409.8 ± 2.5	51.1 ± 3.4	$K\bar{K}\pi$, $\eta\pi\pi$, $a_0\pi$, $f_0\eta$, 4π
η (1475) $*$	1476 ± 4	87 ± 9	$m{K}m{K}\pi,m{K}m{K}^*+m{c}m{c},m{a}_0\pi,\gamma\gamma$
η (1760)	1760 ± 11	60 ± 16	$\omega\omega$, 4π
η (2225)	2220 ± 18	$150^{+300}_{-60}\pm60$	KKKK


Five pseudoscalar states < 1500 MeV/ c^2 listed in the PDG summary table

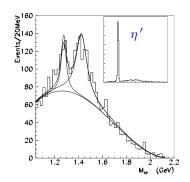
→ Too many for two nonets!!

In 1990, Mark III reported two pseudoscalar states in the 1400 MeV/ c^2 region in radiative J/ψ decays (with $J/\psi \to a_0(980)\pi$ and $J/\psi \to K^*K$).

- Both states confirmed by Crystal Barrel and Obelix at LEAR
- But: CB did NOT observe the $\eta(1295)$

In 2001, L3 observed $\eta(1475) \to K\bar{K}\pi$ in two-photon collisions.

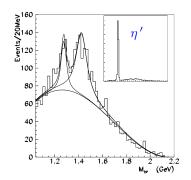
• No observation by L3 of the second state, the $\eta(1405)$ \rightarrow Glueball?

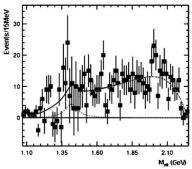

In 2001, L3 observed $\eta(1475) \to K\bar{K}\pi$ in two-photon collisions.

- No observation by L3 of the second state, the $\eta(1405)$ \rightarrow Glueball?
- In 2005, CLEO published (high-statistics) negative results on both states.

The Flavor Filter in the Decay $J/\psi \rightarrow \gamma [\gamma V]$

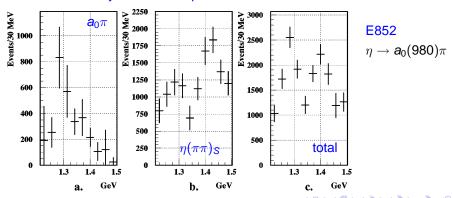
BES-II studied $J/\psi \rightarrow \gamma \gamma V(\rho, \phi)$


- Clear observation of peak at $M \approx 1424 \text{ MeV}/c^2$ in $X(1424) \rightarrow \gamma \rho$ (left)
- No observation of $X(1424) \rightarrow \gamma \phi$ (right)!
 - → Glueball should decay to both final states.



Common conclusion:

- The X(1424) observed by BES is not the η (1430)!
- Mark III cannot distinguish between pseudoscalar states and f₁(1420)
 - → No extra state, no Glueball!



What about the $\eta(1295)$?

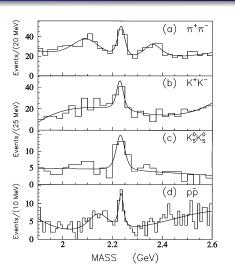
Often interpreted as first radial excitation of the η meson.

- Ideal mixing: degenerate in mass with $\pi(1300)$
- Problem: only observed in pion-induced reactions!

The 2⁺⁺ Tensor Glueball

Evidence essentially non-existent!

Two quark configurations yield 2⁺⁺:


①
$$L = 1$$
, $S = 1$, $J = 2$: ${}^{3}P_{2}$

2
$$L=3$$
, $S=1$, $J=2$: ${}^{3}F_{2}$

- For both nonets, radial excitations are expected.
- Situation premature: none of the states can be assigned definitely to any of the above nonets.

Name	Mass [MeV/ c^2]
f ₂ (1270) *	$\textbf{1275.4} \pm \textbf{1.1}$
f ₂ (1430)	1430
$f_2'(1525) *$	$\textbf{1525} \pm \textbf{5}$
f ₂ (1565)	$\textbf{1546} \pm \textbf{12}$
f ₂ (1640)	$\textbf{1638} \pm \textbf{6}$
f ₂ (1810)	$\textbf{1815} \pm \textbf{12}$
f ₂ (1910)	$\textbf{1915} \pm \textbf{7}$
f ₂ (1950) *	$\textbf{1944} \pm \textbf{12}$
f ₂ (2010) *	2011^{+60}_{-80}
f ₂ (2150)	$\textbf{2156} \pm \textbf{11}$
f ₂ (2300) *	$\textbf{2297} \pm \textbf{28}$
f ₂ (2340) *	$\textbf{2339} \pm \textbf{60}$

The $f_J(2220)$ or $\xi(2230)$ observed by BES

(F.	
Name	Mass [MeV/ c^2]
f ₂ (1270) *	$\textbf{1275.4} \pm \textbf{1.1}$
f ₂ (1430)	1430
f ₂ '(1525) *	$\textbf{1525} \pm \textbf{5}$
$f_2(1565)$	$\textbf{1546} \pm \textbf{12}$
f ₂ (1640)	$\textbf{1638} \pm \textbf{6}$
f ₂ (1810)	$\textbf{1815} \pm \textbf{12}$
f ₂ (1910)	$\textbf{1915} \pm \textbf{7}$
f ₂ (1950) *	$\textbf{1944} \pm \textbf{12}$
f ₂ (2010) *	2011^{+60}_{-80}
$f_2(2150)$	$\textbf{2156} \pm \textbf{11}$
f ₂ (2300) *	$\textbf{2297} \pm \textbf{28}$
f ₂ (2340) *	$\textbf{2339} \pm \textbf{60}$

The I = 0, $J^{PC} = 0^{++}$ (Scalar) Mesons

Name	Mass [MeV/c ²]	Width [MeV/c ²]	Decays
f ₀ (600) *	400 – 1200	600 - 1000	$\pi\pi$, $\gamma\gamma$
$f_0(980) *$	980 ± 10	40 — 100	$\pi\pi$, K $ar{ extbf{K}}$, $\gamma\gamma$
f ₀ (1370) *	1200 — 1500	200 - 500	$\pi\pi$, $\rho\rho$, $\sigma\sigma$, π (1300) π , $a_1\pi$, $\eta\eta$, $K\bar{K}$
$f_0(1500) *$	1507 ± 5	109 ± 7	$\pi\pi$, $\sigma\sigma$, $\rho\rho$, π (1300) π , $a_1\pi$, $\eta\eta$, $\eta\eta'$
			$Kar{K}, \gamma\gamma$
f ₀ (1710) *	$\textbf{1718} \pm \textbf{6}$	137 ± 8	$\pi\pi$, K $ar{ extbf{K}}$, $\eta\eta$, $\omega\omega$, $\gamma\gamma$
$f_0(1790)$			
$f_0(2020)$	1992 ± 16	442 ± 60	$\rho\pi\pi$, $\pi\pi$, $\rho\rho$, $\omega\omega$, $\eta\eta$
$f_0(2100)$	2103 ± 7	206 ± 15	$\eta\pi\pi$, $\pi\pi$, $\pi\pi\pi\pi$, $\eta\eta$, $\eta\eta'$
$f_0(2200)$	$\textbf{2189} \pm \textbf{13}$	238 ± 50	$\pi\pi$, K $ar{K}$, $\eta\eta$

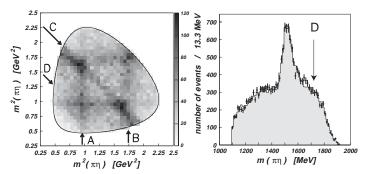
Crystal Barrel

a
$$p\bar{p} \rightarrow \pi^0 \eta \eta$$

b
$$p\bar{p} \rightarrow \pi^0 \pi^0 \eta$$

c
$$p\bar{p} \rightarrow \pi^0 \pi^0 \pi^0$$

d $p\bar{p} \rightarrow \pi^0 K_I K_I$

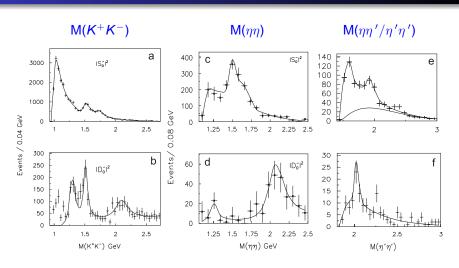

Good description with

- Two isoscalar states: $f_0(1370) / f_0(1500)$
- In addition:
 Both have dominant
 4π decay modes.
 - *→ n* \bar{n} structure

The $f_0(1710)$ Scalar Meson in Crystal Barrel

First discovered by Crystal-Ball in radiative J/ψ decays into $\eta\eta$

- Spin (J = 0 or 2) remained controversial for a long time
- No satisfactory Crystal Barrel signal around 1700 MeV/ c^2 for a scalar or a tensor state in $\pi^0\pi^0\pi^0$ or $\pi^0\eta\eta$

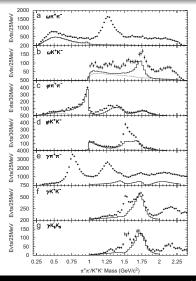


The $f_0(1710)$ Scalar Meson

First discovered by Crystal-Ball in radiative J/ψ decays into $\eta\eta$

- Spin (J = 0 or 2) remained controversial for a long time
- No satisfactory Crystal Barrel signal around 1700 MeV/ c^2 for a scalar or a tensor state in $\pi^0\pi^0\pi^0$ or $\pi^0\eta\eta$
- Consistent with a dominant ss assignment
 - → Confirmed by WA102 reporting a much stronger $K\bar{K}$ coupling of $f_0(1710)$ than $\pi\pi$ coupling

Scalar Mesons in Central Production

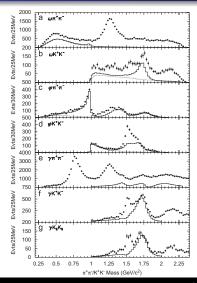

Scalar Mesons in Central Production

Scalar	$\pi\pi/Kar{K}$	$ ho ho / 2 [\pi \pi]_{ m S}$	$ ho ho/4\pi$	$\sigma\sigma/4\pi$
$f_0(1370)$	$\textbf{2.17} \pm \textbf{0.90}$		~ 0.9	~ 0
$f_0(1500)$	$\textbf{3.13} \pm \textbf{0.68}$		$\textbf{0.74} \pm \textbf{0.03}$	$\textbf{0.26} \pm \textbf{0.03}$
		3.3 ± 0.5^{2}		
$f_0(1710)$	0.20 ± 0.03			

CB

Ratio	f ₀ (1370)	$f_0(1500)$
$\mathcal{B}(ar{K}ar{K})/\mathcal{B}(\pi\pi)$	(0.37 ± 0.16) to (0.98 ± 0.42)	0.186 ± 0.066
$\mathcal{B}(ho ho)/\mathcal{B}(4\pi)$	0.260 ± 0.070	0.130 ± 0.080
$\mathcal{B}(\sigma\sigma)/\mathcal{B}(4\pi)$	0.510 ± 0.090	0.260 ± 0.070
$\mathcal{B}(ho ho)/\mathcal{B}(2[\pi\pi]_{\mathbb{S}})$		0.500 ± 0.340
$\mathcal{B}(4\pi)/\mathcal{B}_{ ext{tot}}$	0.800 ± 0.050	$\boldsymbol{0.760 \pm 0.080}$

BES spoils the Glueball Picture ...


Flavor Tagging

→ Peak around 1700 MeV/c² (OZI rule: nn̄ structure)

 $\phi K^+ K^- \rightarrow$ No peak around 1700 MeV/ c^2

 ωK^+K^-

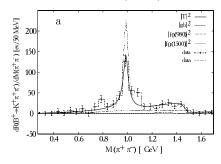
BES spoils the Glueball Picture ...

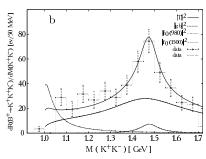
Flavor Tagging

 ωK^+K^- → Peak around 1700 MeV/ c^2 (OZI rule: $n\bar{n}$ structure)

 $6\pi^+\pi^ \rightarrow$ Enhancement at 1790 MeV/ c^2

 $\phi K^+ K^- \rightarrow \text{No peak around 1700 MeV/}c^2$

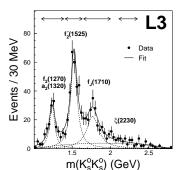

Solution: Two distinct scalar states


- The known $f_0(1790)$ decaying to $K\bar{K}$
- New broad $f_0(1790)$ coupling strongly to $\pi\pi$
 - Not confirmed by other experiments!
 - Mystery why $s\bar{s}$ recoils against ω

Belle makes it even worse ...

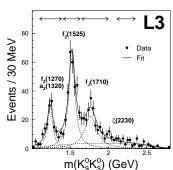
Belle measured scalar mesons in $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ (Results essentially confirmed by BaBar)

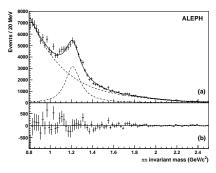
- No peak at 1500 MeV/ c^2 for the $f_0(1500)$ (left),
- But a clear peak around 1500 MeV/c² decaying to K+K-
 - \rightarrow Structure of $f_0(1500)$ remains unclear (or two states)!



Results on Scalar Mesons from $\gamma\gamma$ Fusion

Results were reported by the LEP collaborations at CERN:


- Three clear peaks in the $K_S^0 K_S^0$ mass by L3 (dominated by tensors)
- No peak for the f₀(1500)
 - → Consistent with known small $s\bar{s}$ component! What about $\pi\pi$ spectrum?



Results on Scalar Mesons from $\gamma\gamma$ Fusion

Results were reported by the LEP collaborations at CERN:

- Three clear peaks in the $K_S^0 K_S^0$ mass by L3 (dominated by tensors)
- No peak for the $f_0(1500)$
 - → Consistent with known small $s\bar{s}$ component! What about $\pi\pi$ spectrum?

Outline

- Introduction
 - Meson Spectroscopy
 - Theoretical Expectations for Glueballs
- 2 Experimental Methods
 - Proton-Antiproton Annihilation
 - e⁺e⁻ Annihilation and Radiative Decays of Quarkonia
 - Central Production
 - Two-Photon Fusion at e⁺e⁻ Colliders
- The Known Mesons
 - The Quest for the Scalar Glueball
- Interpretation and Outlook

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

What is the nature of the $f_0(980)$ and $a_0(980)$? (There is the possibility of an exotic nonet below 1 GeV/ c^2 .)

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

- What is the nature of the $f_0(980)$ and $a_0(980)$? (There is the possibility of an exotic nonet below 1 GeV/ c^2 .)
- Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or maybe, it does not exist ...

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

- What is the nature of the $f_0(980)$ and $a_0(980)$? (There is the possibility of an exotic nonet below 1 GeV/ c^2 .)
- Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or maybe, it does not exist ...
- Is the $f_0(1500)$ the scalar glueball? Data on $J/\psi \to \gamma f_0(1500)$ is still statistically limited \Rightarrow BES-III

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

- What is the nature of the $f_0(980)$ and $a_0(980)$? (There is the possibility of an exotic nonet below 1 GeV/ c^2 .)
- Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or maybe, it does not exist ...
- Is the $f_0(1500)$ the scalar glueball? Data on $J/\psi \to \gamma f_0(1500)$ is still statistically limited \Rightarrow BES-III
- Are the two states, $f_0(1710)$ and $f_0(1790)$ distinct states?

Summary

Do glueballs exist in nature?

Summary

Do glueballs exist in nature?

I don't know ... http://dx.doi.org/10.1016/j.ppnp.2009.03.001

- The tensor glueball
 - → No evidence so far.
- The pseudoscalar glueball
 - → Very weak evidence, not likely.
- The scalar glueball
 - → Best evidence, but no clear state. Physical states can mix:

$$\begin{pmatrix} | f_0(1370) \rangle \\ | f_0(1500) \rangle \\ | f_0(1710) \rangle \end{pmatrix} = \begin{pmatrix} M_{1n} & M_{1s} & M_{1g} \\ M_{2n} & M_{2s} & M_{2g} \\ M_{3n} & M_{3s} & M_{3g} \end{pmatrix} \cdot \begin{pmatrix} | n\bar{n} \rangle \\ | s\bar{s} \rangle \\ | G \rangle \end{pmatrix}$$

