D Hadronic Branching Fractions and DD Cross Section at $\psi''(3770)$ from CLEO-c

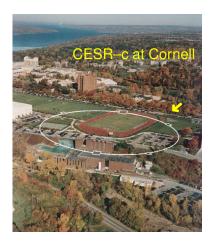
V. Credé 1 2

¹Cornell University, Ithaca, NY

²now at Florida State University Tallahassee, FL

Hadron 05

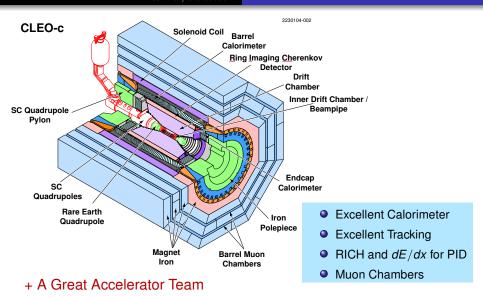
- Introduction
 - CESR-c
 - CLEO-c Detector
- Absolute D-Hadronic Branching Fractions
 - Why are Hadronic D Decays interesting?
 - D Tagging
 - Fitting the Branching Fractions
- Results: Branching Fractions and Cross Sections
- Summary and Outlook



- Introduction
 - CESR-c
 - CLEO-c Detector
- Absolute D-Hadronic Branching Fractions
 - Why are Hadronic D Decays interesting?
 - D Tagging
 - Fitting the Branching Fractions
- Results: Branching Fractions and Cross Sections
- Summary and Outlook

Summary and Outlook

$e^+e^- o \psi^{''}$ (3770) at Cornell



$$E_{\text{beam}} = (1.5 - 5.6) \text{ GeV}$$

 $\Rightarrow \sqrt{s} = (3.0 - 11.2) \text{ GeV}$

CESR–c collides e^+e^- in order to produce the $\psi''(3770)$

- Introduction
 - CESR-c
 - CLEO-c Detector
- Absolute D-Hadronic Branching Fractions
 - Why are Hadronic D Decays interesting?
 - D Tagging
 - Fitting the Branching Fractions
- 3 Results: Branching Fractions and Cross Sections
- Summary and Outlook

- 1 Introduction
 - CESR-c
 - CLEO-c Detector
- Absolute D-Hadronic Branching Fractions
 - Why are Hadronic D Decays interesting?
 - D Tagging
 - Fitting the Branching Fractions
- 3 Results: Branching Fractions and Cross Sections
- Summary and Outlook

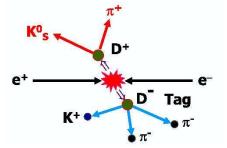
Hadronic D Decays

- Measurements of hadronic charm meson branching fractions play central role in study of weak interaction
 - Serve to normalize many D and B meson branching fractions (normalizing modes: $D^0 \to K^-\pi^+$ and $D^+ \to K^-\pi^+\pi^+$)
 - Used to determine Cabibbo–Kobayashi–Maskawa (CKM) matrix elements (e.g. $|V_{cb}|$ from $B \to D^* 1 \nu$ requires D meson BF)
- CLEO

 —c will provide most precise measurements of D hadronic branching fractions
 - Also, determination of DD production cross sections
 - First step towards improved constraints on D mixing parameters

First results: $55.8~\rm pb^{-1}$ (0.36 M D $\overline{\rm D}$ pairs) CLEO Collaboration (Q. He *et al.*), hep–ex/0504003, accepted by PRL

- Introduction
 - CESR-c
 - CLFO-c Detector
- Absolute D-Hadronic Branching Fractions
 - Why are Hadronic D Decays interesting?
 - D Tagging
 - Fitting the Branching Fractions
- 3 Results: Branching Fractions and Cross Sections
- Summary and Outlook



D Tagging and the Mark III Method

Identification of D meson candidates using beam-constrained mass:

$$\Delta E = E_D - E_{\text{beam}}$$

$$M_{\text{bc}} = \sqrt{E_{\text{beam}}^2 - |p_D|^2}$$

Basic strategy (for most CLEO-c analyses)

- Full reconstruction of one D meson (the tag)
- Search for 2nd D meson in the remainder of the event

Reconstruction

- Charged tracks: Track fit quality and originate from interaction point
- π/K separation by dE/dx and RICH
- $K_S \to \pi^+\pi^-$ and π^0 reconstruction
- 3σ cut on $\Delta E \equiv E_{\rm D} E_{\rm 0}$

Single Tags and Double Tags

Measurement of single tags and double tags

$$N_i = N_{D\overline{D}} \mathcal{B}_i \epsilon_i$$
 $N_{ij} = N_{D\overline{D}} \mathcal{B}_i \mathcal{B}_j \epsilon_{ij}$
 $\downarrow Wanted$

Determination of Branching Fractions

- Determine yields N_i and N_{ij}
- Simultaneously fit for $N_{D^+D^-}$, $N_{D^0\overline{D^0}}$, and all \mathcal{B}_i

$$egin{aligned} \mathcal{B}_i &= rac{N_{ij}\,\epsilon_j}{N_j\,\epsilon_{ij}} \ N_{ar{D}ar{D}} &= rac{N_i\,N_j\,\epsilon_{ij}}{N_{ij}\,\epsilon_i\,\epsilon_i} \end{aligned}$$

Measured

- 1 Introduction
 - CESR-c
 - CLEO-c Detector
- Absolute D-Hadronic Branching Fractions
 - Why are Hadronic D Decays interesting?
 - D Tagging
 - Fitting the Branching Fractions
- 3 Results: Branching Fractions and Cross Sections
- Summary and Outlook

Fitting Technique (I)

Simultaneous fit for all \mathcal{BR} & cross sections is performed

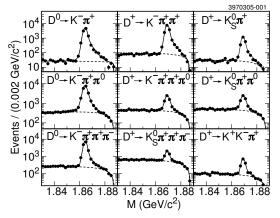
- ⇒ All correlations and errors properly taken into account
 - Charged and neutral modes fit simultaneously
 - D and D yields measured separately

W.M. Sun arXiv:physics/0503050 accepted by NIM A

Fitting Technique (II)

Background sources:

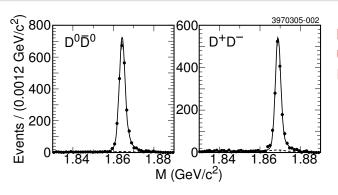
- D modes not in the fit
- e⁺e[−] → continuum
- Most Cabibbo-suppressed modes small


Errors on signals and background:

- Tracking, π⁰, K_S systematics (correlates all elements)
- Resonant substructure
- Correlations between D⁰ and D⁺

Analysis technique validated by studying simulated $D\overline{D}$ events

Single-Tag Event Yields


Yields vary between 0.6 k and \approx 10 k events

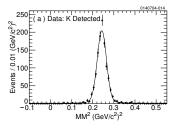
- Signal shape:
 ψ(3770) lineshape + ISR
 + beam-energy smearing,
 + reconstruction resolution
- Background shape: ARGUS function

Note: log scale for single tags!

Double-Tag Event Yields

Mass of D for all modes combined

DT Yields


- 2484 \pm 51 for D⁰
- $1650 \pm 42 \text{ for D}^+$

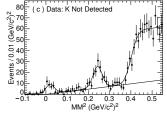
Double-tag modes clean

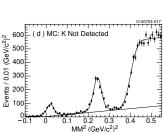
 \Rightarrow Statistical yield uncertainties close to $\sqrt{N_{ij}}$

Example: Tracking Systematics

0.3

MM² (GeV/c²)²


0.5


0.4

b) MC: K Detected

0.1

-0.1

Procedure

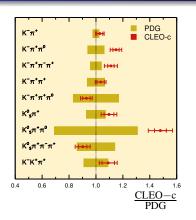
Example:

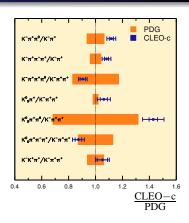
Reaction $D^0 \to K^-\pi^+$

- Leaving out K
 - ⇒ MM peaks at mass of omitted K
 - Efficiency:
 Ratio of
 (a) and (c)
- Comparison between Data and MC

Systematics

Tracking Systematics

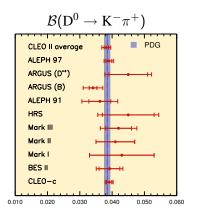

•
$$\psi(2S) \rightarrow J/\psi \pi^+\pi^-$$

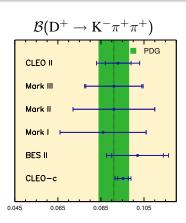

also:

- $\psi(2S) \rightarrow J/\psi \pi^0 \pi^0$
- K_S from D → K_S ππ (double–tag events)

Source	Value (%)
Tracking / $K_{\rm S}$ / π^0	0.7/3.0/2.0
Particle ID	$0.3/\pi^{\pm} 1.3/K^{\pm}$
ΔE	1.0 – 2.5
$\Gamma_{\Psi(3770)}$	0.6
Final State Radiation	0.5 ST/1.0 DT
Resonant Substructure	0.4/1.5
DCSD Interference	0.8
Fit Functions	0.5
Online/Offline Filtering	0.4
Multiplicity	0.2 – 1.3
Detector Noise	0.2 - 1.5

Comparison with PDG





- CLEO efficiencies include Final State Radiation (FSR)
- In some channels, systematics is already the limiting factor

Comparison with other direct measurements in PDG

PDG band corresponds to the average of all direct measurements

⇒ Not a global fit!

Cross Sections and Absolute Branching Fractions

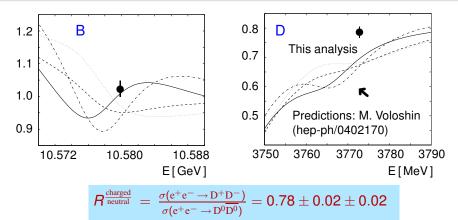
Determination of cross sections

(scaling $N_{D\overline{D}}$ by the luminosity)

$$\begin{split} \sigma \left({{e^ + }{e^ - }} \to D\overline D \right) & = \left({6.23 \pm 0.09 \pm 0.21} \right)nb \\ \sigma \left({{e^ + }{e^ - }} \to {D^0}\overline {D^0} \right) & = \left({3.51 \pm 0.07 \pm 0.14} \right)nb \\ \sigma \left({{e^ + }{e^ - }} \to {D^ + }{D^ - }} \right) & = \left({2.72 \pm 0.07 \pm 0.09} \right)nb \end{split}$$

- Currently, most precise data
- Determination of charged to neutral ratio (→ next slide)

Comparison with BES (PLB **603**, 130 (2004))


$$(6.14 \pm 0.12 \pm 0.50)$$
 nb
 $(3.58 \pm 0.09 \pm 0.31)$ nb
 $(2.56 \pm 0.08 \pm 0.26)$ nb
 \Rightarrow much larger

Values higher than those of MARK III

Charged to Neutral Ratio

Discrepancies \Rightarrow Speculation of 4–quark component of $\psi(3770)$ (M.V., hep-ph/0504197)

CLEO-c Absolute Hadronic BF: Summary

- First results based on (arXiv:hep-ex/0504003)
 - 55.8 pb⁻¹ of e⁺e⁻ colllisions
 - 9 decay modes
 - \Rightarrow Including reference branching fractions $\mathcal{B}(D^0 \to K^- \pi^+) = (3.91 \pm 0.08 \pm 0.09) \%$ $\mathcal{B}(D^+ \to K^- \pi^+ \pi^+) = (9.5 \pm 0.2 \pm 0.3) \%$
- Comparison with PDG: Branching fractions a little bit higher
 ⇒ CLEO measurements corrected for FSR
- Already systematics limited in some modes
 - ⇒ New data will reduce statistical errors even more
- Cross sections: $\sigma(\psi^{''} \to D\overline{D}), \, \sigma(\psi^{''} \to D^0\overline{D^0}), \, \sigma(\psi^{''} \to D^+D^-), \, \text{and} \, R^{\frac{\text{charged}}{\text{neutral}}}$

Hadronic D Decays: Outlook

- There will be more data available for this analysis
 - 281 pb⁻¹ as of this summer
 - Statistical error will be reduced by a factor of 2
- Addition of Cabibbo—suppressed hadronic D decays
 - \Rightarrow including π^0
- D mixing constraints (hep-ph/0507238, submitted to PRD)