Introduction

Tianqi Hu

Florida State University, Tallahassee, FL

Dissertation Defense

06/02/2022

Results & Discussions

Outline

- Introduction
- Experimental Setup
- Analysis of CLAS-g12 Data
 - Basic Procedures
 - Study of the Detector Inefficiencies
- Results & Discussions
 - $\gamma p \rightarrow p \eta \& \gamma p \rightarrow p \omega$ Differential Cross Sections
 - $\gamma p \rightarrow p\omega$ Spin Density Matrix Elements
- Research Summary

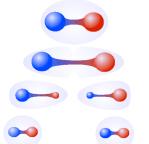
Outline

- Introduction
- - Basic Procedures
 - Study of the Detector Inefficiencies
- - $\gamma p \rightarrow p \eta \& \gamma p \rightarrow p \omega$ Differential Cross Sections
 - $\gamma p \rightarrow p\omega$ Spin Density Matrix Elements

Standard Model

- What are the most fundamental building blocks of our universe?
- How do these building blocks interact with each other and how do they form the diversity of our universe?

Standard Model of Elementary Particles

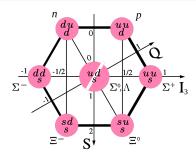

- Twelve elementary fermions.
- Four gauge bosons (vector bosons).
- The Higgs boson (scalar boson).

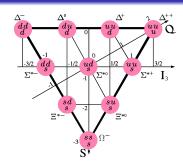
Quantum Chromodynamics (QCD)

Quarks: the objects that experience the strong interaction.

Introduction

Gluons: the gauge bosons carrying the strong force.

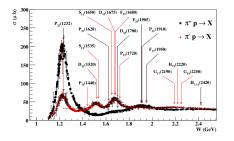


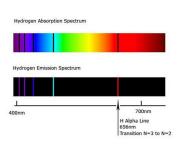

- Color confinement: Only particles with white color can be isolated
- Asymptotic freedom: The strong coupling constant gets smaller at a smaller length scale (larger momentum transfer).

Q: What is the nature of color charge and what causes color confinement?

Hadrons & Quark Model

- Baryons: (qqq) fermions with half-integer spins
- Mesons: (qq̄) bosons with integer spins




Results & Discussions

- Isospin symmetry was extended to the SU(3) flavor symmetry.
- SU(3) flavor symmetry ⇒ spin-1/2 baryon octet and spin-3/2 decuplet.

Baryon Resonance

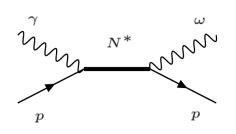
- Baryon resonance: excited states of baryons.
- Providing a way to understand the degrees of freedom inside baryons.
- much more unstable (with a lifetime of ∼ 10⁻²³s) than atoms

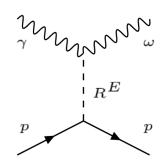
- Much broader line widths due to much shorter lifetimes.
- Techniques (partial wave analysis) required to disentangle the overlapped states.

Progress of η Meson Photoproduction Experiments

Reaction	W [GeV]	Observables	Collaboration
$\gamma p \rightarrow p \eta$	1.49-1.96	cross sections	A2
	1.55-2.80		CLAS
	1.51-2.55		CB-ELSA
	1.57-2.38		CBELSA/TAPS
	1.49-1.92		GRAAL
	1.97-2.32		LEPS
	2.36, 2.55		Daresbury
	2.90, 3.48		DESY
	2.90		MIT
	3.48-5.56		SLAC
	2.90-3.99		Cornell
	1.51-1.69	Σ observable	GRAAL
	1.49-1.91		CBELSA/TAPS
	1.70-2.10		CLAS
	1.49-1.87	T, F observables	A2
	1.45-2.15	E observable	CLAS
	1.49-1.87		A2
	1.48-2.40	T, E, P, H, G observables	CBELSA/TAPS
$\gamma n \rightarrow n \eta$	1.49-1.88	cross sections	A2
	1.50-2.18		CBELSA/TAPS
	1.59-2.07		CBELSA/TAPS
	1.49-1.87	E observable	A2

- η meson: $J^{PC} = 0^{-+}$ pseudoscalar meson.
- Important channel for extracting nucleon resonances.
- Few data above the nucleon resonance regime.
- Dominant decay channel $\eta \to \pi^+\pi^-\pi^0$.


Q: How are the η mesons produced in the pure scattering process above the resonance regime?


Results & Discussions

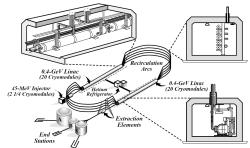
W [GeV]	Observables	Collaboration
2.62-2.87	cross sections	CLAS
1.71-1.87		A2
2.35-2.54	cross sections, ρ^0 SDMEs	SLAC, Daresbury
1.72-2.40		SAPHIR
1.7-2.8		CLAS
2.48, 3.14	$ ho^0$ SDMEs	LAMP2
1.74-2.36	cross sections, ρ^0 , ρ^1 , ρ^2 SDMEs	CBELSA/TAPS
1.72-2.02	Σ observable	CBELSA/TAPS
1.75-2.25	E, G observables	CBELSA/TAPS

- ω meson: $J^{PC}=1^{--}$ vector meson, with the same J^{PC} quantum numbers as the photon.
- Spin-polarization can be revealed by measuring the spin density matrix elements (SDMEs) in its dominant decay channel $\omega \to \pi^+\pi^-\pi^0$.

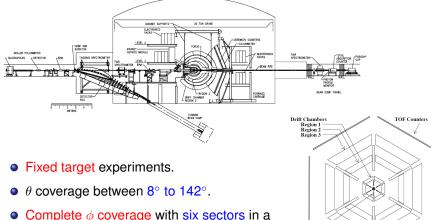
Photoproduction Mechanism

General picture of the photoproduction mechanism: s-channel production through nucleon resonance decay (left) and t-channel production via exchange of Reggeons (right)

Outline


- Introduction
- Experimental Setup
- 3 Analysis of CLAS-g12 Data
 - Basic Procedures
 - Study of the Detector Inefficiencies
- Results & Discussions
 - $\gamma p \rightarrow p \eta \& \gamma p \rightarrow p \omega$ Differential Cross Sections
 - $\gamma p \rightarrow p\omega$ Spin Density Matrix Elements
- Research Summary

Jefferson Lab & CEBAF

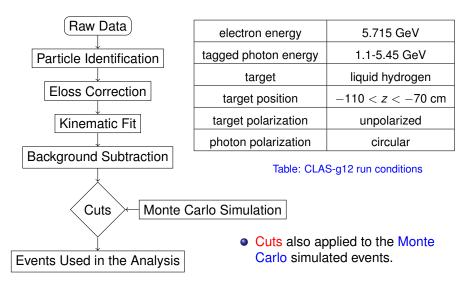

- Two linear accelerators (Linac) connected by two recirculation arcs.
- Linearly-polarized electrons $E_{e^-} = 5.715 \text{ GeV}$ (CLAS-g12), producing bremsstrahlung photons up to $E_{\gamma} = 5.45 \text{ GeV}$.

- Aerial view of Jefferson Lab@NewPort News.
- Accelerator: Continuous Electron Beam Accelerator Facility (CEBAF).
- CLAS Experiments taken in Hall B.

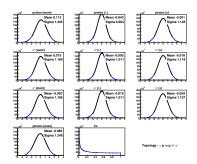
Mini-torus Coils Main Torus Coils

The CLAS Spectrometer

- Complete ϕ coverage with six sectors in a hexagonally symmetric configuration.

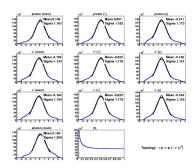

B. A. Mecking et al., Nucl. Instrum. Methods Phys. Res., Sect. A 503, 513 (2003).

Results & Discussions

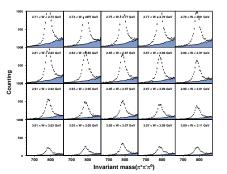

Outline

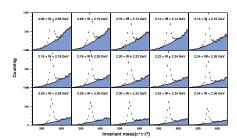
- Analysis of CLAS-g12 Data
 - Basic Procedures
 - Study of the Detector Inefficiencies
- - $\gamma p \rightarrow p \eta \& \gamma p \rightarrow p \omega$ Differential Cross Sections
 - $\gamma p \rightarrow p\omega$ Spin Density Matrix Elements

Basic Procedures & g12 Run Conditions

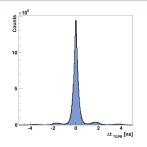


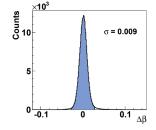
Kinematic Fit

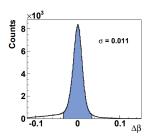

- Systematic effects would cause the center of the pull distribution shifted away from zero.
- Properly tuned covariance matrix makes the confidence level (CL) distribution flat toward CL=1.

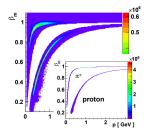

- Enforcing energy and momentum conservation by varying 4-momenta of the final state particles.
- Important tool for monitoring and fixing errors in momentum measurements.

Background Subtraction Using the Q-factor Method

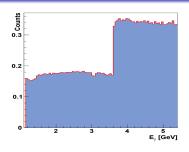

- Probability-based method: each event with an extracted Q-factor as its weight to be the signal.
- Measurements taken by summing over the Q-factors.

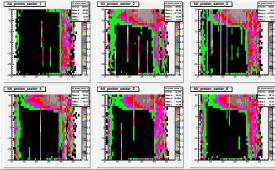

- Invariant mass distributions showing signal-background separation for $\gamma p \to p \eta$ (top) and $\gamma p \to p \omega$ (bottom).
- Data points with error bars are plotted with the full events while the distributions in blue are filled with a weight of 1 - Q.


Coincidence Time Cut & $\Delta \beta$ Cut

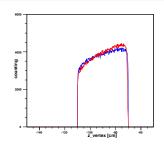


$$t_{event} = t_{ST} - rac{d}{ceta_m} \ \Delta t_{TGPB} = t_{event} - t_{\gamma}$$
 $eta_m = v/c \ eta_c = p/E \ \Delta eta = |eta_m - eta_c|$


- Data events are considered only if $\Delta t_{TGPB} < 1$ ns.
- $\Delta \beta < 3\sigma$ is required for the proton or the π^+ , to remove unseparated electrons.



Trigger Cut & Trigger Efficiency Simulation



- Trigger efficiency mapped out for proton, π^+ , and π^- over 6 sectors, 57 TOF paddles and the entire azimuthal angle.
- Trigger efficiency simulation only applied to the Monte Carlo events.

- Selected g12 runs with a mixture of 2-sector and 3-sector trigger conditions.
- Ratio distribution of 2-sector over 3-sector triggered events (left).
- Only 3-sector triggered data events kept for this analysis.

Z-Vertex Cut & Bad TOF Paddles

- Slight mismatch between the data and MC z-vertex distributions.
- Events from some TOF paddle removed for this analysis for being either inefficient or unstable during the run period.

Table: TOF paddles removed from this analysis.

Sector Number	TOF Paddle ID		
1	6, 25, 26, 35, 40, 41, 50, 56		
2	2, 8, 18, 25, 27, 34, 35, 41, 44, 50, 54, 56		
3	1, 11, 18, 32, 35, 40, 41, 56		
4	8, 19, 41, 48		
5	48		
6	1, 5, 24, 33, 56		

Summary of the Cuts Applied

	Data	Monte Carlo
Confidence Level Cut	1%	
Coincidence Time Cut	$\Delta t_{ m TGPB} <$ 1 ns	
Δeta Cut	3σ	
Vertex Cut	-110 < z < -72 cm	
Forward π^0 Cut	$\cos\theta_{\pi^0}$ <0.99	
Fiducial Cut	yes	
Trigger Cut	yes	
Trigger Efficiency Simulation	no	yes
Bad Paddle Knock Out	yes	

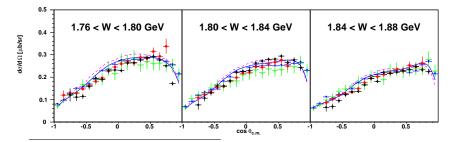
Table: Summary of the cuts that have been applied to this analysis.

Introduction

- - 2 Experimental Setup
 - Analysis of CLAS-g12 Data
 - Basic Procedures
 - Study of the Detector Inefficiencies
 - Results & Discussions
 - $\gamma p \rightarrow p \eta \& \gamma p \rightarrow p \omega$ Differential Cross Sections
 - $\gamma p \rightarrow p\omega$ Spin Density Matrix Elements
 - Research Summary

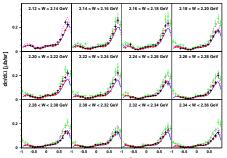
$\gamma p o p \eta$ Differential Cross Sections

Experimental form of the differential cross section:

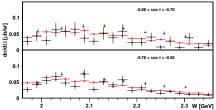

$$\frac{d\sigma}{d\Omega} = \frac{N}{A} \frac{1}{N_{\gamma} \rho_{target}} \frac{1}{\Delta\Omega} \frac{1}{\mathrm{BR}},$$

 N_{γ} : number of incident photons

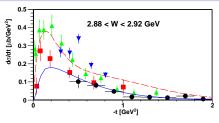
 ρ_{target} : area density of the target $\Delta\Omega$: solid angle interval


BR: branching ratio

- $\gamma p \rightarrow p \eta$ differential cross sections measured in the dominant decay channel $\eta \rightarrow \pi^+ \pi^- \pi^0$.
- Comparison with previous measurements as well as the η-MAID2018 solution and the BnGa2019 model.

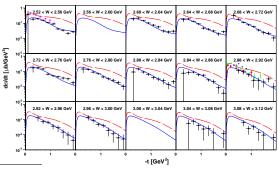

Published result: Phys. Rev. C 102, 065203 (2020).

$\gamma p \rightarrow p \eta$ Differential Cross Sections

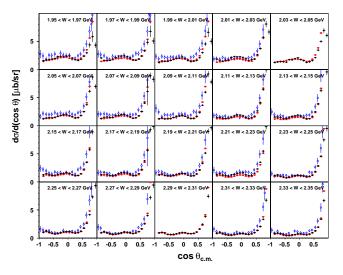


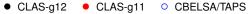
- The data confirms the dominance of the 1/2⁻ partial wave in both models.
- N(1900)3/2⁺ resonance plays a significantly more important role in BnGa2019 than in η-MAID2018.
- Further identification of the resonance contributions also needs measuring polarization observables.

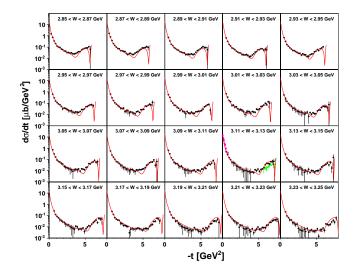
- Reasonable agreement in comparison with the SPring-8/LEPS measurement in Vs. W representation.
- A bump structure observed around
 W ∈ [2.0.2.2] GeV (right picture).

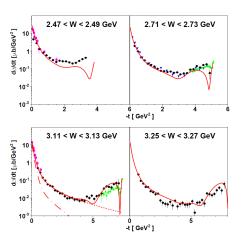


$\gamma p \rightarrow p \eta$ Differential Cross Sections




- dσ/dt compared with MIT, Cornell, DESY, and NINA measurements, and η-MAID2018 and JPAC models.
- Production at $t = 0 \text{ GeV}^2$ prohibited by angular momentum conservation.


- JPAC model: pure Regge model describing the process at low momentum transfer region (-t < 1.0 GeV²).
- Our data are not in favor of inclusion of the 2⁻⁻ tensor exchange, which would even scale up the cross section.

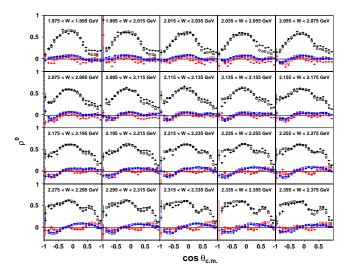

$\gamma p ightarrow p \omega$ Differential Cross Sections

$\gamma ho ightarrow ho \omega$ Differential Cross Sections

- Typical exponential behaviour due to Pomeron and Reggeon exchange observed at low momentum transfer, properly described by the model.
- The u-channel rise also observed at maximum momentum transfer.
- Dip predicted near maximum momentum transfer, which is not clearly seen in our data.

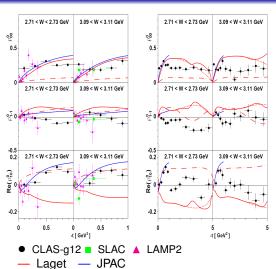
Formulation

In the decay angular distribution, the unpolarized term and the circularly-polarized term are

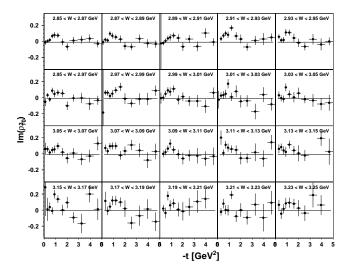

$$W_{0}(\theta^{*},\phi^{*}) = \frac{3}{4\pi} \left[\frac{1}{2} (1 - \rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0} - 1)\cos^{2}\theta^{*} - \sqrt{2}Re(\rho_{10}^{0})\sin 2\theta^{*}\cos \phi^{*} - \rho_{1-1}^{0}\sin^{2}\theta^{*}\cos 2\phi^{*} \right], \tag{1}$$

$$W_3(\theta^*, \phi^*) = \frac{3}{4\pi} (\sqrt{2} Im(\rho_{10}^3) sin2\theta^* sin\phi^* + Im(\rho_{1-1}^3) sin^2\theta^* sin2\phi^*)$$
(2)

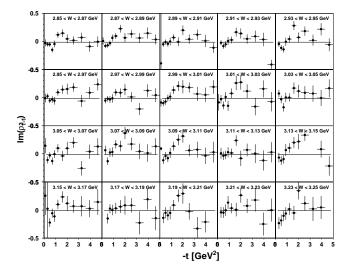
An event-based maximum likelihood fit was done to determine the SDMEs, with the likelihood function as


$$-\ln \mathcal{L} = \frac{\pi^3 C_{\lambda}(\sum_{i=1}^n Q_i)}{N_{rec}} \sum_{i=1}^{N_{rec}} (\lambda_i W_i) - \sum_{i=1}^n Q_i \ln W_i$$
 (3)

$\gamma p ightarrow p\omega$ SDMEs in the Adair Frame



Unpolarized SDMEs ρ^0 for $\gamma p \rightarrow p\omega$


- The JPAC model properly describes ρ_{00}^0 and Re(ρ_{10}^0) at small momentum transfer
- \bullet ρ_{1-1}^0 has an opposite sign to the JPAC model prediction, indicating the new data are in favor of smaller contribution of the unnatureal-parity exchange than the model predicts.

Introduction

Results & Discussions 0000000000

First Measurement of ρ^3 for $\gamma p \rightarrow p\omega$

Introduction

- - Basic Procedures
 - Study of the Detector Inefficiencies
- - $\gamma p \rightarrow p \eta \& \gamma p \rightarrow p \omega$ Differential Cross Sections
 - $\gamma p \rightarrow p\omega$ Spin Density Matrix Elements
- Research Summary

Research Summary

- Our $\gamma p \to p \eta$ and $\gamma p \to p \omega$ differential cross section measurements extend the energy region above the resonance regime to $E_{\gamma} \approx 5$ GeV with relatively high precision compared with previous measurements. The new data could potentially be used for revealing t- channel photoproduction mechanisms of pseudoscalar and vector mesons.
- The circularly polarized SDMEs ρ^3 for $\gamma p \to p\omega$ have been first measured, as well as the unpolarized SDMEs ρ^0 at large momentum transfer region -t > 0.6 GeV².
- The behavior of ρ_{00}^0 and $\operatorname{Re}(\rho_{10}^0)$ is consistent with the model predictions, whereas ρ_{1-1}^0 goes to the opposite sign direction relative to the models, indicating the new data are in favor of smaller contribution of the unnatureal-parity exchange than the model predicts.